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1 Introduction

There are two standard existence theorems in the theory of ODE: the Cauchy-Picard

existence and uniqueness theorem and the Peano existence theorem. The Cauchy-Picard

theorem states that if the right hand side of ODE satisfies the Lipschitz conditions then

initial value problem has unique solution. The proof of this theorem is based on the

contraction mapping principle. The Peano theorem states that for existence of a solution

it is sufficient to have only continuity of the right hand side. This theorem is proven by

means of compactness considerations with the help of the Arzela-Ascoli theorem.

The case of initial value problem for PDE in the abstract setup has been studied

by many authors and there are existence and uniqueness theorems proved under the

assumptions of Lipschitz type conditions.

An abstract form of the Cauchy-Kowalewski Problem was first considered by T. Ya-

manaka in [8] and L. Ovsjannikov [4] in the linear case. Some another aspects of the

linear Cauchy-Kowalewski Problem were exposed by J. Treves [7].
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In [2] L. Nirenberg obtained the existence and uniqueness theorem for the abstract

nonlinear Cauchy-Kowalewski Problem. The proof of Nirenberg’s theorem uses an itera-

tion procedure of Newtonian type and based on ideas of the KAM theory. In Nirenberg’s

theorem it is assumed that the right hand side of the problem is a strong differentiable

mapping.

T. Nishida [3] simplified the iteration procedure and stated that in Nirenberg’s theo-

rem it is possible to replace strong differentiability with the Lipschitz type conditions.

In [5] M. Safonov gave a proof of Nishida’s theorem by constructing a suitable Banach

space of functions and then using the contraction mapping principle.

In this paper we consider a topological aspect of the abstract nonlinear Cauchy-

Kowalewski Problem and prove the Peano type existence theorem.

We assume that the right hand side of the equation depends on two arguments: it

is bounded and continuous in the first argument (pure Peano’s case) and convex in the

second one. Such a setup includes quasilinear PDE as a special case. This theorem is not

deduced from Nishida’s result or quasilinear versions of the Cauchy-Kowalewski Problem

since the Lipschitz type conditions are not applied.

The main tools we use are Browder’s generalization of the Schauder fixed point the-

orem and a topological construction close to Safonov’s one.

2 Main theorem

Let {(Es, ‖ · ‖s)}0<s<1 be a scale of Banach spaces:

Es+δ ⊆ Es, ‖ · ‖s ≤ ‖ · ‖s+δ, s + δ < 1, δ > 0. (1)

We assume that all embeddings (1) are compact. Such an assumption always holds for

the scales of analytic functions.

Let Bs(r) = {u ∈ Es | ‖u‖s < r} be an open ball of Es and let Bs(r) be its closure.

The main object of our study is the following Cauchy-Kowalewski problem:

ut = A(t, u, u) + h(t, u), u |t=0= 0. (2)

For some positive constants T,R,M,K the mappings

A : [0, T ] ×Bs+δ(R) ×Bs+δ(R) → Es,

h : [0, T ] ×Bs+δ(R) → Es, δ > 0, s + δ < 1

are continuous and if u, v ∈ Bs+δ(R) then the inequalities hold:

‖A(t, u, v)‖s ≤ M‖v‖s+δ

δ
, ‖h(t, u)‖s ≤ K, δ > 0, s + δ < 1. (3)

Let the mapping A be convex in the third argument: for all u, v, w ∈ Bs+δ(R) and

0 ≤ λ ≤ 1 we have

‖A(t, u, λv + (1 − λ)w)‖s ≤ λ‖A(t, u, v)‖s + (1 − λ)‖A(t, u, w)‖s. (4)
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For example, if the mapping A is linear in the third argument then the above inequality

holds.

Theorem 2.1. There exists such a large constant a > 0 that problem (2) has a solution

u(t) ∈
⋂

1−s−τa>0

C([0, τ ], Bs(R)).

Hypothesis 2.2. The condition of convexity (4) is necessary: there must be an example

of such mappings A and h that satisfy all the above conditions except (4) and problem

(2) does not have the solution.

This theorem does not reduce to the Nishida result [3]. Nishida’s theorem uses a type

of the Lipschitz condition:

‖f(t, u′) − f(t, u′′)‖s ≤ M

δ
‖u′ − u′′‖s+δ, u′, u′′ ∈ Bs+δ(R), s + δ < 1,

where f is the right hand side of the problem.

In the case under consideration we separate the arguments of the mapping A. It is

bounded in the second argument and unbounded in the third one. Thus it is sufficient to

have only continuity in the second argument and linearity or convexity in the third one.

If the mapping A equals to zero identically then Theorem 2.1 is a direct generalization

from the finite dimensional case to the scale of Banach spaces of the Peano existence

theorem.

There is no reason to expect uniqueness in Theorem 2.1: even in the case of ordinary

differential equations there are systems with continuous (but not Lipschitz) right-hand

sides that do not have the uniqueness.

Before starting to prove Theorem 2.1 we must build some tools.

3 Preliminary topological construction

Introduce a triangle:

∆ = {(τ, s) ∈ R2 | τ > 0, 0 < s < 1, 1 − s− τa > 0}.

Consider a seminormed space E =
⋂

(τ,s)∈∆ C([0, τ ], Es) with a family of norms:

‖u‖τ,s = max
0≤t≤τ

‖u(t)‖s.

Obviously, these norms satisfy the following inequalities:

‖ · ‖τ,s ≤ ‖ · ‖τ+δ,s, ‖ · ‖τ,s ≤ ‖ · ‖τ,s+δ, δ > 0. (5)

The space E is a topological space with a basis of the topology given by the open

balls:

Bτ,s(R) = {u ∈ E | ‖u‖τ,s < R}.
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Definition 3.1. A set G ⊆ E is said to be uniformly continuous if for all ε > 0 and for

all (τ, s) ∈ ∆ there is δ = δ(ε, τ, s) > 0 such that if t1, t2 ∈ [0, τ ] and |t1 − t2| < δ then

sup
u∈G

‖u(t1) − u(t2)‖s < ε.

A set G ⊆ E is said to be bounded if there are such constants Mτ,s that for all u ∈ G

we have ‖u‖τ,s ≤ Mτ,s.

Recall the Arzela-Ascoli lemma [6]:

Lemma 3.2. Let H ⊂ C([0, T ], X) be a set in the space of continuous functions with

values in a Banach space X. Assume that the set H is closed, bounded, uniformly

continuous and for every t ∈ [0, T ] the set {u(t) ∈ X} is compact in the space X. Then

the set H is compact in the space C([0, T ], X).

Obviously there is a similar compactness criteria for the space E.

Lemma 3.3. If a closed set G ⊆ E is uniformly continuous and bounded then it is

compact.

Proof 3.4. Let (τ, s) be an arbitrary point of ∆. Since the set G is bounded and uni-

formly continuous in the space C([0, τ ], Es+δ), by the Lemma 3.2 it is compact in the

space C([0, τ ], Es). Thus every sequence {uk}k∈N ⊂ G contains a subsequence that con-

verges with respect to the norm ‖·‖τ,s. So it remains to prove that there is a subsequence

of {uk} that converges by all the norms ‖ · ‖τ,s at once.

Consider a set ∆Q = ∆
⋂

Q2. This set is countable and let γ : N → ∆Q be a

corresponding bijection.

Let {u1
k} ⊆ {uk} be a subsequence that converges by the norm ‖ · ‖γ(1). By the above

arguments there is a subsequence {u2
k} ⊆ {u1

k} that converges by the norm ‖ · ‖γ(2) etc.

The diagonal sequence {uk
k} converges by the norms {‖ · ‖γ(k)}k∈N. Then due to

inequalities (5) it converges in all the norms. ✷

In the conclusion we formulate a generalized version of the Schauder fixed point

theorem.

Theorem 3.5 ([1]). Let W be a compact and convex subset of the seminormed space

E. Then a continuous mapping f : W → W has a fixed point û i.e. f(û) = û.

4 Proof of Theorem 2.1

Problem (2) is obviously equivalent to the following one:

u(t) = F (u) =

∫ t

0

A(ξ, u(ξ), u(ξ)) + h(ξ, u(ξ)) dξ. (6)
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As usual, if a solution of (6) is continuous in the variable t then it is actually C1-smooth

in t.

So, we seek for a fixed point of the mapping F .

Let S ⊂ E be a set that consists of such elements v that satisfy the following condi-

tions:

‖v(t)‖s ≤ R, (7)

for all u ∈ E such that ‖u(t)‖s ≤ R we have

‖A(t, u(t), v(t))‖s ≤ 1√
1 − at− s

, (8)

for t1, t2 ∈ [0, τ ], (τ, s) ∈ ∆ we have

‖v(t1) − v(t2)‖s ≤
(
K +

1√
1 − s− aτ

)
|t1 − t2|. (9)

Note that the set S is nonvoid: 0 ∈ S.

The set S is convex by inequality (4) and it is compact by Lemma 3.3.

Thus if we show that

F (S) ⊆ S (10)

then the Proof will be conclude by applying Theorem 3.5 to the mapping F and the set S.

So let v ∈ S and we check inclusion (10). First observing that

t <
1

a

we verify that the mapping F preserves inequality (7):

‖F (v)‖s ≤
∫ t

0

‖A(ξ, u, v(ξ)‖s + ‖h(ξ, v(ξ))‖s dξ

≤
∫ t

0

1√
1 − aξ − s

+ K dξ =
2

a

(√
1 − s−√

1 − at− s
)

+ Kt

≤ 2 + K

a
.

(11)

Thus inequality (7) will be preserved by the mapping F if we take in (11) a ≥ (2+K)/R.

To verify inequality (8) introduce a notation:

w(t) = A(t, v(t), v(t)) + h(t, v(t)).

With the help of inequalities (4), (3) and by the Jensen Inequality [6] we have

∥∥∥A(t, u,

∫ t

0

w(ξ) dξ)
∥∥∥

s
≤ 1

t

∫ t

0

‖A(t, u, tw(ξ))‖s dξ

≤ M

t

∫ t

0

‖tw(ξ)‖s+δ

δ

∣∣∣
δ= 1−aξ−s

2

dξ

≤ M

∫ t

0

‖w(ξ)‖s+δ

δ

∣∣∣
δ= 1−aξ−s

2

dξ.

(12)
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The last term of (12) is not greater than

M

∫ t

0

‖A(ξ, v(ξ), v(ξ))‖s+δ + ‖h(ξ, v(ξ))‖s+δ

δ

∣∣∣
δ= 1−aξ−s

2

dξ

≤ M

∫ t

0

( 1

δ
√

1 − aξ − s− δ
+

K

δ

)∣∣∣
δ= 1−aξ−s

2

dξ ≤ C

a
√

1 − at− s
,

(13)

where the positive constant C does not depend on s, t, a. Taking in (13) a ≥ C we obtain

that mapping F preserves inequality (8).

Now we check condition (9). Assuming for definiteness t2 ≥ t1 and by inequality (8)

we have

‖F (v)(t2) − F (v)(t1)‖s ≤
∫ t2

t1

‖A(ξ, v(ξ), v(ξ))‖s + ‖h(ξ, v(ξ))‖s dξ

≤
∫ t2

t1

1√
1 − aξ − s

+ K dξ

≤
(
K +

1√
1 − s− aτ

)
(t2 − t1).

Theorem 2.1 is proved.
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