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Abstract

We construct conjugate operators for the real part of a completely non
unitary isometry and we give applications to the spectral and scattering the-
ory of a class of operators on (complete) Fock spaces, natural generalizations
of the Schédinger operators on trees. We consi@éralgebras generated by
such Hamiltonians with certain types of anisotropy at infinity, we compute
their quotient with respect to the ideal of compact operators, and give formu-
las for the essential spectrum of these Hamiltonians.

1 Introduction

The Laplace operator on a graphacts on functiong : I' — C according to the
relation

(Af) () =Y (fly) = f(@), (1.1)

Yy

wherey < r means that andy are connected by an edge. The spectral analysis
and the scattering theory of the operatorg®(l’) associated to expressions of the
form L = A+ V,whereV is areal function of’, is an interesting question which
does not seem to have been much studied (we have in mind here only situations
involving non trivial essential spectrum).



Our interest on these questions has been aroused by the work of C. Allard and
R. Froese [All, AlF] devoted to the case whErns a binary tree: their main results
are the construction of a conjugate operatorffarnder suitable conditions on the
potentialV and the proof of the Mourre estimate. As it is well known, this allows
one to deduce various non trivial spectral properties, dbr example the absence
of the singularly continuous spectrum.

The starting point of this paper is the observation thatig a tree thert?(I")
can be naturally viewed as a Fock spaoeer a finite dimensional Hilbert space
and that the operatat has a very simple interpretation in this framework. This
suggests the consideration of a general class of operators, abstractly defined only
in terms of the Fock space structure. Our purpose then is twofold: first, to construct
conjugate operators for this class of operators, hence to point out some of their
basic spectral properties, and second to reconsider the kind of anisotropy studied
in [Gol] in the present framework.

It seems interesting to emphasize the non technical character of our approach:
once the correct objects are isolated (the general framework, the notion of number
operator associated to an isometry, @fealgebras of anisotropic potentials), the
proofs are very easy, of a purely algebraic nature, the arguments needed to justify
some formally obvious computations being very simple.

We recall the definition of a-fold tree with origine, wherev is a positive
integer and, = 2 corresponds to a binary tree (see [Gol]). Udbe a set consisting
of v elements and let

r=|Jar (1.2)

n>0

where A" is then-th Cartesian power aofl. If n = 0 then A° consists of a single
element that we denote An elementr = (aj,a2,...,a,) € A™ is written
T = aas...a, and ify = biby...b,, € A™ thenxy = a1as...a,b1bs ... b, €
A"T™ with the conventione = ex = z. This provided” with a mondad structure.
The graph structure o is defined as followsz < y if and only if there isa € A
such thaty = za or x = ya.

We embedD” in ¢2(T") by identifyingz € T' with the characteristic function
of the set{x}. ThusT becomes the canonical orthonormal basig*dl). In
particular, linear combinations of elementdtdre well defined elements 61(T),
for exampled . 4 a belongs to/?(I") and has norm equal tg/v.

Due to the monid structure ofl’, each element of the linear subspace gen-
erated byl" in ¢2(T") defines two bounded operatoxs and p,, on /2(T"), namely
the operators of left and right multiplication hy It is then easy to see that if

! Note that we use the notion of Fock space in a slightly unusual sense, since no symmetrization
or anti-symmetrization is involved in its definition. Maybe we should say “Boltzmann-Fock space”.



v =Y ,c4athen the adjoint operatgr; acts as follows: ifc € I' thenpjz = 2/,
wherez’ = 0 if x = e andz’ is the unique element ii such that: = 2’a for some
a € A otherwise. Thus the Laplace operator defined by (1.1) can be expressed as
follows:

A=p,+p,+e—(r+1)

In the rest of this paper we shall not includeAnthe termse — (v + 1) because

e is a function o™ with support equal tde}, hence can be considered as part of
the potential, and + 1 is a number, so has a trivial contribution to the spectrum. It
will also be convenient to renormalize by replacingv by a vector of norm /2,

hence by /(2\/v)ifv=">" ., a.

We shall explain now how to pass from trees to Fock spaces. We use the fol-
lowing equality (or, rather, canonical isomorphism)Aif B are sets, then

*(A x B) = *(A) ® (*(B).

Thus/?(A™) = 2(A)®" if n > 1 and clearly/?(A°) = C. Then, since the union
in (1.2) is disjoint, we have

() = é 2(A") = éﬁ(z‘l)@"
n=0 n=0

which is the Fock space constructed over the “one particle” Hilbert space
¢%(A). Thus we are naturally led to the following abstract framework. i die a
complex Hilbert space and le¥ be the Fock space associated to it:

H = é HEm, (1.3)
n=0

Note thatH could be infinite dimensional, but this is not an important point here
and in the main applications we assume it finite dimensional. We choose an arbi-
trary vectoru € H with ||u|| = 1 and consider the operatdr = p,, : & — A
defined byUf = f @ uif f € H®™. Itis clear that/ is an isometry o7’ and

the self-adjoint operator of interest for us is

1
A=RelU = _(U+U"), (1.4)

our purpose being to study perturbatiahs= A + V' where the conditions ol
are suggested by the Fock space structutgofin the second part of the paper we
shall replaceA by an arbitrary self-adjoint operator in tlig*-algebra generated
by U.



Translating the problem into a Fock space language does not solve it. The
main point of the first part of our paper is that we treat a more general problem.
The question is: given an arbitrary isometry on a Hilbert spgtand definingA
by (1.4), can one construct a conjugate operator for it? We also would like that this
conjugate operator be relatively explicit and simple, because we should be able to
use it also for perturbations of A.

If U is unitary, there is no much hope to have an elegant solution to this prob-
lem. Indeed, for most unitaryy the spectrum ofA will be purely singular. On the
other hand, we show that in the opposite case of completely non ubitahere is
a very simple prescription for the construction of a "canonical” conjugate operator.
Sections 2 and 3 are devoted to this question in all generality and in Section 4 we
give applications in the Fock space framework.

The construction is easy and elementary. Uebe an isometry on a Hilbert
space.”z. We callnumber operator associated {6 a self-adjoint operatoiv
on.7Z such thatU NU* = N — 1. The simplest examples of such operators are
described in Examples 2.5 and 2.6. It is trivial then to check tha$, i the
imaginary part of/, the operatorl := (SN + N S)/2, satisfie§A,iA] = 1 — A2,
hence we have a (strict) Mourre estimate[em, | for eacha €]0, 1].

The intuition behind this construction should be immediate for people using
the positive commutator method: in Examples 2.5 and 2.6 the opetaisithe
Laplacian onZ or N respectively andb is the operator of derivation, the analog
of P = —i% onRR, so it is natural to look after something similar to the position
operator and then to consider the analog (@@ + QP)/2. Note that we got
such a simple prescription because wertitimake a Fourier transform in order to
realizeA as a multiplication operator, as it is usually done when studying discrete
Laplacians (e.g. in [AIF]). Note also that the relati@iVU* = N — 1 is a discrete
version of the canonical commutation relations, cf. (2) of Lemma 2.4.

In the unitary case the existence Bfis a very restrictive condition, see Ex-
ample 2.5. The nice thing is that in the completely non unitary ¢asxists and
is uniquely defined. This is an obvious fact: the formal solution of the equation
N =1+ UNU* obtained by iteratiolN = 1 + UU* 4+ U%U*? + ... exists as a
densely defined self-adjoint operator if and onl/if* — 0 strongly ons#’, which
means that/ is completely non unitary. Finally, observe that the operatQren
the Fock space are completely non unitary, so we can apply them this construction.

Our notation N should not be confused with that used in [AIF]: ol is
proportional to theirR — N + 1, in our notationsR being the particle number
operatorN (see below). We could have used the notatipfor our IV, in view of
the intuition mentioned above. We have preferred not to do so, because the number
operator associated 10 in the tree case has no geometric interpretation, as we
explain below.



There is no essential difference between the tree model and the Fock space
model, besides the fact that we tend to emphasize the geometric aspects in the first
representation and the algebraic aspects in the second one. In fdds  finite
dimensional Hilbert space equipped with an orthonormal b&sisH then the tree
I' associated to! can be identified with the orthonormal basis.#f canonically
associated tal, namely the set of vectors of the fomm® as - - - @ a,, with a, € A.

In other terms, giving a tree is equivalent with giving a Fock space over a finite
dimensional Hilbert space equipped with a certain orthonormal basis. However,
this gives more structure than usual on a Fock space: the notions of positivity and
locality inherent to the spacg&(I") are missing in the pure Fock space situation,
there is no analog of the spad@sl"), etc. But our results show that this structure
specific to the tree is irrelevant for the spectral and scattering properties of

We stress, however, that an important operator in the Fock space setting has a
simple geometric interpretation in any tree version. More preciselyVidte the
particle number operatodefined ons# by the conditionlNV f = nf if f belongs
to H®". Clearly, if 57 is represented a&(I"), then N becomes the operator of
multiplication by the functiond, whered(x) = d(z,e) is the distance from the
point x to the origine (see [Gol]).

On the other hand, the number operaddrassociated to an isometry of the
form U = p, is quite different from/V, it has not a simple geometrical meaning
and is not a local operator in the tree case, unless we are in rather trivial situations
like the caser = 1 (see Example.6). For this reason we make an effort in
Section 4 to eliminate the conditions from Section 3 involving the opersitand
to replace them by conditions involviny. This gives us statements like that of
the Theorem 1.1 below, a particular case of our main result concerning the spectral
and scattering theory of the operatdrs

We first have to introduce some notations. lgtand1-, be the orthogonal
projections of7# onto the subspacg$®” and, ., H®* respectively. For real
s let /() be the Hilbert space defined by the norm

17 = 12012 + D nlI2a

n>1

If T"is an operator on a finite dimensional sp&tthen(T') is itsnormalized trace
(T') = Tr(T")/ dim E. We denote by (L) ando,, (L) the essential spectrum and
the set of eigenvalues @f. As a consequence of Theorem 4.6, we have:

Theorem 1.1 Assume thafd is finite dimensional, choose € H with |lu|| =

1, and let us seA = (p, + p;)/2. LetV be a self-adjoint operator of the
formV = > o, Val,, With V,, € B(H®"), lim, . [|V4]| = 0, and such that
IVie — (Vill + Vs — Vi ® 1yl < d(n) where§ is a decreasing function
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such that), d(n) < oco. LetWW be a bounded self-adjoint operator satisfying
Yo l[Wlsy|| < co. WesetLy = A+ VandL = Ly + W. Then:

(1) oess (L) = [-1,+1];

(2) the eigenvalues af distinct from=1 are of finite multiplicity and can accumu-
late only toward+1;

()if s > 1/2and\ ¢ k(L) := o, (L) U{£1}, thenlim,o(L — A —iu) ! exists

in norm inB( ), #{_s)), locally uniformly in\ € R\ x(L);

(4) the wave operators for the pafi., Ly) exist and are complete.

These results show a complete analogy with the standard two body problem
on an Euclidean space, the particle number operAtoplaying the ble of the
position operator. Note th&f W are the analogs of the long range and short range
components of the potential. See Proposition 4.4 for a result of a slightly different
nature, covering those from [AIF]. Our most general results in the Fock space
setting are contained in Theorem 4.6.

The second part of the paper (Section 5) is devoted to a problem of a completely
different nature. Our purpose is to compute the essential spectrum of a general class
of operators on a Fock space in terms of their “localizations at infinity”, as it was
done in [Gel] for the case whdnis an abelian locally compact group.

The basic idea of [Gel] is very general and we shall use it here too: the first step
is to isolate the class of operators we want to study by consideringtregebra
% generated by some elementary Hamiltonians and the second one is to compute
the quotient of¢” with respect to the ideady = ¢’ N K(.7#°) of compact operators
belonging to%. Then, if L € % the projectionL of L in the quotients’ /%) is
the localization ofL at infinity we need (or the set of such localizations, depending
on the way the quotient is represented). The interegt cdmes from the relation
oess(L) = o(L). In all the situations studied in [Gel] these localizations at infinity
correspond effectively with what we would intuitively expect.

We stress that both steps of this approach are non trivial in general. The algebra
% must be chosen with care, if it is too small or too large then the quotient will
either be too complicated to provide interesting information, or the information
we get will be less precise than expected. Moreover, there does not seem to be
many techniques for the effective computation of the quotient. One of the main
observations in [Gel] is that in many situations of interest in quantum mechanics
the configuration space of the system is an abelian locally compact group and then
the algebras of interest can be constructed as crossed products; in such a case there
is a systematic procedure for computing the quotient.

The techniques from [Gel] cannot be used in the situations of interest here,
because the moii structure of the tree is not rich enough and in the Fock space
version the situation is even worse. However, a natrahlgebra of anisotropic
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operators associated to the hyperbolic compactification of a tree has been pointed
out in [Gol]. This algebra contains the compact operatoré’¢hi) and an embed-
ding of the quotient algebra into a tensor product, which allows the computation of
the essential spectrum, has also been described in [Gol]. In Section 5 and in the Ap-
pendix we shall improve these results in two directions: we consider more general
types of anisotropy and we develop new abstract technigues for the computation of
the quotient algebra. To clarify this, we give an example below.

We place ourselves in the Fock space setting \itfinite dimensional and we
fix a vectoru € H and the isometry/ associated to it. We are interested in self-
adjoint operators of the forth = D + V whereD is a “continuous function” ot/
andU*, i.e. it belongs to th€'*-algebraZ? generated by/, andV is of the form
>~ V1, whereV,, are bounded operators @fi*" and are asymptotically constant
in some sense (when— oo). In order to get more precise results, we make more
specific assumptions on the operatbys

Let A C B(H) be aC*-algebra withl; € A. Let <, be the set of operators
V as above such thaf, € A®", sup ||V, < co and||V;, = V,, 1 ® 1] — O as
n — oo. If v = 1, i.e. in the setting of Example 2.67%, is the algebra of bounded
sequences of vanishing oscillation at infinity. We mention thaithealgebra of
bounded continuous functions with vanishing oscillation at infinity on a group has
first been considered in the context of [Gel] in [Man] (cf. also references therein).

Observe that the algebrag®” are embedded in the infinite tensor product
C*-algebraA®>. Thus we may also introduce th&*-subalgebrasz,, of .,
consisting of the operatorg such thatl,, := limV,, exists in norm inA®>,
Note that the subset{ of operatorsd/ such thatim V,, = 0 is an ideal ofe,.

The algebras of Hamiltonians of interest for us can now be defined @3*the
algebrass,, and%,, generated by the operators of the fofm= D + V where
D is a polynomial inU, U* andV € <, or V € </, respectively. Let us denote
6o = Gvo N K(F). Below we assumé/ of dimension at least, see Proposition
A.5 for the one dimensional case.

Theorem 1.2 There are canonical isomorphisms
Cro/Co = (o] ) @ D, Coo|Co = A®® @ 9. (1.5)

For applications in the computation of the essential spectrum, see Propositions
5.15 and 5.16. For example,fif € 2 andV € ¢/, are self-adjoint operators and
L =D+ YV,then
UesS(L) = J(D) + J(VOO) (1.6)

The localization ofl at infinity in this case iL=1®D+ Voo ® 1.



To cover perturbations of the Laplacian on a tree by functiopi suffices to
consider an abelian algehrf see Example 5.13. In this casedifis the spectrum
of A, thenA®> = C(A>®) whereA> = AN is a compact topological space with
the product topology, and then we can speak of the set of localizations at infinity
of L. Indeed, we have then

AB® @ 9 ~ C(A®, D),

hencel is a continuous mag : A — 2 and we can say thaﬁ(m) is the
localization ofL at the pointz € A> on the boundary at infinity of the tree (or in
the directionz). More explicitly, if L = D+V as above, theh(z) = D+ V().

Plan of the paper: The notion of number operator associated to an isometry is
introduced and studied in Section 2. The spectral theory of the opefatestud-

ied via the Mourre estimate in Section 3: after some technicalities in the first two
subsections, our main abstract results concerning these matters can be found in
Subsection 3.3 and the applications in the Fock space setting in Subsection 4.2.
Section 5 is devoted to the study of severatalgebras generated by more general
classes of anisotropic Hamiltonians on a Fock space. Subsections 5.1 and 5.2 con-
tain some preparatory material which is used in Subsection 5.3 in order to prove
our main result in this direction, Theorem 5.10. The Appendix, concerned with the
representability of som&™*-algebras as tensor products, is devoted to an important
ingredient of this proof. The case= 1, which is simpler but not covered by the
techniques of Section 5, is treated at the end of the Appendix.

Notations: B(s¢), K(.) are the spaces of bounded or compact operators on
a Hilbert spaces”. If S,T are operators such that— T € K(s¢), we write

S~ T.If S, T are quadratic forms with the same domain &hd T is continuous

for the topology of7#, we write.S ~ T'. D(T) is the domain of the operatdr.

We denote byl the identity of a unital algebra, but for the clarity of the argument
we sometimes adopt a special notation, e.g. the identity operaté#’ aould be
denotedL ,». A morphismbetween twa_*-algebras is a-homomorphism and an
ideal of a C*-algebra is a closed bilateral ideal.

Acknowledgments:We are grateful to George Skandalis for a very helpful conver-
sation related to the questions we treat in the Appendix (see the comments before
Proposition A.2 and in its proof).



2 Number operator associated to an isometry

2.1 Definition and first examples

Let U be an isometry on a Hilbert spac&’. ThusU*U = 1 andUU* is the
(orthogonal) projection onto the closed subspacelraa U7, henceP, :=
[U*,U] = 1 — UU* is the projection ontgranU )+ = ker U*.

Definition 2.1 A number operator associated tbis a self-adjoint operatorV
satisfyingUNU* = N — 1.

In fact, N is a number operator fot/ if and only ifU*D(N) ¢ D(N) and
UNU* = N — 1 holds onD(N). Indeed, this meany — 1 C UNU* andN — 1
is a self-adjoint operator, so it cannot have a strict symmetric extension.

In this section we discuss several aspects of this definition. If the opdrator
is unitary (situation of no interest in this paper), tHeRNU ~* is a well defined
self-adjoint operator for eadhe Z and the equality/ NU* = N — 1 is equivalent
to UFNU—* = N — kfor all k € Z. In particular, a number operator associated
to a unitary operator cannot be semibounded. Example 2.5 allows one to easily
understand the structure of a unitary operator which has an associated number ope-
rator.

Note that ifU is unitary, thanV does not exist in general and if it exists, then it
is not unique, sinc&v + \ is also a number operator for each r@alOn the other
hand, we will see in the Subsection 2.2 tatexists, is positive and is uniquely
defined ifU is a completely non unitary isometry.

In order to express Definition 2.1 in other, sometimes more convenient, forms,
we recall some elementary facts. Af B are linear operators o’ then the do-
main of AB is the set off € D(B) suchthatBf € D(A). Itis then clear that ifA
is closed and3 is bounded, therl B is closed, but in generd A is not. However,
if Bisisometric, themBA is closed. Thus, ifV is self-adjoint and/ is isometric,
thenUNU* is a closed symmetric operator.

Lemma 2.2 Let N be a number operator associatedo ThenD(N) is stable
underU andU* and we haveVU = U(N+1) andNU* = U*(N —1). Moreover,
ranPy C ker(N — 1) and NPy = PyN = F.

Proof: FromUNU* = N — 1 andU*U = 1 we getU*D(N) C D(N) and
NU* = U*(N — 1) on the domain onV. Moreover, sincd/*P, = 0, we have
Pys# ¢ DIUNU*) = D(N) and(N — 1)Py = 0, soN P, = Py, which clearly
implies PpN = Py. If f,g € D(N) then

(N=1)f,Ug) =(U"(N —=1)f,g9) = (NU"f,g) = (f,UNg)



hencel/g € D(N*) = D(N) andUNg = (N — 1)Ug. ThusUD(N) c D(N)
and NU = U(N + 1) on the domain orD(N). If f € s andUf € D(N)
thenf = U*Uf € D(N), so we haveVU = U(N + 1) as operators. If € 7
andU*f € D(N) thenUU*f € D(N) andPyf € D(N),sof =UU*f + Py f
belongs tdD(N), henceNU* = U*(N — 1) as operators. u

Note that the relatiofVU = U(N + 1) can also be writtedN,U] = U.
Reciprocally, we have:

Lemma 2.3 If a self-adjoint operatotV satisfie§V, U] = U in the sense of forms
onD(N)and PyN = Py onD(N), thenN is a number operator associated b

Proof: The first hypothesis mean®v f,Ug) — (U*f, Ng) = (f,Ug) for all f,g
in D(N). But this clearly implied/* f € D(N) andNU*f = U*(N — 1) f for all
f € D(N). Then we get

UNU*f = UU*(N = 1)f = (N = 1)f — Bo(N — 1)f = (N — 1)f

for all suchf, soN is a number operator by the comment after Definition 2.

Observe that by induction we g&v,U"| = nU", hence||[N,U"]|| = n if
U # 0. In particular,V is not a bounded operator.

Lemma 2.4 If N is a self-adjoint operator, then the conditi¢iV, U] = U in the
sense of forms oP (V) is equivalent to each of the following ones:

(1) UD(N) € D(N)and[N,U] = U as operators oD(N);
(2) e™NUe N = ¢y forall t € R;
(3) ¢(N)U =Ugp(N + 1) forall ¢ : R — C bounded and Borel.

Proof: The implications (3)= (2) and (1)= (0) are immediate, condition (0)
being that[V, U] = U in the sense of forms of(V). If (0) holds, then for all
f,g € D(N)one has(Nf,Ug) — (f,UNg) = (f,Ug). This gives ud/g €
D(N*) = D(N), hence we get (1). If (2) is satisfied thés Y f, Ue="Ng) =
et(f,Ug) forall f,g € D(N), so by taking the derivatives at= 0, we get (0). If
(1) holds then by usindU = U(N + 1) we get(N +2)'U = U(1+ N — z)~!
for all z € C \ R, hence by standard approximation procedures we obtain §).

It is easy to check that the majy defined byS — USU* is a morphism
of B(.#) onto B(U.7¢). We identify B(U.7¢) with the C*-subalgebra of3(.77)
consisting of the operator such thatl'P, = PyT = 0; note thatP;" is the
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identity of the algebra@(U .2#") and that the linear positive map— U*TU is a
right-inverse forz . Clearly

Up(N)U* = (N —1)Pg- for all bounded Borel functionsy : R — C. (2.1)

By standard approximation procedures we now see that each of the following con-
ditions is necessary and sufficient in order thatbe a number operator associ-
ated toU: (i) Ue™U* = e NP for all t € R; (i) UN — 2)"'U* =
(N —1—2)"1P; for somez € C\ R.

We now give the simplest examples of number operators.

Example 2.5 Let 57 = ¢*(Z) and(U f)(x) = f(z — 1). If {e,} is the canonical
orthonormal basis of# thenUe,, = e, 1. It suffices to definéV by the condition
Ne, = ne,. Any other number operator is of the for+ A for some real\. Itis

an easy exercise to show thatif, V) is an abstract irreducible couple consisting
of a unitary operatof/ and a self-adjoint operata¥ such that{N,U] = U in
the sense of forms of?(V), then there is a unique realsuch that this couple is
unitarily equivalent to the couplg/, V 4+ \) constructed above.

Example 2.6 Let.7# = ¢>(N) andU as above. Thefi*e,, = e,,_1 withe_1 = 0,

so Py = |eg)(eog|. We obtain a number operator by defining, = (n + 1)e,

and it is easy to see that this is the only possibility. We shall prove this in a more
general context below.

2.2 Completely non unitary isometries

An isometryU is called completely non unitaryf s4imy,_,.o U** = 0. This is
equivalent to the fact that the only closed subsp#tesuch thaty.7z = 7 is

2 = {0}. We introduce below several objects naturally associated to such an
isometry, see [Beal].

Consider the decreasing sequeri¢e= U7 > U'# > U?# > ... of
closed subspaces o#. SinceU* is an isometric operator with rangé*.#, the
operatorP* := U*U** is the orthogonal projection o# ontoU* # and we have
1=P°> P> P2, . and skm,_., P* =0, becausd P¥ f|| = |[U** f|| — 0.

Recall thatPy = 1 — UU* = 1 — P! is the projection ontder U*. More
generally, let77, be the closed subspace

A, = ker UM & ker U™ = ranU* & ranU**+! = U (ker U™)
and letP; be the projection onto it, so

Pk; — Pk _ Pk+1 — UkU*k‘ _ Uk+1U*k+1 — UkPOU*k‘

11



Notice thatPy,, = UP,U*, hencelU P, = P,1U, and

PyPp=0if k#m and > Py =1. (2.2)
k=0

We havedim 77, = dim %) # 0 for all k € N. Indeed, it suffices to show that
Uk == Ul : 74, — 11 is a bijective isometry with inverse equaltio’| 4, -

In fact, fromU P, = Py1U we getU 78, C 54,1 SOUy is isometric froms;,
to J7;.+1. To prove surjectivity, note thdf* P, = P,U*, henceU* 74,1 C 74,
andUU* P11 = UPLU* = Pygy1. ThusUy : 54, — 56,41 1S bijective and its
inverse isU*| ., -

Proposition 2.7 If U is a completely non unitary isometry then there is a unique
number operator associated to it, and we have

N=Ny=)» P'=> (k+1)P, (2.3)
k=0 k=0

the sums being interpreted in form sense. Thus éa¢hl, with £ € N, is an
eigenvalue ofV; of multiplicity equal todim ker U* and.77;, is the corresponding
eigenspace.

Proof: SinceP, = P* — P**1, the two sums from (2.3) are equal and define
a self-adjoint operatolNy; with N 4+ 1 as spectrum and?;. as eigenspace of the
eigenvaluek + 1. SinceUP, = P,,1U, condition (3) of Lemma 2.4 is clearly
verified, henceéVy is a number operator fdi by Lemma 2.3. Of course, one can
also check directly that the conditions of the Definition 2.1 are satisfied. It remains
to show uniqueness.

Itis clear that an operatdy is a number operator if and only if it is of the form
N = M + 1 whereM is a self-adjoint operator such th&f = UU* + UMU™.
With a notation introduced above, this can be writléh= UU* + % (M) hence
we get a unique formal solution by iteratiohd = >°, ., Z*(UU*) =Y, -, P*
which gives (2.3). In order to make this rigorous, we argue as follows.

Recall that, by Lemma 2.2] andU* leave invariant the domain @f/. Hence
by iteration we have o (M ):

M = P +UMU* = PA+UP'U*+U?MU*? = P+ P2+, 4+ P"+U"MU*"

forall n € N. Itis clear thatPD(M) C D(M) for all m and(1 — P")U™ =
U1 - P") =0, hence

M1-PY)=(01-PYM= > Pa-prP)= > kP
1<k<n-—1 1<k<n-—1

ThenM P, = P,M = kP forallk € N, henceM = )", kP;. |
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3 The Mourre estimate

3.1 The free case

Our purpose in this section is to construct a conjugate operatord to establish
a Mourre estimate for the “free” operator

A:=Re(U) = L (U +U") 3.1)

whereU is an isometry which admits a number operatbon a Hilbert space?’.
The operatord will be constructed in terms oV and of the imaginary part d@f':

S = Im (U) = %(U—U*). 3.2)
More precisely, we defind as the closure of the operator
Ao = %(SN +NS),  D(Ag) = D(N). (3.3)

We shall prove below thad is essentially self-adjoint and we shall determine the
domain of A. That Ay is not self-adjoint is clear in the situations considered in
Examples 2.5 and 2.6. Note that in these exam§lissan analog of the derivation
operator. Before, we make some comments concerning the operators introduced
above.

We havell = A +iS and||A|| = ||S|| = 1. In fact, by using [Mur, Theorem
3.5.17] in casdJ is not unitary and (2) of Lemma 2.4 &f is unitary, we see that
o(A) =0(S) =[-1,1]. By Lemma 2.2 the polynomials iti, U* (hence inA, S)
leave invariant the domain a¥. If not otherwise mentioned, the computations
which follow are done o® (V) and the equalities are understood to holdgiV).
The main relations

NU =U(N+1) and NU* =U*(N - 1) (3.4)
will be frequently used without comment. In particular, this gives us
[N,S] = —iA and [N,A] =iS (3.5)

These relations imply thak and S are of clasg”>°(NN) (we use the terminology
of [ABG]). We also have

[U,A]l=—-Py/2, [U"Al=PFy/2, [S,A]l=1iPy/2. (3.6)
A simple computation gives then:

A%+ 5% =1-Dpy)/2. (3.7)
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It follows that we have on the domain of;

i i 1 1 . 1
Ag=NS + §A = SN — 5A = 2—2,((N— 5)U —U*(N — 5)). (3.8)
Remark: If we denotea = iU*(N — 1/2) then on the domain oV we have
A = (a+ a*)/2. Note thata looks like a bosonic annihilation operator (the nor-

malization with respect t&V being, however, different) and that

aa* = (N 4+1/2)?, a*a= (N —1/2)?Pg", [a,a*] = 2N + Py/4, [N,a] = a.
Lemma 3.1 A is self-adjoint withD(A) = D(NS) = {f € 2 | Sf € D(N)}.
Proof: Note that/VS is closed on the specified domain and tR4fV) C D(NS),
becaus&D(N) C D(N). Let us show thaD (V) is dense irD(N S) (i.e. NS is
the closure ofVS|D(N)). Let f € D(NS), thenf. = (1 +ieN)~Lf € D(N)
and||f- — f|| — 0 whene — 0. Then, sinceS € C1(N):

NSf. = NS(1+ieN)"'f

= N(1+ieN) YieN,S|(1 +ieN) ' f + N(1 +icN)"'Sf
eN(1+ieN)'A(1 +ieN)" f + (1 +ieN)"'NSf.
The last term converges V.S f ase tends to0. So it suffices to observe that
eN(1+ieN)~! — 0 strongly ass — 0.

Let Ag = SN —iA/2, D(Ag) = D(N). ltis trivial to prove thatdj = NS +
iA/2, D(A§) = D(NS). By what we proved and the fact tha|pyy = Ao, we
see thatd; is the closure ofdy. So A is essentially self-adjoint. |

The next proposition clearly implies the Mourre estimateooutside+1.
Proposition 3.2 A € C*®(A) and[A,iA] =1 - A? = 5% + Py/2.

Proof: OnD(N) we have

[AiA] = [A,iNS] =[A,iN]S + N[A,iS]
S2 4+ NPy/j2=S8*+Py/2=1-A%
which impliesA € C°°(A) by an obvious induction argument. |

We mention two other useful commutation relations:
[iA,S] = Re(SA) and [iA,N] = —Re(NA). (3.9)
Indeed:

1 1 1
[tA,S] =[iSN + §A,S] =4S[N, S|+ §[A,S] = SA+ §[A,S]
and

[iA, N] = [iSN + %A, N] = [iS, NN + %[A, N]= AN + %[A, N.
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3.2 Commutator bounds

The following abbreviations will be convenient. FBre B(#) we setl’ = T" =
[iN,T], interpreted as a form oR(N), andT’ = [S,T], Ta = [A, T], which are
bounded operators os¢’. lterated operations liké' = 7", 7" or T’ = T are
obviously defined. Note that

T' — T" =[S, [iN,T]] - [iN, [S,T]] = [T, [iN, 8]]] = —Ta (3.10)

because of the Jacobi identity, [Y, Z]] + [Y, [Z, X]| + [Z, [ X, Y]] = 0 and (3.5).

If T is a bounded operator then ba¥il" andT'N are well defined quadratic
forms with domainD(N). We write ||[NT'|| = oo, for example, if NT' is not
continuous for the topology ofZ’. If NT is continuous, thei™D(N) C D(N)
and the operataVT" with domainD(N) extends to a unique bounded operator on
2 which will also be denoted& T and whose adjoint is the continuous extension
of T*N to 7. If T* = £T then the continuity ofVT is equivalent to that dI' V.
Such arguments will be used without comment below.

Proposition 3.3 For eachV € B(s¢) we have, in the sense of forms DN ),
. 1
[iA,V]=VS+iNV' — §VA. (3.11)
In particular
. . 1
IEAVIE< IVIE+ NV + SV (3.12)
Moreover, for the fornji A, [i A, V]] with domainD(N?), we have

1. . .
ANEAGAVIE < VI IV IVIE+ 1V (3.13)

+ INV/[[ + [INVA] + [NV']| + [ N?V"]].
Proof: The relation (3.11) follows immediately froM = iNS — %A. For the

second commutator, note thaD(N?) c D(N), hence in the sense of forms on
D(N?) we have:

A, [iA,V]] = [iA,VS]+[iA,iNV'] — Z[iA, V4]

1
2

= [iA, V]S + V[iA,S] + [iA,iN]V' 4+ iN[iA, V'] — Z[iA, VA].

1
2
By (3.9) we have|V[iA, S]|| < ||V and then (3.5) gives
[iA,iN]V = —iRe(NA)V' = —%(NAV’ + ANV
—%[N, AV —iANV' = %SV’ — iANV
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Thus, we have

. 1 .
1A, (1A, V) = [i4, V]S —iN[iA, V'] + S[A, VAl < [V +[IVIl/2+ [N V']
We now apply (3.11) three times wifli replaced successively By, V/ and V.
First, we get

A, VIS| = |[VS* +iNV'S — VaS/2| < VI + INV']| + | V].
Then, by using also (3.10) and the notatich = (V') a, we get

N[iA, V'] = NV"S +iN*V" — NV,/2 = N(V' + VA)S +iN?V" — NV4/2.

Now (3.5) gives
NVA = NAV' = NV'A = [N,AlV' + [A,NV'] =iSV' + [A, NV’
hence
INGA VI <INV + [INVA] + N2V + [V']]/2 4+ [NV
Then

[iA,VA] = (Va) +iN(Va) — (1/2)Vaa.
The first two terms on the right hand side are estimated as follows:
(Va) = [iN,[A, V]] = —[A, [V,iN]] = [V, [iN, Al] = [A, V] + [V, 5]
and
N(Va) = NIS,[A, V]| = =N[A,[V, S]] - N[V,[S,A]] = N[A, V']
- %N[v, Py = [N, AlV' + ANV’ — NV'A — %N[V, Py
= SV +[A,NV'] - %N[V, Py).
SinceN Py = P, we have
N[V,P)] = NVPy— NP)V = [N,V|Py+ VNPy — NP,V = —iV + [V, Py].
hence we get
A VAl < 5V + B/2) VI + IV + [NV

Adding all these estimates we get a more precise form of the inequality (3M3).

The following result simplifies later computations. The notatlor- Y means
that X, Y are quadratic forms on the domain dfor N2 and X — Y extends to
a bounded operatoFFrom now on we suppose¢ o(N). In fact, in the case of
interest for us we havéy > 1.
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Lemma 3.4 Let V be a bounded self-adjoint operator. [i/, V]N is bounded,
then[U*, V]N is bounded, s NV'|| 4+ || NVal < oo. If [U,V]N is compact,
then[U*, V]N is compact, saVV' is compact. Ifi” and [U, V]N are bounded,
then||NV’|| < oco. If [U, [U, V]]N? is bounded, thefiN?V"|| < oc.

Proof: We have
N =UU*N+ PN =U(N+1)U"+ Py (3.14)

hence
[U*, VIN =U*[V,U|(N + 1)U* + [U*, VP, (3.15)

which proves the first two assertions. The assertion involViriga particular case,
becausé/ is self-adjoint if it is bounded.
For the rest of the proof we need the following relation:

N = Py+ 2P, + U*(N +2)U*. (3.16)
This follows easily directly from the definition dY:

N = 1+UNU*=14+U(1+UNU*U* =1+ UU* +U*NU*
= (1-UU") +20UU* —U?U*?) + U*(N + 2)U*2.

SinceP,U? = U*2P, = 0 for k = 0, 1, we get from (3.17):
N? = Py + 4P, + U*(N +2)*U*2. (3.17)
We clearly have:
—4AN?V" = N2[U*,[U*,V]] + N?[U,[U, V]] = N*([U*, [U,V]] + [U, [U*, V]]

We shall prove that the three terms from the right hand side are bounded. Since
N2[U*, [U*,V]] = ([U,[U,V]]N?)*, this is trivial for the first one. The second
term is the adjoint ofU*, [U*, V]]N? and due to (3.17) we have

[U*,[U*,V]|IN? = (U*V —2U0*VU* +VU*?)N?
(U*AV —2U*VU* + VU U?(N + 2)*U*?
= U*[U,[U,V]](N +2)*U*?,

hence we have the required boundedness. Finally, the third term is the adjoint of
([U,[U*, V]] + [U*,[U, V]])N? and by a simple computation this is equal to

2V — UVU* — U*VU + VUU*)N? ~ —2U*[U, [U, V]|(N + 1)2U*
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where we usedN? = UU*N? + PyN? = U(N + 1)2U* + R. |

If the right hand side of the relation (3.12) or (3.13) is finite, then the operator
V is of classC!(A) or C?(A) respectively. We shall now point out criteria which
are less general than (3.12), (3.13) but are easier to check.

Proposition 3.5 Let A € B(.%) be a self-adjoint operator such thgk, N] = 0
and[U, A]N € B(s¢). LetV be a bounded self-adjoint operator.

(1) If (V — A)N is bounded, thefr € C'(A).

(@) If [U, [U, A]]N? and(V — A)N? are bounded, thelv € C?(A).

(3) If [U,A]N, [A,V]and(V — A)N are compact, theft A, V] is compact.

Proof: We have—iV = [N, V] =[N,V — Al = N(V — A) — (V — A)N so this

is a bounded (or even compact) operator under the conditions of the proposition.
Then by using (3.5) we get

NV' = N[S,A]+ NI[S,V — Al = N[S,A] + NS(V —A) - N(V - A)S
N[S,A] —iA(V = A) + [S,N(V — A)]
henceNV' is bounded (or compact). Now in order to get (1) and (3) it suffices to
use (3.11) and (3.12) and Lemma 3.4 witlreplaced byA.

Now we prove (2). We hav& < C'(A) by what we have shown above.
The assumption|(V — A)N?|| < oo implies ||[N?(V — A)|| < oo and then by
interpolation|| N(V — A)N|| < co. Thus

~V = [N,[N,V]] =[N, [N,V —A]
N3V —A) —2N(V = A)N + (V — A)N?

is bounded. Moreover,

—iNV' = NIS,[N,V]] = NI[S,[N,V —A]] = NSN(V — A)
— NS(V—-A)N—-N*V —A)S+ N(V —A)NS,

is bounded by (3.5). Lemma 3.4 shows thé&t, A|N is a bounded operator.
Hence, by using again (3.5),

NVa = N[A,V —A]+ N[A,A] ~ N[A,V — A
NA(V —A) = N(V = A) ~ AN(V — A) +iS(V — A).

So NV, is bounded. At lastV2V"” = N2[S,[S,V]] ~ N2[S,[S,V — A]] by
Lemma 3.4 applied td, and this is a bounded operator. u
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3.3 Spectral and scattering theory

We shall now study the spectral theory of abstract self-adjoint operators of the form
L = A + V with the help of the theory of conjugate operators initiated in [Mou]
and the estimates. We first give conditions which ensure that a Mourre estimate
holds. Recall that/ is an arbitrary isometry on a Hilbert spag€ which admits

a number operatoN such that0 ¢ o(N) and A = ReU. In this subsection

the operatol/ is assumed to be at least self-adjoint and compact. We recall the
notation:S ~ 0 if S € K(2).

Definition 3.6 We say that the self-adjoint operatdr has normal spectrumnif
oess(L) = [—1,+1] and the eigenvalues df different from+1 are of finite multi-
plicity and can accumulate only towatl. Leto, (L) be the set of eigenvalues of
L;thenk(L) = {—1,+1} Uop(L) is the set ofcritical valuesof L.

Theorem 3.7 Let V' be a compact self-adjoint operator o#” such that|N, V]
and [U, V]N are compact operators. Thefr has normal spectrum and if is a
compact subset 9f— 1, +1[, then there are a real number > 0 and a compact
operator K such thatE(J)[L,iA]E(J) > aE(J) + K, whereE is the spectral
measure of..

Proof: We haveoess(L) = 0ess(A) = [—1,+1] becausd’ is compact. This also
implies thaty(L) — ¢(A) is compact ify is a continuous function. From (3.11)
and Lemma 3.4 it follows thd¥/, i A] is a compact operator, $6is of classC!(A)
in the sense of [ABG]. Then, if suppis a compact subset f- 1, +1[ we have

p(L)*[L,iAlp(L) = o(A) A, iA]p(A) > alp(A)* = alp(L)?

becausdA,id] = 1 — A% > a onp(A)s7. This clearly implies the Mourre
estimate, which in turn implies the the assertions concerning the eigenvalues, see
[Mou] or [ABG, Corollary 7.2.11]. |

The next result summarizes the consequences of the Mourre theorem [Moul],
with an improvement concerning the regularity of the boundary values of the re-
solvent, cf. [GGM] and references there.slfs a positive real number we denote
by N the domain of N|* equipped with the graph topology and we Aét, :=
(N5)*, where the adjoint spaces are defined such as tokawe 7 Cc N_g. If J
is a real set therd ;. is the set of complex numbers of the formt iy with A € J
andy > 0.

Theorem 3.8 Let V' be a compact self-adjoint operator o#” such that|N, V]
and[U, V]N are compact operators. Assume also th¥t [V, V]], [U, [N, V]|N
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and [U, [U, V]]N? are bounded operators. Thehhas no singularly continuous
spectrum. Moreover, iff is a compact real set such thdtn (L) = (), then for
each reals €]1/2, 3/2[ there is a constant’ such that for allz;, z2 € J4

(L = 21)"" = (L = 22) s, < Clar — 272, (3.18)

We have used the obvious fact the C D(|A|*) for all reals > 0 (for our
purposes, it suffices to check this for= 2). The theorem can be improved by
using [ABG, Theorem 7.4.1], in the sense that one can eliminate the conditions
on the second order commutators, replacing them with the optimal Besov type
conditionV € ¢11(A), but we shall consider this question only in particular
cases below.

With the terminology of [ABG], thedle of the conditions on the second order
commutators imposed in Theorem 3.8 is to ensure th&hencel) is of class
C?(A). We shall now consider more general operators, which admit short and
long range type components which are less regular. We also make a statement
concerning scattering theory under short range perturbations.

Definition 3.9 Let W be a bounded self-adjoint operator. We say thais short
range with respect t&/, or N-short rangeif

/100 IWXo(IN|/r) | dr < oo, (3.19)

whereX is the characteristic function of the intervfl, 2] in R. We say thai?’
is long range with respect t&/, or N-long range if [N, W] and [U, W]N are
bounded operators and

[ (w4 1wt ml) s <o, @20

whereX is the characteristic function of the intervgl, o[ in R.
The condition (3.19) is obviously satisfied if therecis- 0 such that
|W|Ne|| < oo, (3.21)
Similarly, (3.20) is a consequence of
[N, W] IN ||+ U, W INTE < oo (3.22)

Lemma 3.10 If W is compact andV-short range, the N is a compact opera-
tor. If W is N-long range, then/;™ ||[U*, WINX(|N|/r)|dr/r < .
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Proof: Let ¢ be a smooth function oiR such thaty(x ) 0if z < 1 and
cp(x) = 1if + > 2 and letd(z) = z¢(z). Then [ 6(x)dz/x = 1 hence
fo (IN|/r)dr/r = 1 in the strong topology. 19;(z) = xe( ) then we get
JoS Woy(IN|/r)dr = W|N| on the domain ofV, which clearly proves the first
part of the lemma. The second part follows from (3.15) and (3) of Lemma M 4.

Theorem 3.11 Let V be a compact self-adjoint operator such tHaf, V'] and
[U,V]N are compact. Assume that we can decompoése V; + V; + V,,, where
Vs is compact andV-short rangeV; is N-long range, and/,,, is such that

[N, [N, Vinll,  [U,[N,Vi]IN and U, [U, Vi, ]| N?

are bounded operators. Thelh = A + V has normal spectrum and no singu-
larly continuous spectrum. Moreovéim,, .o(L — A — iu)~! exists in norm in
BN, N_,) if s > 1/2and\ ¢ (L), and the convergence is locally uniform in
A outsidex(L). LetLy = A + Vp + V,, and letlly, II be the projections onto
the subspaces orthogonal to the set of eigenvectofs of respectively. Then the
wave operators

Q4 :=5s— hm el e=ithoTy,

t—+o0

exist and are complete, i.€,57 = I1.77.

Proof: From the Lemma 3.10 it follows easily th@Y’, V] and[U, V] N are com-
pact operators, hence the potenti&andV;, + V,, satisfy the hypotheses of The-
orem 3.7, so the Mourre estimate holds foand Ly on each compact subset of

| = 1,+1[. From [ABG, Theorem 7.5.8] it follows that the operaidris of class
¢1(A). By using (3.11), the second part of Lemma 3.10 and [ABG, Proposition
7.5.7] we see thdi A, V] is of class¢!(A), henceV, is of class¢!}(A). Fi-
nally, V,, is of classC?(A) by Proposition 3.3 and Lemma 3.4. Thiig,and are

of class¢’!'' (A). Then an application of [ABG, Theorem 7.4.1] gives the spectral
properties ofZ and the existence of the boundary values of the resolvent. Finally,
the existence and completeness of the wave operators is a consequence of [ABG,
Proposition 7.5.6] and [GeM, Theorem 2.14]. [

4 A Fock space model

4.1 The Fock space

Let H be a complex Hilbert space and let’ = @, , H*" be the (complete)
Fock space associated to it. We make the conventitiis = C and H®" = {0}
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if n < 0. Wefixu € H with ||u|]| = 1. LetU = p,, be the right multiplication by
u. More precisely:

P11 ®...%h, = hM®...0h,Ru

puln @ @hn = {o it =0,

Clearly pp, = 1, soU is an isometric operator. Theh = (U + U*)/2 acts as
follows:

A ®...Q0hy,=h ®...Q hp—1 Q (hy @u+ (u, hy,))
if n>1andAh = huif h € C = H®°. We have
UH®™ C H®n+1’ U*H®" C H®n—1‘ (41)

In particularU*" H®™ = 0 if n > m, hence we have im,,_., U*" = 0.

ThusU is a completely non unitary isometry, hence there is a unique number
operatorNy = N associated to it. We shall keep the notatidts= pF p:* and
Py, = pF[p*, pu]p:¥ introduced in the general setting of Subsection 2.2.

Let us denote by, = |u)(u| the orthogonal projection iff onto the subspace

Cu. Then it is easy to check that

0if 0<n<k
k Rmn __ =
PH|H _{ 1, @p2F if n>k. (4.2)

Herel, is the identity operator it/ ®™ and the tensor product refers to the natural
factorizationH®" = H®" %k & H®*  In particular, we geP* H®" c H®" or
[P* 1,] = 0forall k,n € N and similarly for theP.

Lemma 4.1 N leaves stable eacH®". We have

Ny o= NIH®" = "(k + 1)Pe[H®" (4.3)
k=0

ando(N,) ={1,2,...n+ 1}, hencel < N,, <n+ 1 and||N,|| =n+ 1.

Proof: The first assertion is clear because each spectral projegtioh NV leaves
H®™ invariant. We obtain (4.3) fron®, = P*¥ — P**1 and the relations (2.3) and
(4.2). To see that each+ 1 is effectively an eigenvalue, one may check that

Rk _ Rk
; =
Nyw @ v u k+DHweveu
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if k<n,we H**andv € H withv L u, andN,u®" = (n + 1)u®". W

The following more explicit representations &f, can be proved without dif-
ficulty. Letp. be the projection i onto the subspack orthogonal tou. Then:

Nn = 1n+1n71®pu+1n72®p§2+"'+p§n
= 1n—1®quj+21n—2®pi®pu+31n—3®pi—®p§2+"'
+ (n+1)pd".

The last representation corresponds to the following orthogonal decomposition:
H®n — ®Z:O(H®nikil QK ® u®k)

where the term corresponding#o= n must be interpreted &Su®".
The number operataV associated t& should not be confused with tiparti-
cle number operatofN acting on the Fock space according to the ¢ = n f
if f € H®", In fact, while N counts the total number of particle¥, — 1 counts
(in some sense, i.e. after a symmetrization) the number of particles in the.state
From (4.3) we get a simple estimatedfin terms of N:

N<N+1. (4.4)

It is clear that an operatdr € B(.7”) commutes withV if and only if it is of
the form

V=) Vul,, with V,€BH®) and sup|V,| < oc. (4.5)

n>0

Note that we use the same notatignfor the identity operator i ™ and for the
orthogonal projection of# onto H®". For each operatdv’ of this form we set
V_1 = 0 and then we define

S(V)=> (Var1 @1y — Vo)1, (4.6)

n>0

which is again a bounded operator which commutes Withwe have:
U, V] =06(V)U. 4.7)
Indeed, iff € H®" then
UV f=UVpf=Vuf)@ou=V,@1y)(f@u) = (V, @ 15)U{.

On the other hand, sindéf € H*"*!, we havel' U f = V,, .1Uf and§(V)U f =
(Vi ® 1 — V,41)U f, which proves the relation (4.7).
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Lemma 4.2 If V is a bounded self-adjoint operator which commutes \iNtithen
the quadratic form3” andV are essentially self-adjoint operators. With the nota-
tions from (4.5), the closures of these operators are given by the direct sums

Vo= D N, Vil = ) Vol (4.8)
n>0 n>0

Vo= Y [iNu[iNg, Vallln = > Vala, (4.9)
n>0 n>0

The proof is easy and will not be given. In particul&f:is bounded if and only if
sup,, ||[Nn, V|| < oo andV is bounded if and only Hup,, ||[ N[Ny, Va]]|| < oo.

4.2 The Hamiltonian

In this subsectiomve assume that is finite dimensionahnd we apply the general
theory of Section 3 to the Hamiltonian of the forlm= A + V whereV is a
compact self-adjoint operator o’ such that[V, N| = 0, soV preserves the
number of particles (but” does not commute withV in the cases of interest for
us). Equivalently, this means thithas the form

V=Y Vil, with V,eBH®) and lim |[V,]=0.  (4.10)
n>0

We shall also consider perturbations of such oy potentials which do not com-
mute with N but satisfy stronger decay conditions.

The following results are straightforward consequences of the theorems proved
in Subsection 3.3, of the remarks at the end of Subsection 4.1, and of the relation
(4.7). For example, in order to check the compactned#/of | N, we argue as
follows: we havelU, VIN = §(V)UN = §(V)(N — 1)U and (NN + 1) 1N is
bounded, hence the compactness(df) N suffices. Note also the relations

U, [U,V]] = [U§V)U]=[Us§WU = 64(V)U? (4.11)
FV) = > (Vaa®lgee =2V, 1 @1y +Vo)ln.  (4.12)
n>0

Proposition 4.3 Assume thaf? is finite dimensional and let” be a self-adjoint
operator of the form (4.10) and such tHaE,|| + n||V,,_1 ® 1 — V,|| — 0 when

n — oo. Then the spectrum df is normal and the Mourre estimate holds on each
compact subset of— 1, +1].
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Proposition 4.4 Assume thaf#{ is finite dimensional and let’” be a self-adjoint
operator of the form (4.10) and such that

@) |Vl + n||Vier ® 1 — Vi|| — 0 whenn — oo

@) Vol + 2l Vie1 @ 1 = Vi | + | (Viea @ Loz — 2V 1 @1 + Vi || < C < o0
ThenL has normal spectrum and no singularly continuous spectrum.

This result is of the same nature as those of C. Allard and R. Froese. To see
this, we state a corollary with simpler and explicit conditions on the potentidl. If
is a linear operator on a finite dimensional Hilbert spaGeve denote byT) its
normalized trace:

(T)= =TT (4.13)

Observe thal(T")| < ||T'||.

Corollary 4.5 Let H be finite dimensional and 1&f be as in (4.10) and such that:

@) [V = (V)| = O(1/n?),

(2) (V1) — (Vo) = o(1/n),

(3) (Var1) — 2(Va) + (V1) = O(1/n?).

ThenL has normal spectrum and no singularly continuous spectrum, the Mourre
estimate holds on each compact subsel f1,+1[, and estimates of the form
(3.18) are valid.

This follows easily from Proposition 3.5 with = > . (V,,)1,. In the case
whenV is a function on a tree, the conditions (1)-(3) of the corollary are equivalent
to those of Lemma 7 and Theorem 8 in [AlIF]. Note, however, that even in the tree
case we do not assume that fHjeare functions. Now we improve these results.

Letls, = >,-, 14 be the orthogonal projection o onto,~.,, H**.

Theorem 4.6 Let H be finite dimensional and l8f be a self-adjoint operator of
the form (4.10) and such that

Zsup Vo — (V)| <00 and  (Viy1) — (Vi) = o(1/n). (4.14)
k>0 "2k

Furthermore, assume that,,) = A\, + u, where{\,}, {1, } are sequences of
real numbers which converge to zero and such that:

Q) A1 — A = 0(1/n) and A1 — 2\, + A1 = O(l/n2),

(2) ZnZO SUPp>n |:um+1 - :um| < 0.

Finally, let W be a bounded self-adjoint operator satisfyihg, ||V 1>,| < oo.
Then the operatoréy = A + V and L = Ly + W have normal spectrum and no
singularly continuous spectrum, and the wave operators for the(daif) exist
and are complete.
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Proof: LetA = > A\,1, andM = > pu,1,. We shall apply Theorem 3.11 o

with the following identificationsV, = V+W — (A+ M), V, = M andV,,, = A.

Note that the condition imposed &% implies thati?” is a compaciV-short range
operator (in fact, the condition says th&t is IV-short range). Moreover, the first
condition in (4.14) is of the same nature, so it implies fHat (A + M) is N-short
range. Hencé’; is compact andV-short range. The fact thatl is N-long range

is an easy consequence [8ff, N] = 0 and of the condition (2) (which says, in
fact, thatM is N-long range). Finally, the fact thaf,, satisfies the conditions
required in Theorem 3.11 is obvious, by (1) and by what we have seen before. The
compactness dfvV, V] and[U, V] N is proved as follows. Sinc€ — (A + M) is
N-short range and due to Lemma 3.10, it suffices to show the compactness of the
operatorgN, A+ M| and[U, A+ M]N. But the first one is zero and for the second
one we use the first part of condition (1) and condition (2). In the ca$e-efiV

one must use again Lemma 3.10 u

Under the conditions of the preceding theorem, we also have the following
version of the "limiting absorption principle”, cf. Theorem 3.11. For redét
(s be the Hilbert space defined by the norm

17 = 12012 + D nlI2a 1

n>1

Then, ifs > 1/2 and\ ¢ (L), the limitlim,_o(L — A — i)~ ! exists in norm in
the spaceB (77, #(_s)), the convergence being locally uniform 8n\ «(L).

5 The anisotropic tree algebra

5.1 The free algebra

Our purpose now is to study more general operators of the forma D + V,
whereD is a function ofU andU™* (in the sense that it belongs to th&-algebra
generated by/) andV has the same structure as in Subsection 4.2, i.e. is a direct
sum of operatord/, acting in H®™, but V,, does not vanish as — oo, soV is
anisotropic in a sense which will be specified later on.

In this section we keep the assumptions and notations of Subsection 4.1 but
assume thaff is of dimensions > 2 (possibly infinite). Then both the range of
U and the kernel ot/* are infinite dimensional. It follows easily that eaBhis a
projection of infinite rank.

The free algebra? is the C*-algebra of operators o’ generated by the
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isometryU. SinceU*U = 1 on 77, the set?, of operator of the form

D= > anU"U™ (5.1)

n,m>0

with o, € C anday,, # 0 only for a finite number of, m, is ax-subalgebra of
2, dense inZ. Observe that the projectiod®® = U*U** and P, = Pk — pk+1
belong to%y. In the tree case the elements®fare interpreted as “differential”
operators on the tree, which justifies our notation.

We introduce now a formalism needed for the proof of Lemma 5.4, a result
important for what follows. For each operat®re B(.7#) we define

S° =) 1,51, (5.2)
n=0

Itis clear that the series is strongly convergent and|tRaf < ||S||. ThusS — S°
is a linear contraction oB8(.7) into itself such thatl® = 1. This map is also
positive and faithful in the following sense:

S>0andS #0= S°>0andS° #0 (5.3)

Indeed,S° > 0 is obvious and ifS° = 0 then(v/S1,)*(v/S1,) = 1,81, = 0
hencey/S1, = 0 for all n, sov/S = 0 and thenS = 0.
We need one more property of the mép- S°:

SeK(H)= S° e K(x). (5.4)
In fact, this follows from

15° = )" LnSLnl| < sup [E

0<m<n
becausé€{1,51,| — 0 asn — 0 if S is compact.

Lemma 5.1 The restriction toZ of the mapS — S° isamapd : ¥ — 2 whose
range is equal to the (abelian, unital)*-algebra.&? generated by the projections
P*, k > 0. Moreoverg is a norm one projection a¥ onto its linear subspace?,
i.e.0(D) = Difandonly if D € &.

Proof: SinceU"U*™H®k ¢ H®Kk-—m+n) we havel,U"U*™1;, # 0 only if
n =m. Thus, ifD € Zyis asin (5.1), then

LD =) annliU"U" e =) ann P L,
n n
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becausg¢P",1;] = 0. Thus we getD° = > «,,P" € &. SinceD — D°is
a linear contraction and, is dense inZ, we get thatD®° € & for all D € 2.
To finish the proof, note thatP™)° = P for all n and % is the closed linear
subspace o generated by the operataP®, henceD° = DforallD ¢ 2. R

The pairwise orthogonal projectioy belong to#? but theC*-algebra (equal
to the norm closed subspace) generated by them is strictly smallegth@n the
other hand, the Von Neumann algebs#g, generated by (i.e. the strong closure
of &) coincides with that generated Ky, },>0. Indeed, for eachh > 0 we have
pr=73%" .. Ppthe series being strongly convergent.

Lemma 5.2 For eachD € 2 there is a unique bounded sequeres, },,>o Of

complex numbers such thar® = ano oanP,. If D > 0thenq,, > 0 for all n.

If De 9,D>0andD # 0, one hasD° > aP, for some reakr > 0 and some
n € N,

Proof: SinceP, P, = 0if n # mand)_, ., P, = 1, each element of the Von
Neumann algebra generated {, } ,>0 can be written ad ., -, an kP, for some
unique bounded sequence of comples numbgtsif D > 0, thenD° > 0 and
this is equivalent tay,, > 0 for alln. If D > 0andD # 0, thenD° = 0 by (5.3)
hencew,, > 0 for somen. |

Corollary 5.3 2 N K(s¢) = {0}.

Proof: 2 N K(5¢) is aC*-algebra, so that if the intersection is not zero, then it
contains somé with D > 0 andD # 0. But thenD® is a compact operator by
(5.4) and we havé° > a P, for somea > 0 andn € N.

We note that if0 < S < K andK =~ 0thenS ~ 0. Indeed, for each > 0
there is a finite range projectiaf such that| F' K F'|| < ¢, whereF’ =1 — F.
Thus0 < F'SF’ < eand soS = FS + F'SF + F'SF' is the sum of a finite
range operator and of an operator of nofa. HenceS = 0.

Thus P, is compact, o, is an infinite dimension projection. [ |

Finally, we are able to prove the result we need.

Lemmab5.4 LetV € B(s) such thatV = V° and[V,U] € K(). If there is
D e 2,D #0,suchthat D € K(5¢), thenV Py € K(57).

Proof: FromV D = ( it follows thatV DD*V* = 0. Then (5.4) gives

V(DD*)°V* = (VDD*V*)° ~ 0.
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By Lemma 5.2, sincd D* € Z is positive and not zero, we haveD* > aP,, for
somen > 0, with & > 0. ThusO0 < VP, V* < a 'VDD*V*. OrVDD*V* =~ 0
soV P, V* ~ 0and sincd/ P, = vV P,V*J for some partial isometry we see
thatV P, =~ 0. But P, = U"Py)U*" andU*U = 1soVU"Py = 0. If n > 1
thenUVU" Py = [U,VIU" 1Py + VU"Py ~ 0 and sincel/*U = 1 we get
VU™ 1Py ~ 0. Repeating, if necessary, the argument, we obtainififat~ 0.

5.2 The interaction algebra

The classes of interaction operatdfsc B(s¢) we isolate below must be such
thatV = V°andV Py ~ 0 = V = 0. We shall use the embedding §& 0)

B(H®") — B(H®"!) defined byS — S ® 1. (5.5)

Let us setdy = C and for eactn > 1 let A,, be aC*-algebra of operators oH®"
such that

A, @1y C Apta. (5.6)
Note that this implied,, € A,,. The convention (5.5) gives us natural embeddings
Ac A CcCAC...C A, C... (5.7)

and we can defind,, as the completion of the-algebrau2® A, under the unique
C*-norm we have on it (note thad,, ., induces onA,, the initial norm of.A4,,).
Thus A is a unitalC*-algebra, eacld,, is a unital subalgebra od., and we can
write:

Ase = |J An  (norm closure). (5.8)

n>0

We emphasize thad ,, has nota natural realization as algebra of operators6n
On the other hand, the following is a unitar-algebra of operators o#?’:

o = H Ay = {V = (Va)nso | Vi € Ay and||V]| == sup | V3] < o0}, (5.9)
n>0 n>0

Indeed, iff = (fn)n>0 € 2 andV is as above, we sét f = (V,f,)n>0. In
other terms, we identify

V=> V.1, (5.10)
n=0
the right hand side being strongly convergent#h Observe that
=P An={V €| lim ||V;]| =0}. (5.11)
n>0

is an ideal ine.
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Lemma 5.5 We havess N () C o4 and the inclusion becomes an equality if
H is finite dimensional.

Proof: We havel,, — 0 strongly onZ if n — oo, hence ifl is compact then
[V1,]| — 0. Inthe finite dimensional case, note thaf, _, V;,1,, is compact for
all n and converges innorm 6 if V' € . |

LetT : o/ — o/ be the morphism defined by:
7(Vo, V1, Va,...) = (0,Voly, V1 ® 1y, Vo ® 1y, .. ),

or7(V), = Vho—1 ® 1y, whereV_; = 0. Clearlyr™ (V') — 0 asn — oo strongly
on 7, for eachV € «/. Observe that the map = 7 — Id coincides with that
defined in (4.6), because

5(V)n =Vo1® 1y — V,.
Sinced (V'V") = §(V)r(V")+V'§(V") and sincez, is an ideal ofe7, the space
oo ={V €| 8(V) € o} (5.12)

is a C*-subalgebra ofez which containses,. This algebra is an analog of the
algebra of bounded continuous functions with vanishing oscillation at infinity on
R, or that of bounded functions with vanishing at infinity derivativeZoar N.

Proposition 5.6 Assume thaf is finite dimensional and I8t € «%,. If D € 2,
D #0,andVD € K(s2), thenV € ().

Proof: We have)(V') ~ 0 and[U, V] =~ 0 by (4.7) and Lemma 5.5. Now according
to Lemma 5.4, it remains to prove thit ~ 0 follows from V Py, ~ 0. Since
1, — 0 strongly asn — oo and sinc€l,,, )] = 0 andV1, = V,1,, we get
|V Pol,|| — 0 asn — oo. By usingPy = 1 — P! we get

P(]ln = ln - 1n—1 Q Py = 1n—1 ®p;7

wherep!, = 15 —p, is the projection off onto the subspace orthogonattchence
lpi, |l = 1 (recall thatdim H = v > 2). Thus we havéV,, - 1,,_1 ® pl || — 0. But
(V) € o meand|V,, — V,,_1 ® 1| — 0. So

Voill = Vi @ pull < (Ve = Va1 @ 1) - s @ Pl + [V - 1na @ |

converges t® asn — oo. |
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We are mainly interested in the particular class of algeltagonstructed as
follows. Let.A be aC*-algebra of operators ol such thatl;; € A and let us set:

Ag=A%0=C and A, =A®" if n>1. (5.13)

Then A is just the infinite tensor product®>. Note that the embedding®” c

A®>® amounts now to identify,, € A®" with V,, ® 1y @ 1y ® ... € A®>®.

We summarize the preceeding notations and introduce new ones specific to this
situation:

o = [TA®" ={V=(V)uzo | Vi € A%, | V|| = sup ||V3]| < o0}
n>0 n>0
dy = PAT={Ves| lim V| =0}
n>0
o = {Ved|dV)ead}
sy = {V € |Vy:= lim V, exists inA®>*}
o = {V €/ |3N suchthal, = Vyif n > N}.

Note thatV,, = Vy meansV,, = Vy ® 1,,_n if n > N. The space of main interest
for us is theC*-algebra«,,. Clearly,o is a closed self-adjoint ideal i/, and

Ve dyw=0(V) e, (5.14)

in other termsaZ,, C .

Proposition 5.7 The mapV — V,, is a surjective morphism of thé*-algebra
s 0Nto A9 whose kernel is7,. Thus, we have a canonical isomorphism

oo | Gy =~ AP, (5.15)
Moreover,«; is a densex-subalgebra ofe7,, and we have

ot ={V € oo | Ve € | J 45"}, (5.16)

n>0

Proof: ThatV — V, is a morphism and is obvious# is clearly ax-subalgebra.
If V € o, and if we setV’N = V, forn < N, VN = Vy forn > N, then
VN € ot and ||V — V|| = sup,on ||Vo — V|| = 0 @SN — oco. Thuse is
dense ind.

If W e A®N and if we defineV € &7 by V,, = 0forn < N, V,, = W if
n > N, thenV € o« andV,, = W. Thus the range of the morphisih — V,
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contains the dense subsgt-(.4%" of A®*>. Since the range of a morphism is
closed, the morphism is surjective. |

The following remarks concerning the linear map7’) — B(.7) defined by
S — U*SU will be needed below (see also the comments after Lemma 2.4). If we
use the natural embeddiftf H*") — B(.»#) then we clearly have

U*B(H®™HU c B(H®™)
and if S’ € B(H®") andS” € B(H) then
U*(S' ® S"\U = S'{u, S"u).

Of course[J*SU = 0if S € B(H®?). Itis clear thenthat(V) := U*VU defines
a linear positive contraction : & — o which leaves invariant the subalgebras
oy and.%, hence,, too. From (4.7) we then get for df € "

UV =[V+6WV)U and U*V = [V —wo §(V)|U*. (5.17)

We make two final remarks which are not needed in what follows. First, note
that the mapv could be defined with the help of [Tak, Corollary 4.4.25]. Then,
observe that folS € B(H®™) we haveUSU* = S ® p,. Thus in general the
morphismS — USU* does not leave invariant the algebras we are interested in.

5.3 The anisotropic tree algebra

In this subsection we study*-algebras of operators on the Fock spagegener-
ated by self-adjoint Hamiltonians of the form= D+ V', whereD is a polynomial
in U andU™ andV belongs to a*-subalgebra ofs. We are interested in comput-
ing the quotient of such an algebra with respect to the ideal of compact operators.
The largest algebra for which this quotient has a rather simple form is obtained
starting with.e%,, and the quotient becomes quite explicit if we start with,.

More precisely, we fix a vectar € H with ||u|| = 1 and aC*-algebraA of
operators orH containingly. Recall thatH is a Hilbert space of dimension>
2. Throughout this subsectiome assume thalf is finite dimensionalalthough
part of the results hold in general. Then we defihe- p,, as in Section 4 and we
consider the’*-algebras o7’

2y C Ao C o C A

associated tod as in Subsection 5.2. Then we define

6w = norm closure ofe/, - 2,
%~ = norm closure ofeZ,, - 9,
%, = norm closure ofey, - 9.
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We recall the notation: ifA, B are subspaces of an algelitathen A - B is the
linear subspace @ generated by the produats with « € A andb € B. Observe
that, 2 and.«%,, being unital algebras, we have atdJ %, C %, and, similarly,
P U Ay C b Clearlyéy C oo C Gro-

Lemma 5.8 %, and%,, are C*-algebras ands is an ideal in each of them.

Proof: Indeed, from (5.17) it follows easily that for eadh € <7, there are
V', V" € o such thatUV = V'U andU*V = V”U* and similarly in the
case ofe/,,. This proves the first part of the lemma. Then note thafl’” ¢ o
if V e o and use (5.14). |

It is not difficult to prove thats,, is theC*-algebra generated by the operators
L =D+ V,whereD andV are self-adjoint elements &f and.«,, respectively,
and similarly foré,, (see the proof of Proposition 4.1 from [Gel]). Since only the
obvious fact that such operators belong to the indicated algebras matters here, we
do not give the details.

Lemma 5.9 If H finite dimensional, the#, = IC(77) N 6o = K(F€) N o If,
moreovery is a cyclic vector fotd in H, then we hav&) = K(.7).

Proof: SinceH is finite dimensional, we have, C K(77), hencesy C K(.2).
Reciprocally, letS € %, be a compact operator. Let, be the projection o7
onto Py-,,<, H*™. Thenm, = > ., .. 1n € o andm, — 1, strongly
whenn — oo. SinceS is compact, we get,S — S in norm, so it suffices to
show thatr,, S € %, for eachn. We prove that this holds for anfy € ¥ = norm
closure ofe7 - 7: it suffices to consider the case= VD with V' € & andD € 2,
and then the assertion is obvious.

Since H is finite dimensionaly is cyclic for A if and only if Au = H. If
this is the case, then®" is cyclic for A" on H®" for eachn. Letn,m € N
andf € H®", g € H®™. Then there ar& € A" andW € A®™ such that
f=Vu® = VU andg = Wu®™ = WU™e, wheree = 1 € C = H®Y,
So we havef)(g| = VU"|e)(e|U*W*. ClearlyV, W and|e)(e| belong tos, so
|f){g] € €v. An easy approximation argument gives the?’) C 4. u

We can now describe the quotieit, /4, of the algebras,, with respect to
the ideal of compact operators which belong to it.

Theorem 5.10 Assume that{ is finite dimensional. Then there is a unique mor-
phism® : €, — (/o) ® 2 such thatd(V D) = Ve Dforal V e o,
andD € 2, whereV — V is the canonical map#,, — %.,/%%. This morphism

is surjective ander ® = %), hence we get a canonical isomorphism

Coo o = (Foo] ) @ D. (5.18)
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Proof: We shall check the hypotheses of Corollary A.4 with the choices:
u="U, B =y, C= %0, Co= %= Gy NK(IH).
ThusA = 2. From Corollary 5.3 we getly = {0} and then
By = o N G0 = Gyo N Coo NK(H) = oo NK(H) =

by Lemma 5.5. Then we use Proposition 5.6 and the fact[thdf] ¢ K£(22) if
V € , (see (4.7) and note thatV') € o € K(.2)). |

The quotients, /6, has a more explicit form. This follows immediately from
Theorem 5.10 and Proposition 5.7.

Corollary 5.11 If H is finite dimensional, then there is a unique morphidm
Coo — A®>® @ Z suchthatd (VD) = V@ Dforall V € o andD € 2. This
morphism is surjective ankbr & = %), hence we have a canonical isomorphism

Coo /G0 ~ A ® 9. (5.19)

Example 5.12 The simplest choice isl = Cly. ThenA®" = C1,, and.«Z,, is

the set of operator¥” € B(.¢) of the formV = 5" .V, 1,, where{V,} is a
convergent sequence of complex numbers, Bpd= lim,_.., V,,. In this case,
Theorem 5.10 gives us a canonical isomorphiggy ¢, ~ 2. On the other hand,
4, corresponds to the bounded sequendés} such thatim |V,,;1 — V,,| = 0,
and the quotient#,, /.2 is quite complicated (it can be described in terms of the
Stone-Cech compactification Bbi).

Example 5.13 In order to cover the tree case considered in [Gol] (see the Intro-
duction) it suffices to choosd an abelian algebra. Sindé is finite dimensional,
the spectrum of4 is a finite set4 and we haved ~ C(A) henceAd®" ~ C(A")
canonically. IfA>* = AN" equipped with the product topology, then we get a na-
tural identificationd®> ~ C'(A>). LetI := (J,,~, A", then/ can be identified
with the set of bounded functiorid : I' — C and.« is the subset of functions
which tend to zero at infinity. The embedding (5.6) is obtained by extending a
functiony : A" — C to a function onA"*+! by settingp(ay, ..., an, ani1) =
o(a,...,ay). ThusV € o, if and only if

lim sup [V(a,b) —V(a)| =0.

=00 ge An beA
Letn, : A> — A™ be the projection onto thefirst factors. TherV € <7, if and
only if there isV,, € C(A*) such that

lim sup |Vom,(a) — Voo(a)| = 0.

n—oo acEA>®
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This means that the functidr defined on the spa(fé ['UA® equipped with the
natural hyperbolic topology (see [Gol]) by the condltldhﬂ“ \% andV\AOO =
Vi Is continuous. And reciprocally, each continuous function’ — C defines
by V|F V" an element ok7,,. This shows that our results cover those of [Gol].
We mention that in order to have a complete equivalence with the tree model as
considered in [Gol] the vectar must be a cyclic vector ofl, in particularA must
be maximal abelian. Indeed, in this cadean be identified with an orthonormal
basis ofH diagonalizingA (the vectors: are uniquely determined modulo a factor
of modulus1 and the associated character4fis V' — (a,Va)). Thenu =
S e caa is cyclic for A if and only if ¢, # 0 for all a. If ¢, = [A|7Y/2 with |A]
the number of elements of, we get the standard tree case.

Example 5.14 Another natural choice igl = B(H). Thenu is a cyclic vector for
A because: # 0, S0%, = (). In this case we have

G/ K(H) ~ B(H)®>® @ 9
andB(H)®> is a simpleC*-algebra.

We give an application to the computation of the essential spectrum. Note that
if L=>37_, VFDy, with V¥ € o, andDy, € 2, then®(L) = S}, VF ® Dj.
In particular, we get

Proposition 5.15Let L = D+ V with D € 2 andV € 4, self-adjoint. Then
Oess(L) = (D) + o (V). (5.20)

If V e @, then
GesS(L) = U(D) + O(VOO) (5.21)

Proof: It suffices to note thab(L) = 1®D+V ®1 and to use the general relation:
if A, B are self-adjointthea(A® 1+ 1® B) = o(A) + o(B). u

In the abelian case the result is more general and more explicit.

Proposition 5.16 Assume that we are in the framework of Example 5.13 and let
L =Y7_, V¥D,, be a self-adjoint operator with’* € «7,, and D), € 2. Then

oes(L) = | (Z VE(@)Dy). (5.22)

a€EA>®
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For the proof, observe that+— ", VX (a) Dy, is a norm continuous map on
the compact spaca™, which explains why the right hand side above is a closed
set. A formula similar to (5.22) holds i#, is replaced by, the only difference
being thatA> must be replaced with the spectrum of the abelian algehsd.o).

Remarks: We shall make some final comments concerning various natural gener-
alizations of the algebras considered above. Assumedhatre C*-algebras as at
the beginning of Subsection 5.2 and &tbe given by (5.9). Then

e ={V = (Vp)nz0 | Vo € Ay, and{V,, | n > 0} is relatively compact ind.. }

is aC*-subalgebra of7 which contains#,,. Interesting subalgebras.of.. can be
defined as follows (this is the analog of a construction from [Gel])xlbe a filter

on N finner than the Fachet filter and let7, be the set ol = (V},) € & such
thatlim,, V,, exists inA.,, wherelim, means norm limit along the filter. Note
that.«, = . if « is an ultrafilter. Now it is natural to consider tli& -algebra

% generated by the Hamiltonians with potentidlse <., so theC*-algebra
generated by, U2, and the similarly defined algebré&s. It would be interesting

to describe the quotiert, /%y, but neither the techniques of the Appendix nor
those from [Gel] do not seem to be of any use for this. Indeed, the main ingredients
of our proof where Proposition 5.6 and the fact that the commutator of a potential
with U is compact, or these properties will not hold in general. Moreover, the
examples treated in [Gel], more precisely the Klaus (or bumps) algebra, which has
an obvious analog here, show that we cannot expect a simple embedding of the
quotient into a tensor product. Note that “localizations at infinity” in the sense of
[Gel] can be defined for the elements@f. by using iterations of the operators

A, Of left multiplication by element® € H in the Fock space?’, a technique
already used in [Gel, Gol], and this could be used in order to define the canonical
morphism which describes the quotient.

A Appendix

Let us consider twa’*-subalgebrasi and B of a C*-algebraC' satisfying the
following conditions:

e A or Bis nuclear,

e ab="baif a € Aandb € B.

We denote byd ® B the minimalC*-algebra tensor product of the two algebras
A andB. Since, by the nuclearity assumptiofi,® B is also the maximal tensor
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product of A and B, there is a unique morphism : A ® B — C such that
¢(a ® b) = ab, see [Mur, Theorem 6.3.7].

Our purpose is to find conditions which ensure thas injective. Thenyp is
isometric and so it gives a canonical identification of the tensor pradlgc with
the C*-subalgebra of” generated byl and B. The following simple observation
is useful.

Lemma A.1 The morphism is injective if and only if the following condition is
satisfied: ifb1, . .., b, is a linearly independent family of elementsifthen

at,...,ap € Aandaiby +---+apb,=0=a1=---=a, =0. (A1)

Proof: This condition is clearly necessary. ReciprocallyAeb B be the algebraic
tensor product off and B, identified with a dense subspace4® B. Then each
x € A® B can be writterw = )" a; ® b; for some linearly independent family

b1, ..., b, of elements ofB and theny(x) = > a;b;. It follows immediately that

x — ||¢(x)|| is aC*-norm onA ® B. But the nuclearity ofA or B ensures that
there is only one such norm, henggx)|| = ||=||, so thatp extends to an isometry
onA® B. [

The condition (A.1) is not easy to check in general, so it would be convenient
to replace it with the simpler:

ac€AbeBb#A0andab=0=a=0. (A.2)

Exercise 2 in [Tak, Sec. 4.4] treats the case wHeis abelian. The following
result, which was suggested to us by a discussion with Georges Scandalis, is more
suited to our purposes.

Let us say that a self-adjoint projectipiin aC*-algebrak is minimalif p # 0
and if the only projectiong € K such thaty < p are0 andp. We say that the
algebra isgenerated by minimal projectiorisfor each positive non zero element
a € K there is a minimal projectiop and a reakr > 0 such thats > ap.

We also recall that an ide@ of A is calledessentialf for a € A the relation
aK = 0impliesa = 0.

Proposition A.2 If (A.2) is fulfilled and ifA contains an essential ide& which
is generated by its minimal projections, theiis injective.

Proof: The following proof of the proposition in the cade= 2, which is the only
case of interest in this paper, is due to Georges Scandalis: ifgesomorphic to
the Toeplitz algebraZ contains a copyx of the algebra of compact operators on
¢%(N) as an essential ideal. Then it is clear that it suffices to assumel that’
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and in this case the assertion is essentially obvious, bekatise® ) is an ideal

of K® B. These ideas are certainly sufficient to convince an expértialgebras,

but since we have in mind a rather different audience, we shall develop and give
the details of the preceding argument. We also follow a different idea in the last
part of the proof.

(i) We first explain why it suffices to consider the cate= K. Note that one
can identify K ® B with the closed subspace df® B generated by the elements
of the forma ® b with a € K,b € B (see [Mur, Theorem 6.5.1]) and $6 ® B is
an ideal inA ® B. Let us show that this is an essential ideal.

We can assume thd@f and B are faithfully and non-degenerately represented
on Hilbert spaceg’, .%#. SinceK is essential it4, the representation df extends
to a faithful and non-degenerate representatiod oh & (this is an easy exercise).
Thus we are in the situatioR C A C B(&'), B C B(.#), the action ofK on &
being non-degenerate. Lgt,} be an approximate unit df. Then skm k,, = 1
on &, because|k,| < 1 and the linear subspace generated by the vedétars
with £ € K ande € &, is dense in¢ (in fact K& = &). Similarly, if {bg} is an
approximate unit fol3 then skm bz = 1 on.# and then clearly sim,, 5 k,®bg =
loné& ® .. From our assumptions (the tensor products are equal to the minimal
ones)wegeK®B C A®B C B(6®.7). Letz € A® B suchthatt- K®@B = 0.
Thenz -k, ®bg = 0 for all o, 3, hencer = sdim, gz -k, ®bg = 0. ThusK ® B
is an essential ideal id ® B.

Now it is obvious that a morphism ® B — C whose restriction td{ ® B is
injective, is injective. Thus it suffices to show that the restrictiop td KX ® B is
injective, so from now on we may, and we shall, assumeAhat K.

(i) We make a preliminary remark: Igt be the set of minimal projections in
A; then for eaclp € P we havepAp = Cp. Note that this is equivalent to the fact
that for eaclp € P there is a state, of A such thapap = 7,(a)p forall a € A.

SincepAp is the C*-subalgebra ofd consisting of the elements such that
ap = pa = a, it suffices to show that eaehe pAp with a > 0, a # 0, is of the
form Ap for some real\. Letq € P such thatu > ¢ for some reak > 0. Then
eq < a = pap < ||a||p from which it is easy to deduce that< p, henceg = p
(p andq being minimal). Let\ be the largest positive number such that Ap.

If a — Ap # 0, then there i € P and areall > 0 such thats — Ap > vr. In
particulara > vr and sor = p by the preceding argument. Hence> (A 4 v)p,
which contradicts the maximality of. Thusa = Ap.

(iii) Finally, we check (A.1). Leb, .. ., b, be alinearly independent family of
elements ofB anday,...,a, € A suchthaty_ a;b; = 0. Then for alla € A and
p € P we have

D (Z Tp(aai)bi) = Zpaaipbi = pa (Z aibi> p=0.
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Sincep € A, p # 0, and)_ 7,(aa;)b; € B, we must havey 7,(aa;)b; = 0.
But 7,,(aa;) are complex numbers, sg(aa;) = 0 for eachi and alla € A. In
particular, we have,(a’a;) = 0, which is equivalent tpa;a;p = 0 for all p € P.
If afa; # 0, then there arex > 0 andq € P such thataja; > «g. By taking
p = q, we getd = qgala;q > aq, which is absurd. Thugfa; = 0,i.e.a; =0. W

The next proposition is a simple extension of the preceding one. We recall
that aC*-algebra is calleglementaryf it is isomorphic with theC*-algebra of all
compact operators on some Hilbert space.

Proposition A.3 Let A, B be C*-subalgebras of aC*-algebra C, let C;y be an
ideal of C, and letAg = AN Cy and dBy = BN (o be the correspondlng ideals
of A and B respectively. Denote by = A/Ay, B = B/By andC = C/Cy the
associated guotient algebras and assume that:

o A contains an essential idedl’ which is an elementary algebra and such
that A/ K is nuclear (e.g. abelian)

e ifac Abe Bthenla,b] € Cy
e ifae A, be Bandab € Cj then eithera € Cy or b € Cy.
e (' istheC*-algebra generated byl U B

Then there is a unique morphisin: C — A ® B such thatd(ab) = a ® b for all
a € A, b € B. This morphism is surjective and h&§ as kernel. In other terms,
we have a canonical isomorphism

C/Co =~ (A/Ao) ® (B/By). (A.3)

Proof: It is clear that an elementary algebra is generated by minimal projections
and is nuclear hence, by [Mur, Theorem 6.5.3], the conditions we imposé on
imply the nuclearity ofd. Note thatA andB are C*-subalgebras of’ and that
they generat€ Moreover, we havab = ba foralla € A, b € Band |fab =0
thena = 0 orb = 0. By Proposition A.2 the natural morphlsm® B — Cisan
isomorphism. Denote its inverse, letr : C' — C be the canonical map, and let

® = 1) o 7. This proves the existence of a morphism with the required properties.
Its uniqueness is obvious. |

Now we summarize the facts needed in this paper.

Corollary A.4 LetC be aC*-algebra,Cy an ideal ofC, B a C*-subalgebra of”,
By = BN Cy, andu € C a non unitary isometry such th& U {u} generateg”'.
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Let A be theC*-subalgebra generated hyand let us assume that N Cy = {0}
and that[u, b] € Cy for all b € B. Finally, assume that:

acA, beB andabe Cy=aec Cy or be (.

Then there is a unique morphisin: ¢ — A ® (B/By) such thatb(ab) = a ®b
forall a € A,b € B (whereb is the image ob in B/By). This morphism is
surjective and hag¢’y as kernel. In other terms, we have a canonical isomorphism

C/Co~ A® (B/By). (A.4)

Proof: The assumptiotiu,b] € C for all b € B clearly implies[a,b] € C for

alla € A,b € B. Moreover, the algebrd = Ais isomorphic with the Toeplitz
algebra, see [Mur, Theorem 3.5.18], and so all the conditions imposed on it in
Proposition A.3 are satisfied, see [Mur, Example 6.5.1]. |

We shall now study a more elementary situation which is relevant in the context
of Section 5. Our purpose is to treat the case when the Hilbert sfaiseof
dimensionl (this situation, although much simpler, is not covered by the arguments
from Section 5).

This is in fact the case considered in Example 2.6, namely we #é&ke=
¢%(N) and define the isometry/ by Ue,, = e,.1. Then theC*-algebraZ(N)
generated by/ is just the Toeplitz algebra [Mur, Section 3.5]. We also consider
the situation of Example 2.5, wheg¢’ = ¢2(Z) andU acts in the same way, but
now it is a unitary operator and tli¢*-algebraZ(Z) generated by it is isomorphic
to the algebral (1) of continuous functions on the unit circlé (make a Fourier
transformation). Let# (N) := K(¢?(N)) and.# (Z) := K(¢?*(Z)) be the ideals of
compact operators off(N) and/¢?(Z) respectively.

Itis clear thatZ(Z)N.¢ (Z) = {0} and itis easily shown tha¥ (N) C Z(N).
From [Mur, Theorem 3.5.11] it follows that we have a canonical isomorphism
2(N)/# (N) ~ 2(Z). This isomorphism is uniquely defined by the fact that it
sends the shift operatdf on N into the the shift operatdy on Z, cf. the Coburn
theorem [Mur, Theorem 3.5.18]).

We identify />°(N) with the set of bounded multiplication operators@(N).

Proposition A.5 Let </ be a unitalC*-subalgebra of>°(N) such that for each
V € o the operator[U, V] is compact. Let be theC*-algebra generated by
o/ J{U} and let us denote/y = & N % (N) andé, = ¢ N ¢ (N). Then

G %o ~ (o | ) @ D(T). (A.5)

This relation holds also iN is replaced withZ.
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Proof: Clearly[D,V] € J#(N) forall D € 2(N) andV € ., hence we have
a natural surjective morphisfy? /o)) ® 2(Z) — € /%o. It remains to show
that this is an injective map. According to [Tak, Sec. 4.4, Exercice 2], it suffices
to prove the following: ifD € Z(N) is not compact and it/ € ¢>°(N) has the
propertyV' D € ¢ (N), thenV is compact. We may assume thiat> 0, otherwise
we replace it byD D*.

To eachn € C with |a| = 1 we associate a unitary operaty on/?(N) by the
rule S,e, = a"e,. We clearly have,U S} = aU, thusA — A, := S, AS} isan
automorphism of3(¢2(N)) which leaves invariant the algebga(N) and the ideal
- (N) and reduces to the identity df°(N). ThusV D, € 2# (N) for each such
a. We shall prove the following: there arq, ..., oy, such thad | D,, = A+ K,
where A is an invertible operator anfl’ is compact. TherV A is compact and
V = VAA~! too, which finishes the proof of the proposition.

We shall denote by the image of an operatdf € B(¢*(N)) in the Calkin
algebraB(¢?(N))/K(¢*(N)). Thus we haveD > 0, D # 0. As explained before
the proof, we have?(N) /% (N) ~ 2(Z) ~ C(T). Let#d, be the automorphism
of C(T') defined by, (¢)(z) = p(za). Then we haveD,, = 0,(D) (because this
holds forU, hence for all the elements of tlfg¢*-algebra generated by). But
Disa positive continuous function ¢ which is strictly positive at some point,
hence the sum of a finite number of translates of the function is strictly positive,
thus invertible inC'(T"). So there arev, .. ., o, such that the image of D,, be
invertible in the Calkin algebra and this is exactly what we need. u
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