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16th March 2005

(1 Dept. of Mathematics, University of Groningen, Blauwborgje 3, 9747 AC Groningen, The Netherlands
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Abstract

The Hénon family of planar maps is considered driven by the Arnol′d family of circle
maps. This leads to a five-parameter family of skew product systems on the solid
torus. In this paper the dynamics of this skew product family and its perturbations are
studied. It is shown that, in certain parameter domains, Hénon-like strange attractors
occur. The existence of quasi-periodic Hénon-like attractors is partially discussed, and
further supported by numerical evidence.
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1 Introduction

Since the 1990’s several mathematical characterisations have been found concerning the struc-
ture of strange attractors in families of maps. A basic example is provided by the Hénon
attractor [18], occurring in the family of maps

Ha,b : R2 → R2, (x, y) 7→ (1 − ax2 + y, bx), (1)

where a and b are real parameters. Benedicks and Carleson [2, 3] proved that there exists
a set of parameter values S, with positive Lebesgue measure, such that for all (a, b) ∈ S

the Hénon map Ha,b (1) has a strange attractor coinciding with the closure Cl (W u(p)) of
the unstable manifold of a saddle fixed point p. Here Cl (−) denotes the topological closure.
Similar techniques were then used to prove occurrence of strange attractors in parametrised
families of maps, near homoclinic tangencies in two or higher dimensions [26, 32, 36, 39],
and near tangencies in the saddle-node critical case [14]. See [42] for a general set-up to
prove existence of strange attractors with one positive Lyapunov exponent in families of two-
dimensional maps. The strange attractors considered in these references are called Hénon-
like [14, 26, 39].

1.1 Setting of the problem

In this paper we study certain model map families, searching these for Hénon-like attractors
as well as for so-called quasi-periodic Hénon-like attractors. A basic model for this study is
the family of maps of the solid torus R2 × S1, where S1 = R/Z is the circle, given by




x
y
θ


 7→




1 − (a + ε sin(2πθ))x2 + y
bx

θ + α + δ sin(2πθ)


 , (2)

where both (ε, δ) are perturbation parameters. This map is a skew product perturbation of
the Hénon map (1) by the Arnol′d family [1]

Aα,δ : S1 → S1, θ 7→ θ + α + δ sin(2πθ). (3)

of maps of S1. First let us consider the uncoupled situation where ε = 0. The dynamics of
the Arnol′d family is globally well-known and that of the Hénon family is partially known.
They are organised in the respective (α, δ)- and (a, b)-parameter planes, see Figure 1. For the
Arnol′d family in the (α, δ)-plane there is a countable union of resonance tongues with non-
empty interior, corresponding to hyperbolic periodic dynamics. In the complement, which
is of positive measure, we find quasi-periodic dynamics [1, 13]. See Figure 1 (A). Similarly,
for the Hénon family in the (a, b)-plane there exists a countable union of strips of non-empty
interior corresponding to hyperbolic periodic dynamics. In the complement a set of positive
measure corresponds to strange attractors [3]. Most of the strips are extremely narrow and
only become visible when they intersect another strip of the same period in such a way that
a “crossroad area” is created [4]. See Figure 1 (B).

Remark 1. Figure 1 is mostly obtained by numerical computation of Lyapunov exponents
[35]. Figure 1 (B) uses the origin as initial point, which can land either in a periodic sink, or on
a strange attractor or can escape ‘to infinity’. Notice that, due to multistability other initial
points can tend to different attractors. Moreover, some of the periodicity strips are connected
to windows of sinks of the Logistic family as this occurs for b = 0. The interpretation of the
results in Figure 1 (C) is given in Section 4.
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Figure 1: (A) Organisation of the (α, δ)-parameter plane of the Arnol′d family (3) by resonance
tongues, containing an open set with periodic dynamics (indicated in black). The remaining pa-
rameter values (indicated in white) form a nowhere dense set of positive measure with quasi-periodic
dynamics. (B) Organisation of the (a, b)-parameter plane of the Hénon family (1) by strips with
periodic dynamics and crossroad areas (in red). A complement of positive measure contains strange
attractors (in green). The upper right part of the diagram (in white) corresponds to escape. (C) Di-
agram of map (2) in the (α, ε)-plane, for a = 1.25, b = 0.3 and δ = 0.6/(2π). Visible are: domains
which can be interpreted has having periodic attractors (code 1, yellow), quasi-periodic attractors
(code 2, blue), Hénon-like attractors (code 3, red) and quasi-periodic Hénon-like attractors (code 4,
light blue). For more details see the main text, in particular Sections 1.3, 2.3 and 4.
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For map (2) there are at least four combinations of the Arnol′d and Hénon families for
the uncoupled case ε = 0 that correspond to parameter domains of positive measure.

1. We start considering the case where the Hénon family is in a periodic attractor, so
where the (maximal) Lyapunov exponent ΛH < 0.

(a) In the most simple case, both constituents are in a hyperbolic periodic attractor,
compare with Figures 1 (A) and (B). The corresponding (maximal) Lyapunov
exponents ΛA and ΛH are both negative. In the solid torus R2 × S1 this also gives
a hyperbolic periodic attractor, that is persistent for |ε| ¿ 1.

(b) In a second case, the Arnol′d family is quasi-periodic, while the Hénon family is
in a periodic attractor. Now ΛA = 0, while ΛH < 0. The corresponding uncoupled
dynamics in the solid torus again is a normally hyperbolic quasi-periodic attrac-
tor, which by centre manifold theory [20] and by kam theory [5, 6] has certain
persistence properties for |ε| ¿ 1.

2. In the two remaining cases the Hénon family is in a strange attractor, so with ΛH > 0.
This attractor is the closure Cl (W u(Orb(p))) of the unstable manifold of a periodic
saddle point. (Below we shall be more precise.) We have to distinguish two cases.

(a) In the former of these, the Arnol′d family is in a periodic attractor, so with ΛA < 0,
and the product system has a Hénon-like attractor. It is the main aim of this paper
to show the persistence of this attractor for |ε| ¿ 1. For illustrations see Figure
2. Here we shall focus on small values of b, which allows us to rescale our model
(2) by ε. In fact we shall consider a sufficiently smooth family of skew-product
diffeomorphisms Tα,δ,a,ε given by

Tα,δ,a,ε : R2 × S1 → R2 × S1,




x
y
θ


 7→




1 − ax2 + εf
εg

Aα,δ(θ)


 . (4)

Here (α, δ, a, ε) are parameters, while f and g are functions of (a, x, y, θ, ε, α, δ).
For 0 ≤ δ < (1/2π) and α ∈ [0, 1], the map Aα,δ is a diffeomorphism of the circle
S1. We perturb away from cases where (α, δ) is in one of the resonance tongues,
see Figure 1 (A).

(b) In the latter case, where the Arnol′d family is quasi-periodic, so with ΛA = 0, the
uncoupled product dynamics is quasi-periodic Hénon-like, i.e., on an attractor of
the form Cl (W u(C )) , where C is a quasi-periodic invariant circle of saddle-type,
again compare Figure 1 (A). We conjecture that this phenomenon is persistent for
|ε| ¿ 1, but have only partial results in this direction, supported by numerics.
For illustrations see Figures 3 and 4.

The Lyapunov diagram in Figure 1 (C) strongly suggests that all four cases occur in parameter
sets of positive measure. More concretely, case 1(a) corresponds to code 1; case 1(b) to code
2; case 2(a) to code 3, and case 2(b) to code 4.

Our interest is with phenomena that are persistent under small perturbations, both within
the skew product setting and beyond this. To this end, we also consider a more general class
of families defined as follows. First let

K = (K1, K2) : R2 → R2 (5)
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Figure 2: Hénon-like strange attractors of the model family (2) for (α, δ) in Arnol′d tongues of
periods two and three. (A) Parameters are fixed at a = 1.3, b = 0.3, ε = 0.2, (α, δ) = (0.51, 0.116).
(B) Same as (A) for α = 0.33793.
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Figure 3: Quasi-periodic Hénon-like strange attractor of the model family (2). Parameter values
are fixed at a = 1.85, b = −0.2, δ = 0, α = (

√
5 − 1)/2, ε = 0.1. For a better visualisation of the

folds, the plot is given in the variables (u, v, w), where u = (r + 4) cos(θ), v = (r + 4) sin(θ), with
r = x cos(θ) + 10y sin(θ), and w = −x sin(θ) + 10y cos(θ).

be a dissipative (i.e., area contracting) diffeomorphism, that is sufficiently smooth. Next,
denote by Rα : S1 → S1 the rigid rotation Rα(θ) = θ + α. Then we define the family

Pα,ε : R2 × S1 → R2 × S1, (x, y, θ) 7→
(
K1(x, y) + P1, K2(x, y) + P2, θ + α + P3

)
, (6)

of diffeomorphisms, where Pj, for j = 1, . . . , 3, is a smooth function of (x, y, θ, α, ε) such
that Pj = 0 for ε = 0. Notice that the model (6) is not a skew product, but that there
is full coupling of the two constituents. A hyperbolic fixed point p of K (5) corresponds
to a normally hyperbolic invariant circle Cα,0 = {p} × S1 for the map Pα,ε at ε = 0. By
normal hyperbolicity the circle Cα,0 is persistent under small perturbations [20, Theorem
1.1]. Similar remarks go for the case where p is a hyperbolic periodic point. In the sequel we
shall use this both for the case where p is a saddle and where p is a sink.

For numerical illustrations and discussion, a concrete version of (6) is used. It consists of
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Figure 4:(A) Quasi-periodic Hénon-like attractor of the model family (2), projection on the (θ, y)-
plane. Parameter values are fixed at a = 0.8, b = 0.4, δ = 0, α = (

√
5 − 1)/2, ε = 0.7, initial

conditions x0 = 1.5, y0 = 0, θ0 = 0. (B) Same as (A), projection on the (x, y)-plane (in grey, in the
background). ‘Slices’ of the attractor for 2πθ ∈ [0.1× j, 0.1× j +0.001], j = 0, 1, . . . , 62, are plotted
in black.
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Figure 5: (A) Strange attractor A of the Poincaré return map of a climatological system [9].
Compare with Figure 3. The attractor A is plotted with a ‘slice’ Σ and with the image of Σ under
the return map. The slice Σ contains all points with distance less that 0.0001 from the plane z = 0.
The image of Σ is magnified in the central box. (B) Slice Σ of the attractor A in (A), projection
on the (x, ỹ)-plane, with ỹ = y − 0.133 ∗ z.

a perturbation of (2), where a coupling term in µy is added to the angle dynamics:

T = Tα,δ,a,b,ε,µ : R2 × S1 → R2 × S1,




x
y
θ


 7→




1 − (a + ε sin(2πθ))x2 + y
bx

θ + α + δ sin(2πθ) + µy


 , (7)

depending on the six parameters (α, δ, a, b, ε, µ).

1.2 Motivation

Quasi-periodic Hénon-like attractors have been conjectured to occur in diffeomorphisms of
R3 = {x, y, z}, obtained as Poincaré return maps for a climatological model [9, 10, 41],
compare the attractor A displayed in Figure 5. Examination of a cross-section Σ of the
attractor (magnified in Figure 5 (B)) suggests that A is contained in a two-dimensional
manifold which is folded onto itself, in analogy with the structure of the Hénon attractor [18].
This manifold supposedly is the unstable manifold W u(C ) of a quasi-periodic invariant circle
C of saddle type. To illustrate the dynamics inside A we computed the image of the slice Σ
under the return map. This yields a folded curve looking like a planar Hénon attractor.

Remark 2. Also we mention that the occurrence of strange attractors which look similar
to Figure 4 (A) is observed in [28, 15, 17, 22, 29]. Although most of these studies deal with
endomorphisms of the interval forced by a rigid rotation in a skew product way, and some of
them have negative Lyapunov exponents (beyond the one trivially equal to zero), there may
be a relationship with the present approach. See Sections 2.3 and 4 for further discussion.

The theoretical knowledge of attractors in higher dimension is limited. As positive excep-
tions to this we mention Viana [39, 40], Tatjer [36] and Wang & Young [42]. The Hénon-like
attractors found in the present paper, to some extent, also belong to this domain. In this
sense one may say that the understanding of the quasi-periodic Hénon-like attractor is a
next step in this research program. A more detailed discussion and further motivation of the
search for quasi-periodic Hénon-like attractors is postponed to Section 2.3.
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1.3 Summary and outline

We summarise the remainder of this paper, also explaining its organisation. First in Section 2
the results are presented, where all longer proofs are postponed to Section 3. The contents of
Section 2 are related as follows to the subdivision regarding model (2) as given in Section 1.1.
Numerical examples beyond the skew product model (2), as well as details on methods and
on the interpretation of the results, are given in Section 4.

Normally hyperbolic invariant circles

In Section 2.1 we start considering the more general context of the fully coupled family (6).
A hyperbolic periodic point p, for ε = 0 corresponds to a normally hyperbolic invariant circle
C .

We start with the case where p is a saddle-point, so where C normally is of saddle type as
well. Theorem 2 asserts that now, under quite general conditions, the closure Cl (W u(C )) of
the unstable manifold of C attracts an open set. In the families (6) and (2) this corresponds
to an open set of parameter values. Note that the attracting set Cl (W u(C )) is not minimal
if C carries Morse-Smale dynamics. In this situation, the case 2(a) of Section 2 is partially
covered.

Next, if p is a hyperbolic periodic point of the family (6), Theorem 3 guarantees that C

is quasi-periodic for a parameter set of positive measure. If p is a saddle-point, in combina-
tion with the previous paragraph, we partially cover case 2(b) of Section 1.1 for the family
(2). However, if p is a periodic sink, it follows that C is a quasi-periodic attractor, which
completely covers case 1(b) of Section 1.1.

In the case where p is a sink and C carries Morse-Smale dynamics, for the general setting
of (6), the minimal attractors are periodic. For the family (2) this completely covers case
1(a) of Section 1.1.

Persistence of normally hyperbolic invariant circles generally follows by [20, Theorem 1.1].
Theorem 2 is based on a result by Tangerman and Szewc, see [31, Appendix 3]. Our proof
of Theorem 3 applies standard kam Theory, see [6, 5].

The cases where ΛH > 0

We now deal with the cases where the Hénon family is in a strange attractor. The main
mathematical contents of this paper are formulated in Theorem 4 (in Section 2.2), which
deals with the scaled skew product model (4). Here we establish the existence of Hénon-like
strange attractors, which completely covers case 2(a) of Section 1.1 in suitable parameter
ranges. For completeness, in Section 2.2 technical definitions of ‘strange’, ‘Hénon-like’, etc.,
are included; compare with [14, 26, 39]. The proof of Theorem 4 is based on [14, Theorem
5.2].

Finally, in Section 2.3 we deal with the remaining case, both for the skew product system
(4) and for the more general system (6). Here we touch upon the existence of quasi-periodic
Hénon-like attractors. Lemma 7 implies that in the product case ε = 0 a topologically
transitive attractor occurs, having a dense set of orbits with a positive Lyapunov exponent.
Regarding its persistence for |ε| ¿ 1, our conjectures and mostly computer suggested.

Acknowledgements
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2 Statement of the results

As announced before, our results are formulated in the next subsections, while proofs are
given in Sections 3.1 and 3.2.

2.1 Invariant circles of saddle-type and basins of attraction

We first consider maps F of the solid torus R2 × S1 obtained by perturbing the product of a
planar map times a rotation on S1. Assuming that the planar map has a saddle fixed point
with a transversal homoclinic point, it is proved that the map F has an attractor contained
inside Cl (W u(C )).

To this end we generalise an unpublished result of Tangerman and Szewc, see [31, Ap-
pendix 3], where we are in the general context of the family Pα,ε : R2 × S1 → R2 × S1, see
(6).

Proposition 1. (normally hyperbolic invariant circle) Suppose that K has a hy-
perbolic fixed point p = (x0, y0). Then for all α ∈ [0, 1] the map Pα,0 has a normally hyperbolic
invariant circle Cα,0 = {p} × S1. The manifold Cα,0 is r-normally hyperbolic for all integers
r with 1 ≤ r ≤ n. Moreover, for all r < n there exists an εr > 0 such that for all ε < εr

and all α ∈ [0, 1], Pα,ε has a normally hyperbolic invariant circle Cα,ε of class Cr, which is
Cr-close to Cα,0.

Proof: The dynamics of Pα,0 on Cα,0 is parallel with rotation number α. This implies that
Cα,0 is an r-normally hyperbolic invariant manifold for all r ≤ n and, therefore, it is of
class Cn. So Cα,0 (as well as its stable and unstable manifolds), is persistent under Cn-small
perturbations. This directly follows from [20, Theorem 1.1].

Proposition 1 allows us to construct a basin of attraction with nonempty interior for the
invariant set Cl (W u(Cα,ε)), provided that p is a saddle point, while the one-dimensional
unstable manifold W u(p) ⊂ R2 of the map K, see (5), does not escape to infinity. For
(x, y, θ) ∈ R2 × S1, denote by ω(x, y, θ) the ω-limit set of (x, y, θ) under Pα,ε.

Theorem 2. (attractor contained in Cl (W u(C ))) Fix integers n and r such that
n ≥ 2 and 1 ≤ r < n. Choose ε < εr as in Proposition 1 and let α ∈ [0, 1]. Suppose that
K : R2 → R2 is of class Cn and satisfies:

1. K has a saddle fixed point p ∈ R2 and a transversal homoclinic point q ∈ W s(p)∩W u(p).

2. K is uniformly dissipative: there exists κ < 1 such that |det(DK(x, y))| ≤ κ for all
(x, y) ∈ R2.

3. W u(p) is contained in a bounded subset of R2.

9



Then there exists an ε∗ < εr such that for all ε < ε∗ there exists an open, nonempty bounded
set U ⊂ R2 × S1 such that for all (x, y, θ) ∈ U

ω(x, y, θ) ⊂ Cl (W u(Cα,ε)) . (8)

Remark 3. By taking iterates of the map Pα,ε, Theorem 2 can be adapted to the case
where p is a saddle periodic point. In this context we have the inclusion (8), where Cα,ε is a
periodically invariant circle, i.e. a circle which is invariant under some iterate of Pα,ε.

Under the conditions of Theorem 2, the invariant set Cl (W u(Cα,ε)) attracts all orbits with
initial state in an open set U . This holds for an open set of ε-values. In general, however,
Cl (W u(Cα,ε)) is not an attractor, since it might be non-topologically transitive. This occurs,
for example, if Cl (W u(Cα,ε)) contains a periodic attractor.

In the next Theorem we prove that at least the circle Cα,ε is quasi-periodic (and, hence,
topologically transitive) for a set of parameter values having large relative measure.

Theorem 3. (normally hyperbolic quasi-periodic circles) Let Pα,ε be a Cn-family
of diffeomorphisms as in (6), where n ≥ 5. Choose εr as in Proposition 1. Then there exists
an ε∗∗ < εr such that for all ε < ε∗∗ the following holds.

1. There exists a set Dε ⊂ [0, 1] with Lebesgue measure meas(Dε) > 0 such that for
α ∈ Dε the restriction of Pα,ε to the circle Cα,ε is smoothly conjugate to an irrational
rigid rotation.

2. meas(Dε) tends to 1 for ε → 0.

Proofs of Theorems 2 and 3 are given in Section 3.1.

Theorem 3, as happens with Theorem 2, has a direct analogue for the case where p is
a hyperbolic periodic point. The Theorems will be applied both for the case where p is
a periodic saddle and a periodic sink. In the latter case we prove the existence of quasi-
periodic attractors for positive measure in parameter space, as described in the case 2(b) of
Section 1.1. Again see Figure 1 (C). This situation corresponds to points with code 2, in
blue.

A complementary situation regarding Theorem 3 occurs when the dynamics on Cα,ε is
of Morse-Smale type, compare with the resonance tongues of Figure 1 (A). In that case,
for ΛH < 0, the attracting set Cl (W u(Cα,ε)) of system (6) contains a hyperbolic periodic
attractor as described in case 1(a) of Section 1.1. Again compare with Figure 1 (C), points
with code 1, in yellow. In the next section, for the skew product system (4) we show that in
the case where ΛH > 0, the set Cl (W u(Cα,ε)) contains a Hénon-like attractor, which covers
the case 2(a) of Section 1.1, compare with Figure 1 (C), points with code 3, in red.

2.2 Hénon-like attractors in a family of skew product maps

By Theorem 2, the set Cl (W u(C )) is attracting under quite general circumstances. As may
be clear from the previous paragraph, in general Cl (W u(C )) does not have to be topologically
transitive, in which case it is not considered an attractor. (For precise definitions see below.)
However, in the particular case of map (2), we show that Cl (W u(C )) contains Hénon-like
attractors. We first recall a few basic definitions regarding strange attractors, suited to our
purposes.

Definition 1. [14, 26, 39] Let F : M → M be a C1-diffeomorphism, where M is an
m-dimensional smooth manifold.

10



1. An F -invariant set A ⊂ M is called topologically transitive if there exists a point
z ∈ A such that the orbit Orb(z) = {F j(z)}j≥0 of z under F is dense in A .

2. A set A ⊂ M is called an attractor if it is topologically transitive, compact, F -invariant
and if the stable set (basin of attraction) W s(A ) has nonempty interior.

3. An attractor A is called strange if there exist constants κ > 0, λ > 1, a dense orbit
Orb(z) ⊂ A and a vector v ∈ TzM such that

‖DF n(z)v‖ ≥ κλn for n ≥ 0.

4. The attractor A is called Hénon-like if there exist a saddle periodic orbit Orb(p) =
{p, F (p), . . . , F n(p)}, a point z in the unstable manifold W u(Orb(p)), constants κ > 0,
λ > 1, and tangent vectors v, w ∈ TzM , with w 6= 0, such that

i) A = Cl (W u(Orb(p))) , (9)

ii) Orb(z) is dense in A , (10)

iii) ‖DF n(z)v‖ ≥ κλn for n ≥ 0, (11)

iv) ‖DF n(z)w‖ → 0 as n → ±∞, (12)

where Cl(·) denotes topological closure.

In particular, Hénon-like attractors are strange, since by conditions (10) and (11) they admit
a dense orbit with a positive Lyapunov exponent. Moreover, Hénon-like attractors are non-
uniformly hyperbolic; indeed, by condition (12) they contain critical points, that is, points
belonging to a dense orbit for which a nonzero tangent vector w exists, which is contracted
both by positive and by negative iteration of the derivative DF .

We now come to the main result of the present paper, regarding the occurrence of Hénon-
like strange attractors in the scaled skew product family (4). First we recall that the re-
striction of (4) to S1 is the Arnol′d family of circle maps (3). Moreover, the map (4) is a
generalisation of the planar Hénon-like families considered in [26, 39]. The latter are families
of planar diffeomorphisms, which are C3-small perturbations of the Logistic family

Qa : R → R, x 7→ 1 − ax2. (13)

The x- and y-components of Tα,δ,a,ε also depend on the circle dynamics by the perturbative
terms f and g. The only requirement on f and g is that their C3-norms are bounded on
compact sets. Occurrence of Hénon-like attractors is proved in the family Tα,δ,a,ε for all
parameter values belonging to a set of positive (Lebesgue) measure. For all values in this
set, the parameters (α, δ) are such that the dynamics of the Arnol′d family Aα,δ (3) is of
Morse-Smale type: there exist periodic points θs and θr in S1, such that θs is attracting and
θr repelling for Aα,δ. By A

q/n we denote the open resonance tongue in the (α, δ)-plane where
these periodic points have rotation number q/n [1, 13] and the width of the tongue in α
behaves as δn [8], compare with Figure 1 (A). The parameter space under consideration is
the set of all (α, δ, a, ε) ∈ R4 such that

α ∈ [0, 1], δ ∈
[
0, 1/(2π)

)
, a ∈ [0, 2], |ε| < 1. (14)

The attractors A we obtain, coincide with the closure of the one-dimensional unstable man-
ifold

A = Cl (W u (Orb(p))) ,

where p = (x0, y0, θ
s) ∈ R2 × S1 belongs to a hyperbolic periodic orbit of saddle type. For

the statement of the result we need a few definitions and notations.
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Definition 2. 1. A map M : J → J , where J ⊂ R is an interval, is called topologically
mixing if for any open intervals J1, J2 ⊂ J there exists n0 such that

Mn(J1) ∩ J2 6= ∅ for all n ≥ n0.

2. The interval Ka = [Q2
a(0), Qa(0)] is called the core or the restrictive interval of the

Logistic family Qa (13).

It is well-known that Qa([0, 1]) = Qa(Ka) = Ka for all a, where Ka is the core of Qa (13),
see e.g. [24, Section II.5]. For a given integer n > 1, denote by Φ(n) the set of all integers q
such that q and n are relatively prime, where 1 ≤ q < n. For n = 1 we put Φ(n) = {1}.

Theorem 4. (Hénon-like attractors in (4)) Choose a∗ ∈ (1, 2) such that the quadratic
map Qa∗ in (13) is topologically mixing on its core K = [1− a∗, 1] and its critical point c = 0
is preperiodic. Let n ≥ 1 be an integer. There exist a periodic point p0 of the n-th iterate Qn

a∗

and positive constants ε̄n, ān and χn such that the following holds.

1. For all (α, δ, a, ε) as in (14), with

(α, δ) ∈ ∪q∈Φ(n) Cl
(
A

q/n
)
, |a − a∗| < ān, |ε| < ε̄n (15)

the map Tα,δ,a,ε has a saddle periodic point p, which is the analytic continuation of p0

and such that the unstable manifold W u(Orb(p)) is one-dimensional.

2. For all (α, δ, ε) as in (15) there exists a set Sα,δ,ε with

Sα,δ,ε ⊂ [a∗ − ān, a
∗ + ān], meas(S) > χn

such that for all a ∈ Sα,δ,ε the closure Cl (W u(Orb(p))) is a Hénon-like attractor of
Tα,δ,a,ε.

Corollary 5. The set of parameter values for which Tα,δ,a,ε has a Hénon-like attractor con-
tains the set

S =
⋃

n∈N

{
(α, δ, a, ε) | (α, δ) ∈ ∪q∈Φ(n) Cl

(
A

q/n
)
, |ε| < ε̄n, a ∈ Sα,δ,ε

}
,

and the set S has positive Lebesgue measure

meas(S) ≥ 2
∞∑

n=1

ε̄nχn

∑

q∈Φ(n)

meas A
q/n.

Our proof of Theorem 4 is given in Section 3.2. It is based on a result of Dı́az-Rocha-Viana [14,
Theorem 5.2], and relies on the following facts:

1. For (α, δ) inside any tongue A
q/n, the asymptotic dynamics of Tα,δ,a,ε is described by

an O(ε)-perturbation of the n-th iterate Qn
a .

2. For all n the map Qn
a is a generic n-modal family, in the sense of [14, Section 5.2],

also see the definition given in Section 3.2. To show this, we use that Qa∗ is a Misi-
urewicz map [25], and, therefore, it is Collet-Eckmann (see e.g. [24, Section V.4]). See
Section 3.2 for details.
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Notice that the family (2) takes the form (4) after a rescaling y 7→
√
|b|y and by choosing b =

O(ε). Therefore, by restricting the parameter δ to sufficiently small values, both Theorem 4
and Theorem 2 may be applied to (2).

Corollary 6. Let a∗ and p0 satisfy the hypotheses of Theorem 4. Then there exists a positive
measure set of parameter values such that the family (2) has Hénon-like attractors, contained
in the closure of the unstable manifold of a periodically invariant circle.

Proof: Take a∗ and p0 as in the hypotheses of Theorem 4. Then for all δ and for ε and b
sufficiently small, Theorem 4 applies. Moreover, for (ε, δ) = (0, 0) the circle C = {p0}× S1 is
periodically invariant under map (2). In particular, the conditions of Theorem 2 are satisfied
for b sufficiently small, since:

1. The periodic point (p0, 0) of Ha,0 has an analytic continuation p̄(b) for all b sufficiently
small, and p0 is chosen such that p̄(b) has transversal homoclinic points, see Proposi-
tion 12.

2. det(DHa,b(x, y)) = b;

3. The unstable manifold of all periodic points of Ha,b is bounded for b sufficiently small,
since the invariant manifolds depend continuously on the map [26, Prop. 7.1].

So for (ε, δ, b) sufficiently small, the conclusions of Theorem 2 hold.

Two attractors occurring in the family (2) are shown in Figure 4 (A) and (B), for (α, δ) in an
Arnol′d resonance tongue of period two and three, respectively. Also compare with Figure
1 (C), points with code 3, in red. It is to be noted that the Hénon-like character of these
attractors for larger values of b and ε remains conjectural.

2.3 Quasi-periodic Hénon-like attractors

We start with a further setting of the problems regarding quasi-periodic Hénon-like attractors,
in the skew product model family (2).

2.3.1 Further setting of the problem

The present paper has been partially motivated by the problem to find a diffeomorphism F
with a strange attractor A such that

A = Cl (W u(C )) , (16)

where C is an F -invariant circle of saddle type with irrational rotation number, so with quasi-
periodic dynamics. In this context, the role of the saddle periodic orbit in (9) is played by
a quasi-periodic invariant circle of saddle type. By analogy with the definition of Hénon-like
strange attractors (see Section 2.2), we are led to the following definition.

Definition 3. Let F : M → M be a C1-diffeomorphism, where M is an m-dimensional
smooth manifold. We say that the attractor A is quasi-periodic Hénon-like if there exist

1. A quasi-periodic invariant circle C of saddle type such that A = Cl (W u(C )) .

2. A point x ∈ A such that Orb(x) is dense in A and

3. a dense set Z ⊂ A and constants κ > 0, λ > 1 such that for all z ∈ Z there exist
vectors v, w ∈ TzM such that conditions (11) and (12) hold.
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The definition mimics the positive Lyapunov exponents and non-uniform hyperbolicity re-
quirements in the definition of Hénon-like attractors and also asks for transitivity. As usual
similar definitions can be given with F replaced by a power F k.

Returning to the skew product context of the model family (2), in the Arnol′d family Aα,δ

we fix parameter values (α, δ) such that the dynamics of Aα,δ is quasi-periodic. Recall that
the set of all such (α, δ) has positive measure and is nowhere dense [5, Chap. 1]. Next choose
parameter values a and b such that the Hénon map (1) has a Hénon-like strange attractor
A ′, coinciding with the closure of the unstable manifold of a saddle fixed point p. Also recall
that, according to [2, 3, 26], such (a, b) form a set of positive measure. Then, at ε = 0 the
map (2) has an attractor A = A ′ × S1 coinciding with the closure of the unstable manifold
of the quasi-periodic saddle-type invariant circle {p}×S1. It may be clear that requirement 3
of Definition 3 is satisfied by taking Z = Orb(z)×S1, where z is a point satisfying properties
4 ii), iii) and iv) in Definition 1 of Hénon-like attractors.

Next, to prove that in the product case we obtain a quasi-periodic Hénon-like attractors
only item 2 in Definition 3 has to be verified. This is done in the following lemma.

Lemma 7. (Transitivity of (2), uncoupled) Let T be a dissipative C1-diffeomorphism
in an open subset U ⊂ R2 such that

1. T has a hyperbolic fixed point p of saddle-type.

2. The closure of the unstable manifold of p is an Hénon-like strange attractor A ′.

Let Rα : x 7→ x+α mod 1 a rotation over angle α ∈ (0, 1) \Q. Then the product F = T ×R
has a dense orbit in A = A ′ × S1.

Proof: We claim that it is sufficient to prove the following:

(∗) Given two open sets U , V in A , there exists k ∈ N such that F k(U) ∩ V 6= ∅.
Indeed, given ε > 0 there is a finite number of open sets Vj, j ∈ J, of the form Vj =
V ′

j × (sj − ε, sj + ε) that cover A , where V ′
j ⊂ R2 is an open ball of radius ε. Let U0 = U.

Assuming (∗), it follows that F k1(U0) intersects V1 for some k1 ∈ N. Define U1 as the image
under F−k1 of this intersection. This process can be repeated for all j ∈ J. After this we
restart the whole process with ε replaced by ε/2, ε/4, ε/8, . . . , ε/2m, . . . , each time obtaining
an open set Um such that Um ⊂ Um+1. The intersection ∩m∈NUm gives an initial point for a
dense orbit as desired.

Next, let us prove (∗). Without loss of generality, assume that U = U ′× (r− δ, r + δ) and
V = V ′ × (s − ε, s + ε) for some δ, ε > 0, where U ′, V ′ are open sets in A ′. First, for fixed
ε > 0 we note that given r, s ∈ S1 there exists an increasing sequence {n1, n2, . . .} such that
R

nj
α (r) ∈ (s−ε, s+ε), where 0 < n1 < N and nj+1−nj < N for all j, with N independent of

r and s. As W u(p) is dense in A ′, there exists a point q′ ∈ W u(p)∩V ′. Consider a preimage
u = T−l(q′) such that u and its first N iterates are close to p. By continuity, there are
open sets Z0, Z1, . . . , ZN around u, T (u), . . . , T N(u) whose images under T l, T l−1, . . . , T l−N

are contained in V ′.
Now, there exists a point x ∈ U ′ ∩ W u(p) belonging to a dense orbit and also having a

positive Lyapunov exponent, such that T m(x) ∈ Z0 for some m ∈ N. It is no restriction to
assume that, for some m ∈ N, the image T m(U ′) intersects all Zj, j = 0, 1, 2, . . . , N. Indeed,
in the other case the Lyapunov exponent could not be positive.

Since T l−j(Zj ∩ Tm(U ′)) ⊂ V ′ for j = 0, . . . , N , one has

T l+m−j(U ′) ∩ V ′ 6= ∅ (17)
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for all j = 0, . . . , N . To arrange that some of the iterates Rl+m−j
α (r) lie inside the interval

(s − ε, s + ε), observe that l + m is in between two consecutive values ni and ni+1 for some
ni as above. This implies that there exists j with ≤ j ≤ N such that l + m − j = ni, which,
together with (17), yields that T l+m−j(U) ∩ V 6= ∅.

 0

 0.05

 0.1

 0.15

 0.2

 0.2  0.25  0.3  0.35  0.4

Figure 6: Diagram of the fully coupled system (7) in the (α, ε)-plane, for a = 1.25, b = 0.3, µ = 0.01
and δ = 0.6/(2π). According to the values of the Lyapunov exponents, we interpret as follows:
domains of periodic attractors (code 1, yellow), of quasi-periodic attractors (code 2, blue), of Hénon-
like attractors (code 3, red) and of ‘quasi-periodic Hénon-like’ attractors (codes 4, light blue, and
5, green). For more details see Section 2.3 and Section 4.

2.3.2 Conjectural results

Numerical experiments with the map (2) suggest that attractors like A persist for small (and
perhaps, not so small) values of (ε, δ). See figures 3 and 4. Figure 1 (C) gives evidence that
quasi-periodic Hénon-like attractors occur in a relatively large part of the parameter plane
(code 4, light blue). In this numerical context, quasi-periodic Hénon-like are indicated by
the fact that one positive, one negative, and one zero Lyapunov exponent is detected. We
assume that the Lyapunov exponents are ordered as

Λ1 ≥ Λ2 ≥ Λ3.

A remarkable difference between the skew-product case (2) and the fully coupled case (7) is
that a zero Lyapunov exponent practically never occurs, compare Figure 6 and see Section 4.2.
Indeed, any small perturbation µ 6= 0 has the effect of shifting the value of Λ2 away from
zero. Its modulus remains small, but the sign may be either positive or negative, where both
cases occur. Plots of the attractors visually look the same in the three cases Λ2 = 0, Λ2 < 0
and Λ2 > 0, when µ is small and the other parameters are kept fixed. It remains to be
clarified which dynamical and geometrical properties characterise the strange attractors in
each of the three cases. In any case, it seems that the way in which the invariant manifolds
of an invariant circle are folded, plays an essential role.
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Figure 7: Segments ∂s and ∂u of the stable and unstable manifold, respectively, of a saddle fixed
point p bound a region U , see text for more explanation.

Remark 4. 1. We used the family (7) for the figures, expecting that it is sufficiently rich
for our purposes.

2. When comparing the Figures 1 (C) and 6, the main difference is that in the second
case there is no significant occurrence of Λ2 = 0. Still we expect that in all cases the
attractor is the closure Cl (W u(C )) of a quasi-periodic invariant circle C of saddle-type.

3. It seems that in the skew case (2), the phenomenon of an attractor with Λ1 = 0 and
Λ2 < 0, which is not an invariant circle is somewhat related to ‘nonchaotic strange
attractors’, compare with [28, 15, 17, 22, 29]. See also Section 4.3 for further discussion
on this topic.

Interestingly, tiny perturbations away from the skew case seemingly give rise to a quasi-
periodic Hénon-like attractor, so with Λ1 > 0.

3 Proofs

3.1 Basins of attraction and quasi-periodic invariant circles

In this section we give proofs of Theorem 2 (next section) and Theorem 3 (Section 3.1.2).

3.1.1 The Tangerman-Szewc argument generalised

Let K : R2 → R2 be a dissipative diffeomorphism having a saddle fixed point p = (x0, y0).
Suppose the stable and unstable manifolds W s(p) and W u(p) intersect transversally at the
homoclinic point q ∈ W s(p)∩W u(p), see Figure 7. Also assume that W u(p) is bounded as a
subset of R2. The Tangerman-Szewc Theorem (see e.g. [31, Appendix 3]) states that the basin
of attraction of the closure of W u(p) contains the open region U ′ bounded by the two arcs
∂s ⊂ W s(p) and ∂u ⊂ W u(p) with extremes p and q, see Figure 7. This argument is used to
prove existence of strange attractors (in particular, with non-trivial basin of attraction) near
homoclinic tangencies of a saddle fixed point of a dissipative diffeomorphism, cf. [26, 39, 42].

We first prove Theorem 2 for ε = 0. This is a straightforward generalisation of the
above Tangerman-Szewc Theorem. For small ε, the result is obtained by using persistence of
normally hyperbolic invariant manifolds [20, Theorem 1.1] and two transversality lemmas.
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Proof of Theorem 2. Consider the circle Cα = Cα,0, invariant under map Pα,0 in (6). The
manifolds W u(Cα) and W s(Cα) are given by W u(p)× S1 and W s(p)× S1, respectively. They
intersect transversally at a circle H = {q} × S1, consisting of points homoclinic to Cα.
Consider the two arcs ∂s ⊂ W s(p) and ∂u ⊂ W u(p) with extremes p and q (Figure 7).They
bound an open set U ′ ⊂ R2. Define Ds and Du to be the portions of stable, and unstable
manifold of Cα, respectively, given by

Ds = ∂s × S1 ⊂ W s(Cα) and Du = ∂u × S1 ⊂ W u(Cα).

Both surfaces Ds and Du are compact, and their union forms the boundary of the open region
U = U ′ × S1, which is topologically a solid torus.

The volume of U decreases under iteration of Pα,0. Denoting by meas(·) the Lebesgue
measure both on R2 and on R2 × S1, due to condition 2 in Theorem 2 we have

meas(P n
α,0(U)) = 2π

∫

Kn(U ′)

dxdy = 2π

∫

U ′

|det DKn| dxdy ≤ 2πκn meas(U ′).

This implies that the forward evolution of every point (x, y, θ) ∈ U approaches the boundary
of P n

α,0(U):

dist
(
P n

α,0(x, y, θ), ∂P n
α,0(U)

)
→ 0 as n → +∞.

Indeed, suppose that this does not hold. Then there exists a % > 0 such that for all n there
exists N > n such that the ball with centre P N

α,0(x, y, θ) and radius % > 0 is contained inside
PN

α,0(U). But this would contradict the fact that meas(P n
α,0(U)) → 0 as n → +∞.

The boundary of P n
α,0(U) also consists of two portions of stable and unstable manifold of

C :
∂P n

α,0(U) = P n
α,0(D

s) ∪ P n
α,0(D

u).

The diameter of P n
α,0(D

s) tends to zero as n → +∞, because all points in Ds are attracted
to the circle Cα. Since W u(Cα) is bounded, all evolutions starting in U are bounded and
approach W u(Cα), that is,

dist(P n
α,0(x, y, θ), P n

α,0(D
u)) → 0 as n → +∞

for all (x, y, θ) ∈ U . This implies that ω(x, y, θ) ⊂ Cl (W u(Cα)) for all (x, y, θ) ∈ U .
To extend this result to small perturbations Pα,ε of Pα,0, the following transversality

lemmas are used.

Lemma 8. [33, Chap. 7] Consider a map f : V → M , where V and M are C r-
differentiable manifolds and f is Cr. Suppose V is compact, W ⊂ M is a closed Cr-
submanifold and f is transversal to W at V (notation: f t W ). Then f−1(W ) is a Cr-
submanifold of codimension codimV (f−1(W )) = codimM(W ). Further suppose that there is
a neighbourhood of f(∂V )∪∂W disjoint from f(V )∩W , where ∂V and ∂W are the boundaries
of V and W . Then any map g : V → M , sufficiently Cr-close to f , is also transversal to W ,
and the two submanifolds g−1(W ) and f−1(W ) are diffeomorphic.

Lemma 9. [19, Section 3.2] Let V1, V2, and M be Cr-differentiable manifolds and consider
two diffeomorphisms fi : Vi → M , i = 1, 2. Then f1 t f2 if and only if f1 × f2 t ∆,
where f1 × f2 : V1 × V2 → M × M is the product map and ∆ ⊂ M × M is the diagonal:
∆ = {(y, y) | y ∈ M}.

Fix r ∈ N and take ε < εr, where εr is given in Proposition 1. Then the map Pα,ε has
an r-normally hyperbolic invariant circle Cα,ε of saddle type. Furthermore, the manifolds
W u(Cα,ε), W s(Cα,ε), and Cα,ε are Cr-close to W u(Cα), W s(Cα), and Cα. We now show
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that the two manifolds W u(Cα,ε), W s(Cα,ε) still intersect transversally. To apply Lemma 8
we restrict to two suitable compact subsets Au ⊂ W u(Cα) and As ⊂ W s(Cα) as follows.
Consider the segments pc ⊂ W u(p) and pd ⊂ W s(p) in Figure 7. Define

Au = pc × S1, As = pd × S1.

In this way, the circle H is the intersection of the manifolds Au and As, bounded away from
their boundaries. Consider the inclusions i : Au → M and j : As → M . By the closeness of
W u(Cα) to W u(Cα,ε) there exists a Cr-diffeomorphism h : Au → Au

ε ⊂ W u(Cα,ε) such that
the map i is Cr-close to iε ◦h, where iε : Au

ε → M is the inclusion [30, Section 2.6]. Similarly,
there exists a diffeomorphism k : As → As

ε ⊂ W s(Cα,ε) such that the map j is Cr-close jε ◦ k,
where jε : As

ε → M is the inclusion. By Lemma 9 the map i × j : Au × As → M × M is
transversal to the diagonal ∆. For ε small, the map (iε ◦ h)× (jε ◦ k) : Au ×As → M ×M is
Cr-close to i × j:

Au × As i×j−−−→ M × M

h×k

y

Au
ε × As

ε

iε×jε−−−→ M × M.

Since ∆ is closed and Au × As is compact, Lemma 8 implies that there exists an ε∗, with
0 < ε∗ < εr, such that (iε ◦ h) × (jε ◦ k) t ∆ for ε < ε∗. Furthermore, the submanifolds

(i × j)−1(∆) and
(
(iε ◦ h) × (jε ◦ k)

)−1
(∆)

are diffeomorphic. We also have that
(
(iε ◦ h) × (jε ◦ k)

)−1
(∆) is diffeomorphic to Au

ε ∩ As
ε,

and (i × j)−1(∆) = Au ∩ As = H .
This shows that the intersection Hε = Au

ε ∩ As
ε is diffeomorphic to H . Define Du

ε as the
part of W u(Cα,ε) bounded by the invariant circle Cα,ε and the circle of homoclinic points Hε.
Define Ds

ε = k(Ds) similarly. Then the manifolds Du
ε ⊂ W u(Cα,ε) and Ds

ε ⊂ W s(Cα,ε) form
the boundary of an open region U ⊂ M homeomorphic to a torus. By the closeness of the
perturbed manifolds W s(Cα,ε) and W u(Cα,ε) to the unperturbed W s(C ) and W u(C ), both U
and W u(Cα,ε) are bounded. Also notice that Pα,ε is dissipative: by taking ε∗ small enough,
we ensure that |det(DF (x, y, θ))| < c̃ < 1 for all ε < ε∗ and (x, y, θ) in U . Therefore, all
forward evolutions beginning at points (x, y, θ) ∈ U remain bounded. Like in the first part
of the proof, one has

ω(x, y, θ) ⊂ Cl (W u(Cα,ε))

for all (x, y, θ) ∈ U , α ∈ [0, 1] and ε < ε∗.

3.1.2 An application of kam theory

So far, we did not discuss the dynamics in the saddle invariant circle Cα,ε of map Pα,ε

in (6). Generically, the dynamics on Cα,ε is of Morse-Smale type. In this case, the circle
consists of the union of the unstable manifold of some periodic saddle. Theorem 3 describes
a complementary case, for which the dynamics is quasi-periodic. Fix τ > 2 and define the
set of Diophantine frequencies Dγ by

Dγ =

{
α ∈ [0, 1] |

∣∣∣∣α − p

q

∣∣∣∣ ≥ γq−τ for all p, q ∈ N, q 6= 0

}
, (18)

where γ > 0. Since we will apply a version of the KAM Theorem holding for non-conservative,
finitely differentiable systems (see [5, Chap. 5] and [6]), a certain amount of smoothness of
the circle Cα,ε is needed, depending on the Diophantine condition specified in (18). Therefore
we require that the perturbed family of maps Pα,ε is Cn, for n large enough.
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Proof of Theorem 3. Consider map Pα,0 in (6), and let p = (x0, y0) be a saddle fixed point
of the diffeomorphism K. The invariant circle Cα,0 = {p} × S1 of Pα,0 can be trivially seen
as a graph over S1:

Cα,0 =
{
(x0, y0, θ) | θ ∈ S1

}
.

Fix r ∈ N large enough and ε < εr, where εr is taken as in Proposition 1. By the Cr-closeness
of Cα,0 and Cα,ε (Proposition 1), the circle Cα,ε of Pα,ε can be written as a Cr-graph over S1:

Cα,ε =
{
(xε(θ), yε(θ), θ) ∈ R2 × S1 | θ ∈ S1

}
, (19)

where xε : S1 → R, xε(θ) = x0 + O(ε), and similarly for yε(θ). So the restriction of Pα,ε to
Cα,ε has the following form

Pα,ε
∣∣
Cα,ε

: Cα,ε → Cα,ε, Pα,ε(θ) = θ + α + εgε(x0, y0, θ, α) + O(ε2).

By (19), we may consider Pα,ε as a map on S1. Fix γ > 0, τ > 3 and take Dγ as in (18). For
α ∈ Dγ, the map Pα,ε can be averaged repeatedly over the circle, putting the θ-dependency
into terms of higher order in ε, compare [8, Proposition 2.7] and [11, Section 4]. After such
changes of variables, Pα,ε is brought into the normal form

Pα,ε(θ) = θ + α + c(α, ε) + O(εr+1).

In fact, it is convenient to consider α as a variable, and to define the cylinder maps

Pε : S1 × [0, 1] → S1 × [0, 1], Pε(θ, α) = (Pα,ε(θ), α)

R : S1 × [0, 1] → S1 × [0, 1], R(θ, α) = (Rα(θ), α),

where Rα : S1 → S1 is the rigid rotation of an angle α. We now apply a version of the KAM
Theorem, holding for non-conservative, finitely differentiable systems (see e.g. [5, Chap. 5]
and [6]), to the family of diffeomorphisms Pε. There exists an integer m with 1 ≤ m < r and
a Cm-map

Φε : S1 × [0, 1] → S1 × [0, 1], Φε(θ, α) = (θ + εA(θ, α, ε), α + εB(α, ε)), (20)

such that the restriction of Φε to S1 × Dγ makes the following diagram commute:

S1 × Dγ
R−−−→ S1 × Dγ

Φε

x Φε

x

S1 × Dγ
Pε−−−→ S1 × Dγ.

The differentiability of Φε restricted to S1 × Dγ is of Whitney type. Since Pα,ε
∣∣
Cα,ε

is Cm-

conjugate to a rigid rotation on S1, the circle Cα,ε is in fact Cm. This proves parts 1 and 2
of the Theorem.

Furthermore, the constant γ in (18) can be taken equal to εr. This gives that the measure
of the complement of Dγ in [0, 1] is of order εr as ε → 0.

3.2 Hénon-like attractors do exist

Our proof of Theorem 4 is based on a result of Dı́az-Rocha-Viana [14]. We begin by stating
this result.
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3.2.1 Perturbations of multimodal families

Two definitions from [14, Section 5.2] are introduced now. For more information about the
terminology, we refer to [24, Sections II.5, II.6].

Definition 4. Let J ⊂ R be a compact interval. Fix d ≥ 1, k ≥ 3, a∗ ∈ R, and an interval
of parameter values U = [a−, a+], with a∗ ∈ Int U. A Ck-family of maps Ma : J → J , with
a ∈ U, is called a d-family if it satisfies the following conditions:

1. Invariance: Ma∗(J) ⊂ Int(J);

2. Nondegenerate critical points: Ma∗ has d critical points {c1, . . . , cd} def

= Cr Ma∗ that satisfy

M ′′
a∗(ci) 6= 0 for all i and Ma∗(ci) 6= cj for all i, j;

3. Negative Schwarzian derivative: SMa∗ < 0 for all x 6= ci, where

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

;

4. Topological mixing: There exists an interval J ′ ⊂ Int(J) such that Ma∗(J) = Ma∗(J ′) = J ′

and such that for any open intervals J1, J2 in J ′ there exists n0 such that

Mn
a∗(J1) ∩ J2 6= ∅ for all n ≥ n0;

5. Preperiodicity: for each 1 ≤ i ≤ d there exists mi such that pi = Mmi

a∗ (ci) is a (repelling)
periodic point of Ma∗;

6. Genericity of unfolding: For all ci ∈ Cr Ma∗, denote by ci(a) and pi(a) the continuations
of ci and pi, respectively, for a close to a∗. Then

d

da

(
Mmi

a (ci(a)) − pi(a)
)
6= 0 at a = a∗.

Next we introduce the notion of η-perturbation of a d-family Ma, with a ∈ U and d ≥ 1 fixed.

Definition 5. Fix σ > 0 and consider the family M a obtained by extending Ma as follows:

Ma : J × Iσ → J × Iσ, Ma(x, y)
def

=(Ma(x), 0). (21)

Also denote by M the map

M : U × J × Iσ → J × Iσ, M(a, x, y)
def

= Ma(x, y) = (Ma(x), 0).

Given a Ck-family of diffeomorphisms

Ga : J × Iσ → J × Iσ, a ∈ J,

for a k ≥ 3, denote by G its extension

G : U × J × Iσ → J × Iσ, G(a, x, y)
def

= Ga(x, y).

Then G is called a η-perturbation of the d-family {Ma}a if

‖M − G‖Ck ≤ η,

where ‖·‖Ck denotes the Ck-norm over U × J × Iσ.
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The following proposition is used in the sequel to prove existence of Hénon-like attractors for
the map (2). See [2, 3, 26, 32, 37, 39, 42] for similar results.

Proposition 10. [14, Theorem 5.2] Let {Ma}a be a d-family and p a periodic point of
Ma∗. Then there exist η > 0, ā and χ > 0 such that, given any η-perturbation {Ga}a of
{Ma}a the following holds.

1. For all a with |a − a∗| < ā the map Ga has a periodic point pa which is the continuation
of the periodic point (p, 0) of the map M a in (21).

2. There exists a set S, contained in the interval [a∗ − ā, a∗ + ā] ⊂ U, with meas(S) > χ,
such that for all a ∈ S there exists z ∈ W u(pa) satisfying:

(a) the orbit {Gn
a(z) | n ≥ 0} is dense in Cl (W u(Orb(pa)));

(b) Ga has a positive Lyapunov exponent at z, i.e., there exist k > 0, λ > 1 and v 6= 0
such that ‖DGn

a(z)v‖ ≥ kλn for all n ≥ 0;

(c) there exist w 6= 0 such that ‖DGn
a(z)w‖ → 0 as n → ±∞.

3.2.2 Multimodal families arising from powers of the Logistic map

The proof of Theorem 4, which we present in this section, is based on three facts. First,
suppose that a∗ ∈ [0, 2] is such that the quadratic family Qa(x) = 1 − ax2 in (13) is a d-

family in the sense of Definition 4, with d = 1. Then for all n ≥ 1 the family Ma
def

= Qn
a

given by the n-th iterate of Qa is a d-family for some d ≤ 2n. Second, for all η1 > 0, the
composition of an η1-perturbation of Qa with an η1-perturbation of Qn

a is an η2-perturbation
of Qn+1

a , where η2 = C(n)η1 and C(n) is a positive constant depending on n. Third, for each
n > q ≥ 1 and for each (α, δ) ∈ A

q/n, the asymptotic dynamics of Tα,δ,a,ε is described by a
map that turns out to be an η-perturbation of the d-family Ma, with η = O(ε). Moreover,
Ma has a periodic point p such that its analytic continuation in the family Tα,δ,a,ε possesses
a transversal homoclinic intersection. Application of Proposition 10 to the point p concludes
the proof.

In the next lemma we show that Ma is a d-family. For each ã ∈ [0, 2) there exists a β > 0
such that for all a with a ∈ [0, ã] the interval J = [−1−β, 1+β] ⊂ R satisfies Qa(J) ⊂ Int(J).
In the sequel, it is always assumed that the family Qa is defined on such an interval J , and
that the values of a we consider are such that Qa(J) ⊂ Int(J).

Lemma 11. Suppose a∗ ∈ [0, 2)
def

= U is such that the quadratic family

Qa : J → J, Qa(x) = 1 − ax2

satisfies hypotheses 4 and 5 of Definition 4. Then for all n ≥ 1 there exists d ≥ 1 such that
the family

Ma : J → J, Ma
def

= Qn
a

is a d-family with d ≤ 2n − 1 critical points.

Proof. Take a∗ as above. We first prove the case n = 1, that is, Qa : Ja → Ja is a 1-family.
Conditions 1, 2, 3 of Definition 4 are obviously satisfied by Qa. Condition 6 will now be
proved. By conditions 4 and 5 (assumed by hypothesis), Qa∗ is a Misiurewicz map [25], i.e.,
it has no periodic attractor and c 6∈ ω(c), where c = 0 is the critical point of Qa∗ . Moreover,
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by [24, Theorem III.6.3] the map Qa∗ is Collet-Eckmann (see e.g. [24, Section V.4]), that is,
there exist constants κ > 0 and λ > 1 such that

∣∣∣∣
d

dx
Qn

a∗(Qa∗(c))

∣∣∣∣ ≥ κλn for all n ≥ 0. (22)

Therefore, by combining [38, Theorem 3] with the Collet-Eckmann condition (22) we get

lim
n→∞

d
da

Qn
a(c) |a=a∗

d
dx

Qn−1
a∗ (Qa∗(c))

> 0. (23)

Assume Qk
a∗(c) = p, with p periodic (and repelling) under Qa∗ . By p(a) denote the continu-

ation of p for a close to a∗. Then, for all n sufficiently large,

d

da
Qn

a(c) |a=a∗ =
∂Qn−k

a

∂a
(Qk

a∗(c)) |a=a∗ +
∂Qn−k

a

∂x
(Qk

a∗(c)) |a=a∗

d

da
Qk

a(c) |a=a∗=

=
∂

∂a
Qn−k

a (p) |a=a∗ +
∂

∂x
Qn−k

a (p) |a=a∗

d

da

[
p(a) + Qk

a(c) − p(a)
]
|a=a∗=

=
d

da

(
Qn−k

a (p(a))
)

+
∂

∂x
Qn−k

a∗ (p)
d

da

[
Qk

a(c) − p(a)
]
|a=a∗ .

(24)

The point Qn−k
a (p(a)) belongs to a hyperbolic periodic orbit, that varies smoothly with the

parameter a. Therefore, its derivative with respect to a (which is the first term in the last
equality) is uniformly bounded in n. On the other hand,

d

dx
Qn−1

a∗ (Qa∗(c)) =
∂

∂x
Qn−k

a∗ (p)
d

dx
Qk−1

a∗ (Qa∗(c)).

Therefore, by (22), (23), and (24) we conclude that

0 < lim
n→∞

d
da

Qn
a(c) |a=a∗

d
dx

Qn−1
a∗ (Qa∗(c))

=
d
da

[
Qk

a(c) − p(a)
]
a=a∗

d
dx

Qk−1
a∗ (Qa∗(c))

. (25)

This proves that Qa satisfies condition 6 of Definition 4.
We now show that the n-th iterate Ma of the quadratic map is a d-family for all n > 1

and for some d ≤ 2n. For simplicity, we denote Qa∗ by Q for the rest of this proof. Condition
1 holds for Ma∗ since it holds for Qa∗ . Condition 3 follows from the fact that the composition
of maps with negative Schwarzian derivative also has negative Schwarzian derivative, see
e.g. [24, II.6]. Condition 4 is obviously satisfied.

Condition 2 is now proved by induction on n, where the case n = 1 is obvious. Obviously,
the set Cr Ma∗ of critical points of Ma∗ has cardinality d ≤ 2n − 1. Moreover,

Cr Ma∗ = Q−1
(
Cr Qn−1

)
∪ Cr Q =

n−1⋃

j=0

(Q−j)(Cr Q). (26)

Suppose that condition 2 holds for a given n ≥ 1. We first show that

(Qn+1)′′(x) 6= 0 for all x ∈ Cr Qn+1. (27)

By (26), if x ∈ Cr Qn+1 then either x = c, or Q(x) ∈ Cr Qn. If x = c then

(Qn+1)′′(x) = (Qn)′ (Q(c)) · (Q)′′(c). (28)
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The second factor is nonzero. If the first factor is zero, then

0 = (Qn)′ (Q(c)) = Q′(Qn(c)) . . . Q′(Q(c)).

Therefore there exists j such that Qj(c) = c, so that c is an attracting periodic point of
Q. But this contradicts the fact that Q is Misiurewicz, so that (28) is nonzero. The other
possibility is that c 6= x and Q(x) ∈ Cr Qn. In this case,

(Qn+1)′′(x) = (Qn)′′ (Q(x)) · Q′(x)2,

which is nonzero. Indeed, Q′(x) 6= 0, otherwise x = c. Moreover (Qn)′′ (Q(x)) 6= 0 by the
induction hypotheses since the critical points of Qn are nondegenerate. This proves (27),
from which the first part of condition 2 follows.

We now prove, again arguing by contradiction, that

Qn+1(x) 6= y for all x, y ∈ Cr Qn+1.

Suppose that there exist x, y ∈ Cr Qn+1 such that Qn+1(x) = y. By (26) there exist i and j
such that Qi(x) = Qj(y) = c, where 0 ≤ i, j ≤ n. This would imply that

Qn+1+j−i(c) = Qj(Qn+1(x)) = Qj(y) = c,

with n + 1 + j − i ≥ 1 and, therefore, c would be an attracting periodic point of Q, which is
impossible since Q is Misiurewicz. Condition 2 is proved.

To prove condition 5, fix y ∈ Cr Ma∗ and j ≥ 0 such that Qj(y) = c. Since c is preperiodic
for Q by hypothesis, there exists k ≥ 1 such that Qj+k(y) = p, where p is periodic under Q
with period u ≥ 1. The orbit of y under Ma∗ is, except for a finite number of initial iterates,
a subset of the orbit of p under Q. This shows that y is preperiodic for Ma∗ .

To prove condition 6, take y ∈ Cr Ma∗ , j, u, k and p ∈ J as in the proof of condition 5.
Then there exist integers l and m, with 0 ≤ l < u and m ≥ 1, such that

Mm
a∗(y) = Qk+l(c) = Ql(p) ∈ OrbQ(p). (29)

By condition 5 (assumed by hypothesis) and by (29), the point z = Ql(p) is periodic (and
repelling) under Ma∗ . Denote by y(a), z(a), and p(a) the continuations of y, z, and p,
respectively, for a close to a∗. In particular,

Qj
a(y(a)) = c and Ql

a(p(a)) = z(a).

We have to show that
d

da
[Mm

a (y(a)) − z(a)]|a=a∗ 6= 0. (30)

By the chain rule we get

d

da
Ql+k

a (c)
∣∣
a=a∗

=
∂Ql

a

∂a
(Qk

a(c))
∣∣
a=a∗

+
∂Ql

a

∂x
(Qk

a(c))
∣∣
a=a∗

dQk
a

da
(c)|a=a∗ =

=
∂Ql

a∗

∂a
(p) +

∂Ql
a∗

∂x
(p)

dQk
a∗

da
(c),

d

da
Ql

a(p(a))
∣∣
a=a∗

=
∂Ql

a∗

∂a
(p) +

∂Ql
a∗

∂x
(p)

d

da
p(a∗),

where p = p(a∗) = Qk
a∗(c). Therefore,

d

da
[Mm

a (y(a)) − z(a)]|a=a∗ =
d

da

[
Qk+l

a (c) − Ql
a(p(a))

]∣∣
a=a∗

=

=
∂Ql

a∗

∂x
(p)

d

da

[
Qk

a(c) − p(a)
]∣∣

a=a∗
.

The factor d
da

[
Qk

a(c(a)) − p(a)
]∣∣

a=a∗
is nonzero by (25). The same holds for the other factor,

otherwise p would be an attracting periodic point of Qa∗ . This proves inequality (30).
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Proposition 10 does not provide a nontrivial basin of attraction for the closure Cl (W u(pa)).
We now show that, under the hypotheses of Theorem 4, there exists a periodic point pa for
which a nontrivial basin of attraction of Cl (W u(pa)) can be constructed. Therefore, in this
case Cl (W u(pa)) is a Hénon-like attractor.

Proposition 12. Consider the map {M ∗
a}a = Qn

a∗, where Qa∗ satisfies the hypotheses of
Lemma 11. There exist a periodic point p of Qa∗, and positive constants η, ā and χ such that
for any η-perturbation {Ga}a of {Ma}a = Qn

a∗ the following holds.

1. For all a with |a − a∗| < ā the map Ga has a periodic point pa which is the continuation
of the periodic point (p, 0) of the map M a in (21). Moreover, pa has a transversal
homoclinic intersection.

2. There exists a set S, contained in the interval [a∗ − ā, a∗ + ā] ⊂ U, with meas(S) > χ,
such that for all a ∈ S the set Cl (W u(Orb(pa))) is a Hénon-like attractor of the map
Ga.

Proof. To construct a non-trivial basin of attraction for Cl (W u(Orb(pa))), it is sufficient
to find a periodic point pa of {Ga}a that has a transversal homoclinic intersection. Then
the basin is provided by the Tangerman-Szewc Theorem (see Theorem 2 and subsequent
remark). Indeed, for all η sufficiently small, all η-perturbations of the map Q∗

a are uniformly
dissipative. Moreover, the unstable manifold of pa is bounded, since it is bounded for Qa∗

and since the invariant manifolds of a map depend continuously on the map [26, Prop. 7.1].
Therefore, the second part of the proposition follows from the first part, together with the
Tangerman-Szewc argument and Proposition 10.

To prove the first part, we claim that the map Qa∗ has a periodic point p belonging to
a non-degenerate homoclinic orbit. Indeed, if the claim is true, then for η sufficiently small
and for a close to a∗, any η-perturbation of Ma possesses a periodic point pa which is the
analytic continuation of p and such that pa has a transverse homoclinic intersection. The
latter property again follows from continuous dependence of the invariant manifolds on the
map [26, Prop. 7.1].

To prove the claim that Qa∗ has a periodic point p belonging to a non-degenerate homo-
clinic orbit we first show that there exists a point y0 belonging to a degenerate homoclinic
orbit of Qa∗ . Since the critical point c of Qa∗ is preperiodic, there exist positive integers k, h
such that Qk

a∗(c) = y0 and y0 is periodic with period h. The unstable manifold of any periodic
point of Qa∗ is the whole core [1 − a∗, 1], since Qa∗ is topologically mixing. Therefore, since
the critical point c belongs to W u(y0), by taking preimages of c, a point q can be found such
that q ∈ W u

loc(y0), Ql
a∗(q) = c and Ql+k

a∗ (q) = y0 for some integer l > 0. This means that y0

belongs to a degenerate homoclinic orbit of Qa∗ .
We now prove that there exists a periodic point p of Qa∗ having a non-degenerate homo-

clinic orbit. This is achieved by examining a power of Qa∗ for which all points of the orbit
of y0 are fixed. Denote by OrbQa∗

(y0) = {yj | j = 0, . . . , h − 1} the orbit of y0, under Qa∗ ,

where yj = Qj
a∗(y0). Let m be the smallest multiple of h which is larger than k, and denote

f
def

= Qm
a∗ . Then, f(c) belongs to OrbQa∗

(y0) and all points yj are fixed for f . We can assume
that

f ′(yj) > 1 for all yj ∈ OrbQa∗
(y0) (31)

by taking f 2 instead of f if necessary.
Brouwer’s fixed point Theorem and continuity arguments ensure the existence of a fixed

point p of f , a critical point c′ of f , and an interval I = (c′ − δ, c′) such that:

1. f ′(p) < −1;
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2. c′ lies in the interval (y, p);

3. f is monotonically increasing in I;

4. p falls in the interval f(I).

The configuration of c, c′ and y = f(c) within the graph of f looks like the sketch in Figure 8,
in the case y < c and f ′′(c) > 0 (the other combinations of the sign of y − c and f ′′(c) are
treated similarly). Since f is topologically mixing, the interval f(I) is contained in the

PSfrag replacements

y cc′ p

p

f(c)

Figure 8: Graph of the map f from the proof of Proposition 12. Only the relevant branches of
the graph are plotted, in relation to the fixed points y, p and the critical points c and c′. See the
text for details.

unstable manifold of p. Therefore p belongs to a homoclinic orbit O.
Moreover, the homoclinic orbit O is non-degenerate. Indeed, if this was not the case, then

there would exist a critical point c′′ of f belonging to O, so that f j(c′′) = p for some j ∈ N.
However, according to (26), and since c is preperiodic, the orbit of c′′ under Qa∗ eventually
lands inside OrbQa∗

(y0). It follows that p ∈ OrbQa∗
(y0), which is absurd, since f ′(p) < −1

whereas (31) holds.

In the next lemma we show that the composition of a small perturbation of the map
Qa(x, y) = (Qa(x), 0) (we use here the notation of Definition 5) with a small perturbation of
Qn

a(x, y) = (Qn
a(x), 0) yields a small perturbation of Qn+1

a (x, y). As in Definition 5, denote by
Q,Qn : [0, 2]×J×I → J×I the functions Q(a, x, y) = (Qa(x), 0) and Qn(a, x, y) = (Qn

a(x), 0),
respectively.

Lemma 13. For each η > 0 there exists a ζ > 0 such that for all F,G : [0, 2]×J ×I → J ×I
such that

‖G − Q‖C3 < ζ and ‖F − Qn‖C3 < ζ, (32)

we have ∥∥G ◦ F − Qn+1
∥∥

C3
< η. (33)

Proof. Write

G(a, x, y) =

(
Qa(x) + g1(a, x, y)

g2(a, x, y)

)
and F (a, x, y) =

(
Qn

a(x) + f1(a, x, y)
f2(a, x, y)

)
.
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Then

G ◦ F (a, x, y) −
(

Qn+1
a (x)

0

)
=

(
−2a(f1(a, x, y))2 − 2af1(a, x, y)Qn

a(x) + g1

(
a, f̃1(a, x, y), f2(a, x, y)

)

g2

(
a, f̃1(a, x, y), f2(a, x, y)

)
)

,

where f̃1(a, x, y) = Qn
a(x) + f1(a, x, y). The C3-norm of the terms −2a(f1(a, x, y))2 and

−2af1(a, x, y)Qn
a(x) is bounded by a constant times the C3-norm of f1. We now estimate the

norm of g̃1, defined by

g̃1(x0, x1, x2) = g1(a, f̃1(a, x, y), f2(a, x, y)).

Denote x0 = a, x1 = x, and x2 = y. Then any second order derivative of g̃1 is a sum of terms
of the following type:

∂2g1

∂xjxk

∂f̃k

∂xl

,
∂g1

∂xk

∂2f̃k

∂xjxl

,

where we put f̃2 = f2 to simplify the notation. For the third order derivatives a similar
property holds. Since the C3-norm of f̃k is bounded, we get that each term in the third order
derivative of g̃1 is bounded by a constant times the C3-norm of the gj. This concludes the
proof.

Proof of Theorem 4. The Theorem will be first proved for a∗ < 2. The case a∗ = 2
follows by choosing another value ā∗ < 2 sufficiently close to 2. Fix a∗ ∈ [0, 2) verifying the
hypotheses of Lemma 11. To begin with, we consider the case (α, δ) ∈ Int A

1, the interior of
the tongue of period one. Then the Arnol′d family Aα,δ on S1 has two hyperbolic fixed points
θs
1 (attracting) and θr

1 (repelling), see [13, Section 1.14]. The θ-coordinate of both points
depends on the choice of (α, δ) ∈ Int A

1. So for all θ ∈ S1 with θ 6= θr
1, the orbit of θ under

Aα,δ converges to θs
1. This means that the manifold

Θ1 =
{
(x, y, θ) ∈ R2 × S1 | θ = θs

1

}
⊂ R2 × S1

is invariant and attracting under Tα,δ,a,ε. Denote by Ga,1 the restriction of Tα,δ,a,ε to Θ1:

Ga,1 : Θ1 → Θ1, (x, y, θs
1) 7→ (1 − ax2 + εf1, εg1, θs

1),

where f1 = f(a, x, y, θs
1, α, δ) and similarly for g1. Since Qa∗(J) ⊂ Int(J), there exists a

constant σ > 0 such that for all ε sufficiently small and all a close enough to a∗,

Ga,1(J × Iσ × {θs
1}) ⊂ Int(J × Iσ × {θs

1}) and

Tα,δ,a,ε

(
J × Iσ × (S1 \ {θr

1})
)
⊂ Int

(
J × Iσ × (S1 \ {θr

1})
)
. (34)

Since Θ1 is diffeomorphic to R2, we consider Ga,1 as a map of R2. Then Ga,1, is an
η-perturbation of the quadratic family Qa(x), where η = O(ε). We now apply Proposi-
tion 12 to the family Ga,1. Let p0 be the periodic point of Ma∗ as given by Proposition 12.
For all ε sufficiently small there exists a constant ā > 0 and a set S of positive Lebesgue
measure, contained in the interval [a∗ − ā, a∗ + ā], such that the following holds. For all
a ∈ [a∗ − ā, a∗ + ā], Ga,1 has a saddle periodic point p̄ which is the continuation of the point

p0. Furthermore, for all a ∈ S the closure Ã = Cl
(
W u(OrbGa,1

(p̄))
)

is a Hénon-like attractor
of Ga,1 contained inside Θ1. The point p = (p̄, θs

1) is a saddle periodic point of the map Tα,δ,a,ε,

and W u(OrbTα,δ,a,ε
(p)) = W u(OrbGa,1

(p̄))×{θs
1}. Therefore A = Cl (W u(p)) = Ã ×{θs

1} is a
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Hénon-like attractor of Tα,δ,a,ε. Moreover, the basin of attraction of Cl (W u(p)) has nonempty
interior in R2 × S1 because of (34). This proves the claim for (α, δ) ∈ Int A

1.
We pass to the case of higher period tongues. Suppose that (α, δ) ∈ Int A

q/n, with
n > q ≥ 1. Then Aα,δ has (at least) two hyperbolic periodic orbits

Orb(θs
1) = {θs

1, θ
s
2, . . . , θ

s
n} attracting, and

Orb(θr
1) = {θr

1, θ
r
2, . . . , θ

r
n} repelling.

For j = 1, . . . , n, denote by Θj the manifold

Θj =
{
(x, y, θ) ∈ R2 × S1) | θ = θs

j

}
,

and define maps Gj as the restriction of Tα,δ,a,ε to Θj:

Gj : Θj → Θj+1 for j = 1, . . . , n − 1

Gn : Θn → Θ1, where

(x, y, θs
1)

Gj7→ (Qa(x) + εfj, εgj, θs
j+1), for j = 1, . . . , n − 1

(x, y, θs
n)

Gn7→ (Qa(x) + εfn, εgn, θs
1).

Here, fj = f(a, x, y, θs
j , α, δ). The manifold Θ1 is invariant and attracting under the n-th

iterate of the map Tα,δ,a,ε. For all (x, y, θ) in the complement of the set

{(x, y, θ) | θ ∈ Orb(θr
1)} ,

the asymptotic dynamics is given by the map

Ga,1,...n
def

= Gn ◦ Gn−1 ◦ · · · ◦ G1.

Notice that each of the Gj’s is an ηj-perturbation of the family Qa in the sense of Definition 5,
where ηj = Bε and B can be chosen uniform on θs

j (and, therefore, on (α, δ)).
Let p0 be the periodic point of Ma∗ as given by Proposition 12. Then (p0, 0) is a saddle

periodic point for the map M a defined as in (21). Take η, ā, and χ as in Proposition 12. By
inductive application of Lemma 13 there exists an ε̄ > 0 depending on η and n such that

‖Ga,1,...n − Qn‖C3 < η,

for all (α, δ) ∈ Int A
q/n and all |ε| < ε̄. That is, Ga,1,...n is an η-perturbation of Ma for all q

with 1 ≤ q < n and all (α, δ, a, ε) with

(α, δ) ∈ A
q/n, ε ∈ [−ε̄, ε̄].

By Proposition 12 there exist an ā > 0 and a set S contained in the interval [a∗ − ā, a∗ + ā]
such that meas(S) ≥ χ and the following holds. For all a ∈ [a∗−ā, a∗+ā] the map Ga,1,...,n has
a periodic point p̄a which is the continuation of the periodic point (p0, 0) of Ma. Moreover,

for all a ∈ S the closure Ã = Cl
(
W u(OrbGa,1,...,n

(p̄a))
)

is a Hénon-like attractor of Ga,1,...,n,
contained inside Θ1.

To finish the proof, observe that pa = (p̄a, θ
s
1) is a saddle periodic point of Tα,δ,a,ε. The

set A = Cl
(
W u(OrbTα,δ,a,ε

(pa))
)

is compact and invariant under Tα,δ,a,ε. To show that A

has a dense orbit, fix parameter values as provided by Proposition 12 applied to Ga,1,...n. Let

z ∈ Θ1 a point having a dense orbit in Ã and satisfying properties (a)–(c) of Proposition 10.
Then given η > 0 and a point

q = T j
α,δ,a,ε(q

′) ∈ T j
α,δ,a,ε(Ã × {θs

1}), with 1 ≤ j ≤ n − 1,
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there exists m > 0 such that dist(Gm
a,1,...n(z), q′) < η. By continuity of T j

α,δ,a,ε, for all % > 0
there exists η > 0 such that

dist(T j
α,δ,a,ε(q

′′), T j
α,δ,a,ε(q

′)) < % for all q′′ with dist(q′′, q′) < η.

We conclude that for all % > 0 there exists m > 0 such that

dist(T j
α,δ,a,ε(G

m
a,1,...n(z)), T j

α,δ,a,ε(q
′)) = dist(T j+mn

α,δ,a,ε(z), q) < %.

This proves that the orbit of z under Tα,δ,a,ε is dense in A . Properties (11) and (12) will now
be proved. Since Ga,1,...,n = T n

α,δ,a,ε on Θ1, for any m ∈ N and any z ∈ A we have

DTm
α,δ,a,ε(z) = DT r

α,δ,a,ε(G
s
a,1,...,n(z))DGs

a,1,...,n(z),

where s = m mod n and r = m − s. Take z as above and a vector v = (vx, vy, 0) ∈ TzA

such that
∥∥DGs

a,1,...,n(z)v
∥∥ ≥ κλs for all s, where κ > 0 and λ > 1 are constants. Since T r

α,δ,a,ε

is a diffeomorphism for all r = 1, . . . , s− 1 and Gs
a,1,...,n(z) belongs to the compact set A for

all s ∈ N, then there exists a constant c > 0 such that

∥∥DTm
α,δ,a,ε(z)v

∥∥ =
∥∥DT r

α,δ,a,ε(G
s
a,1,...,n(z))DGs

a,1,...,n(z)v
∥∥ ≥ c

∥∥DGs
a,1,...,n(z)v

∥∥ ,

where c is uniform in r. This proves property (11). Property (12) is proved similarly. This
shows that the closure Cl (W u(pa)) is a Hénon-like attractor of Tα,δ,a,ε.

Remark 5. At the boundary of a tongue A
q/n the Arnol′d family Aα,δ has a saddle-node

periodic point θ1. However, the basin of attraction of Orb θ1 still has nonempty interior, so
that the above conclusions hold for all (α, δ) in the closure Cl

(
A

q/n
)
.

4 Numerical methods, results and interpretation

4.1 Methods and selection of parameters

An important tool in the numerical exploration of dynamical systems consists of the com-
putation of Lyapunov exponents. Let us take a three-dimensional map T as before, with an
orbit {xj, j = 0, 1, 2, 3, . . .} . Following [35] we start with three independent tangent vectors,
of which the successive iterates under the derivative DT are computed, after some transient.
At each step (or after a given number of steps to speed up the process) the vectors are
orthonormalised.

It is useful to introduce Lyapunov sums, as we show now, for simplicity just consid-
ering the iterates of one tangent vector. Let v0 be the initial vector and write vn =
DT n

x0
(v0)/‖DT n

x0
(v0)‖, i.e., the normalised tangent vector obtained after n iterations. Let

v̂n+1 = DT (xn)vn. Then vn+1 = v̂n+1/fn+1, where fn+1 = ‖v̂n+1‖. The Lyapunov sum then
is defined as

LSn =
n∑

j=1

log(fj). (35)

The maximal Lyapunov exponent then is the average slope of the Lyapunov sum (35) as
n → ∞, that is, the average of the logarithmic rates of increase of the length log(fj). The other
Lyapunov exponents are estimated as averages of Lyapunov sums in which the coefficients fj

are given by the Gram-Schmidt orthonormalisation, see [35] for details.
In the numerical procedure estimates are produced of the average slope of LSn up to

some n for different values of n up to a maximal number of N iterates. The computations are
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stopped before N iterates in case of escape, or if a periodic orbit is detected, or if different
estimates of the average coincide within a prescribed tolerance ρ. Typical values for N and
ρ in the present computations are 107 and 10−6, respectively.

One of the major problems is to detect values of the Lyapunov exponents very close to
zero. To this end several procedures have been proposed for obtaining the limit. Taking into
account that in the skew case the driving behaviour is quasi-periodic or periodic, a method of
successive filtering and fitting, similar to [7] can be suitable. Another method like MEGNO
(see [12] for an exposition and examples and [23] for a problem which requires a massive use
of it) is based of weighted averages and is very useful to detect small values of the Lyapunov
exponent. However, presently we simply use the Lyapunov sum (35) because this will help
to understand the behaviour of the system in some elementary cases, see Section 4.3.

To scan the behaviour of family T given by (7), several parameters have been fixed. We
chose δ = 0.6 such that resonant zones of the Arnol′d family are not too narrow, while still
most of the values of α give rise to quasi-periodic dynamics. Concerning the parameters a
and b of the Hénon family, we fixed b = 0.3 for historical reasons. It is the value used by
Hénon [18], and it is a good compromise between dissipation and visibility of the folds of
the unstable manifold. It was also used in [34], where the various attractors for this value
of b, for several values of a was studied, as well as the role of homoclinic and heteroclinic
tangencies (later on in the literature known as ‘crises’). The value a = 1.25 corresponds to a
periodic attractor of period 7 and allows for moderate values of ε in the forcing before escape
occurs. Finally we selected the values µ = 0 and µ = 0.01 for the skew and the fully coupled
case, respectively. Other values of µ have also been investigated, see Section 4.2.

Let Λ1 ≥ Λ2 ≥ Λ3 be the three Lyapunov exponents. Since the family (7) is dissipative,
the role of Λ3 is not very relevant. It can only help to decide, in case of periodic or quasi-
periodic attractors, whether the normal behaviour is of nodal type (Λ2 > Λ3) or of focal type
(Λ2 = Λ3). The major role is played by Λ1 and Λ2 and their position with respect to zero.

In some cases it is also interesting to use a complementary tool to help to decide whether
the attractor is quasi-periodic or has some ‘strange’ character. This occurs for small values
of ε. In the skew case µ = 0 one may expect to have a period 7 invariant curve if (α, δ) is in
the quasi-periodic domain and ε is sufficiently small. Similar behaviour can be expected for
µ > 0 small, for a large relative measure set in (α, δ).

The following method has been used. Consider iterates of T 7, after some transient, and
sort them by the values of θ. If the attractor is an invariant curve (x(θ), y(θ)), then the
variation of the components (x, y) can be estimated from the iterates. This variation has to
remain bounded when the number of iterates increases and tend to the true variation (but see
Section 4.3 for some wrong interpretations of the results of these computations). To recognise
Hénon-like attractors for the fully coupled case µ > 0 a similar device is used. The values of
the angular component θ of the iterates, should cluster around the periodic orbit obtained in
the case µ = 0.

4.2 Numerical results

The diagrams in Figures 1 (C) and 6 are based on the values of the first two Lyapunov
exponents Λ1 and Λ2. To be more precise, in Figure 1 (C) code 1 (yellow) corresponds to
0 > Λ1, code 2 (blue) to 0 = Λ1 > Λ2, code 3 (red) to Λ1 > 0 > Λ2 and code 4 (light blue)
to Λ1 > 0 = Λ2. Typically we considered a Lyapunov exponent as equal to zero whenever
|Λj| < 10−5, j = 1, 2.

In Figure 6 a new case appears, namely where Λ1 > Λ2 > 0. Here the value of Λ2 is
small but definitely positive. It occurs for some regions of the (α, ε) parameter plane which,
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in the skew case µ = 0 of Figure 1 (C) seemingly show quasi-periodic Hénon-like attractors.
For these parameter values we maintain the code 4 (light blue). Furthermore, inside the
case Λ1 > 0 > Λ2 one has to distinguish two subcases: one which corresponds to Hénon-like
attractors (identified by the clustering of θ, as described before) and for which we keep the
code 3 (red), and another with Λ2 close to zero but definitely negative. The latter can be
seen as a perturbation of the quasi-periodic Hénon attractors. We use for these the code 5
(green). The existence of parameter values for which the Lyapunov exponents are positive
has been recently also found in a quite different context, related to what can be considered
as a discrete version of Lorenz attractor, see [16].

Figure 9: Attractor of T as in (7) for (α, ε, µ) = (0.31, 0.13, 0.01), with two positive Lyapunov
exponents: Λ1 ≈ 0.29530 and Λ2 ≈ 0.00016 (which is close to zero). We note that no visual
difference is observed with attractors having Λ2 negative close to zero (fully coupled case µ > 0) or
Λ2 = 0 (skew product case µ = 0). The representation uses variables (u, v, w) similar to Figure 3.

Interestingly, no visual differences can be observed between these attractors in the cases
where Λ1 > 0 and Λ2 = 0 (in the skew case µ = 0) or where Λ1 > 0 and Λ2 is close to
zero, and either positive or negative (in the fully coupled model µ > 0). Figure 9 displays
the detected attractor for (α, ε, µ) = (0.31, 0.13, 0.01) (in the region of code 4 in Figure 6).
The plot uses variables (u, v, w) similar to Figure 3. Moving the parameters to (α, ε, µ) =
(0.28, 0.13, 0.01) (code 5 region in Figure 6) or to (α, ε, µ) = (0.28, 0.13, 0.00) (code 4 region
in Figure 1), in all these cases the attractor looks quite similar. Further study is needed to
clarify the geometric differences, by considering the expected saddle-type invariant circle and
its invariant manifolds.

Comparing Figures 1 (C) and 6 we observe:

1) The region code 1 (periodic attractors, yellow) in Figure 1 (C) is essentially preserved
in Figure 6, where more periodic attractors were detected near the parameter regions
that in the skew case correspond to resonance.

2) The regions with code 3 (Hénon-like attractors, red) are quite similar in both figures.

3) The region with code 4 in Figure 1 (C) (quasi-periodic Hénon attractors, light blue),
in Figure 6 gives rise to regions of codes 4 (light blue) and 5 (green) in Figure 6, where
the difference is given by the sign of Λ2 (positive in region 4, negative in region 5, but
always close to zero).

4) The region with code 2 (blue) in Figure 1 (C), where Λ1 = 0 > Λ2 has grown smaller
in Figure 6. There are blue points in Figure 1 (C) (not too close to ε = 0) which have
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turned into green in Figure 6 (Λ1 > 0 > Λ2). One may expect that the dynamics for
these parameter values in the skew case µ = 0 has a quasi-periodic attractor. The
numerical evidence, at least working in double precision arithmetics, shows a different
kind of attractors in the fully coupled case µ > 0. In the literature these are called
‘strange non-chaotic attractors’ (SNA). See [17, 22, 15, 28, 29, 21] for examples and
partial results in various contexts and also Section 4.3. To illustrate this difference,
Figure 10 shows a magnification of both Figures 1 (C) and 6 for ε ∈ [0, 0.05].

 0

 0.02

 0.04

 0.2  0.25  0.3  0.35  0.4

 0

 0.02

 0.04

 0.2  0.25  0.3  0.35  0.4

Figure 10: Magnified domain of Figures 1 (C) (top) and 6 (bottom) showing similarities and
differences. In the top figure we introduced a new code 6 (in magenta), located on top of the blue
region. In Figure 1 (C) this magenta domain was shown in blue. It may correspond to ‘strange
non-chaotic attractors’. See the text for explanation and discussion.

As explained in Section 4.1 one can use the variation as an indicator to distinguish an
invariant circle from invariant sets of other types. In the skew case this reveals a large domain
on the upper part of the blue region, in Figure 10 represented in magenta (code 6). This
is particularly evident near the region corresponding to the resonance with rotation number
2/7. Narrow domains can be observed near other resonances.

Parameter values at the top part of Figure 10, corresponding to quasi-periodic attractors
remain blue (code 2). It is quite striking that they almost exactly coincide with the blue
points in the bottom part of the figure. This suggests that the domain of validity of the kam
Theorem 3 is relatively large.

Even more striking is that essentially all parameter values with code 6 (say, candidates
for SNA) in the skew case, enter into the ‘green region’ (code 5), with exactly one positive
Lyapunov exponent (where the other two are negative) in the fully coupled case. This
behaviour has been checked when varying µ for a sample of values of (α, ε) : even when µ is
as small as 10−12 this same change has been observed.
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4.3 Interpretations of the numerical results

Most of the numerical study is based on the computation of Lyapunov exponents. Knowing
the values of these exponents gives some hints on the dynamics, though certain ambiguities
can occur. As discussed before, in cases of one positive Lyapunov exponent and two negative
ones, one cannot guess whether the attractor is Hénon-like or quasi-periodic Hénon-like.

Next we present a couple of elementary examples which illustrate how careful one must
be in the interpretation of the numerical results.

Arithmetic effects

The computed orbit can strongly depend on the kind of arithmetics used in the computations.
Let us return for a moment to the Lyapunov sums (35). Assume that they are decreasing
on average and, therefore, give evidence of a negative Lyapunov exponent. However the
oscillations around a line with slope equal to the Lyapunov exponent can be very large. This
means that local errors can be amplified by a big factor. If the amplification is large (before
decreasing again) the propagation of the numerical errors can show a completely different
dynamics.

To illustrate these numerical effects, let us consider the following toy model

(x, θ) 7→ (1 − (a + ε sin(2πθ))x2, θ + α), (36)

which is the Logistic family, driven by a rigid rotation. Note that this is a particular case of
the family (2) for b = δ = 0, which, however, is not a diffeomorphism.

First of all we take α small, such that a priori one may expect the system (36) to be
not too far from the sequence of attractors corresponding to the ‘frozen’ values of θ. We
took (a, ε) = (1, 30, 0.30), thereby ensuring that the frozen values of a + ε sin(2πθ) range
over the interval [1, 1.6]. In this domain the attractors of the Logistic family range from the
period 2 sink to the chaotic domain, where the support of the invariant measure has a single
component (say, a ‘one-piece’ strange attractor). The value of α has been taken small (in
particular α = γ/1000, where γ is the golden mean) in order to move slowly through the
frozen systems, in an adiabatic way.

As a starting point we chose θ0 = 0.6. The value of x0 may be taken arbitrary, presently
we picked x0 = 0.123456789. While computing iterates and the Lyapunov sums LSn =∑n

j=1 log(2a|xj|) we observe that LSn decreases (with some minor oscillations) during the
first 600 iterates. It reaches a value close to −665. Then LSn increases (except for some minor
oscillations) for the next 800 iterates, reaching a value close to −460. This implies that in that
transient period, along the computed orbit, local errors increase by exp(−460 + 665) ≈ 1089.
It may be clear that errors of the order of the computer double precision accuracy will
soon produce a departure of the vicinity of the orbit that one would obtain with exact
computations.

In Figure 11 we present an example of this phenomenon. If the accuracy is not sufficient,
say only 60 decimal digits, we may expect the same to happen, compare with the top right
part of the figure. The lower left plot, computed with 150 decimal digits, displays that
the attractor is indeed an invariant circle. When the computer accuracy changes, so does
the computed orbit and hence also the Lyapunov sums change. With the ‘correct’ values
the first minimum of LSn (neglecting period 2 small oscillations) roughly is -646 attained
at n = 562. After that we obtain a maximum of -376 for n = 1459. The magnification
exp(−376 + 646) ≈ 10117 shows why a large number of digits is required.

For frozen θ the effective value of the parameter in the Logistic family is â = a+ε sin(2πθ),
see (36). Period two points of the frozen system are born at â = 3/4, as solutions of â2x2 −
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Figure 11: Top and bottom left: attractors observed for the model (36) with (a, ε, α) =
(1.30, 0.30, γ/1000), where γ denotes the golden mean. In the top part we use standard double
precision arithmetics (left) and 60 decimal digit arithmetics (right). The bottom left figure uses
150 decimal digit arithmetics. The bottom right part depicts the corresponding evolution of the
Lyapunov sums (35). In the present example increasing the accuracy also gives an increase of the
Lyapunov exponent, but it remains negative in all three the cases. See the text for details.

âx+1−â = 0. On the corresponding orbit one has |D2T (x)| = 4|(â−1)|. Hence, the Lyapunov
sums (35) are Riemann sums of the integral

1

2α

∫ θ0+nα

θ0

log (|4(a − 1 + ε sin(2πθ))|) dθ. (37)

We note that the integral (37) cannot be distinguished from the upper curve at the bottom
right part of Figure 11.

Invariant curves with large oscillations

As mentioned before, one might expect that an invariant curve looks very nice, with moderate
oscillation, and decide that a wild oscillation should be a good evidence of the existence of
an SNA. The following example shows that this expectation is not justified in all cases.

We consider a forced Logistic family, as studied in [27], given by

(x, θ) 7→ (µx(1 − x) + ε sin(2πθ)), θ + α(mod 1)) , (38)

where µ = 3 and α = γ (the golden mean). In [27] the authors claim that starting at
ε = ε∗, where ε∗ ≈ 0.1553, there exists a range of values of ε displaying an SNA. Despite
the Lyapunov exponent in the x variable is negative the attractors look like ‘strange’, having
fractal dimension. Their conclusions are based on a too small number of iterates.

To clarify the dynamics we have proceeded as follows: We computed, after some transient,
N iterates of (38). These values were sorted with respect to θ and the oscillations were
computed of the x variable in the intervals [0.0, 0.1], . . . , [0.9, 1.0]. Let I 1

j1
:= [j1/10, (j1+1)/10]

be the interval with largest oscillation. Then we recompute 10N iterates considering only the
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iterates in I1
j1

. These iterates are sorted with respect to θ and the oscillations of the x variable
are computed in the subintervals of the form [j1/10+k/100, j1/10+(k+1)/100], k = 0, 1, . . . 9.
Let I2

j1,j2
be the subinterval with largest oscillation. This process is repeated as many times

as needed, until the maximal slope, based on the computed points, is no longer changing in a
significant way. Figure 12(left) shows the results for ε = 0.1554. The observed attractor, that
with smaller resolution may seem a strange attractor, is in fact a nice curve, certainly with a
large oscillation and with large slope. Due to the fact that the method computes oscillations
based on a grid, the finally selected interval may depend on the value of N and on the initial
values x0, θ0, but the results are similar. Of course, due to the large number of iterations
performed, there is a loss of digits. To overcome this source of errors we have used between
30 and 40 decimal digits in the computations.
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 0  2000  4000  6000  8000  10000
 0.5
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 0  10000  20000  30000  40000  50000

Figure 12: Invariant curves for map (38). Left: ε = 0.1554. On the horizontal axis we plot
(θ − 0.0070944247) × 1014 and on the vertical axis we plot x. Right: ε = 0.1555. On the horizontal
axis we plot (θ − 0.007235958375) × 1016. The maximum slopes in the left and right plots are
1.5 × 1012 and 4.0 × 1014, respectively.

In the righthand part of Figure 12 similar results are shown for ε = 0.1555, obtained by
using a variety of different methods. Preliminary results give evidence that for ε = 0.1556
the largest slope exceeds 1018. Having negative Lyapunov exponent in the x variable implies
that the continuation of the invariant curve with respect to ε is still locally possible. For
further examples and theoretical discussion we refer to [21].

Summarising, we conclude that certain phenomena which might be attributed to the
dynamics can, in fact, be due to a wrong interpretation of the results or to computations
done with too few digits. This does not mean that results obtained with a fewer number
of digits are not important. Indeed, most of the mathematical models used for concrete
applications are approximations and, furthermore, ‘real life’ problems always contain some
amount of noise. The role played in these toy models by the rounding errors can be viewed
as noise. So the behaviour of a real system can be closer to the top left of Figure 11 rather
than to the bottom left one. But it is always better to known why.
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[8] H.W. Broer, C. Simó, J.C. Tatjer: Towards global models near homoclinic tangencies of
dissipative diffeomorphisms, Nonlinearity 11 (1998), 667–770.
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