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Abstract

In quantum systems described by families of 1-particle Schrödinger operators on half-

spaces the pressure on the boundary per unit energy is topologically quantised if the

Fermi energy lies in a gap of the bulk spectrum. Its relation with the integrated density

of states can be expressed in an integrated version of Streda’s formula. This leads also

to a gap labelling theorem for systems with constant magnetic field. The proof uses

non-commutative topology.

1 Introduction

In [KS04a, KS04b] a theory was developped which relates bulk topological invariants of aperi-
odic quantum mechanical systems to boundary topological invariants. Such invariants describe
the topological part of response coefficients in transport theory. The theory has two aspects,
topological quantization and equalities between invariants. The latter has predictive character:
given a bulk topological invariant there should be a topological invariant associated with the
boundary behaviour which has the same numerical value and vice versa. The above-mentionned
work was motivated by one application, the Integer Quantum Hall Effect. Here we present the
proof of another application which was anounced in [Ke04]: To a gap label, a bulk invariant,
corresponds a response coefficient related to the pressure on the boundary. Physically this
means that the integrated density of states (IDS) at the Fermi level is equal to the pressure on
the boundary per unit energy if the Fermi level lies in a gap of the bulk spectrum. The asso-
ciated boundary force compensates two forces, the gradient force from the electrical potential
and the Lorentz force which arises in the presence of a magnetic field. We obtain hence an
equation of the type (Theorem 2)

IDS = Π + b σ‖ , (1)

all taken at the Fermi energy. Here Π is the gradient pressure per unit energy (i.e. the gradient
force per unit area and energy) σ‖ the conductivity of the current along the edge in a direction
determined by the magnetic field, and b is proportional to the magnetic field strength. More
precisely, for two-dimensional systems b = B

q
(B is the magnetic field understood as scalar and

q the charge of the particle) and σ‖ = σHall is the (edge) Hall conductivity. In three dimensions
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qb is the projection of B along the boundary and σ‖ is the direct conductivity of the component
of the boundary current which is perpendicular to B. All these quantities are understood as
averaged as in the usual approach to disordered systems.

All three quantities are topologically quantised. Whereas in two-dimensions h
q2σ

‖ is integral
this is not the case for Π which takes typically values in a dense discrete sub-group of R. On
the other hand, we show that Π is locally constant in B.

Equation 1 should be compared with Streda’s formula (12) of [St82] which yields an ex-
pression of the Hall conductivity of a two-dimensional sample in the bulk. Under the gap
condition the direct conductivity vanishes in the bulk and Streda’s formula can be obtained as
the derivative of (1) w.r.t. the magnetic field,

σHall = q
∂

∂B
IDS.

Π is thus the constant of integration of Streda’s formula.
There are two simple situations in which (1) can be verified without the machinery of non-

commutative topology. The first is the Landau operator which describes a free electric particle
in two dimensions in a homogeneous perpendicular magnetic field. Since the potential is zero
in this case Π vanishes and the identity can be obtained by explicitly calculating the trace (per
unit volume) and Chern number of the projection onto the nth Landau level. The result is
independently of n equal to qB

h
and 1, respectively, and so (1) follows from the additivity of

the trace and the Chern number. The second example is the one-dimensional situation which
in the periodic case has been treated in [Ke04] and in the aperiodic one in [KZ04]. Here B = 0
so that the integrated density of states equals the gradient force per unit area and energy.

Equation 1 suggests that the gap labelling group for a system with non-vanishing magnetic
field has one more generator which accounts for the second term. We will present a gap-labelling
theorem (Theorem 3) for systems with magnetic field which demonstrates that this is indeed
the case in d = 2. It follows from these arguments that the first term Π belongs to a sub-group
of the gap labelling group which is independent of the magnetic field depending only on the
spatial structure (long range order) of the aperiodic system.

Some functional analytic results are proven here only for d ≤ 2, because they relie heavily
on results of [KS04a]. We consider this limitation as technical but not conceptual. The purely
topological results of Section 4 are not restricted in dimension.

The article is organized as follows. We begin with a short discussion of response theory and
introduce the transport coefficients which are of interest in this article (Examples of Section 2).
In Section 3 we recall the model used to describe aperiodic systems with and without a boundary
and adapt the formulation of the transport coefficients to that framework. This allows us to
see that they are topological and paves the way for a C∗-algebraic description in Section 4. To
prove Equation 1 we identify the coefficients as results of pairings between higher traces and
elements of the K-groups and use the boundary maps of non-commutative topology to relate
them. Section 4 ends with a gap labelling theorem for systems with non-vanishing magnetic
field.
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2 Response coefficients

The general set up of [KS04b] is aimed at relating topological properties such as topological
transport properties of the system in the bulk with those on the boundary. The usual frame-
work for discussing transport is reponse theory, a phenomenological theory in which transport
coefficients are determined by investigating how the system responds to a small perturbation
which brings it out of thermodynamic equilibrium. We suppose that an infinitesimal pertur-
bation of the system leads to a variation δH of the Hamiltonian which can be expressed by a
(possibly vector valued) derivation δ. We are interested in an expectation value 〈δH〉 which
is the result of evaluating a positive linear functional on δH . This functional depends on the
particular circumstances of the system and what one wants to observe. It can usually expressed
in the form 〈A〉 = tr(ρA) where tr is a trace and ρ a one-particle density matrix both of which
may carry physical units. 〈δH〉 is essentially a mechanical force if the variation is induced by
a variation in configuration space, it is a current if the variation is induced by a variation in
momentum space.

Transport coefficients are coefficients of tensors which relate the strength of a perturbation
to the above (vector-valued) force or current. More precisely, one considers the expectation of
the operator δH w.r.t. the density matrix which has evolved under the perturbed dynamics to
time ∞. This is equivalent to

〈δH〉 = lim
T→∞

1

T

∫ T

0

〈ηper
−t (δH)〉dt

where ηper
t = exp t(ıL + λδ), L = [H, ·] is the Liouvillian and λ the of strength of the pertur-

bation. (As δ we consider λ vectorial and thus λδ as a scalar product.) The above quantity
is called response function; it is the generating function for the transport coefficients. From a
Dyson-Phillips expansion of ηper

t one obtains a power series in λ and the transport coefficients
are the coefficients of the tensors in the Taylor expansion around λ = 0. The nth order term
contains then n+ 1 derivatives w.r.t. δ. The 0th coefficient is a pure equilibirum phenomenon,
as in the 0th approximation the time evolution is the unperturbed one.

In the context of aperiodic systems (whether randomly disordered or long range ordered)
it has become customary to consider not single systems but ensembles of systems which may
be considered as physically indistinguishable. Then the expectation above includes an average
over the ensemble (disorder average). Whereas for bulk systems this average is often covered
by the trace per unit volume, this is no longer the case for bulk boundary systems.

A transport coefficient becomes topological if, from a mathematical point of view, it de-
pends only on the homotopy class of a certain operator. In the most famous case of the
Hall-conductivity the conductivity tensor can be written as the index of a Fredholm operator
provided certain localisation properties are satisfied. It depends thus only on the homotopy
class of that Fredholm operator which physically leads to the remarkable stability of the coeffi-
cient under perturbations. But it is neither neccessary nor perhaps possible to write topological
coefficients as indices of Fredholm operators. It suffices to write them as (Connes-) pairings
between higher traces (unbounded cyclic cocycles) and K-group elements. They then depend
only on the homotopy class of a projection or a unitary which also leads to the stability result
under perturbations.
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2.1 Bulk coefficients

Transport in the bulk is described by a model without boundary. The one-particle approxima-
tion is usually considered at the zero temperature limit and therefore the expectation value is
taken over all states of energy less or equal the Fermi energy EF . Thus one takes tr = T , the
trace per unit volume, and

〈A〉 = T (ρA) , ρ = PEF
(H) (2)

where PEF
(H) is the projection onto the states of H below the Fermi energy. If δ is given by a

commutator, let’s say with B, one typically expects that the 0-order term, T (ρ[B,H ]) vanishes
due to the cyclicity of the trace. The dominant contribution is then given by the linear term
and neglecting higher terms one speaks of linear response theory.

Example 1 (conductivity tensor) The perhaps best known example arises if one takes the
derivations ∇j = ı[Xj , ·] so that q∇jH is the j-component of the usual current operator and
λj = Ej, the jth component of an external electric field. The 0-order term vanishes and
the result of the first order approximation is a 2-tensor, the conductivity tensor. This tensor
becomes anti-symmetric and topologically quantised if EF belongs to a mobility gap [BES94].
Its off-diagonal component for two-dimensional systems is then σHall, the Hall conductivity.

Example 2 (Gap Labelling) A gap label is a topological invariant which is strictly speaking
not a coefficient in the above sense, but nevertheless it is formally very close to one. It arrises
if one considers the expection of the identity operator id, i.e. 〈id〉 = T (PEF

(H)). This is not
equal to 1 since the functional is not normalized but equal to the integrated density of states at
the Fermi level. If EF belongs to a gap of the spectrum then T (PEF

(H)) (which is then called
the gap label of the gap) becomes topological as well. It is the aim of this article to identify
the boundary coefficient which corresponds to the gap label of a gap at the Fermi level.

2.2 Boundary coefficients

To describe boundary effects we consider a model on the half space {x ∈ Rd|xd ≤ s}. We will
also denote x⊥ = xd for the component perpendicular to the boundary {x ∈ Rd|xd = s}. Now
the Hamilton operator is supposed to satisfy Dirichlet boundary conditions. To distinguish
it from the case without boundary we denote it by Ĥ. It is convenient to think of Ĥ as the
restriction of a Hamiltonian H on Rd (the bulk Hamiltonian) to the half space with Dirichlet
boundary conditions.

Boundary coefficients are response coefficients which arise when the expectation is taken
with respect to edge states, i.e. states located at the boundary. It is known that such states
occurr near the Fermi level provided the latter lies in a gap of the spectrum of the bulk
Hamiltonian. In that case we may consider

〈A〉 = T̂ (ρ̂A) , ρ̂ = lim
ε→0

1

2ε
P[EF−ε,EF +ε](Ĥ) (3)

where T̂ is the trace per unit area (d − 1-dimensional volume) taken parallel to the boundary
times the usual trace perpendicular to the boundary (followed by an ensemble average specified
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in Section 3), and P[EF−ε,EF +ε](Ĥ) the spectral projection of Ĥ onto the states of energy in the
interval [EF −ε, EF +ε]. Note that we need a trace per unit area to average over edge states and
that as a consequence the above expression would be undefined if the density of states of the
bulk Hamiltonian at the Fermi level were non-zero. We note also that 〈id〉 can be interpreted
as the surface density of states.

The choice of ρ̂ is motivated by the example of a sample with strip geometry Rd−1 × [0, L].
If L is large enough so that tunneling effects between the two boundaries can be neglected
one may describe the boundary effects separately in two half-spaces, Rd−1 × R≤0 for the right
boundary and R

d−1 × R
≥0 for the left. Using symmetry the second case can be related to the

first and therefore T̂ (P[EF−ε,EF +ε](Ĥ)A) interpreted as the difference between the expectation
of A at the right and its expectation at the left boundary when an external voltage induces a
difference in the chemical potential of 2ε between the boundaries. As for small ε

T̂ (P[EF−ε,EF +ε](Ĥ)δĤ) ∼= 2εT̂ (ρ̂δĤ)

we may regard qT̂ (ρ̂δĤ) as the linear response coefficient between the voltage and δĤ . In the
above framework it appears however as a 0-order term.

Our examples below are all 0-order terms and arguments based on the cyclicity of the trace
in order to show that 〈[B, Ĥ]〉 = 0 for some operator B have to be taken with great care, since
they are generally wrong if the trace is undefined on ρ̂BĤ or ρ̂ĤB.

Example 3 (edge conductivity) As first example of a boundary coefficient we consider
again ∇j = ı[Xj, ·] so that q∇jĤ is the j-component of the usual current operator and λj = Ej ,
but we suppose the xj is parallel. This example was considered in [KS04a, KS04b] for d = 2
where it was shown in particular that

σHall = σ‖ :=
q2

~
T̂ (ρ̂∇1Ĥ)

and that it is q2

h
times an index (it does not vanish in general, since T̂ is undefined on ρ̂X1Ĥ).

It is therefore to lowest order the conductivity of the edge current.

Example 4 (gradient pressure per energy) A second example arrises if one considers a
perturbation of the system by shifting the potential but keeping the boundary fixed, i.e. δ = ∂

∂xd
.

Then the 0th order term is again non-vanishing, namely it is equal to minus the electric force
per unit area and unit energy exhibited by the edge states on the boundary.

Π := −T̂ (ρ̂
∂V

∂x⊥
).

We will see that the pressure at zero magnetic field steems from the gradient force. In a sample
with strip geometry we may then view q−1Π as the linear response coefficient yielding the ratio
between the pressure at zero magnetic field and an external voltage between the boundaries of
the strip. We refer to Π as the gradient pressure per unit energy.
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Example 5 (pressure on the boundary) Related to the above two examples is one where
the perturbation of the system arrises from shifting the boundary but keeping the potential
fixed. This yields a force on the boundary per unit area and energy. Formally δ amounts to a
derivation in s, the position of the boundary, but it is not obvious how to formulate this. In
the absense of a magnetic field one can invoke Newton’s principle (as in [Ke04]) to say that the
arrising force balances the above electrical force on the boundary. In the presence of a magnetic
field there is a contribution from a current induced by the shifting of the electric particles at
the boundary which turns out to be proportional to σ‖.

In [KS04b] the coefficient of Ex. 3 was identified with the off-diagonal coefficient of Ex. 1,
provided the Fermi-level lies in a gap of the bulk Hamiltonian. Below we show that the “coeffi-
cient” of Ex. 2 equals the one of Ex. 5 which, in turn, is a linear combination of those in Ex. 3
and Ex. 4. This is Eq. 1.

3 One-particle description by covariant families of Hamil-

tonians

Following [Pa80, Be85, Be93, KS04a] the bulk behaviour of d-dimensional aperiodic media is
described by an ensemble of operators. Such an ensemble is a covariant family of operators
{Hω}ω∈Ω on L2(Rd) indexed by the elements of a probability space (Ω,P) of configurations in
Rd. Observables are then to be averaged over the probability space to be physically meaningful.
For an aperiodic system with boundary the concept of covariant families was extended in
[KS04a] to a larger space Ω̂ which incorporates the position of the boundary and requires to
work with operators satisfying a boundary condition. While setting up the notation we explain
some of these developments below.

3.1 Pure bulk systems

Here we recall the model we use for particles moving in aperiodic systems without boundary.
Consider (Ω,P,Rd), a compact metrizable probability space with a continuous action of Rd,
denoted ω 7→ x ·ω, and an ergodic invariant probability measure P. For example, we may think
of an element ω ∈ Ω as a set of atomic positions decorated if necessary with the information
of what kind of atom there is and the action of Rd be simply by translation of the set. The
invariant measure P yields the probability that such a configuration of atoms is realized in the
physical sample and observable quantities are P-averages. The ergodicity of the measure is
needed for the physical interpretation of these averages but not for the topological arguments
of Section 4. The motion of a (charged) particle is in the one-particle picture described by a
Schrödinger equation with Hamiltonian (in units in which ~

2

2m
= 1)

Hω =
d

∑

j=1

(ı
∂

∂xj

− qAj)
2 + Vω

where A is the (linear) vector potential for the magnetic field and Vω a background potential.
How exactly Vω looks is not important, but it should depend on the background configuration

6



ω in a covariant way, namely Vω(x− y) = Vy·ω(x) (translation of the configuration amounts to
translating the potential). {Hω}ω∈Ω is then a family of operators which satisfies

U(x)HωU(x)∗ = Hx·ω (4)

where the U(x) are the magnetic translation operators. Since there is no boundary we speak
of a bulk Hamiltonian. Often Ω is the hull of a single configuration.

The spectrum of the family {Hω}ω∈Ω is defined to be the union of the spectra of Hω and
also refered to as the bulk spectrum. If ω has a dense orbit then the spectrum of Hω is equal
to the bulk spectrum.

3.2 Bulk and boundary

We add the data of the position of a possible boundary of the systems by enlarging Ω to the
non-compact space Ω̂ = Ω×(R∪∞). ∞ means here +∞ and so R∪∞ = (−∞,+∞]. The point
(ω, s) ∈ Ω̂ has now the interpretation of a configuration ω with boundary at {x ∈ Rd|xd = s},
if s <∞, or without a boundary if s = ∞. Configuration and boundary can both be translated
and so we define x ·(ω, s) = (x ·ω, s+xd) (∞+xd = ∞). We call the first d−1 components of x
its parallel components, as they are parallel to the boundary, and the last one its perpendicular
component. The measure P̂ = P × λ (λ the Lebesgues measure) is invariant under this action
of Rd and so we obtain again a Borel dynamical system (Ω̂, P̂,Rd). Now define Hω,s to be
the restriction of Hω to {x ∈ R

d|xd ≤ s} with Dirichlet boundary conditions at the boundary
{x ∈ Rd|xd = s}. This gives us a covariant family

H = {Hω̂}ω̂∈Ω̂,

namely it satisfies
U(x)Hω̂U(x)∗ = Hx·ω̂. (5)

We assume that the magnetic field is homogeneous and hence equal to a constant 2-form which
we split as

B = B‖ +
~γ

q
dx‖ ∧ dx⊥ (6)

where B‖ is the constant extension of a 2-form on the boundary. This determines the linear
coordinate x‖, which parametrises a 1-dimensional subspace of the boundary, and the constant
γ up to a sign. Then in a gauge in which Ad = 0 (Landau gauge) the magnetic translation in
the perpendicular direction ed reads (for ψ ∈ L2(Rd))

(U(ted )ψ)(x) = e−ıγtx‖

ψ(x− ted) . (7)

We denote the generator of this magnetic translation by K⊥. It is thus given by

K⊥ = ı
∂

∂x⊥
− γx‖. (8)

Note that the family H = {Hω̂}ω̂∈Ω̂ contains the pure bulk family if we set s = ∞. We
denote the pure bulk family therefore by

H∞ = {Hω,∞}ω∈Ω.
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At this point the reader might wonder why we have chosen the family {Hω̂}ω̂∈Ω̂ to describe
the bulk-boundary system and not simply {Hω,0}ω∈Ω, after all the latter is indexed by a compact
space. In fact, apart from the subfamily H∞ the two families contain the same information but
the first one proved to be useful in connection with the Wiener Hopf extension which arises
when sending the boundary to infinity.

3.3 Response coefficients for covariant families

Here we adapt the response coefficients defined in the examples of Section 2 to the formalism
of covariant families of operators. The precision we will gain will allow us also to tackle
the problem of formulating the perturbation of Ex. 5 as a derivation. We will do this by,
first, defining accurately the traces and derivations involved, and second, by regularising the
definitions of the 0th order boundary coefficients as in [KS04a].

3.3.1 Derivations and traces

Traces and derivations are the ingredients which enter not only into the construction of response
coefficients but also in that of higher traces, objects used for the construction of invariants in
non commutative topology and employed lateron.

Definition 1 Let F = {Fω̂}ω̂∈Ω̂ be a covariant family of bounded integral operators. Define the
(unbounded) derivations

(δiF )(ω,s) := lim
t→0

F(tei·ω,s) − F(ω,s)

t
, ei unit vector in i-direction

(∂sF )(ω,s) := lim
t→0

F(ω,s+t) − F(ω,s)

t
(∇jF )(ω,s) := ı[Xj, F(ω,s)] , j 6= d

provided on the r.h.s. are again bounded integral operators. We denote δ⊥ = δd.

Lemma 1 With the above notation, (δ⊥ + ∂s)F = ı[K⊥, F ] where K⊥ is the generator of the
magnetic translations perpendicular to the boundary (8).

Proof: We have (δd + ∂s)F = limt→0
Ftej ·ω̂

−Fω̂

t
and so the lemma follows by differentiation of

the covariance relation (5). 2

For the sequel, χ is a positive compactly supported function on R
d satisfying

∫

Rd dxχ(x) = 1

and χ|| a positive function on Rd which is constant in the perpendicular component, has compact
support in the parallel components, and satisfies

∫

Rd−1 dy χ
||(y, 0) = 1 (χ|| = 1 if d = 1).

Moreover let ‖T‖1 denote the (Schatten) traceclass norm of an operator T on L2(R2).

Definition 2 ([KS04a]) A bulk covariant family {Fω}ω∈Ω is called T -traceclass if ‖χFω‖1 is
integrable w.r.t. P, and we define for traceclass families

T (F∞) =

∫

Ω

dP(ω) Tr(χFω,∞),
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where Tr is the usual trace on L2(R2). A covariant family F = {Fω̂}ω̂∈Ω̂ will be called T̂ -
traceclass if ‖χ‖Fω̂‖1 is integrable w.r.t. P, and we define for traceclass families,

T̂ (F ) =

∫

Ω

dP(ω) Tr(χ‖Fω,s).

We mention as an aside that also T̂ (F ) =
∫

Ω̂
dP̂(ω̂) Tr(χFω̂) and so both traces are formally

defined in the same way. Proposition 1 shows that T (F∞) does not depend on the choice of χ
and T̂ (F ) not on the choice of χ|| and s.

Proposition 1 ([KS04a]) For covariant traceclass families on L2(Rd) with jointly continuous
integral kernels (or a finite number of isolated point singularities)

T (F∞) =

∫

Ω

dP(ω) 〈0 |Fω,∞|0 〉 ,

T̂ (F ) =

∫

Ω̂

dP̂(ω̂) 〈0 |Fω̂|0 〉 .

Furthermore, T̂ is closed under the derivations δj, ∇j and ∂s, i.e.

T̂ ◦ δj = T̂ ◦ ∇j = T̂ ◦ ∂s = 0.

Proof: The only statements which are not covered by [KS04a] are T̂ ◦ δj = 0 and T̂ ◦ ∂s = 0.
These follow directly from the invariance of P under the action of R

d and of the Lebesgue
measure under translation. 2

3.3.2 Bulk coefficients

It follows from Birkhoff’s ergodicity theorem that T (F∞) can be interpreted as the P-averaged
trace per unit (d-dimensional) volume of F∞ which coincides almost surely with trace per unit
volume of Fω,∞. The expectation 〈A〉 from (2) has to be understood as follows. The observable
A as well as the density matrix ρ = PEF

(H∞) are pure bulk covariant families and therefore
〈A〉 = T (PEF

(H∞)A) in case PEF
(H∞)A is traceclass.

Examples 1,2 have been considered in this context. If EF lies in a gap of the bulk spectrum
then PEF

(H∞) is traceclass and so the gap label of the gap at the Fermi energy well-defined.
The ergodicity of P combined with a Shubin type formula yields that for almost all ω ∈ Ω the
integrated density of states of Hω,∞ at E is equal to the gap label T (PEF

(H∞)) [Be93]. We
will not consider single systems with specific configuration ω but denote by IDS the integrated
density of the covariant family, i.e. the P-average.

As for Ex. 1, the component 1
2
(σij−σji) of the totally antisymmetric part of the conductivity

tensor of Ex. 1 can be written as q2

h
2πıT (PEF

[∇iPEF
,∇jPEF

]) (∇j can be defined by the above
formula for all j for pure bulk covariant families). This has been discussed in detail in [BES94].
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3.3.3 Boundary coefficients

T̂ (F ) is the P-averaged trace per unit (d − 1-dimensional) area of F and the expectation 〈A〉
from (3) has to be understood in such a way that A and ρ̂ = limε→0

1
2ε
PEF

(Ĥ) are covariant

families and 〈A〉 = T̂ (ρ̂A). The area is taken parallel to the boundary and so T̂ is the P-
average of the product between the trace per unit (d − 1-dimensional) volume on the parallel
components Rd−1 and the usual trace on L2(R).

For motivational reasons we now present some formal arguments. We defined the total
boundary force to be minus the variation of the energy under a variation of the position s of
the boundary. It has only non-vanishing component perpendicular to the boundary and we
concentrate on this component. One is thus tempted to write

Fb = −T̂ (ρ̂ ∂sH)

for the total boundary force per unit area and unit energy. But this is formal as its stands,
since it is not clear what ∂sH means. A formal application of Lemma 1 together with δ⊥H =
δ⊥V = − ∂V

∂x⊥ yields in the Landau gauge

Fb = −T̂ (ρ̂
∂V

∂x⊥
) + γT̂ (ρ̂∇‖H) − ıT̂ (ρ̂[

∂

∂x⊥
, H ]). (9)

The first term corresponds to the gradient force of the electric potential V per unit area and
energy of Ex. 4. The second term is proportional to the conductivity of the edge current of
Ex. 3. The third term formally vanishes by cyclicity. The r.h.s. of (9) is thus the r.h.s. of (1)
but our reasoning was non rigorous (also [ ∂

∂x⊥ , H ] is not well defined). We will arrive at the
same conclusion below using well-defined expressions.

3.4 Regularized expressions for the boundary forces

Here we propose alternative expressions for the components of the boundary force.
As in [KS04a] we define via functional calculus the following unitary operator

U = exp(−2πıG(H)) (10)

where G ∈ C∞(R) is a monotonously decreasing function with G(−∞) = 1, G(∞) = 0, and
suppG′ ⊂ ∆\G−1(1

2
).

The following theorem is essentially covered by Theorem 3 of [KS04b].

Theorem 1 Let V be a covariant family of bounded potentials on Rd, d ≤ 2, which are bounded
differentiable. Let ∆ be in a gap of the spectrum of H∞.

Then U − 1, δ⊥U , ∂sU , ∇‖U , and [ ∂
∂x⊥ ,U ] are bounded covariant families of integral opera-

tors. Moreover, U − 1 is T̂ -traceclass and

T̂ ((U∗ − 1) δ⊥U) = −2πıT̂ (G′(H)
∂V

∂x⊥
) , (11)

T̂ ((U∗ − 1)∇‖U) = 2πıT̂ (G′(H)∇‖H) , d > 1 , (12)

T̂ ((U∗ − 1) [
∂

∂x⊥
,U ]) = 0 . (13)
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Proof: The traceclass property was shown in [KS04b]. That δ⊥U is a covariant family of
bounded integral operators can be seen upon applying Duhamel’s formula and the hypothesis
that δ⊥H = − ∂V

∂x⊥ is bounded. The arguement leading to (11) is then exactly as in Theorem 3
of [KS04b] if one replaces the derivation ∇1 there by δ⊥.

We indicate why ∂
∂x⊥U , U ∂

∂x⊥ , and [X‖,U ] are covariant families of bounded integral op-
erators. In fact, the (slightly cumbersome) arguments leading to the sufficient estimates on
the integral kernels of ∂

∂x⊥U and U ∂
∂x⊥ are outlined at the end of the proof of Proposition 3 of

[KS04b] and the term [X‖,U ] is literally treated in Theorem 3 there. By Lemma 1 also ∂sU is
a covariant family of bounded integral operators.

Since ∂
∂x⊥U and U ∂

∂x⊥ are covariant families of bounded integral operators we can employ

the cyclicity of the trace to conclude T̂ ((U∗ − 1)[ ∂
∂x⊥ ,U ]) = 0 so that Theorem 3 of [KS04b]

yields (12) (∇1 = ı[X‖, ·]). It should be stressed that the cyclicity of the trace cannot be used
to conclude T̂ ((U∗ − 1)[X‖,U ]) = 0 since X‖U is not covariant. 2

Remark 1 The above theorem is restricted to d ≤ 2 but its extension to arbitrary dimension
should at least without magnetic field not pose great difficulties. The crucial traceclass property
mentionned in the theorem follows from the decay of integral kernels of F (H) for sufficiently
regular functions F which have support contained in ∆. Both, U − 1 and G′ are of that type.
The required decay was shown in Theorem 1 of [KS04a]. Without magnetic field the analysis
is simpler since one can work with the well-known exact expression for the complex heat kernel
and treat the potential perturbatively.

The r.h.s. in the formulas of the theorem hold for all choices of G subject to the above
conditions and we may view ρ̂ as being approximated by −G′(H) ifG approximates the indicator
function on R≤E. We therefore define the regularised expression for the boundary force as
follows.

Definition 3 Let the Fermi energy EF lie in a gap ∆ of the spectrum of H. The total boundary
force per unit area and unit energy is

Fb =
1

2πı
T̂ ((U∗ − 1) ∂sU).

By Lemma 1 and Theorem 1 the total boundary force has the two contributions

Fb =
1

2πı

(

−T̂ ((U∗ − 1) δ⊥U) − γ T̂ ((U∗ − 1)∇‖U)
)

(14)

= T̂ (G′(H)
∂V

∂x⊥
) − γT̂ (G′(H)∇‖H) (15)

= Π +
γ~

q2
σ‖ . (16)

Here σ‖ is the direct conductivity of the current in the direction x‖ (in d = 1 this term is
absent). We stress that the above expressions have there physical interpretation of Section 2
not for a single system defined by a fixed ω̂ ∈ Ω̂ but for their P-averages.
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It is a general fact of non commutative topology that expressions like T̂ ((U∗−1) δU), where
δ is a closed derivation leaving the trace invariant, depend only on the homotopy class of the
unitary U in the C∗-algebra on which the trace and the derivation are (densely) defined. they
are thus a topological invariants. If the algebra is separable (as is the case below) there are
only countably many homotopy classes of unitaries and we may say that T̂ ((U∗ − 1) δ⊥U) is
topologically quantised. Equations 14–16 imply therefore that Fb, Π and σ‖ are topologically
quantised. This implies that they are stable against (covariant) perturbations of the potential
which do not lead to a closing of the gap at the Fermi energy. It means also that they take values
in specific discrete (but perhaps dense) subgroups of R which depend only on the topology of
the system. In fact, Theorem 3 of [KS04b] contains as well an identification of h

q2σ
‖ with an

index and hence an integer. This relies on the specific form of the derivation ∇1 and cannot be
expected for the derivation δ⊥. We will see below that, at least for a large class of systems, Π
lies in the gap labelling group without magnetic field.

4 Relation between the boundary force and the inte-

grated density of states

The following theorem is the main result and leads together with (14–16) to Equation 1.

Theorem 2 For energies E in gaps

Fb(E) = IDS(E).

Its proof will be given below in the framework of non-commutative topology and requires a
reformulation in terms of operator algebras.

4.1 The one-particle approximation in the operator algebraic for-
mulation

When studying topological properties of covariant families of operators it proved most useful
to view them as representations of crossed product C∗-algebras. In the gauge we use the
C∗-algebra for the bulk-boundary system is

A = (C0(Ω̂) o R
d−1)τ⊗β⊥R

where C0(Ω̂)oRd−1 = C0(Ω̂)oα‖,B‖R
d−1 is the crossed product w.r.t. to the action α

‖
tej

(h)(ω, s) =

h(tej · ω, s), j 6= d, twisted by B‖, and (f : Rd−1 → C0(Ω̂))

(τ ⊗ β⊥)t(f)(y)(ω, s) = β⊥
t (f)(y)(ω, s+ t) , (17)

β⊥
t (f)(y)(ω, s) = eıγty‖

f(y)(ted · ω, s) . (18)

The component y‖ of y is defined by the splitting of the magnetic field in (6). We will also need
to consider the actions α⊥ and τ on A given by

τt(f)(x)(ω, s) = f(x)(ω, s+ t) , (19)

α⊥
t (f)(x)(ω, s) = f(x)(ted · ω, s) . (20)

12



The algebra for the bulk system A∞ is the image of the surjective algebra homomorphism

ev∞ : A → A∞ := (C(Ω) o R
d−1) oβ⊥ R

given by evaluating the second component of (ω, s) ∈ Ω̂ at infinity.
The covariant families H and H∞ are associated with A and A∞, respectively, in the

following sense. The evaluation representations evω̂ : C0(Ω̂) → C and evω̂ ◦ ev∞ : C(Ω) → C

induce families of representations {πω̂}ω̂∈Ω̂ of A and πω = πω̂ ◦ ev∞ of A∞ on L2(Rd) [KS04b].
Let F : R → C be a continuous function which vanishes at 0 and ∞. Then F (H) = {F (Hω̂}ω̂∈Ω̂

belongs to A in the sense that there exists an A ∈ A such that πω̂(A) = F (Hω̂). Likewise,
πω̂(B) = F (Hω) for B = ev∞(A). This has been proven rigorously for d ≤ 2 and to indicate the
reasoning we provide here some details in case B‖ = 0. In this case the magnetic translations
parallel to the boundary are ordinary translations and phases appear only in U(x⊥ed) (7).
Moreover, if A : R → (Rd−1 → C0(Ω̂)) then the integral kernel of πω̂(A) is

〈(x, x⊥) |πω̂(A)|(y, y⊥) 〉 = e−ıγ(x‖−y‖)x⊥

A(x⊥ − y⊥)(x− y)(−(x, x⊥) · ω̂) . (21)

It follows that U(x )πω̂(A)U(x )∗ = πx·ω̂(A) and so {πω̂(A)}ω̂∈Ω̂ is a covariant family of operators.
Any covariant family of bounded integral operators with sufficient continuity properties will
therefore be represented by an element of A. Such continuity properties have been established
in d = 2 for half-sided operators [KS04a] (the case without boundary can also be found in
[Be93] for any d).

It is straightforward to see that the derivations and traces defined in Section 3.3.1 are
obtained from the following derivations and traces on A or A∞:

δ⊥A = lim
t→0

α⊥
t (A) − A

t
,

∂sA = lim
t→0

τt(A) − A

t
,

(∇jA)(x) = ıxjA(x), j 6= d,

T̂ (A) =

∫

Ω̂

dP̂(ω̂) A(0)(ω̂),

T (B) =

∫

Ω

dP(ω)B(0)(ω).

Here A ∈ A, B ∈ A∞ and we have used the same notation as earlier (although it should strictly
speaking read for instance δj(π(A)), etc.).

4.1.1 Bulk and boundary topological response coefficients as pairings

According to [KS04b] the topological invariants we are interested in are obtained from the
K-groups and higher traces of the algebras in the Wiener Hopf extension. Bulk invariants
are obtained if one pairs K-group elements with higher traces over the bulk algebra A∞ and
boundary invariants steem from such pairings over the edge algebra E .
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For gap labels this is the K-theoretic formulation of the gap labelling due to Bellissard
[Be85, Be93]. The label of a gap ∆ in the bulk spectrum is given by 〈T , [PE]〉, E ∈ ∆, where
〈·, ·〉 denotes Connes pairing with the normalisation used in [KS04b],

〈T , [PE]〉 = T (PE) = IDS(E).

To formulate the boundary force per unit area and energy as a pairing we consider 1-traces
constructed from the trace T̂ and derivations which leave this trace invariant [Co94]. Let δ be
a (closed) derivation on E such that T̂ ◦ δ = 0. Then

T̂δ(A,B) := T̂ (AδB)

is a 1-trace on E and Connes pairing of it with a K1-class of E represented by a unitary U reads
in the normalisation we use

〈T̂δ, [U ]〉 =
1

2πı
T̂δ(U

∗ − 1, U) .

Thus the response coefficients at energy E ∈ ∆ of Examples 3–5 read

σe = −〈T̂∇‖ , [U ]〉 (22)

Π = −〈T̂δ⊥ , [U ]〉 (23)

Fb = 〈T̂∂s
, [U ]〉 . (24)

In particular they depend only on the K1-class of U .

4.1.2 Linking bulk and boundary invariants

The algebra homomorphism ev∞ : A → A∞ corresponds to pushing the boundary to ∞. The
kernel of ev∞ is generated by elements which are represented by covariant families of operators
which have integral kernels decaying away from the boundary and therefore may be associated
with the observables located near the boundary. We denote this algebra by E (for edge). The
resulting exact sequence

0 → E ↪→ A
ev∞−→ A∞ → 0 (25)

ties the topological properties of A∞ and E , i.e. of bulk and boundary, together. A is called
the Wiener Hopf extension of A∞ by E . Such an extension can always be constructed if one
has a crossed product algebra with R [Ri82].

By functoriality of K the exact sequence (25) gives rise to a boundary map ∂ : K(A∞) →
K(E). The part on degree 0, ∂0 = exp : K0(A∞) → K1(E), also called exponential map, can
be evaluated on K0-classes of spectral projections of H∞ on gaps. In fact, if ∆ = [E0, E1] is an
interval in a gap of the spectrum of the (pure bulk) Hamiltonian H∞ and E ∈ ∆ then

exp([PE(H∞)]) = [U ] (26)

where U(∆) = exp(−2πıG(H)) is as in (10) constructed from the bulk-boundary Hamiltonian.
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In [KS04b] results of [ENN88] concerning the cyclic cohomology of a smooth variant B∞

of B and its smooth crossed product were extended to β-invariant n-traces over B: If η is an
n-trace over the C∗-algebra B which is the character of a β-invariant cycle (Ω,

∫

, d) then

#βη(f0, . . . , fn+1) =

n+1
∑

k=1

(−1)k

∫

(f0df1 · · ·∇fk · · · dfn+1) (0) , ∇f(x) = ıxf(x) (27)

defines a n + 1-trace on the L1-crossed product of B with (R, β) whose pairing extends to the
K-groups of B oβ R and satisfies

〈#βη, x〉 = −
1

2π
〈η, ∂x〉 , x ∈ K(B oβ R) . (28)

In our more specific context (B = C(Ω) o Rd−1, β = β⊥) the last equation relates a bulk
invariant (l.h.s.) to a boundary invariant (r.h.s.). In particular

〈#β⊥η, [PE(H∞)]〉 = −
1

2π
〈η, [U ]〉

and we need the inverse of #β⊥ to solve #β⊥η = T for η.
As was shown in [ENN88], #β has an inverse in periodic cyclic cohomology and this inverse

is essentially given by #β̂ . Here β̂ω : B oβ R → B oβ R: β̂ω(f)(t) = e−itωf(t) is the action of

the dual group R̂ ∼= R on the crossed product, and the double crossed product B oβ R oβ̂ R̂

is identified with B ⊗ K. We need the expression of this map on higher traces whose image is
a higher trace on the ideal of the Wiener-Hopf extension and therefore present some details.
Fouriertransformation of the suspension variable induces an isomorphism F : SBoτ⊗βR ∼= Boid

R̂oτ̂⊗βR where (τ̂⊗β)t(f)(ω) = e−itωβt(f(ω)). Combined with φ : BoidR̂oτ̂⊗βR → BoβRoβ̂R̂:

φ(f)(t)(ω) = e−itωf(ω)(t) we obtain the isomorphism ψ = φ ◦ F : SB oτ⊗β R → B oβ R oβ̂ R̂.
Then, for a β-invariant n-trace, ψ∗#β̂#βη = #τ⊗βF∗#idη is a n+ 2-trace on SB oτ⊗β R which
by periodicity of the pairing (c.f. Appendix A of [KS04b] for our normalisation) satisfies

−2π〈ψ∗#β̂#βη, x〉 = 〈η, x〉 , x ∈ K(B) .

〈η, x〉 = 〈ψ∗#β̂η, ∂x〉 , x ∈ K(B oβ R) . (29)

Since (27) involves an evaluation of the integrand at 0 the image of #β on β-invariant n-traces

is β̂-invariant and (27) can be employed for computing #β̂ .

Proposition 2 Let T be a β̂-invariant 0-trace on Boβ R then ψ∗#β̂T is a 1-trace on SBoτ⊗βR

and

ψ∗#β̂⊥T (f0, f1) = T

(
∫

R

dsf0∂sf1(s)

)

.

Proof: Let fj : R → SB. By (27) ψ∗#β̂T (f0, f1) = T ((ψ(f0)∇ψ(f1))(0)) with ∇ψ(f)(x̂) =

ıx̂ψ(f)(x̂) where 0, x̂ ∈ R̂. Applying ψ is essentially Fourier-transforming the dual variable x̂
which becomes the suspension variable s. Under this transformation ∇ becomes ∂s and the
evaluation on 0 ∈ R̂ the integral over s. 2

15



Proof of Theorem 2 The last proposition applied to our particular case of interest yields

〈T , [PE(H∞)]〉 = 〈ψ∗#β̂⊥T , [U(∆]〉 =
1

2πı
T̂ ((U∗ − 1)∂sU) (30)

which proves Theorem 2 since the left hand side is IDS(E) and the right hand side Fb(E).

Remark 2 This result can also be obtained by applying directly Connes’ formula of [Co81],
because the exponential map of the Wiener Hopf extension is (in our normalisation minus)
the inverse of the Connes Thom isomorphism. Denoting Ť : B = C(Ω) o R

d−1 → C, Ť (f) =
P(f(0)) that formula reads, for unitaries u in the unitalisation of B with u− 1 ∈ B,

T (exp−1[u]) = −
1

2πı
Ť ((u∗ − 1)δu)

where δ is the derivation generating the action β⊥. Under the isomorphism SBoτ⊗β⊥R ∼= B⊗K,

T̂ is identified with Ť ⊗ Tr. The derivation of (18) yields δ = δ⊥ + γ∇‖. Finally (13) implies
that the above expression coincides with (30).

4.2 Gap-labelling group for systems with magnetic field

The gap labelling group for a system with observable C∗-algebra C and trace tr is 〈tr, K0(C)〉.
A lot of work has been devoted to computing this group for the type of crossed products
considered here. With the notable exception of the rotation algebra (in which the Hofstadter
Hamiltonian lies) the known results concern zero magnetic field.

We note that K0(A) vanishes [Ri82] and so the gap-labelling for the bulk-boundary system
is trivial. Indeed, H is not expected to have gaps in its spectrum, the edge states fill the gaps.

We consider here the case of a pure bulk system with homogenous magnetic field and show
that this situation can be related to the case without magnetic field. We use the results of the
last section making a choice of direction of the boundary such that the first part B‖ in the
splitting (6) vanishes. Then γ = qB

~
and

A = Aγ = B oβγ R

where B = C0(Ω̂)oα‖ Rd−1 and we have denoted τ ⊗β⊥ now by βγ to emphasise its dependence
on γ. If clarity demands it we also write A∞

γ and Eγ for the quotient and the ideal in the
Wiener Hopf extension and T γ, T̂ γ for the traces. We recall that Eγ = SBoβγ R is isomorphic

to B ⊗ K for all γ and under this isomorphism T̂ γ is mapped onto Ť ⊗ Tr where Ť : B → C,
Ť (f) = P(f(0)) and Tr is the standard trace. Thus unlike the trace T γ on A∞

γ which depends
on γ (recall that the trace on the projection of the lowest Landau level is proportional to γ)
T̂ γ is invariant under translation of γ. This is crucial for the following proposition.

Proposition 3 〈T̂ γ

δ⊥
, K1(E

γ)〉 does not depend on γ. In particular, in d = 2, the gradient
pressure per energy Π is constant in γ as long as the gap at the Fermi energy stays open.
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Proof: We use similar arguments as in [KS04a]. Consider the C∗-algebra SSB oβ̃ R, the
additional suspension variable playing the role of γ, where, for f : R → SB

β̃x⊥(f)(γ) = β
γ

x⊥(f)(γ).

This is the total algebra of a C∗-field over R (the space of γ’s) which is trivial since all fibres
are isomorphic algebras. If we restrict the γ-variable to a closed interval I = [γ0, γ1] we obtain
a trivial C∗-field over I and the corresponding ENN-map µ : K1(SB oβγ0 R) → K1(SB oβγ1 R)
is an isomorphism [ENN93, KS04b].

We construct a 2-trace over this algebra as in Prop. 3 of [KS04a]. For that we consider on
this algebra the 0-trace T̂ s =

∫

R
dγT̂ γ, i.e. for F : R → SSB

T̂ s(F ) =

∫

R

dγ

∫

R

dsŤ (F (0)(γ)(s)).

As mentioned above, T̂ γ and hence also T̂ s is invariant under the R-action given by translating
the γ-variable. Furthermore, this action commutes with the fibrewise extension of the action
α⊥. It therefore follows that ∂γ and the fibrewise extension of δ⊥ (also denoted by the same

letter) are two commuting derivations on SSB oβ̃ R which leave T̂ s invariant. By Prop. 3 of
[KS04a]

(SSB oβ̃ R ⊗ ΛC
2, d, T̂ s ⊗ ı)

defines an (unbounded) 2-cycle for SSB oβ̃ R where ΛC2 is the Grassmann algebra generated
by two elements ξ1, ξ2, ı(ξ1ξ2) = 1, and

dF ⊗ 1 = δ⊥(F ) ⊗ ξ1 + ∂sF ⊗ ξ2 , d(1 ⊗ ξj) = 0 .

If we restrict the C∗-field to a sub-interval I = [γ0, γ1] then the above cycle restricts to a chain
with boundary

(SB oβγ0 R ⊗ ΛC ⊕ SB oβγ1 R ⊗ ΛC, d′,−T̂ γ0 ⊗ ı′ ⊕ T̂ γ1 ⊗ ı′)

the Grassmann algebra being that generated by ξ1, ı
′(ξ1) = 1, and d′f ⊗ 1 = δ⊥(f) ⊗ ξ1,

d′(1 ⊗ ξ1) = 0. This is a unbounded 1-cycle over SB oβγ0 R ⊕ SB oβγ1 R whose character is

−T̂ γ0

δ⊥
⊕ T̂ γ1

δ⊥
. As in Prop. 7 of [KS04b] follows that

〈T̂ γ0

δ⊥
, [u]〉 = 〈T̂ γ1

δ⊥
, µ([u])〉

which implies the first statement of the proposition.
Π = T̂ (G′(H) ∂V

∂x⊥ ) depends a priori on γ. By Theorem 1 of [KS04a] we have |〈x|G′(Hω,s)|y〉| ≤
C

1+|x2+s|2+|y2+s|2
if G is C9. The constant C is uniform in ω and depends continuously on γ.

Since ∂V
∂x⊥ is bounded it follows that Π depends continuously on γ. On the other hand Π is

an element of the sub-group 〈T̂ γ

δ⊥
, K1(E

γ)〉 which, as we just saw, does not depend on γ and is
discrete since Eγ is separable. The second statement follows therefore from the continuity of Π
in γ. 2
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Theorem 3 〈T , K0(A∞
γ)〉 ⊂ 〈T , K0(A∞

0)〉 + γ〈T̂∇‖ , K1(E
γ)〉.

Proof: By the results of the last section 〈T , K0(A∞
γ)〉 ⊂ 〈T̂δ⊥ , K1(E

γ)〉 + γ〈T̂∇‖ , K1(E
γ)〉 and

〈T , K0(A∞
0)〉 = 〈T̂δ⊥ , K1(E

0)〉. The theorem thus follows from the last proposition. 2

It was shown in [KS04b] for d = 2 that 〈T̂∇‖ , [u]〉 is an index and hence an integer. The
gap-labelling group has thus at most one more generator in d = 2.

4.2.1 Systems with Cantor transversal

(Ω,Rd) is a dynamical system with invariant measure P. In the case where Ω has a transversal
X which is a Cantor set and reduces the dynamical system to (X,Zd) (we simply say that the
system has a Cantor transversal) one can say a lot more about the gap-labelling group. The
algebra A∞

γ is Morita equivalent to the groupoid C∗-algebra C∗(G, γ), twisted by the magnetic
field γ, of an r-discrete groupoid G whose unit space is X. P induces a measure on X and
a trace τ on the groupoid C∗-algebra. If the magnetic field is zero the groupoid C∗-algebra
becomes the crossed product algebra of (X,Zd) and, as was recently shown [BBG, BO03, KP03]

〈T , K0(A∞
0)〉 = Z[P]. (31)

Z[P] is the Z-module generated by the measures of the clopen subsets of X. It is independent of
the choice of the transversal and has an interpretation as the module generated by the relative
frequencies of atomic clusters appearing in the solid.

Corollary 1 For systems with Cantor transversal

Z[P] + γZ ⊂ 〈T , K0(A∞
γ)〉 ⊂ Z[P] + γ〈T̂∇‖ , K1(E

γ)〉

the inclusions being equalities if d = 2.

Proof: The inclusion C(X) ⊂ C∗(G, γ) induces an inclusion Z[P] ⊂ 〈τ,K0(C
∗(G, γ))〉 =

〈T , K0(A∞
γ)〉.

The inclusion C o Rd−1 oβγ R ⊂ C(Ω) o Rd−1 oβγ R (here we view C as the constant

functions in C(Ω)) can be used to see that 〈T , K0(A∞
γ)〉 ∩ 〈T̂ γ

δ⊥
, K1(E

γ)〉 6= ∅. In fact, in d = 2
the projection on the lowest Landau level gives rise to an element in the intersection and a
similar projection can be constructed in higher dimensions.

This together with (31) implies the inclusions stated in the theorem. Moreover, in d = 2,
〈T̂∇‖ , K1(E

γ)〉 = Z. 2
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