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Abstract

In this paper we construct two models for the motion of a particle under the grav-
itational attraction of Sun, Jupiter, Saturn and Uranus, that can be seen as a gener-
alization of the well known Restricted Three-Body Problem (RTBP). Both models
are obtained by computing quasi-periodic solutions –with two basic frequencies– of
a suitable N -body problem. The first model is based on a quasi-periodic solution
of the planar Sun-Jupiter-Saturn Three-Body problem, that tries to approach the
real motion of Jupiter. The second model is based on a quasi-periodic solution of
the Sun-Jupiter-Saturn-Uranus Four-Body problem. In both cases, we derive the
equations of motion for a particle under the gravitational attraction of these bodies
as a quasi-periodic time-dependent perturbation of the well-known RTBP.
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1 Introduction

The Restricted Three Body Problem (RTBP) has been widely used to model the dynamics
of an asteroid under the attraction of two massive bodies. A typical example are the so-
called Trojan asteroids, located near the triangular points of the Sun-Jupiter system.
However, it is clear that the RTBP is not useful for accurate computations since it does
not include many important effects, like the eccentricity of Jupiter and the presence of
other planets (for instance, see [GJR03]).

The usual simulations for the motion of an asteroid are based on numerical integrations
of a suitable N -body problem. For instance, for the Trojan asteroids it is quite common to
integrate numerically the Outer Solar System plus the asteroid (see [SB86, Mil93, LSS97,
PLDB99, TDPL00]), although it is possible to use more general models, see [RL01].

In [GJ01], a model for the motion of an asteroid under the gravitational attraction of
Sun, Jupiter and Saturn was developed and studied. This model was based on computing,
in suitable coordinates, a periodic orbit for these three bodies. This model was the natural
extension of the RTBP to include three primaries, in the sense that they move in the
simplest solution that resembles the planetary system. Then, assuming that Sun, Jupiter
and Saturn move on this orbit, it was not difficult to write the equations of motion for the
asteroid; this is what we refer as BCCP. In suitable coordinates, the BCCP is a periodic
time-dependent perturbation of the well known RTBP.

In this paper we derive two analytical models for the motion of a particle in the Solar
system, that can be seen as extensions of the RTBP. The first of them is called the Bianular
problem (BAP) and tries to account for the effect of Sun, Jupiter and Saturn. The second
model is called Tricircular Coherent Problem (TCCP) and it includes Sun, Jupiter, Saturn
and Uranus. Both models are based on the computation of a true quasi-periodic solution,
with two basic frequencies, of the planar N -body problem for Sun and the considered
planets. Then, the equations of motion for the particle are written in a suitable reference
frame, such that the resulting model can be seen as a quasi-periodic time-dependent
perturbation of the RTBP. Our models can also be seen as natural improvements of the
Elliptic RTBP ([Sze67]), the Bicircular Problem ([CRR64]) and the BCCP ([GJ01]).

These models are still much closer to the RTBP than to the numerical simulations
based on the Outer Solar System. However, we believe that they are a first step in the
understanding, by means of analytical techniques, of the real dynamics of the asteroids.
For instance, due to the explicit character of our models, it is possible to apply semi-
analytical methods (like normal forms computations, see [Jor99]) to derive stability results
for a region of the phase space (in the same way it has been done in the RTBP, see
[GDF+89, Sim89, CG91, GS97, SD00]) or to describe the phase space near the collinear
points of the RTBP (see [JM99]).

1.1 The Bianular Problem

It is based on the computation of a 2-D invariant torus of the planar Sun-Jupiter-Saturn
Three-Body Problem. To this end, we reduce the Hamiltonian of the planar TBP written
in the Jacobi coordinates in a uniformly rotating reference frame from 4 to 3 degrees of
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freedom via a canonical change of variables that uses the angular momentum first integral.
Then, we use the method developed in [CJ00] in order to compute a quasi-periodic solution
(with two basic frequencies) of the reduced equations.

Due to the Hamiltonian character of the problem, invariant tori are generically not
isolated. In fact, an invariant torus with r basic frequencies belongs to a r-dimensional
(Cantor) family of r-dimensional invariant tori (for mode details see, for instance, [JV97]).
Thus, we can “move” inside this family to look for an invariant torus for which the
motion of Jupiter has a prescribed characteristic. We use a continuation method (using
the angular momentum as a parameter) to find a quasi-periodic solution of the reduced
problem for which Jupiter’s osculating eccentricity is the actual one. Then, it is not
difficult to write this 2-D invariant torus in the non-reduced coordinates.

Finally, the equations of motion of a massless particle that moves under the attraction
of these three main bodies (supposing that they move in the previously computed quasi-
periodic solution) are easily derived. This is a restricted four body problem that we call
the Bianular Problem (BAP).

1.2 The Tricircular Coherent Problem

It is based on the computation of a quasi-periodic solution (with two basic frequencies)
of the planar Sun-Jupiter-Saturn-Uranus Four-Body Problem. The model is derived as
follows. As before, we use the angular momentum to reduce the Four-Body problem
(written in the Jacobi coordinates) from 6 to 5 degrees of freedom. Then, we compute a
quasi-periodic solution (with two basic frequencies) for the Four-Body Problem, in which
the mean motions of Jupiter, Saturn and Uranus are adjusted to the actual values. Finally,
a Restricted Five-Body Problem (that we call Tricircular Coherent Problem, or TCCP)
can be constructed by writing the equations of a particle moving under the influence of
the four bodies. Note that this solution of the Sun-Jupiter-Saturn-Uranus system is the
simplest planetary one. In this sense, the TCCP is the natural extension of the RTBP to
include four primaries.

2 The planar N-planetary problem

The planar N -planetary problem is a planar problem of N + 1 bodies in which one of
the masses is much bigger and the remaining N bodies move around the biggest mass in
nearly Keplerian orbits.

2.1 Rotating Jacobi coordinates

Here we describe the generalized Jacobi formulation for the N -planetary problem. Let P0

denote the biggest body (i.e., the Sun), Pi, i = 1, . . . , N , the planets, and let mi be the
respective masses, i = 0, . . . , N . Then, we refer every planetary body Pi to the barycenter
Bi−1 of the i preceding bodies P0, . . . ,Pi−1. Thus, we work with N position vectors ~qi, i =
1, . . . , N , each one going from the barycenter Bi−1 to the body Pi. Obviously, the vector

4



~qN contains the barycentre of the system. In this way, we can easily have a Hamiltonian
formulation of the problem that includes the reduction of the linear momentum first
integral.

A description of different coordinates for N -planetary problems can be found in
[Las89], including its Hamiltonian in Jacobi coordinates,

H =
N∑

i=1

1

2αi

‖~pi‖2 −
∑

0≤i<j≤N

G
mimj

‖~rij‖
, (1)

where αi = miηi−1

ηi
, ηi =

∑i
j=0 mj, ~pi = αi~̇qi and the distances between the bodies are

given by the modulus of the vectors

~r0i = ~qi +
i−1∑
j=1

mj

ηj

~qj, i = 1, . . . , N ,

~rij = ~qj +

j−1∑
k=1

mk

ηk

~qk −
ηi−1

ηi

~qi, 0 < i < j ≤ N. (2)

Next, we implement a uniform counterclockwise rotation of frequency 1 with the origin
at the center of masses, ~qi = R(t) ~Qi, for i = 1, . . . , N , where

R(t) =

(
cos(t) − sin(t)
sin(t) cos(t)

)
.

Defining new momenta as usual, P
(x)
i = αi(Q̇i

(x)−Q
(y)
i ) and P

(y)
i = αi(Q̇i

(y)
+Q

(x)
i ), where

~Qi = (Q
(x)
i , Q

(y)
i ), ~Pi = (P

(x)
i , P

(y)
i ), and renaming the new variables ( ~Q, ~P ) as (~q, ~p), we

can write the Hamiltonian of the N -planetary problem in a uniformly rotating reference
frame as:

H =
N∑

i=1

‖~pi‖2

2αi

+
N∑

i=1

(q
(y)
i p

(x)
i − q

(x)
i p

(y)
i )−

∑
0≤i<j≤N

G
mimj

‖~rij‖
, (3)

where the distances between the bodies, ‖~rij‖, are given by the Euclidean norm of the
vectors (2).

2.2 Reduction of one degree of freedom

Now, we apply a canonical change of variables to reduce the Hamiltonian from 2N to
2N − 1 degrees of freedom. The idea is very well known (see, for example, [Whi52]) and
consists of making use of the classical first integral of the angular momentum. The change
of variables that we perform can be written as

~qi =
∂G

∂~pi

, ~Pi =
∂G

∂ ~Qi

, i = 1, . . . , N,
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where (Qi, Pi)i are the new variables and G(Q, p) is the following generating function:

G(Q, p) = Q
(x)
1 (p

(x)
1 cos Q

(y)
1 + p

(y)
1 sin Q

(y)
1 )

−
N∑

i=2

[
p

(x)
i (Q

(x)
i cos Q

(y)
1 + Q

(y)
i sin Q

(y)
1 )

+ p
(y)
i (Q

(x)
i sin Q

(y)
1 −Q

(y)
i cos Q

(y)
1 )
]
.

Note that Q
(x)
1 is the distance between the bodies P0 and P1, Q

(x)
i and Q

(y)
i for i = 2, . . . , N ,

are, respectively, the projections of the vector ~qi into the P0P1 direction and its orthogonal
one. Q

(y)
1 is the angle between the vector ~q1 and the “old” x axis. P

(x)
i , i = 1, . . . , N , are

the projections of ~pi into the P0P1 direction and P
(y)
i , i = 2, . . . , N into the orthogonal

one. Finally, P
(y)
1 is the angular momentum of the system.

In these variables, the Hamiltonian (3) becomes independent from Q
(y)
1 , so P

(y)
1 is a

first integral of the system. Its value P
(y)
1 = K is the angular momentum. The equation

of motion corresponding to Q
(y)
1 can be easily integrated once the remaining variables of

the system have been solved. Thus, skipping the equations corresponding to Q
(y)
1 and

P
(y)
1 we obtain the following 2N − 1 degrees of freedom Hamiltonian,

H =
1

2α1

(
(P

(x)
1 )2 +

A2

(Q
(x)
1 )2

)
−K +

N∑
i=2

‖~Pi‖2

2αi

−
∑
i<j

G
mimj

‖~rij‖
,

where A =
∑N

i=2(Q
(x)
i P

(y)
i −Q

(y)
i P

(x)
i ) + K and

‖~r01‖2 = (Q
(x)
1 )2,

‖~r0i‖2 = (Q
(x)
i − m1

η1

Q
(x)
1 )2 + (Q

(y)
i )2 − 2

i−1∑
j=2

m1mj

η1ηj

Q
(x)
1 Q

(x)
j

+
i−1∑

k,j=2

mkmj

ηkηj

~Qk · ~Qj + 2
i−1∑
j=2

mj

ηj

~Qi · ~Qj i > 1,

‖~r1j‖2 = (Q
(x)
j − η0

η1

Q
(x)
1 )2 + (Q

(y)
j )2 − 2

j−1∑
k=2

mkη0

η1ηk

Q
(x)
1 Q

(x)
k

+

j−1∑
k,l=2

mkml

ηkηl

~Qk · ~Ql + 2

j−1∑
k=2

mk

ηk

~Qj · ~Qk j > 1,

‖~rij‖2 = ‖ ~Qj −
ηi−1

ηi

~Q1‖2 − 2

j−1∑
k=i+1

mkηi−1

ηkηi

~Qi · ~Qk

+

j−1∑
k,l=i+1

mkml

ηkηl

~Qk · ~Ql + 2

j−1∑
k=i+1

mk

ηk

~Qj · ~Qk 1 < i < j.
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2.3 Equations of motion for N = 2 and N = 3

Now we select units of distance, time and mass such that the Sun–Jupiter distance is 1,
the initial osculating period of Jupiter around the Sun is 2π, and that the total mass of
Sun and Jupiter is 1. With these units, the gravitational constant G is also 1. In these
adimensional units, the masses of the bodies involved in the two and three planetary
problems take the values: m1 = mjup = µ = 9.5387536 × 10−4 (m0 = 1 − µ, for Sun),
m2 = msat = 2.855150174× 10−4 and m3 = mura = 4.361228581× 10−5.

We also rename the coordinates as x1 = Q
(x)
1 , y1 = P

(x)
1 , and x2k−2 = Q

(x)
k , x2k−1 =

Q
(y)
k , y2k−2 = P

(x)
k , y2k−1 = P

(y)
k for k = 2, . . . , N .

2.3.1 The SJS planar problem

The reduced Sun-Jupiter-Saturn planar problem is a three degrees of freedom Hamiltonian
system and depends on the variables x1, x2, x3, y1, y2, y3 and on the parameter angular
momentum K:

H(x, y, K) =
1

2α

(
y2

1 +
A2

x2
1

)
+

y2
2 + y2

3

2β
−K

− α

x1

− (1− µ)msat

r13

− µmsat

r23

, (4)

where

r2
13 = (µx1 − x2)

2 + x2
3,

r2
23 = ((1− µ)x1 + x2)

2 + x2
3,

A = (x2y3 − x3y2) + K,

and recall that α = µ(1− µ) and β = msat/(1 + msat).

2.3.2 The SJSU planar problem

We can also write the vector field of the reduced planar four body Sun-Jupiter-Saturn-
Uranus problem depending on ten variables, (x1, . . . , x5, y1, . . . , y5) and on the angular
momentum K. This is a five degrees of freedom Hamiltonian system,

H(x, y, K) =
1

2α

(
y2

1 +
A2

x2
1

)
+

y2
2 + y2

3

2β
+

y2
4 + y2

5

2γ
−K

− α

x1

−msat

(
(1− µ)

r13

+
µ

r23

)
− mura

(
(1− µ)

r14

+
µ

r24

+
msat

r34

)
(5)

where

r2
13 = (x2 − µx1)

2 + x2
3,
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r2
23 = (x2 + (1− µ)x1)

2 + x2
3,

r2
14 = (x5 + βx3)

2 + (x4 + βx2 − µx1)
2,

r2
24 = (x5 + βx3)

2 + (x4 + βx2 + (1− µ)x1)
2,

r2
34 = (x5 − (1− β)x3)

2 + (x4 − (1− β)x2)
2,

A = (x2y3 − x3y2) + (x4y5 − x5y4) + K,

γ =
mura(1 + msat)

1 + msat + mura

.

3 The computation of invariant tori

In this section, we adapt a method for computing 2-D invariant tori (see [CJ00]) to
this situation. We are interested in finding a quasi-periodic solution (with two basic
frequencies) of a given vector field. Note that this problem can be reduced to the one of
finding an invariant curve of a suitable Poincaré map.

3.1 Numerical computation of invariant curves

Let be ẋ = f(x) an autonomous vector field of dimension n, and Φ(x, t) ≡ Φt(x) its
associated flow. Let us define a Poincaré map as the time T -flow ΦT (·), where T is a
prefixed value. A continuous map ϕ : T1 → Rn is an invariant curve of the map ΦT (·)
with rotation number ω iff

ΦT (ϕ(θ))− ϕ(θ + ω) = 0, for all θ ∈ T1. (6)

Note that we can expand ϕ(θ) as a real Fourier series,

ϕ(θ) = A0 +
∑
k>0

(Ak cos(kθ) + Bk sin(kθ)), Ak, Bk ∈ Rn.

Let us fix in advance a truncation value Nf for this series (the selection of Nf will be
discussed in Section 3.2). To compute the 2Nf + 1 unknown coefficients A0, Ak and Bk,
1 ≤ k ≤ Nf , we select an equally spaced mesh of 2Nf + 1 points on T1,

θj =
2πj

2Nf + 1
0 ≤ j ≤ 2Nf , (7)

and, on this mesh, equation (6) reads,

ΦT (ϕ(θj))− ϕ(θj + ω) = 0, 0 ≤ j ≤ 2Nf . (8)

This is a nonlinear set of equations for the unknowns A0, Ak and Bk, that we will solve
by means of a Newton method (the Jacobian of the map can be easily obtained from the
chain rule).

Note that the number of equations is (2Nf+1)n and that the unknowns are (A0, A1, B1,
. . . , ANf

, BNf
), ω and the time T that defines the Poincaré map. Besides, note that if

ϕ(θ) satisfies (6) then, for any ν, ϕ(θ+ν) also satisfies (6). Later we will discuss, for each
case, how we deal with these degeneracies.
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3.2 Discretization error

Once we have solved equation (8) with a certain tolerance (typically, 10−11), we still do not
have any information on the error of the approximated invariant curve. This is because
we have not estimated the discretization error coming from substituting equation (6) by
equation (8). A simple method to estimate the global error of the invariant curve is to
estimate

E(ϕ, ω) = max
θ∈T

|ΦT (ϕ(θ))− ϕ(θ + ω)|

by using a mesh of points, say, 100 times finer than the mesh (7). If, for instance,
E(ϕ, ω) > 10−9, the solution obtained is not considered good enough and, therefore, the
discretization order Nf is increased and a new approximation is computed. The process
is repeated until E(ϕ, ω) is lower than 10−9.

4 The Bianular solution of the SJS system

In this section, we will compute quasi-periodic solutions, with two basic frequencies, for
the planar Sun-Jupiter-Saturn problem. Our main goal is to find an orbit such that the
motion of Sun and Jupiter is as close as possible to the real one. In this case, as we
are computing a 2-D torus, we have essentially two free parameters that will allow us to
choose two osculating orbital elements of the relative Sun-Jupiter motion.

4.1 The initial approximation

In [GJ01], the authors computed a periodic solution, called the BCCP solution, for the
planar Sun-Jupiter-Saturn Three-Body Problem. Here we use this solution as a basis to
derive the initial approximation for a Newton method.

4.1.1 The BCCP solution

The BCCP solution is a periodic orbit of Hamiltonian (3) for the Sun-Jupiter-Saturn case,
in which the two planets have the same mean motion as in the real system. The rotating
Jacobi coordinates of a point of this orbit are shown in the following table,

q1(0) -0.999499455382433 p1(0)/α 0.0

q2(0) 0.0 p2(0)/α -1.00062422459750

q3(0) -1.83433334636804 p3(0)/β 0.0

q4(0) 0.0 p4(0)/β -0.738094038829119

The linear normal behaviour of the orbit is given by the eigenvalues of the monodromy
matrix,

Re (λ) ±Im (λ) |λ| ±Arg (λ)

-0.4563371385719557 0.889806954322080 1.0 2.04467069171687

-0.4547032607925039 0.890642995046002 1.0 2.04283533844408

1.0 0.0 1.0 0.0

1.0 0.0 1.0 0.0
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As all of them have modulus one, the periodic orbit is linearly stable. Moreover, note that
the matrix has two Jordan boxes corresponding to the angular momentum and energy
integrals of motion. The use of the angular momentum to reduce one degree of freedom
suppresses one of the Jordan boxes.

4.1.2 On the two families of invariant curves

It is known that, under generic conditions, each normal frequency of the periodic orbit
gives rise to a Cantorian family of quasi-periodic motions with two basic frequencies,
one coming from the frequency of the orbit and one from the normal mode considered.
These families are usually called Lyapunov families (for more details see, for instance,
[JV97, JV01]).

For definiteness, we call Family1 the Lyapunov family corresponding to the eigenvalues
(λ1, λ̄1) and Family2 to the one corresponding to (λ2, λ̄2). In the next sections we will
compute these two families, and we will look for solutions such that the motion of Jupiter
has some prescribed characteristics. The concrete continuation procedure is explained in
Section 4.3.

4.1.3 Fixing some of the unknowns

In what follows, Ak and Bk will denote the coefficients of the Fourier expansion of the
invariant curve, and A

(l)
k will refer to the component number l of the vector Ak ∈ R6.

The prefixed unknowns at every step in the Newton method are, in this case,

• T = Tsat = 2π
ωsat

; we fix Saturn’s frequency. With this selection of T the points of
the periodic orbit of the BCCP become fixed points of ΦT .

• A
(3)
0 = 0; we select one invariant curve on the torus.

• A
(l1)
1 = ε(v

(l1)
1 cos(ξ0) + v

(l1)
2 sin(ξ0)) 6= 0; we fix ε to choose one of the quasi-periodic

orbits of the Lyapunov family, and leave the rotation number ω to be self-adjusted.

• A
(l2)
1 = ε(v

(l2)
1 cos(ξ0) + v

(l2)
2 sin(ξ0)) = 0; in order to have a unique parametrization

for the curve. This condition can be satisfied choosing ξ0 ∈ T1 such that ξ0 =
arctan(−v

(l2)
1 /v

(l2)
2 ).

The last two conditions can be explained from the initial approximation that we choose
in the Newton method. The indexes l1 and l2 depend on the family we are interested in.
For instance, we have selected l1 = 3 and l2 = 2 for Family1 and l1 = 2 and l2 = 3 for
Family2.

Finally, the initial approximation for the Newton method is given by the linearization
of the Poincaré map ΦT around the fixed point of ΦT given in Section 4.1.1 (in what
follows, we will refer to this point as X0),

T = Tsat, A1 = ε(~v1 cos(ξ0) + ~v2 sin(ξ0)),
ω = λ, B1 = ε(~v1 sin(ξ0) + ~v2 cos(ξ0)),

A0 = X0, Ak = 0 , k ≥ 2,
Bk = 0 , k ≥ 2,
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where (λ,~v = ~v1+i~v2) is one of the eigenvalue-eigenvector pairs of DΦT , ξ0 has been given
before and ε is a sufficiently small parameter (for instance, ε ∼ 10−3) chosen in order the
invariant curve not to be too far from the periodic orbit.

4.2 The first invariant torus for each family

With the method described in Section 3 and the initial approximation given in the previous
section, we have computed a first torus for each family (we call them Torus1 and Torus2,
respectively). In Section 4.2.1 we show how to go back to the initial Jacobi coordinates
and, in Section 4.2.2, we will discuss the orbital characteristics of these two initial orbits.

4.2.1 Going back to rotating Jacobi coordinates

In order to obtain the rotating Jacobi coordinates (qj, pj)j=1÷4 from the reduced variables
(xj, yj)j=1÷3 and the angular momentum K in a unique way, we have to select an extra
condition. Note that, in the reduction process, the angle between the Sun-Jupiter vector
and the x-axis is eliminated. Thus, if we want to invert this change we have to decide
how to fix the relative position of the x-axis.

From now on, when we undo the reduction change, we fix the x-axis in the following
way: we find the angle θ for which x3(θ) = 0 (that is, when Sun, Jupiter and Saturn are
in a particular collinear configuration) and we set the rotating Jacobi coordinates as:

q1 = −x1 p1 = −αx4

q2 = 0 p2 = − A
x1

q3 = x2 p3 = βx5

q4 = −x3 p4 = −βx6

where x4, x5 and x6 are such that y1 = αx4, y2 = βx5 and y3 = βx6. Recall that
A = β(x2x6 − x3x5) + K, α = µ(1− µ) and β = msat

1+msat
.

4.2.2 Some osculating orbital elements

Here we take a point on each torus and we apply the previous transformation to send them
to the rotating Jacobi coordinates. We use the resulting initial condition for a numerical
integration of the Hamiltonian (3) with N = 2 during a time span of 50 Jupiter sidereal
revolutions. The concrete selection of initial condition on the torus does not make a big
difference in the calculations.

The projection for Torus1 and Torus2 into the (q1, q2), (p1, p2) and (q3, q4) planes are
shown in Figure 1. We can see (left and center plots) that the relative Sun-Jupiter motion
is a libration around the point (q1, q2, p1, p2) = (−1, 0, 0,−1).

The evolution of Jupiter’s and Saturn’s osculating semi-major axis, eccentricity and
perihelion argument for Torus1 and Torus2 are displayed in Figures 2 and 3. The inte-
gration time, in this case, is 5 periods of Saturn.

Note that the semi-major axis of Jupiter’s and Saturn’s orbits in either Torus1 or
Torus2 are quite well adjusted (our unit of length is the Sun-Jupiter distance) and, in
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Figure 1: Left: Sun-Jupiter relative motion for Torus1 (top) and Torus2 (bottom). Center:
Momenta for the Sun-Jupiter relative motion for Torus1 (top) and Torus2 (bottom).
Right: Saturn’s orbit around the Sun-Jupiter barycenter for Torus1 (top) and Torus2
(bottom).

consequence, their periods (that oscillate around 2π and 2π
ωsat

, respectively) are also closed
to the actual ones. This was expected because, during the computations, the time T of
the Poincaré map has been fixed to the period of Saturn.

The osculating eccentricities of Jupiter and Saturn are too small (10−3, approximately)
compared to the actual ones. Thus, the next step is to find a torus, either in Family1 or
Family2, for which the eccentricity of Jupiter is closer to the actual one.

4.3 Continuation of the two families of invariant tori

As it is well known, the families of invariant tori are not continuous but Cantorian.
However, it is quite common in many situations that the holes that conform the Cantor
structure are too small to be detected by the standard double precision arithmetic of the
computer (see [JV97] for some analytical estimates, and [BHJ+03] for a discussion on the
effect of the different kind of resonances). Therefore, except by low order resonances,
these families look continuous in the computer.

Once we have a first torus, we want to continue the family it belongs to. This family can
be parameterized by the angular momentum K. It is easy to see (and also checked from
the computations) that there is a strong relationship between the angular momentum, K,
and the osculating orbital elements of Jupiter’s and Saturn’s orbits.

As we want to simulate in a more realistic way the Sun-Jupiter relative motion, we are
more interested in adjusting Jupiter’s orbital elements than Saturn’s ones (although it is
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Figure 2: From top to bottom: Evolution in Torus1 of the osculating semi-major axis,
eccentricity and argument of the perihelion of Jupiter’s orbit (left) and Saturn’s orbit
(right) in a time span of 5 Saturn’s sidereal revolutions.
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Figure 3: From top to bottom: Evolution in Torus2 of the osculating semi-major axis,
eccentricity and argument of the perihelion of Jupiter’s orbit (left) and Saturn’s orbit
(right) in a time span of 5 Saturn’s sidereal revolutions.
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possible to adjust Saturn’s instead). As there is one free parameter (we are allowed to set
K), we select the osculating eccentricity of Jupiter’s orbit as the target value. Thus, by
means of a continuation method, we try to find another torus inside Family1 or Family2
for which the osculating eccentricity of Jupiter is approximately 0.0484.

4.3.1 Method of Continuation

The continuation process starts with the Torus1 or Torus2 computed in Section 4.2,
depending on the family that we want to follow (Family1 or Family2, respectively).

To compute a torus belonging to a particular family, we use a small modification of
the method explained in Section 3. We add to equations (8) a new one:

eccen(x1, x2, x3, x4, x5, x6, K) =√
1 +

A4

α4x2
1

+
A2x2

4

α2
− 2

A2

α2x1

= e, (9)

where α = µ(1−µ), A = β(x2x6−x3x5)+K, eccen(·) is a function that gives us Jupiter’s
osculating eccentricity from the reduced coordinates in a given moment (we evaluate it
when Sun, Jupiter and Saturn are in a particular collinear configuration; more concretely,
when x3 = 0) and e is a fixed constant that will be used as a continuation parameter.

Thus, at each step of the continuation scheme, we find an invariant curve of the
Poincaré map ΦT (·), a truncation number of the Fourier series (Nf ), a rotation number
(ω) and an angular momentum (K) that are solution of equations (8) and (9) for a fixed
eccentricity (e). As explained in 3.1, every invariant curve is refined by means of a Newton
method, and in each step of the Newton method we solve a non-squared linear system
using a least-squares method.

During the continuation process, the parameters that we keep constant are slightly
different from those in 4.1.3:

• T = Tsat = 2π
ωsat

; we fix Saturn’s frequency.

• A
(3)
0 = 0; we fix the invariant curve on the torus.

• ω; we fix the rotation number.

• A
(l2)
1 = 0; in order to have a unique parametrization for the curve.

• e; we fix the eccentricity, we do not impose any condition on the angular momentum
K.

where l2 = 2 for Family1 and l2 = 3 for Family2.
We stress that the continuation parameter is e and we want to increase it from the value

that it initially has for Torus1 and Torus2 (10−3 approximately) to the value e = 0.0484.
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Figure 4: Left: Projection into the configuration space of the torus belonging to Family1
when the continuation procedure is stopped. Right: Projection into the configuration
inertial space of the final torus of Family2. See the text for more details.

4.3.2 Results: the Bianular solution

First, we start from Torus1 and we continue Family1 by increasing the parameter e.
We see that, when e increases, the number of harmonics (Nf ) has to be increased if we
want the discretization error of the invariant curve to be smaller than a certain tolerance
(typically, we take 10−9). We stop the continuation process when Nf reaches 90. At this
moment, the osculating eccentricity of Jupiter’s orbit is approximately 0.036 and if we
look at the other orbital elements of Jupiter’s and Saturn’s orbits, we see that they do
not evolve in the desired direction, but they move away from the real ones. In Figure 4
(left), the projection of this solution into the configuration space is shown. This orbit is
far from a planetary one because, for example, the big variation of the two semi-major
axis. Thus, increasing Jupiter’s eccentricity inside Family1 forces us to move away from
the desired solution. In consequence, it is not possible to find an adequate torus in this
family.

For Family2, we proceed in the same way as before but starting from Torus2. In this
case, we are able to increase e up to the value 0.0484, because the number of harmonics
does not grow up very much (actually, if we ask the invariant curve to have an error smaller
than 10−9, Nf increases from 6 to 9) and the solution obtained is of the planetary type
(see Figure 4, right). In Figure 5, we plot the variation of the angular momentum K of the
planar SJS Three Body Problem when the parameter e is increased in the continuation
process.

We can see the projection of the final torus on the rotating Jacobi configuration coor-
dinates (q1, q2, q3, q4) in Figure 6. This solution of the planar Sun-Jupiter-Saturn TBP is
what we call the Bianular solution of the TBP. This torus is parameterized with the angles
(θ1, θ2) = (ω1t + θ0

1, ω2t + θ0
2), where the frequencies are ω1 = ωsat = 0.597039074021947

and ω2 = ω1ω̄
2π

= 0.194113943490717, and θ0
1,2 are the initial phases.
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Figure 5: Plot of the evolution of the angular momentum K (vertical axis) when the
parameter e (horizontal axis) is increased from 0.00121 (corresponding to Torus2) to
0.0484 (the desired value) in the continuation of Family2.

We have also plotted the evolution of the osculating orbital elements of Jupiter and
Saturn in a time span of 5Tsat adimensional units in Figure 7.

Recall that our main goal was to simulate in a realistic way the relative Sun-Jupiter
motion. We have obtained (numerically) a quasi-periodic solution of the TBP where the
osculating eccentricity, the semi-major axis, the period and the mean motion of Jupiter’s
orbit are quite well adjusted.

Concerning Saturn’s motion on the torus, we have quite well fitted the semi-major
axis and the period of its orbit; the obtained eccentricity is about 80% of the actual value
and the argument of the perihelion still oscillates too much.

In Figure 8, we compare the result of a numerical integration of the Sun-Jupiter-Saturn
system (using the real initial conditions for the three bodies) with the Bianular solution.
The agreement is quite good.

An alternative approach is to compute a resonant solution of the TBP (see [Had80]).
In this case, the frequencies are not the actual ones but very close to them; for instance,
if we consider the 5:2 resonance between the orbits of Jupiter and Saturn, we should take
ω′

sat = 1− 2
5

= 0.6 instead of the actual value ωsat = 0.597039074.

5 A quasi-periodic solution of the SJSU problem

In this section, we compute a quasi-periodic solution with 2 frequencies of the planar SJSU
four body problem given by the Hamiltonian (5). We will adapt the method described in
Section 3 for computing invariant curves of maps to this case.
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Figure 6: Left: (x1, x2)-projection of the Sun-Jupiter relative orbit on the torus. Right:
Saturn’s orbit around the Sun-Jupiter barycenter. Inside it, we can see the Sun-Jupiter
relative orbit. This is what we call “Bianular solution” of the Sun-Jupiter-Saturn planar
Three Body Problem.

First, in Section 5.1, we will give an heuristic approximation of the initial point used
in the Newton method for computing an invariant curve when mura = 0. mura = 0 means
that Uranus does not affect the motion of Sun, Jupiter and Saturn, but it is affected by
them. Then, in Section 5.2 we will compute a first torus for mura = 0. In Section 5.3,
by means of a continuation method (taking mura as the parameter) we compute a quasi-
periodic solution with 2 frequencies of the SJSU planar problem.

5.1 First approximation

As a first approximation, we suppose that Uranus has zero mass and that it is moving in a
Keplerian orbit around the Sun. If we set that, at t = 0, Sun, Jupiter, Saturn and Uranus
are in a particular collinear configuration (for instance, on the line y = 0), it is easy to
obtain an approximate initial condition for Uranus in the rotating Jacobi coordinates as a
Keplerian solution of the two body problem formed by the center of masses of the system
and Uranus. The initial conditions for Uranus are then

q5 -3.6799515105016547 p5/γ 0.0

q6 0.0 p6/γ -0.521289469537814

On the other hand, we take the periodic orbit of the planar Sun-Jupiter-Saturn TBP
computed in [GJ01] (that has already been used in 4.1.1 as the initial approximation
for the Bianular solution). The period of this orbit is T = Tsat = 2π

ωsat
, where ωsat =

0.597039074021947 is the relative frequency of Saturn in the Sun-Jupiter rotating system.
As in 4.1.1, we take the coordinates of the point of this orbit for which the three bodies
are in the chosen collinear configuration:

q1 -0.999499455382433 p1/α 0.0

q2 0.0 p2/α -1.00062422459750

q3 -1.83433334636804 p3/β 0.0

q4 0.0 p4/β -0.738094038829119
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Figure 7: From top to bottom: Evolution of the osculating semi-major axis, eccentricity
and argument of the perihelion of Jupiter’s orbit (left) and Saturn’s orbit (right) in a time
span of 5 Saturn revolutions around the Sun.
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Figure 8: Superposition, in the configuration space, of the real motion of Jupiter and
Saturn and the Bianular solution. The two orbits are too similar to see any difference at
this scale. See the text for more details.

If we integrate the flow corresponding to Hamiltonian (3), with N = 3, in the time
interval t ∈ [0, Tsat] taking as initial condition the point of the periodic orbit for the
Sun-Jupiter-Saturn system and the Keplerian approximation for Uranus, we find that the
orbit corresponding to Sun, Jupiter and Saturn obviously closes (it is a periodic orbit of
period Tsat) and the one corresponding to Uranus does not close and turns one lap-odd.

We are interested in measuring the angle swept by Uranus during Tsat units of time.
Note that this angle is very close to the following number:

ω̃ =
2πωura

ωsat

mod 2π = 2.750807556, (10)

where ωura = 0.858425538978989 is the relative frequency of Uranus in the Sun-Jupiter
rotating system. Thus, note that, if we keep constant the value Tsat and if we impose
ω̃ to be the rotation number of the invariant curve, the two frequencies of the 2-D in-
variant torus that we are computing will be ωsat (Saturn’s frequency) and ωura (Uranus’s
frequency).

5.2 A torus in the SJSU system with a massless Uranus

Here, using the method described in Section 3, we will compute a 2-D invariant torus for
the reduced planar SJSU problem (see (5)) in the case mura = 0.

5.2.1 Solving the invariant curve equations

As before, Ak and Bk will denote the coefficients of the Fourier expansion of the invariant
curve, and A

(l)
k will refer to the component number l of the vector Ak ∈ R6.

20



To solve equations (8) we use a Newton method. As in the SJS case the system is
degenerated, so we will fix some of the unknowns:

• T = Tsat; we fix Saturn’s frequency.

• ω = ω̃; to select the rotation number (this implies that the frequency of Uranus is
fixed).

• A
(3)
0 = 0; to select one invariant curve on the torus.

• A
(5)
1 = 0; to have a unique parametrization for the curve.

5.2.2 First approximation

As initial approximation of the Newton method for solving equations (8) in the case
mura = 0, we use the orbit described in Section 5.1. To do that, we write the initial point
of this orbit in the reduced coordinates of the 3-Planetary problem (5),

x1 0.999499455382433 x6 0.0

x2 -1.83433334636804 x7 0.0

x3 0.0 x8 0.7380940388291189

x4 -3.679951510501655 x9 0.0

x5 0.0 x10 0.5212894695378142

where the new coordinates x6, . . . , x10 are now defined such that y1 = αx6, y2 = βx7,
y3 = βx8, y4 = γx9 and y5 = γx10.

If we denote this point as X0 (X0 = (x1, . . . , x10)), we have already shown in Section 5.1
that

ΦT (X0) ≈



x1

x2

x3

cos(ω0)x4 − sin(ω0)x5

sin(ω0)x4 + cos(ω0)x5

x6

x7

x8

cos(ω0)x9 − sin(ω0)x10

sin(ω0)x9 + cos(ω0)x10


.

Thus, taking as initial approximation of the invariant curve for the first step in the
Newton process the values

A0 =



x1

x2

x3

0
0
x6

x7

x8

0
0


, A1 =



0
0
0
x4

x5

0
0
0
x9

x10


, B1 =



0
0
0

−x5

x4

0
0
0

−x10

x9


,

Ak = Bk = 0, k ≥ 2, and ω = ω̃, the method converges to an invariant curve of the
Poincaré map ΦTsat of the vector field (5) with mura = 0. The two frequencies of this
quasi-periodic orbit are ω1 = ωsat and ω2 = ωura.
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Figure 9: Quasi-periodic solution for the Four Body Sun-Jupiter-Saturn-Uranus Problem.
The exterior orbit corresponds to Uranus, the one in the middle to Saturn and the interior
one (seen as a small point that librates around the point (−1, 0), in the left plot) is the
relative Sun-Jupiter’s orbit. The left plot corresponds to the rotating coordinates and the
right one is represented in an inertial reference frame.

5.3 The Tricircular solution of the SJSU problem

Once we have computed an invariant torus for the case mura = 0, we proceed by a
continuation method to increase the parameter mura up to its actual value. During the
continuation, the two frequencies, ω1 = ωsat and ω2 = ωura are kept constant. Thus, we
obtain a quasi-periodic solution (that moves on a 2-D torus parameterized by the two
angles θ1 = ω1t + θ0

1 and θ2 = ω2t + θ0
2) of the reduced four body field (5).

To invert the reduction change we will proceed as in Section 4.2.1. Note that during
the reduction of one degree of freedom by using the angular momentum the angle between
the P0P1 direction and the x-axis has been lost. Therefore, we have imposed that the
x-axis is such that at t = 0, the Sun, Jupiter and Saturn are in a particular collinear
configuration (actually, on the line y = 0).

In Figure 9, we have plotted the projection into the configuration space of this torus
in a rotating (left plot) and in an inertial (right plot) frame. Note that the shape of this
plot is very close to three circles. This is the reason for calling this solution Tricircular
solution of the SJSU four body problem.

6 The Hamiltonians of the BAP and TCCP models

In this section, we generalize the procedure used in [GJ01] for constructing the BCCP
model as a (time-dependent) perturbation of the RTBP from a particular solution of
the three body problem. These ideas have already been used in [GLMS01, GSLM01,
GJSM01a, GJSM01b] and also in [GMM02].
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Thus, we construct the Hamiltonian of a massless particle that moves under the at-
traction of the main N + 1 bodies in any solution of the N-planetary problem (1) and
we write it as a quasi-periodic time-dependent perturbation of the RTBP, with Sun and
Jupiter as primaries.

Afterwards, we compute the coefficients of the quasi-periodic functions appearing in
the Hamiltonian for the Bianular and Tricircular solutions of the two and three planetary
problems.

6.1 Hamiltonian of the Restricted N-Planetary Problem

Let us suppose that we know a solution of the planar N-planetary problem (1), and
let (~q1, . . . , ~qN , ~p1, . . . , ~pN) be its representation in an inertial three dimensional reference
frame (where the vertical components of ~qi and ~pi have been set to zero). Let ~qpart be the
position vector of the particle in this inertial reference frame.

We will use the the following three transformations.

a) Translation of the origin from the global barycentre to the Sun-Jupiter barycentre.

b) Rotation to fix Sun and Jupiter on the x-axis.

c) Time-dependent scaling to force the distance between Sun and Jupiter to be one.

In this “rotating-pulsating” reference frame, the main bodies and the particle have the
coordinates:

Sun : ~Q0 = (δ1, 0, 0)t,

Jupiter : ~Q1 = (δ1 − 1, 0, 0)t,

Planets : ~Qk =
1

||~q1||
Ct(~qk +

k−1∑
i=2

δi~qi), k = 2, . . . , N,

particle : ~r =
1

||~q1||
Ct(~qpart +

N∑
i=2

δi~qi),

where δi = mi

ηi
and we recall that ηi =

∑i
j=0 mj. The matrix C is defined as

C =

 − q
(x)
1

||~q1||
q
(y)
1

||~q1|| 0

− q
(y)
1

||~q1|| − q
(x)
1

||~q1|| 0

0 0 1


where ~qi = (q

(x)
i , q

(y)
i , 0)i=1,...,N is the solution of the N-planetary problem embedded in

the three dimensional configuration space. The inverse change is given by

~qpart = B~r −
N∑

i=2

δi~qi,
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where B = ||~q1||C. Defining the conjugate momentum as

~p = ||~q1||2~̇r + BtḂ~r,

the equations for the particle become Hamiltonian, and the Hamiltonian is:

H =
1

2||~q1||2
〈~p, ~p〉 − 1

||~q1||2
~pBtḂ~r −

N∑
i=2

δi~̈qi
t
B~r + U,

where U , the potential energy, is given by

U = −
N∑

i=0

G
mi

||~q1||
1

|| ~Qi − ~r||
.

To write the Hamiltonian in a more suitable way, we look at the (x, y) plane as if it were

the complex plane, so that we write the vectors ~qi as zi = q
(x)
i + iq

(y)
1 , for i = 1, . . . , N .

Now we define the functions

α1 =
1

||~q1||2
, α2 =

−Re (ż1z̄1)

||~q1||2
,

α3 =
Im (ż1z̄1)

||~q1||2
, α4 =

N∑
i=2

δiRe (z̈iz̄1),

α5 =
N∑

i=2

δiIm (z̈iz̄1), α6 =
1

||~q1||
,

α3+2k =
−1

||~q1||2
Re (zkz̄1 +

k−1∑
i=2

δiziz̄1),

α4+2k =
−1

||~q1||2
Im (zkz̄1 +

k−1∑
i=2

δiziz̄1),

where k = 2, . . . , N . Note that the functions αi depend on time in a quasi-periodic
way, with the same set of basic frequencies $ = (ω1, . . . , ωm) as the solution (~qi)i=1÷N of
the N-planetary problem. It is then possible to write the Hamiltonian of the restricted
N-planetary problem as:

H = 〈$, pθ〉+
1

2
α1(θ)(p

2
x + p2

y + p2
z)

+ α2(θ)(xpx + ypy + zpz) + α3(θ)(ypx − xpy)

+ α4(θ)x + α5(θ)y − α6(θ)
N∑

i=0

G
mi

ρi

, (11)

where ρ2
0 = (x− δ1)

2 + y2 + z2, ρ2
1 = (x− δ1 + 1)2 + y2 + z2, ρ2

k = (x− α3+2k(θ))
2 + (y −

α4+2k(θ))
2 + z2 for k = 2, . . . , N , and pθ = (pθ1 , . . . , pθm) are the conjugate momenta of

θ = (θ1, . . . , θm).
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6.2 The Bianular Problem

Let

ϕ(θ) = A0 +

Nf∑
j=1

(Aj cos jθ + Bj sin jθ)

be a parameterization of the invariant curve computed in Section 4. Note that, if we take
the points on this curve as initial conditions for a numerical integration of the flow (4),
the corresponding orbits will come back to this curve after Tsat units of time. Therefore, a
parameterization X(θ1, θ2) of this 2-D torus can be computed from the following relation,

X(θ1, θ2) = Φ θ1
ω1

(
ϕ

(
θ2 −

ωθ1

2π

))
, (12)

where ω1 = ωsat. It is very easy to check that X(θ1, θ2) is 2π-periodic in each of its
arguments:

X(θ1 + 2π, θ2 + 2π) = Φ θ1+2π
ω1

(
ϕ

(
θ2 + 2π − ωθ1

2π
− ω

))
= Φ θ1

ω1

(
ΦTsat

(
ϕ

(
θ2 −

ωθ1

2π
− ω

)))
= Φ θ1

ω1

(
ϕ

(
θ2 −

ωθ1

2π

))
= X(θ1, θ2).

Therefore, it is trivial to tabulate X(θ1, θ2) on a regular mesh

(θj1
1 , θj2

2 )j1,j2=1÷Nt = (
2πj1

Nt

,
2πj2

Nt

). (13)

On the other hand, it is also a straightforward computation to write the functions αi

that appear in the Hamiltonian (11) in terms of the solution X(θ1, θ2),

α1 =
1

x2
1

, α2 = −x4

x1

, α3 =
β(x2x6 − x3x5) + K

αx2
1

,

α4 = msatx1

[
(1− µ)

x2 − µx1

r3
13

+ µ
x2 + (1− µ)x1

r3
23

]
,

α5 = −msatx1x3

[
(1− µ)

r3
13

+
µ

r3
23

]
,

α6 =
1

x1

, α7 =
x2

x1

, α8 = −x3

x1

,

where xj ≡ xj(θ1, θ2) denote the coordinates of X(θ1, θ2), α = µ(1 − µ), β = msat/(1 +
msat), r2

13 = (x2−µx1)
2 +x2

3, r2
23 = (x2 +(1−µ)x1)

2 +x2
3 and K is the angular momentum

of the system.
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Hence, it is easy to obtain a tabulation of the functions (αi)i=1÷8 on the mesh (13).
Due to the parity properties of our solution of the Three-Body Problem, these functions
can be expanded as

αi(θ1, θ2) =
∑
k∈Z2

α+
ik cos 〈k, θ〉 , i = 1, 3, 4, 6, 7,

αi(θ1, θ2) =
∑
k∈Z2

α+
ik sin 〈k, θ〉 , i = 2, 5, 8,

and the coefficients α+
ik can be obtained by means of a standard Fourier transform.

We have to select a concrete orbit on the torus X(θ1, θ2). In other words, we have to

write the angles θ1(t) and θ2(t) depending on the adimensional time as θj(t) = ωjt + θ
(0)
j ,

j = 1, 2, and select the values of the two phases, θ
(0)
j . Note that both phases are zero if

we choose t = 0 when Sun, Jupiter and Saturn are on a collinear configuration, with the
Sun at one side.

Finally, it is not difficult to write the Hamiltonian of the Bianular problem as:

HBAP =
1

2
α1(t)(p

2
x + p2

y + p2
z) + α2(t)(xpx + ypy + zpz)

+α3(t)(ypx − xpy)α4(t)x + α5(t)y

−α6(t)

[
1− µ

qS

+
µ

qJ

+
msat

qsat

]
, (14)

where q2
S = (x − µ)2 + y2 + z2, q2

J = (x − µ + 1)2 + y2 + z2 and q2
sat = (x − α7(t))

2 +
(y − α8(t))

2 + z2. The concrete values for the coefficients of the quasi-periodic functions
(αi)i=1÷8 can be obtained from http://www.maia.ub.es/dsg/, in the preprints section.

6.3 The Tricircular Coherent Problem

In the reduced SJSU four body problem (5), the (αi)i=1÷10 functions can be obtained from
the following formulae:

α1 =
1

x2
1

, α2 = −x6

x1

,

α3 =
β(x2x8 − x3x7) + γ(x4x10 − x5x9) + K

αx2
1

,

α4 = msatx1

[
(1− µ)

x2 − µx1

r3
13

+ µ
x2 + (1− µ)x1

r3
23

]
+mura(1 + β)(1− µ)x1

x4 + βx2 − µx1

r3
14

+mura(1 + β)µx1
x4 + βx2 + (1− µ)x1

r3
24

+muraβmsatx1
x4 − (1− β)x2

r3
34

,
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α5 = −msatx1x3

[
(1− µ)

r3
13

+
µ

r3
23

]
−mura(1 + β)x1

[
(1− µ)

x5 + βx3

r3
14

+ µ
x5 + βx3

r3
24

]
+muraβmsatx1

x5 − (1− β)x3

r3
34

,

α6 =
1

x1

, α7 =
x2

x1

, α8 = −x3

x1

,

α9 =
x4 + βx2

x1

, α10 = −x5 + βx3

x1

,

where, as usual, α = µ(1−µ), β = msat/(1+msat), γ = (1+msat)mura/(1+msat +mura),
r2
13 = (x2−µx1)

2 +x2
3, r2

23 = (x2 +(1−µ)x1)
2 +x2

3, r2
14 = (x5 +βx3)

2 +(x4 +βx2−µx1)
2,

r2
24 = (x5 + βx3)

2 + (x4 + βx2 + (1− µ)x1)
2, r2

34 = (x5 − (1− β)x3)
2 + (x4 − (1− β)x2)

2

and K is the angular momentum of the system.
In the same way as in the Bianular Problem, it is possible to write them as real Fourier

expansions in the following way:

αi(θ1, θ2) =
∑
k∈Z2

α+
ik cos 〈k, θ〉 , i = 1, 3, 4, 6, 7, 9

αi(θ1, θ2) =
∑
k∈Z2

α+
ik sin 〈k, θ〉 , i = 2, 5, 8, 10

where the angles are given by θ1 = ωsatt and θ2 = ωurat. The concrete values of the Fourier
coefficients can be obtained from http://www.maia.ub.es/dsg/, in the preprints section.

Finally, the Hamiltonian of the Tricircular Coherent Problem is written as

HTCCP =
1

2
α1(t)(p

2
x + p2

y + p2
z) + α2(t)(xpx + ypy + zpz)

+α3(t)(ypx − xpy) + α4(t)x + α5(t)y

−α6(t)

[
1− µ

qS

+
µ

qJ

+
msat

qsat

+
mura

qura

]
, (15)

where q2
S = (x−µ)2+y2+z2, q2

J = (x−µ+1)2+y2+z2, q2
sat = (x−α7(t))

2+(y−α8(t))
2+z2

and q2
ura = (x− α9(t))

2 + (y − α10(t))
2 + z2.

6.4 Tests

To check the computations of the αi functions of the BAP and TCCP Hamiltonians, as
well as the changes of variables, we have integrated some different test particles (with
initial conditions selected at random) in the fields coming from HBAP and HTCCP . Then,
by means of the previous changes of variables, we have sent these orbits to the initial
Jacobi coordinates of the restricted N -body problems to check that they correspond to
orbits of this system (this is again checked by a numerical integration of the N -body
problem). The accuracy agrees with the order of truncation of the Fourier coefficients.
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7 Conclusions

In this paper, we have considered the development of two models for the motion of an
asteroid in the Solar system. These models are constructed as improvements of the BCCP
model which is an improvement of the RTBP.

The first of these models is based on computing a quasi-periodic solution of the general
planar Sun-Jupiter-Saturn system. In this solution, Jupiter moves on a nearly Keplerian
orbit whose eccentricity is the real one. The second model is based on the computation of
a quasi-periodic solution of the Sun-Jupiter-Saturn-Uranus problem. This is the simplest
planetary solution for these bodies, so that the obtained model can be seen as the natural
extension of the RTBP to include four primaries. In both models, the motion of the
asteroid is finally described by a quasi-periodic time-dependent perturbation of the RTBP.

These models are still too close to the RTBP to be an alternative to the Outer So-
lar System model but, on the other hand, they are written in an explicit way. In this
sense, they should be considered as improvements of the RTBP towards real situations.
Moreover, the explicit character of the models greatly simplifies the use of semi-analytical
techniques, like normal forms. This is the topic of a forthcoming work.
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[JM99] À. Jorba and J. Masdemont. Dynamics in the centre manifold of the collinear
points of the Restricted Three Body Problem. Phys. D, 132:189–213, 1999.
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