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Abstract

For each Mathieu characteristic number of integer order (MCN) we con-
struct sequences of upper and lower bounds both converging to the MCN.
The bounds arise as zeros of polynomials in sequences generated by recursion.
This result is based on a constructive proof of convergence for Ince’s contin-
ued fractions. An important role is also played by the fact that the continued
fractions define meromorphic functions.

1 Introduction

Consider Mathieu’s equation in the standard form

d2y

dt2
+ (a− 2q cos 2t) y = 0 , (1)

where a and q are real parameters and t is a real variable. The problem of studying
vibrations of an elliptic membrane, which originally led Mathieu [6] to study this
equation, requires finding periodic solutions of period 2π for it. Stating it better,
for any given q ∈ R the problem is to show existence of values for a such that (1)
has periodic solutions with period 2π. Applications which lead to the same problem
include also other boundary value problems in regions with elliptic symmetry [7]
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and linear stability regions of upside-down pendula with periodic vertical driving
[1].

By using a method based on continued fractions, Ince [5] showed that for any
q 6= 0 there exist infinite sets A(q) = {a0(q), a1(q), a2(q), . . .}, ai(q) < ai+1(q), i =
0, 1, 2, . . ., and B(q) = {b1(q), b2(q), . . .}, bi(q) < bi+1(q), i = 1, 2, . . . such that for
all a ∈ A(q) Mathieu’s equation has an even periodic solution with period 2π and
for all a ∈ B(q) it has an odd periodic solution with period 2π. Furthermore, for the
given value of q these are the only values for a such that (1) has a solution of period
2π. The elements of A(q) ∪ B(q) are known as Mathieu characteristic numbers of
integer orders (MCNs).

Nowadays, long after the appearance of classical books on the subject, such as
[7] and [3], the computation of periodic solutions of period 2π to Mathieu’s equation
still deserves attention. A recent review [2] claims that the major difficulty is the
computation of MCNs. Most available methods for that require an initial estimate of
the MCN. Methods for obtaining such estimates are hardly discussed. One exception
is [9], which discusses the problem in the context of eigenvalues for infinite matrices
and uses the bisection method to find upper and lower bounds for MCNs.

Our purpose in this paper is to provide sequences of upper and lower bounds to
any MCN of integer order, for any q ∈ R, without recourse to any initial estimates.
Furthermore, each sequence converges to the desired MCN. Elements of these se-
quences may thus provide rigorous estimates for MCNs to be used in conjunction
with currently employed methods.

We shall work in the framework of Ince’s continued fractions [5] and bounds will
arise as roots of polynomial equations. To achieve our goal, we shall constructively
prove convergence of Ince’s continued fractions and meromorphism of the limiting
function. The convergence issue is only superficially treated in [7] and [3], as we
shall explain in section 2. Both books also claim that Ince’s continued fractions
converge but do not specify the values for parameter a in (1) in which this happens.
We shall prove the continued fractions converge at all a ∈ C except for a countable
infinite set of real values. We shall also see that some of these values are themselves
MCNs.

MCNs will appear as solutions to transcendent equations (13) and (14) below,
in which continued fractions appear at the right-hand side. Meromorphism of the
function defined by such continued fractions will be important in proving that those
equations do have solutions. It will also be used in proving that the sequence of
lower bounds to MCNs converge to the MCNs themselves and not to lower bounds.
As far as we know, such meromorphism result is also new.

We now give some notations and conventions necessary for stating our main
result.

Without loss of generality we may consider q > 0 for the rest of the paper. In
fact, for n = 0, 1, 2, . . . it is easy to see that a2n(q) = a2n(−q), b2n(q) = b2n(−q) and

2



a2n+1(q) = b2n+1(−q).
Define then

α(e)
n (a) =

(−1)n+1

q
(a− 4n2) (2)

and

α(o)
n (a) =

(−1)n+1

q
(a− (2n + 1)2) , (3)

where labels e and o stand respectively for even and odd as will be seen later. With
p meaning either e or o, we recursively construct polynomials R

(p)
n (a) and S

(p)
n (a)

respectively of degrees n− 1 and n by

R
(p)
0 (a) = 0

R
(p)
1 (a) = 1 (4)

R
(p)
n+1(a) = α

(p)
n+1(a)R(p)

n (a) + R
(p)
n−1(a) , n = 1, 2, 3, . . .

and

S
(p)
0 (a) = 1

S
(p)
1 (a) = α

(p)
1 (a) (5)

S
(p)
n+1(a) = α

(p)
n+1(a)S(p)

n (a) + S
(p)
n−1(a) , n = 1, 2, 3, . . . .

Define also polynomials

Tn(a) = aS(e)
n (a) − 2q R(e)

n (a) , (6)

Un(a) = (a− q − 1) S(o)
n (a) − q R(o)

n (a) , (7)

and
Vn(a) = (a + q − 1) S(o)

n (a) − qR(o)
n (a) . (8)

Finally, let
X−

n (a) = Xn(a)− (−1)nXn−1(a) , (9)

where the letter X may stand for S(e), T , U or V .
We shall prove in section 3 that for any n all of the zeros of all the above defined

polynomials, i.e. R
(e,o)
n , S

(e,o)
n , Tn, Un, Vn, S

(e)−
n , T−

n , U−
n and V −

n , are real-valued and
have multiplicity 1. For each n, the (real) zeros of each of the above polynomials will
be labeled as xn,j, where x stands for the lower case letter naming the polynomial
X, n is its index and j numbers the zeros in increasing order. For example, the
zeros of S

(e)−
4 will be labeled s

(e)−
4,1 < s

(e)−
4,2 < s

(e)−
4,3 < s

(e)−
4,4 .

We can now state our main result:

Theorem 1.1 Let q > 0 be fixed, ak(q) and bk(q) denote the MCNs as usual, and

polynomials R
(e,o)
n , S

(e,o)
n , Tn, Un, Vn, S

(e)−
n , T−

n , U−
n , V −

n be defined by (4)-(9).
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(i) For each fixed i ∈ N, sequences (s
(e)
n,i), (tn,i), (un,i) and (vn,i) are decreasing

with
lim

n→∞
s
(e)
n,i = b2i(q) ,

lim
n→∞

tn,i = a2(i−1)(q) ,

lim
n→∞

un,i = a2i−1(q)

and
lim

n→∞
vn,i = b2i−1(q) .

In particular, each element in the sequences is an upper bound to the corre-
sponding MCN.

(ii) Let X stand for any of the polynomial sequences mentioned in part (i) and
Ni(q) be defined either as the smallest n ∈ N such that

n >
1

2

√
2q + xn,i ,

or as Ni(q) = 1 in the case xn,i < −2q for all values of n such that xn,i exists.
Then sequences (x−n,i) are increasing for n > Ni(q) and converge to the same
MCNs as the (xn,i). In particular, each x−n,i with n > Ni(q) is a lower bound
to the corresponding MCN.

The plan for the rest of this paper is as follows. In the next section, we briefly
derive the equations involving continued fractions to be satisfied by a and q in order
that (1) has solutions with period 2π and proceed to some initial results concerning
convergence of these continued fractions. In section 3 we introduce the concept
of sequences of polynomials with interlaced zeros (SPIZ). It will follow that the

sequences R
(e,o)
n , S

(e,o)
n , Tn, Un, Vn are all SPIZs. This will unify the question of

existence of real zeros for all kinds of polynomials studied, as well as prove the
convergence of the sequences of their zeros appearing in Theorem 1.1. In section 4
we use tools from Complex Analysis to finish the proof of the continued fractions’
convergence and also prove that limit functions are meromorphic. As a consequence,
it will follow that the limits of the sequences in Theorem 1.1 are indeed the MCNs.

2 The continued fractions of Ince

Let us search for solutions of period 2π for (1) as Fourier series

y(t) =
∞∑

n=−∞
Ane

int . (10)
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Differentiating the series and substituting in (1), we find that the Fourier coefficients
of the solutions must satisfy the recurrence relation

(a− n2)An − q(An+2 + An−2) = 0 ,

for which we have 2 classes of solutions: one in which

A±1 = A±3 = A±5 = . . . = 0

and the other such that

A0 = A±2 = A±4 = . . . = 0 .

The solutions in the first class will be termed of even order, because they involve
only Fourier coefficients of even order. Accordingly, solutions in the second class
will be termed of odd order.

Defining

vk =
Ak+2

Ak

,

the recurrence relation above may be rewritten either as

vn−2 =
1

a−n2

q
− vn

(11)

or

vn =
a− n2

q
− 1

vn−2

. (12)

By using (11) repeatedly with even values of n, beginning with n = 2 we obtain

v0 =
1

a−4
q
− v2

=
1

a−4
q

+ 1
−a−16

q
+v4

= . . . =

=
1

α
(e)
1 + 1

α
(e)
2 + 1

α
(e)
3 +

...

,

where α
(e)
n was defined in (2).

Similarly, iterating (12), beginning with n = 0, we get

v0 =
a

q
− 1

α
(e)
1 + 1

α
(e)
2 + 1

α
(e)
3 +

...

.
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If we equate the last two expressions for v0, we finally get

a

2q
=

1

α
(e)
1 + 1

α
(e)
2 + 1

α
(e)
3 +

...

. (13)

The elements in the continued fraction at the right-hand side of the last equation
depend on a and q; provided its convergence, this equation should be interpreted as
the relation between a and q to be satisfied so that Mathieu’s equation has an even
order solution with period 2π.

We will show later that the continued fraction in (13) converges for any complex

a, except for a countable infinite set of real numbers {s(e)
1 , s

(e)
2 , . . .}. We will also show

that for any fixed q > 0, (13) has an infinite number of solutions for a, which will
be the MCNs denoted as a0(q), a2(q), a4(q), . . .. In fact, the solutions of Mathieu’s
equation corresponding to these values have the form

∞∑
n=0

c(1)
n cos 2nt .

This can be seen first of all because A2n+1 = 0 for all integer n. Then using (13) in
conjunction with (11) and (12) we show inductively that A2n = A−2n, n = 1, 2, . . ..

Before proceeding, we make some comments on the convergence of the right-hand
side in (13) as quoted in the literature we were able to trace. Analogous results are
quoted also regarding (14) below.

In [7], page 29, (13) is written in the equivalent form

a =
a1

b1 + a2

b2+
...

,

with a1 = −1/2q2 and an = −1/(16n2(n− 1)2) for n ≥ 2 and bn = 1− a/(4n2). Its
convergence is said to be consequence of the fact that the nth denominators bn tend
to 1, whereas the numerators an tend to 0. No proof of such a result is mentioned.
Also, as we shall prove that the continued fraction in (13) diverges for a countable
infinite set of real values for a, such a “theorem” is false.

The same equation is written in [3] at page 16 as

a

2q
=

−q

4− a− q2

16−a−
...

.

Convergence of the right-hand side follows, according to the book, from the fact that
numerators and denominators in the continued fraction are polynomials in a such
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that the degrees of the numerators are less than twice the degrees of denominators.
The proof of such a fact is said to be found in an old book by Perron [8] we were
not able to find. No reference is made to the divergence of the continued fraction
for some a’s.

Furthermore, neither [7], nor [3] discuss existence and number of roots for equa-
tions such as (13).

Conditions for the existence of odd order solutions can be found by a procedure
similar to the one leading to (13). Start taking n = 3 in (11). Using it repeatedly,
we get

v1 =
1

α
(o)
1 + 1

α
(o)
2 + 1

α
(o)
3 +

...

,

where α
(o)
n was defined in (3). By iterating (12) starting at n = 1, we get

v1 =
a− 1

q
+

1

−a−1
q

+ 1

α
(o)
1 + 1

α
(o)
2 +

...

=
a− 1

q
+

1

−a−1
q

+ v1

,

where the last equality results from the first expression for v1. Solving the last
equation for a−1

q
we finally get to

a− 1

q
± 1 =

1

α
(o)
1 + 1

α
(o)
2 + 1

α
(o)
3 +

...

. (14)

This equation is analogous to (13). We will show that the continued fraction
converges except for some special values of a and that for either sign in the left-hand
side, it has a countable infinite set of solutions. The solutions for the minus sign
will be denoted, as usual, a1(q), a3(q), . . . because it is easy to prove that A2n−1 =
A−(2n−1), n = 1, 2, . . ., thus the Fourier expansion of the corresponding periodic
solution for Mathieu’s equation will be in the form

∞∑
n=0

c(2)
n cos (2n + 1)t .

Analogously, the solutions for (14) with the plus sign in the left-hand side will
be denoted b1(q), b3(q), . . . because the Fourier series for the solution of Mathieu’s
equation will have the form

∞∑
n=0

c(3)
n sin (2n + 1)t .
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The reader familiar with Mathieu functions will notice the lack, up to now, of
solutions with period 2π with Fourier series of the form

∞∑
n=1

c(4)
n sin 2nt ,

which occur when a equals the MCNs usually denoted as b2(q), b4(q), . . .. The fact
is that these solutions belong to the even order class, but they also have A0 = 0, so
that our reasoning, based on equating two expressions for v0 = A2/A0 should clearly
fail. But it would not be a big surprise if these solutions would occur at the values
for a such that v0 is not well-defined, i.e. at the values {s(e)

1 , s
(e)
2 , . . .} for a such that

the continued fraction in (13) diverges. We will show later that this is indeed the
case.

Let us now start our study of the continued fractions appearing in (13) and (14)
by some general results. First of all, the nth approximant for a continued fraction
of the form

1

β1 + 1
β2+ 1

...

, (15)

where β1, β2, . . . ∈ C, is defined as

fn =
1

β1 + 1
β2+ 1

... + 1
βn

.

We shall need also numbers Pn and Qn inductively defined by

P0 = 0

P1 = 1 (16)

Pn+1 = βn+1 Pn + Pn−1 , n = 1, 2, . . .

and

Q0 = 1

Q1 = β1 (17)

Qn+1 = βn+1 Qn + Qn−1 , n = 1, 2, . . . .

Proposition 2.1 Consider continued fractions of the form (15) and let

Fn(w) =
1

β1 + 1
β2+ 1

... + 1
βn+w

. (18)

Then, for each n = 1, 2, . . . we have
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(i)

Fn(w) =
Pn−1w + Pn

Qn−1w + Qn

.

(ii)

fn =
Pn

Qn

.

(iii)

Pn+1 Qn − Pn Qn+1 = (−1)n .

(iv)

fn+1 − fn =
(−1)n

Qn Qn+1

.

Proof:

(i) By induction. A slick proof using the matrix representation of the group of
Möbius transformations is given as Theorem 12.1a in volume II of [4].

(ii) Just put w = 0 in the expression for Fn(w).

(iii) By induction.

(iv) Just use (ii) and (iii).

A simple result we shall use quite often is the following

Lemma 2.2 If for some n0 ∈ N we have |βn0| > 2 and |Qn0−1| ≥ |Qn0−2|, then
|Qn0| > |Qn0−1|. Analogously for P replacing Q.

Proof: By using the recurrence relation in (17), we have

|Qn0| = |βn0 Qn0−1 + Qn0−2| ≥ |βn0| |Qn0−1| − |Qn0−2|
> |Qn0−1| .

A first result concerning convergence of the continued fractions is the following

Proposition 2.3 Suppose there exist n0 ∈ N and δ > 0 such that |βn| > 2+ δ ∀n >
n0 and |Qn0| > |Qn0−1|. Then, continued fraction (15) converges.
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Proof: Mimicking the proof of Lemma 2.2, it can be seen that for n > n0 one has
|Qn| > (1 + δ)|Qn−1|. Thus, if n ≥ n0 and k ∈ N,

|Qn+k| > (1 + δ)k |Qn| .

By using (ii) and (iv) in Proposition 2.1 it follows that, for n ≥ n0,

|fn+k − fn| = |Pn+k

Qn+k

− Pn

Qn

| ≤
k−1∑

l=0

|Pn+l+1

Qn+l+1

− Pn+l

Qn+l

| =
k−1∑

l=0

1

|Qn+l+1| |Qn+l|

<
1

(1 + δ) |Qn|2
(

1 +
1

(1 + δ)2
+

1

(1 + δ)4
+ . . .

)
.

As the geometric series above converges and |Qn| may be taken arbitrarily large if
n is taken sufficiently larger than n0, then (fn) is a Cauchy sequence of complex
numbers.

3 Sequences of Polynomials with Interlaced Zeros

We may now start relating the sequences of polynomials referred to in Theorem 1.1
with continued fractions of the form (15). The R

(e,o)
n and S

(e,o)
n defined in (4) and

(5) are such that the nth approximant to the continued fraction in (13) is R
(e)
n

S
(e)
n

and

and the nth approximant to the continued fraction appearing in (14) is R
(o)
n

S
(o)
n

.

Also, polynomial Tn is such that its zeros are the roots of the equation obtained
when one substitutes the continued fraction appearing at the right-hand side of (13)
by its nth approximant. Similarly, Un and Vn are such that their zeros are the roots
of the equation obtained approximating the continued fraction in (14).

We shall see that all these sequences of polynomials belong to an interesting
class with remarkable properties. These properties are the unifying feature of all
statements in Theorem 1.1.

Before giving the definition, let us state some terminology. Let Π1, Π2, . . . be a
sequence of polynomials with real-valued coefficients. In case they exist, we shall
denote the real zeros of Πn as rn,1 ≤ rn,2 ≤ . . . ≤ rn,k, where k is the number of
real roots for Πn. For notational simplicity, it will be useful to define rn,0 = −∞
and rn,k+1 = +∞.

Definition 3.1 We shall say Π1, Π2, . . . is a sequence of polynomials with interlaced
zeros (SPIZ for short) if

(i) Π1 is not the null polynomial, has degree d ≥ 0 and all its zeros are real-valued
with multiplicity 1;
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(ii) Π2 has degree d + 1, all its zeros are real-valued with multiplicity 1 and each
zero of Π2 is located between two consecutive zeros of Π1, i.e.

r1,i−1 < r2,i < r1,i i = 1, 2, . . . , d + 1 .

In case Π1 has degree d = 0, this item applies automatically.

(iii) There exist polynomials βn of degree 1 such that

Πn+1 = βn+1 Πn + Πn−1 , n = 2, 3, . . . ,

(iv) Πn(+∞) and Πn+2(+∞) have opposite signs for all n ∈ N.

The name given is justified by the following

Theorem 3.2 If Π1, Π2, . . . is a SPIZ, then all zeros of each Πn are real-valued with
multiplicity 1. Furthermore, for every n ≥ 2 the zeros of Πn and Πn−1 are interlaced,
i.e.

rn−1,i−1 < rn,i < rn−1,i i = 1, 2, . . . , d + n− 1 .

Proof: By (iii) and (iv) in Definition 3.1, βn and βn+1 must have opposite signs
at +∞. Combining the two possibilities for the sign of β1 at +∞ with the possible
signs at +∞ of Π1 and Π2, one can see that there exist 4 different sign attributions
for the βn and Πn compatible with the definition of SPIZ. Let us take one of them
for definiteness, the proof being analogous for the other ones. Consider then

βn(+∞) =

{
+∞, n is odd
−∞, n is even

(19)

and

Πn(+∞) =

{
+∞, n = 0 mod 4 or n = 1 mod 4
−∞, n = 2 mod 4 or n = 3 mod 4

(20)

The proof proceeds by induction. The thesis is certainly true in cases n = 1 and
n = 2 by (i) and (ii) in Definition 3.1. Suppose now it holds for n = 1, 2, . . . , p.

If d is the degree of Π1, then Πp has degree d + p − 1 and the same number of
real and distinct zeros. We evaluate Πp+1 at the largest zero of Πp:

Πp+1(rp,d+p−1) = βp+1(rp,d+p−1) Πp(rp,d+p−1) + Πp−1(rp,d+p−1) = Πp−1(rp,d+p−1) .

By the induction hypothesis, rp,d+p−1 is larger than the largest zero of Πp−1, and
so Πp+1(rp,d+p−1) has the same sign as Πp−1(+∞). But, by (iv) in Definition 3.1,
Πp−1(+∞) and Πp+1(+∞) have opposite signs. This argument shows that Πp+1 has
different signs at +∞ and rp,d+p−1. By the Intermediate Value Theorem (IVT), it
must have at least one zero larger than rp,d+p−1.
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We proceed by evaluating Πp+1 at each zero of Πp. By the recursion relation in
(ii) of Definition 3.1,

Πp+1(rp,i) = Πp−1(rp,i) .

By the induction hypothesis, rp,i ∈ (rp−1,i−1, rp−1,i) and also, as the zeros of Πp−1

have multiplicity 1, it changes sign as it passes through each of them. This proves
that the signs of Πp+1(rp,i) and Πp+1(rp,i+1) are opposite. By the IVT, there must
exist at least one zero of Πp+1 between each pair of consecutive zeros of Πp. By
the same reasoning with the IVT, Πp+1 must have at least 1 zero smaller than the
smallest zero of Πp. Up to now we have counted at least d + p zeros for Πp+1, which
has degree d + p. Then, at every place we stated that Πp+1 should have at least one
zero, it must have exactly one zero. This ends the proof.

Theorem 3.2 above is a particular case of and can be used to prove a result in the
Sturm theory for difference equations, see propositions 2.1 and 2.2 in [10]. According
to the author of that paper, although Sturm theory for differential equations is quite
standard, its discrete version is not so. This is why we decided to keep the proof
here.

The preceding result was concerned with existence of the zeros appearing in
Theorem 1.1 as upper bounds to MCNs. The existence of zeros related to the lower
bounds in the same theorem will arise due to the next result, when applied to the
polynomials defined by (9):

Theorem 3.3 Let Π1, Π2, . . . be a SPIZ and define Θn = Πn − Πn−1 and Ψn =
Πn + Πn−1. Then every zero of each Θn or Ψn is real-valued with multiplicity 1.

Furthermore:

(i) If Πn(+∞) and Πn−1(+∞) have opposite signs, then the zeros ρn,1 < ρn,2 <
. . . < ρn,d+n−1 of Θn are such that

rn−1,i−1 < ρn,i < rn,i

and the zeros ρ′n,1 < ρ′n,2 < . . . < ρ′n,d+n−1 of Ψn are such that

rn,i < ρ′n,i < rn−1,i .

(ii) If Πn(+∞) and Πn−1(+∞) have the same sign, then positions of the zeros of
Θn and Ψn are interchanged with respect to (i), i.e.

rn−1,i−1 < ρ′n,i < rn,i

and
rn,i < ρn,i < rn−1,i .
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Proof: The proof is similar to that of Theorem 3.2, evaluating Πn ±Πn−1 at ±∞
and at the zeros of Πn and Πn−1 and applying the IVT.

For easiness of reference to the zeros of polynomials Θn and Ψn, let us make one
more notational definition:

Definition 3.4 Let ρn,i and ρ′n,i be defined as in Theorem 3.3. Then

(i)

ρ−n,i = min{ρn,i, ρ
′
n,i}

(ii)

ρ+
n,i = max{ρn,i, ρ

′
n,i}

With this definition, it follows that for all n ∈ N and i = 1, 2, . . . , d + n− 1,

ρ−n,i ∈ (rn−1,i−1 , rn,i) and ρ+
n,i ∈ (rn,i , rn−1,i) .

The next result, which proof is a simple verification, states that all polynomials
appearing in Theorem 1.1 are either members of some SPIZ, or of the kind appearing
in Theorem 3.3:

Proposition 3.5 The following are all SPIZ:

(i) R
(e,o)
1 , R

(e,o)
2 , . . .

(ii) S
(e,o)
0 , S

(e,o)
1 , S

(e,o)
2 . . .

(iii) T0, T1, T2 . . .

(iv) U0, U1, U2 . . .

(v) V0, V1, V2, . . .

Notice that Theorem 3.2 and Proposition 3.5 prove that the sequences appearing
in part (i) of Theorem 1.1 are decreasing. The next result proves that they are
convergent by exhibiting to each of them the lower bounds appearing in part (ii) of
the same theorem.

Before stating the theorem, we shall impose one more constraint on the kind of
SPIZ appearing in what follows. Notice that all SPIZ in the statement of Proposition
3.5 either have βn = α

(e)
n or βn = α

(o)
n . In both cases the βn satisfy the following

Definition 3.6 Writing the βn appearing in Definition 3.1 as βn(a) = λn(a−Bn),
we shall say a SPIZ is admissible if there exist λ > 0 and N0 ∈ N such that the
slopes λn satisfy |λn| ≥ λ for all n and the zeros Bn are such that Bn+1−Bn > 2

λ
if

n ≥ N0.

13



It is an easy matter to see that if the βn satisfy the above admissibility condition,
then for any fixed x ∈ R, there exists n1(x) such that

|βn(a)| > 2 ∀a < x, ∀n ≥ n1(x) . (21)

In the proof of the next theorem we will need to make sure that for each fixed i,
|βn(a)| > 2 ∀a < rn,i, where rn,i is the ith root of Πn. Of course, as (rn,i)n is

decreasing, this condition will hold true for large enough n. In cases βn = α
(e)
n or

βn = α
(o)
n , it can be seen that it holds for n ≥ Ni(q), where Ni(q) is defined at part

(ii) of Theorem 1.1.

Theorem 3.7 Let Π1, Π2, . . . be any admissible SPIZ and let rn,i be the zeros of
its elements denoted as in Definition 3.1. Given any i ∈ N, let ni be such that for
n ≥ ni one has |βn(a)| > 2 ∀a < rn,i. Then for n ≥ ni one has

rn+1,i ∈ [ρ−n,i, rn,i)

and
ρ−n+1,i > ρ−n,i .

As a consequence, for each i, the sequences (rn,i)
∞
n=1 converge and the ρ−n,i with n ≥ ni

are lower bounds to limn→∞ rn,i.

Proof: Suppose that βn and Πn have the same signs as in (19) and (20) and n is
odd. That implies βn+1(a) > 2 if n ≥ ni and a < rn,i and Πn(+∞) and Πn−1(+∞)
have the same sign. In this case, ρ−n,i is a zero of Πn + Πn−1 and ρ+

n,i−1 is a zero
of Πn − Πn−1. If n is even, or if βn and Πn have other possible signs, the proof is
similar.

As rn,i−1 < ρ+
n,i−1 < rn−1,i−1 < ρ−n,i < rn,i, we may partition (rn,i−1, rn,i) in 3

intervals: I1 = (rn,i−1, ρ
+
n,i−1), I2 = [ρ+

n,i−1, ρ
−
n,i) and I3 = [ρ−n,i, rn,i). To prove the

first assertion of the theorem, we shall show that rn+1,i is neither in I1, nor in I2.
By Theorem 3.2 it must lie in I3.

First of all, rn+1,i is not in I1 because, as Πn = Πn−1 at ρ+
n,i−1 and neither Πn, nor

Πn−1 has any zero in I1, then they must have the same sign in I1. But, as βn+1 > 0,
property (iii) in the definition of SPIZ implies Πn+1 will have the same sign as Πn

and Πn−1 in I1, hence no zero there.
Neither is rn+1,i in I2. In fact, the only roots of |Πn| = |Πn−1| in (rn,i−1, rn,i) are

ρ−n,i and ρ+
n,i−1 and, as Πn vanishes at the end points of that interval, one must have

|Πn| ≥ |Πn−1| in I2. As |βn+1| > 2 in I2, then, using Lemma 2.2 in I2 we have

|Πn+1| > |Πn| > 0 ,

the last inequality holding because Πn has no zero in I2. That leads us to conclude
that Πn+1 has no zero in I2, either.
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To show that ρ−n+1,i > ρ−n,i, notice that |Πn| = |Πn−1| at ρ−n,i. Together with
|βn+1(ρ

−
n,i)| > 2, Lemma 2.2 implies |Πn+1(ρ

−
n,i)| > |Πn(ρ−n,i)|. As |Πn+1| < |Πn| in

(ρ−n+1,i, ρ
+
n+1,i), then ρ−n,i cannot be in that interval. But rn+1,i does lie in that interval

and is larger than ρ−n,i by the first assertion in this theorem. Then, the second one
follows.

To resume this section, we prove now a simple result, which will be very useful
in the next section:

Lemma 3.8 Let Π1, Π2, . . . be any admissible SPIZ, ri = limn→∞ rn,i and li =
limn→∞ ρ−n,i. Then:

(i) For any fixed z ∈ C, we either have |Πn(z)| n→∞→ ∞, or |Πn(z)| n→∞→ 0.

(ii) limn→∞ Πn(a) = 0 for any a ∈ [li, ri], i = 1, 2, . . ..

Proof: If (|Πn(z)|)n>N is a decreasing sequence for some N , then there must exist
L = limn→∞ |Πn(z)|. But if there is no N with such property, then, by property (21)
and by the arguments in the proof of Proposition 2.3, we must have |Πn(z)| n→∞→ ∞.

Suppose then, |Πn(z)| n→∞→ L. As, by Definition 3.6, for any fixed z, |βn(z)| n→∞→
∞, then taking the limit as n →∞ in (iii) of Definition 3.1 we get L = 0.

To prove the second part, let ni be as in Theorem 3.7. By that theorem,

⋂
n≥ni

[ρ−n,i, rn,i] = [li, ri] .

Because |Πn(a)| ≤ |Πn−1(a)| if a ∈ [ρ−n,i, rn,i] and, for n ≥ ni, [ρ−n,i, rn,i] ⊃ [li, ri],
then |Πn(a)| ≤ |Πn−1(a)| for all a ∈ [li, ri] if n ≥ ni. By the first part in this lemma,
this implies Πn(a)

n→∞→ 0 for a ∈ [li, ri].

4 Convergence of the continued fractions and holo-

morphism

Let us summarize what we have succeeded to prove up to now in Theorem 1.1.
First of all, the theorem refers in parts (i) and (ii) to real zeros of some poly-

nomials. We have already proved that all zeros of these polynomials are indeed
real-valued. It also states that certain sequences of zeros are decreasing and conver-
gent. That was also proved. According to the theorem, some other sequences are
increasing and converge to the same limit as the corresponding decreasing sequences.
We have shown that those sequences are indeed increasing and convergent, but their
limits may be in principle smaller than the limits of the corresponding decreasing
sequences. In this section, we shall prove that this is not the case.
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Most important of all, the polynomial sequences in Theorem 1.1 appear when
we substitute continued fractions in (13) and (14) by their approximants. We have
not yet proved that those continued fractions converge. And if they do, it might
happen that limits of solutions to the equations obtained by replacing in (13) and
(14) the continued fractions by their approximants are not solutions of (13) and (14)
themselves. We shall also prove that the continued fractions converge at all complex
values for a with the exception of the set of limits of the zeros of the denominators
of the approximants. And it will also result, by showing that the continued fractions
in (13) and (14) define meromorphic functions, that the limits of the zeros of the
polynomials in Theorem 1.1 are indeed solutions to those equations.

We begin with a simple result extending to the complex domain something al-
ready well-known for real numbers:

Lemma 4.1 Let Π1, Π2, . . . be any admissible SPIZ. Then, for all z ∈ C with Re z <
ρ−n,1, we have

|Πn(z)| > |Πn−1(z)| .
Proof: Writing Πk in factored form, we have

∣∣∣∣
Πn(z)

Πn−1(z)

∣∣∣∣ = |λn|
(

dn−1∏
i=1

∣∣∣∣
z − rn,i

z − rn−1,i

∣∣∣∣
)
|z − rn,dn | ,

where dn is the degree of Πn and λn is the slope of βn . Let z = a + i b with
a < ρ−n,1 < rn,1. As rn,i < rn−1,i and Re z < ρ−n,1 ≤ rn,i, it is straightforward to verify

that for all i, | z−rn,i

z−rn−1,i
| is an increasing function of |b|. Also |z − rn,dn | is increasing

in |b|. Thus | Πn(z)
Πn−1(z)

| ≥ | Πn(a)
Πn−1(a)

|.
Because the zeros rn,i of Πn are located at intervals (ρ−n,i, ρ

+
n,i), at which endpoints

we have |Πn| = |Πn−1|, then for a ∈ R we have |Πn(a)| > |Πn−1(a)|, unless a ∈
[ρ−n,i, ρ

+
n,i] for some i. Condition a < ρ−n,1 implies then | Πn(a)

Πn−1(a)
| > 1, proving the

lemma.
An immediate consequence of using this lemma together with Proposition 2.3 is

the convergence of continued fractions of the form

1

β1(z) + 1
β2(z)+ 1

β3(z)+
...

,

if Re z is small enough and βn(z) satisfies the admissibility condition in Definition
3.6.

In fact, there exists x1 such that |βn(a)| > 2 for all a < x1 with n ≥ 2. By
taking x = min{x1, ρ

−
1,1}, we have for all z ∈ C with Re z < x both conditions of

Proposition 2.3 holding with n0 = 1.
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This convergence result may be further generalized on using the same idea with
some more labor, working not with the whole continued fractions, but rather with
their “remainders”.

Define the remainder Ωm as the continued fraction

Ωm(z) =
1

βm+1(z) + 1
βm+2(z)+ 1

βm+3(z)+
...

(22)

and the truncated remainder Ωm,k at order k as the kth approximant to Ωm, i.e.,

Ωm,k(z) =
1

βm+1(z) + 1
βm+2(z)+ 1

... + 1
βm+k(z)

. (23)

By applying Proposition 2.1 to Ωm, we have

Ωm,k(z) =
P

(m)
k (z)

Q
(m)
k (z)

,

where

Q
(m)
0 = 1

Q
(m)
1 = γ

(m)
1 (24)

Q
(m)
n+1 = γ

(m)
n+1 Q(m)

n + Q
(m)
n−1, n = 1, 2, . . . ,

P
(m)
k is defined by an analogous recurrence relation and

γ(m)
n = βm+n .

Observe that for all m, P
(m)
1 , P

(m)
2 , . . . and Q

(m)
0 , Q

(m)
1 , . . . are admissible SPIZ.

We may apply Theorems 3.3 and 3.7 to the sequence Q
(m)
0 , Q

(m)
1 , . . .. In this

context, define r
(m)
k,i as the ith zero of Q

(m)
k and ρ

(m)−
k,i as the smallest between the

ith zeros of Q
(m)
k ±Q

(m)
k−1.

We may prove now a very important intermediate result:

Proposition 4.2 Let a ∈ R be given and choose m0 ∈ N with Bm0+1 > a + 1
λ

and
m0 ≥ N0, where N0 is defined at Definition 3.6. Then, for all m ≥ m0, Ωm(z) is
holomorphic in Ca = {z ∈ C ; Re z < a}.
Proof: Let m ≥ m0; as r

(m)
1,1 = Bm+1, then condition Bk+1 − Bk > 2/λ in

Definition 3.6 implies |γ(m)
n (x)| > 2 for all x ≤ r

(m)
1,1 if n ≥ 1. By Theorem 3.7,

sequence (ρ
(m)−
n,1 )n≥1 is increasing.
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As ρ
(m)−
1,1 = Bm+1− 1

|λm+1| , then Bm0+1 > a+ 1
λ

implies ρ
(m)−
1,1 > a for all m ≥ m0,

implying that all zeros of the Q
(m)
n are larger than a. So for any m ≥ m0 and n ∈ N

we have ρ
(m)−
n,1 > a. It is also true that |γ(m)

n (z)| > 2 for all n ≥ 2, z ∈ Ca.
From the conclusions in the previous paragraph, we can now show that Ωm

converges if z ∈ Ca and m ≥ m0. In fact, |γ(m)
n (z)| > 2 for all n ≥ 2, z ∈ Ca and

ρ
(m)−
1,1 > a. By Lemma 4.1 we can then show validity of the hypothesis of Proposition

2.3, thus concluding convergence of the continued fraction Ωm if z ∈ Ca.
By the second assertion in Theorem 3.7, the ρ

(m)−
n,1 form an increasing sequence

beginning from n = 1. This shows that there are no zeros of the Q
(m)
k in Ca and

thus the approximants
P

(m)
k

Q
(m)
k

are holomorphic in Ca. In order to show that Ωm is

holomorphic, it suffices to show that the convergence of the approximants to Ωm is
uniform in compact subsets of Ca.

Let then Λ ⊂ Ca be compact and δ = |γ(m)
2 (a)|−2 > 0. We shall proceed as in the

proof of Proposition 2.3, now seeking uniform bounds. If Mk(Λ) = minz∈Λ |Q(m)
k (z)|,

then, as Mk+1(Λ) = |Q(m)
k+1(z0)| for some z0 ∈ Λ and |γ(m)

k+1(z0)| > 2 + δ, it follows
that

Mk+1(Λ) > (1 + δ) |Q(m)
k (z0)| ≥ (1 + δ) Mk(Λ) .

We conclude that Mk(Λ)
k→∞→ ∞. Take now n > k and repeat an estimate such as

in the proof of Proposition 2.3: for all z ∈ Λ,

|Ωm,n(z)− Ωm,k(z)| <
1

(1 + δ) Mk(Λ)2

(
1 +

1

(1 + δ)2
+

1

(1 + δ)4
+ . . .

)
.

This proves uniform convergence and terminates the proof.
Having proved convergence and holomorphism for Ωm, we can now tackle the

problem of convergence of the continued fractions in the right-hand sides of (13)
and (14) with the bonus of proving holomorphism of the limiting function.

For the next few pages we will be considering

f(z) =
1

β1(z) + 1
β2(z)+ 1

β3(z)+
...

, (25)

where either βn(z) = α
(e)
n (z), or βn(z) = α

(o)
n (z). Of course the left-hand side

function f(z) will be defined if the continued fraction converges, or if it tends to the
point at infinity, in the Riemann sphere sense. Polynomials Pk(z) and Qk(z) will be
defined as in (16) and (17), such that the kth approximant to f will be

fk(z) =
Pk(z)

Qk(z)
.
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By Proposition 3.5, in both cases for βn, both sequences P1, P2, . . . and Q0, Q1, Q2, . . .
will be SPIZ.

We begin with the following

Proposition 4.3 Function f defined by (25) is meromorphic in all of C.

Proof: We are going to show that for any a ∈ R given, f is meromorphic in
Ca = {z ∈ C ; Re z < a}.

By (i) in Proposition 2.1, if we define

Fm(z, w) =
1

β1(z) + 1
β2(z)+ 1

... + 1
βm(z)+w

,

then

Fm(z, w) =
Pm−1(z) w + Pm(z)

Qm−1(z) w + Qm(z)
.

If k > m, then
fk(z) = Fm(z, Ωm,k−m(z)) . (26)

Given any a ∈ R, by Proposition 4.2 we may choose m large enough so that for
z ∈ Ca there exists limk→∞ Ωm,k−m(z) = Ωm(z), Ωm being holomorphic in Ca. So,

f(z) = lim
k→∞

Fm(z, Ωm,k−m(z)) =
Pm−1(z) Ωm(z) + Pm(z)

Qm−1(z) Ωm(z) + Qm(z)
,

where we allow for the possibility that f(z) = ∞ in the case

Ωm(z) = − Qm(z)

Qm−1(z)
. (27)

This shows that f is meromorphic in Ca, because it is the quotient of holomorphic
functions. Furthermore, the possible poles of f in Ca must be the solutions to (27)
in Ca for m large enough.

We now know that the continued fractions we are interested in do converge at all
z ∈ C, except for a possible set of isolated poles. But, do poles exist? If the answer
is yes, where do they lie? To answer these questions, we first characterize the poles
of f(z):

Proposition 4.4 Let f be defined by (25). Then it has a pole in z if |Qn(z)| n→∞→ 0.

Proof: Suppose |Qn(z)| n→∞→ 0. Then, by (iii) in Proposition 2.1, Pn(z) does not
tend to 0 and of course fn(z) = Pn(z)/Qn(z) must tend to infinity. Then f has a
pole in z.

In order to prove Proposition 4.7 below, which includes the converse of Proposi-
tion 4.4, let us first quote the following corollary to Rouché’s theorem, see [4], vol.
I, Corollary 4.10e:
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Theorem 4.5 Let φn, n = 0, 1, 2, . . . be holomorphic in some fixed region R and let
(φn) converge uniformly on every compact subset of R. If the limit function φ does
not vanish identically, then each zero of φ is a limit of zeros of the functions φn.

In order to be able to use the theorem above, we must first show

Proposition 4.6 Let f(z) be defined by (25) and fn(z) = Pn(z)/Qn(z) be its nth
approximant. If Λ ⊂ C is a compact set which does not contain any pole of f , then
fn → f uniformly in Λ.

Proof: By the proof of Proposition 4.2, there exists m ∈ N such that Ωm,k
k→∞→ Ωm

uniformly in Λ. By using (26), (18) and (iii) in Proposition 2.1, we get for k, l > m

|fk(z)− fl(z)| =
|Ωm,k−m(z)− Ωm,l−m(z)|

|Qm−1(z)Ωm,k−m(z) + Qm(z)| |Qm−1(z)Ωm,l−m(z) + Qm(z)| .

(28)
As the poles of f satisfy (27) and Λ is compact and does not contain any poles

of f , then there exists M > 0 such that for all z ∈ Λ we have |Qm−1(z)Ωm(z) +
Qm(z)| ≥ M . In fact, if there were not such an M , then for any j ∈ N we would
find zj ∈ Λ such that |Qm−1(zj)Ωm(zj) + Qm(zj)| < 1/j. By taking a convergent
subsequence of the (zj)j∈N we would have z∗ ∈ Λ with |Qm−1(z

∗)Ωm(z∗) + Qm(z∗)| =
0, which is in contradiction with the non-existence of poles of f in Λ.

We continue by writing

Qm−1(z)Ωm,k−m(z) + Qm(z) = Qm−1(z)Ωm(z) + Qm(z)−Qm−1(z) (Ωm(z)−Ωm,k−m(z)) ,

which implies for large enough k and all z ∈ Λ

|Qm−1(z)Ωm,k−m(z) + Qm(z)| >
M

2
, (29)

because for large enough k we have

|Ωm(z)− Ωm,k−m(z)| < M

2 maxz∈Λ |Qm−1(z)|
for all z ∈ Λ.

Using (29) in (28) we finally prove the proposition.
We now can now complete the characterization of the poles of f :

Proposition 4.7 Consider Qn as a SPIZ and let rn,i and ρ−n,i be as in section 3.
For each i ∈ N, let ri = limn→∞ rn,i. Then, for each i = 1, 2, . . .:

(i) f has a pole in ri.
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(ii)

lim
n→∞

ρ−n,i = ri .

(iii) The only poles of f are the ri, i = 1, 2, . . ..

Proof: Let li be defined as in Lemma 3.8. Then this lemma shows that Qn(a)
n→∞→

0 for a ∈ [li, ri]. By Proposition 4.4, f has poles at every point of [li, ri]. As poles
must be isolated, li = ri.

To prove (iii), notice that the poles of f are the zeros of 1/f . As the roles of
Pn and Qn can be interchanged in Proposition 4.6, we may apply Theorem 4.5 to
conclude that the poles of f are the ri.

Proposition 4.8 Considering the notations introduced before Theorem 1.1, we have

lim
n→∞

xn,i = lim
n→∞

x−n,i ,

where X may stand for S(e), T , U or V .

Proof: As Qn = S
(e)
n if we take βn = α

(e)
n , then, by (ii) in Proposition 4.7, we have

just proved our claim for X = S(e).
To prove it for X = T , notice that by (6) we have

Tn(a)

S
(e)
n (a)

= a − 2q
R

(e)
n (a)

S
(e)
n (a)

.

As, by Proposition 4.3, R
(e)
n (a)/S

(e)
n (a) converges to a meromorphic function, then

φ(a) = limn→∞ Tn(a)/S
(e)
n (a) is also meromorphic.

Define li = limn→∞ t−n,i and ti = limn→∞ tn,i. By Lemma 3.8, limn→∞ Tn(a) = 0

for all a ∈ [li, ti], i = 1, 2, . . .. S
(e)
n does not tend to 0 at these points, because if it

did so, (6) and Proposition 2.1(iii) would make Tn not tend to 0. Then φ has zeros
at all a ∈ [li, ti]. As zeros of meromorphic functions are isolated, then li = ti for
i = 1, 2, . . ..

An analogous proof works in proving the claim for X = U or X = V .
By now, the only facts remaining without proof in Theorem 1.1 are the identity

between the limits of sequences of polynomial zeros and MCNs. These are again
consequences of Theorem 4.5:

Corollary 4.9 Using the same notations as in Theorem 1.1, we have, for i =
1, 2, . . .:

(i) limn→∞ tn,i = a2(i−1)(q)
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(ii) limn→∞ un,i = a2i−1(q)

(iii) limn→∞ vn,i = b2i−1(q)

Proof: To prove (i), just notice that if βn = α
(e)
n , then, by Proposition 4.6, a

2q
−fn(z)

converges uniformly to a holomorphic function at all compacts not containing any
pole of f . By Theorem 4.5, solutions to (13) are then the limits of the tn,i. As
already noticed in the comments after (13), these are the MCNs a2(i−1)(q).

Proofs for (ii) and (iii) follow an analogous path.
As in deriving (13) we have divided by the A0 coefficient in the complex Fourier

series (10), we may be missing some odd solutions of even order to Mathieu’s equa-
tion. By proceeding in a way similar to the derivation of (13), we may start with a
Fourier sine series y(t) =

∑∞
n=1 Cn sin 2nt series instead of a complex Fourier series

and derive an equation involving continued fractions for the a values at which these
solutions occur. It is not difficult to see that the whole theory in this paper applies
as well and proves that that these solutions are the ones corresponding to the b2i(q)

MCNs, i = 1, 2, . . ., with b2i(q) = limn→∞ s
(e)
n,i.
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