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Abstract

We construct conjugate operators for the real part of a completely non
unitary isometry and we give applications to the spectral and scattering the-
ory of a class of operators on (complete) Fock spaces, natural generalizations
of the Schr̈odinger operators on trees. We considerC∗-algebras generated by
such Hamiltonians with certain types of anisotropy at infinity, we compute
their quotient with respect to the ideal of compact operators, and give formu-
las for the essential spectrum of these Hamiltonians.

1 Introduction

The Laplace operator on a graphΓ acts on functionsf : Γ → C according to the
relation

(∆f)(x) =
∑
y↔x

(f(y)− f(x)), (1.1)

wherey ↔ x means thatx andy are connected by an edge. The spectral analysis
and the scattering theory of the operators on`2(Γ) associated to expressions of the
formL = ∆+V , whereV is a real function onΓ, is an interesting question which
does not seem to have been much studied (we have in mind here only situations
involving non trivial essential spectrum).
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Our interest on these questions has been aroused by the work of C. Allard and
R. Froese [All, AlF] devoted to the case whenΓ is a binary tree: their main results
are the construction of a conjugate operator forL under suitable conditions on the
potentialV and the proof of the Mourre estimate. As it is well known, this allows
one to deduce various non trivial spectral properties ofL, for example the absence
of the singularly continuous spectrum.

The starting point of this paper is the observation that ifΓ is a tree theǹ2(Γ)
can be naturally viewed as a Fock space1 over a finite dimensional Hilbert space
and that the operatorL has a very simple interpretation in this framework. This
suggests the consideration of a general class of operators, abstractly defined only
in terms of the Fock space structure. Our purpose then is twofold: first, to construct
conjugate operators for this class of operators, hence to point out some of their
basic spectral properties, and second to reconsider the kind of anisotropy studied
in [Gol] in the present framework.

It seems interesting to emphasize the non technical character of our approach:
once the correct objects are isolated (the general framework, the notion of number
operator associated to an isometry, theC∗-algebras of anisotropic potentials), the
proofs are very easy, of a purely algebraic nature, the arguments needed to justify
some formally obvious computations being very simple.

We recall the definition of aν-fold tree with origine, whereν is a positive
integer andν = 2 corresponds to a binary tree (see [Gol]). LetA be a set consisting
of ν elements and let

Γ =
⋃

n≥0

An (1.2)

whereAn is then-th Cartesian power ofA. If n = 0 thenA0 consists of a single
element that we denotee. An elementx = (a1, a2, . . . , an) ∈ An is written
x = a1a2 . . . an and if y = b1b2 . . . bm ∈ Am thenxy = a1a2 . . . anb1b2 . . . bn ∈
An+m with the conventionxe = ex = x. This providesΓ with a monöıd structure.
The graph structure onΓ is defined as follows:x↔ y if and only if there isa ∈ A
such thaty = xa or x = ya.

We embedΓ in `2(Γ) by identifying x ∈ Γ with the characteristic function
of the set{x}. ThusΓ becomes the canonical orthonormal basis of`2(Γ). In
particular, linear combinations of elements ofΓ are well defined elements of`2(Γ),
for example

∑
a∈A a belongs tò 2(Γ) and has norm equal to

√
ν.

Due to the monöıd structure ofΓ, each elementv of the linear subspace gen-
erated byΓ in `2(Γ) defines two bounded operatorsλv andρv on `2(Γ), namely
the operators of left and right multiplication byv. It is then easy to see that if

1 Note that we use the notion of Fock space in a slightly unusual sense, since no symmetrization
or anti-symmetrization is involved in its definition. Maybe we should say “Boltzmann-Fock space”.
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v =
∑

a∈A a then the adjoint operatorρ∗v acts as follows: ifx ∈ Γ thenρ∗vx = x′,
wherex′ = 0 if x = e andx′ is the unique element inΓ such thatx = x′a for some
a ∈ A otherwise. Thus the Laplace operator defined by (1.1) can be expressed as
follows:

∆ = ρv + ρ∗v + e− (ν + 1)

In the rest of this paper we shall not include in∆ the termse − (ν + 1) because
e is a function onΓ with support equal to{e}, hence can be considered as part of
the potential, andν+1 is a number, so has a trivial contribution to the spectrum. It
will also be convenient to renormalize∆ by replacingv by a vector of norm1/2,
hence byv/(2

√
ν) if v =

∑
a∈A a.

We shall explain now how to pass from trees to Fock spaces. We use the fol-
lowing equality (or, rather, canonical isomorphism): ifA,B are sets, then

`2(A×B) = `2(A)⊗ `2(B).

Thus`2(An) = `2(A)⊗n if n ≥ 1 and clearlỳ 2(A0) = C. Then, since the union
in (1.2) is disjoint, we have

`2(Γ) =
∞⊕

n=0

`2(An) =
∞⊕

n=0

`2(A)⊗n

which is the Fock space constructed over the “one particle” Hilbert spaceH =
`2(A). Thus we are naturally led to the following abstract framework. LetH be a
complex Hilbert space and letH be the Fock space associated to it:

H =
∞⊕

n=0

H⊗n. (1.3)

Note thatH could be infinite dimensional, but this is not an important point here
and in the main applications we assume it finite dimensional. We choose an arbi-
trary vectoru ∈ H with ‖u‖ = 1 and consider the operatorU ≡ ρu : H → H
defined byUf = f ⊗ u if f ∈ H⊗n. It is clear thatU is an isometry onH and
the self-adjoint operator of interest for us is

∆ = ReU =
1
2
(U + U∗), (1.4)

our purpose being to study perturbationsL = ∆ + V where the conditions onV
are suggested by the Fock space structure ofH . In the second part of the paper we
shall replace∆ by an arbitrary self-adjoint operator in theC∗-algebra generated
byU .
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Translating the problem into a Fock space language does not solve it. The
main point of the first part of our paper is that we treat a more general problem.
The question is: given an arbitrary isometry on a Hilbert spaceH and defining∆
by (1.4), can one construct a conjugate operator for it? We also would like that this
conjugate operator be relatively explicit and simple, because we should be able to
use it also for perturbationsL of ∆.

If U is unitary, there is no much hope to have an elegant solution to this prob-
lem. Indeed, for most unitaryU the spectrum of∆ will be purely singular. On the
other hand, we show that in the opposite case of completely non unitaryU , there is
a very simple prescription for the construction of a ”canonical” conjugate operator.
Sections 2 and 3 are devoted to this question in all generality and in Section 4 we
give applications in the Fock space framework.

The construction is easy and elementary. LetU be an isometry on a Hilbert
spaceH . We call number operator associated toU a self-adjoint operatorN
on H such thatUNU∗ = N − 1. The simplest examples of such operators are
described in Examples 2.5 and 2.6. It is trivial then to check that, ifS is the
imaginary part ofU , the operatorA := (SN+NS)/2, satisfies[∆, iA] = 1−∆2,
hence we have a (strict) Mourre estimate on[−a, a] for eacha ∈]0, 1[.

The intuition behind this construction should be immediate for people using
the positive commutator method: in Examples 2.5 and 2.6 the operator∆ is the
Laplacian onZ or N respectively andS is the operator of derivation, the analog
of P = −i d

dx onR, so it is natural to look after something similar to the position
operatorQ and then to consider the analog of(PQ + QP )/2. Note that we got
such a simple prescription because we didnotmake a Fourier transform in order to
realize∆ as a multiplication operator, as it is usually done when studying discrete
Laplacians (e.g. in [AlF]). Note also that the relationUNU∗ = N − 1 is a discrete
version of the canonical commutation relations, cf. (2) of Lemma 2.4.

In the unitary case the existence ofN is a very restrictive condition, see Ex-
ample 2.5. The nice thing is that in the completely non unitary caseN exists and
is uniquely defined. This is an obvious fact: the formal solution of the equation
N = 1 + UNU∗ obtained by iterationN = 1 + UU∗ + U2U∗2 + . . . exists as a
densely defined self-adjoint operator if and only ifU∗n → 0 strongly onH , which
means thatU is completely non unitary. Finally, observe that the operatorsρu on
the Fock space are completely non unitary, so we can apply them this construction.

Our notationN should not be confused with that used in [AlF]: ourN is
proportional to theirR − N + 1, in our notationsR being the particle number
operatorN (see below). We could have used the notationQ for ourN , in view of
the intuition mentioned above. We have preferred not to do so, because the number
operator associated toU in the tree case has no geometric interpretation, as we
explain below.
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There is no essential difference between the tree model and the Fock space
model, besides the fact that we tend to emphasize the geometric aspects in the first
representation and the algebraic aspects in the second one. In fact, ifH is a finite
dimensional Hilbert space equipped with an orthonormal basisA ⊂ H then the tree
Γ associated toA can be identified with the orthonormal basis ofH canonically
associated toA, namely the set of vectors of the forma1⊗a2 · · ·⊗an with ak ∈ A.
In other terms, giving a tree is equivalent with giving a Fock space over a finite
dimensional Hilbert space equipped with a certain orthonormal basis. However,
this gives more structure than usual on a Fock space: the notions of positivity and
locality inherent to the spacè2(Γ) are missing in the pure Fock space situation,
there is no analog of the spaces`p(Γ), etc. But our results show that this structure
specific to the tree is irrelevant for the spectral and scattering properties ofL.

We stress, however, that an important operator in the Fock space setting has a
simple geometric interpretation in any tree version. More precisely, letN be the
particle number operatordefined onH by the conditionNf = nf if f belongs
to H⊗n. Clearly, if H is represented as̀2(Γ), thenN becomes the operator of
multiplication by the functiond, whered(x) ≡ d(x, e) is the distance from the
pointx to the origine (see [Gol]).

On the other hand, the number operatorN associated to an isometry of the
form U = ρu is quite different fromN , it has not a simple geometrical meaning
and is not a local operator in the tree case, unless we are in rather trivial situations
like the caseν = 1 (see Example2.6). For this reason we make an effort in
Section 4 to eliminate the conditions from Section 3 involving the operatorN and
to replace them by conditions involvingN . This gives us statements like that of
the Theorem 1.1 below, a particular case of our main result concerning the spectral
and scattering theory of the operatorsL.

We first have to introduce some notations. Let1n and1≥n be the orthogonal
projections ofH onto the subspacesH⊗n and

⊕
k≥nH

⊗k respectively. For real
s let H(s) be the Hilbert space defined by the norm

‖f‖2 = ‖10f‖2 +
∑

n≥1

n2s‖1nf‖2.

If T is an operator on a finite dimensional spaceE then〈T 〉 is itsnormalized trace:
〈T 〉 = Tr(T )/dimE. We denote byσess(L) andσp(L) the essential spectrum and
the set of eigenvalues ofL. As a consequence of Theorem 4.6, we have:

Theorem 1.1 Assume thatH is finite dimensional, chooseu ∈ H with ‖u‖ =
1, and let us set∆ = (ρu + ρ∗u)/2. Let V be a self-adjoint operator of the
form V =

∑
n≥0 Vn1n, with Vn ∈ B(H⊗n), limn→∞ ‖Vn‖ = 0, and such that

‖Vn − 〈Vn〉‖ + ‖Vn+1 − Vn ⊗ 1H‖ ≤ δ(n) whereδ is a decreasing function
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such that
∑

n δ(n) < ∞. LetW be a bounded self-adjoint operator satisfying∑
n ‖W1≥n‖ <∞. We setL0 = ∆ + V andL = L0 +W . Then:

(1) σess(L) = [−1,+1];
(2) the eigenvalues ofL distinct from±1 are of finite multiplicity and can accumu-
late only toward±1;
(3) if s > 1/2 andλ /∈ κ(L) := σp(L)∪{±1}, thenlimµ→0(L−λ− iµ)−1 exists
in norm inB(H(s),H(−s)), locally uniformly inλ ∈ R \ κ(L);
(4) the wave operators for the pair(L,L0) exist and are complete.

These results show a complete analogy with the standard two body problem
on an Euclidean space, the particle number operatorN playing the r̂ole of the
position operator. Note thatV,W are the analogs of the long range and short range
components of the potential. See Proposition 4.4 for a result of a slightly different
nature, covering those from [AlF]. Our most general results in the Fock space
setting are contained in Theorem 4.6.

The second part of the paper (Section 5) is devoted to a problem of a completely
different nature. Our purpose is to compute the essential spectrum of a general class
of operators on a Fock space in terms of their “localizations at infinity”, as it was
done in [GeI] for the case whenΓ is an abelian locally compact group.

The basic idea of [GeI] is very general and we shall use it here too: the first step
is to isolate the class of operators we want to study by considering theC∗-algebra
C generated by some elementary Hamiltonians and the second one is to compute
the quotient ofC with respect to the idealC0 = C ∩ K(H ) of compact operators
belonging toC . Then, ifL ∈ C the projectionL̂ of L in the quotientC /C0 is
the localization ofL at infinity we need (or the set of such localizations, depending
on the way the quotient is represented). The interest ofL̂ comes from the relation
σess(L) = σ(L̂). In all the situations studied in [GeI] these localizations at infinity
correspond effectively with what we would intuitively expect.

We stress that both steps of this approach are non trivial in general. The algebra
C must be chosen with care, if it is too small or too large then the quotient will
either be too complicated to provide interesting information, or the information
we get will be less precise than expected. Moreover, there does not seem to be
many techniques for the effective computation of the quotient. One of the main
observations in [GeI] is that in many situations of interest in quantum mechanics
the configuration space of the system is an abelian locally compact group and then
the algebras of interest can be constructed as crossed products; in such a case there
is a systematic procedure for computing the quotient.

The techniques from [GeI] cannot be used in the situations of interest here,
because the monoı̈d structure of the tree is not rich enough and in the Fock space
version the situation is even worse. However, a naturalC∗-algebra of anisotropic
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operators associated to the hyperbolic compactification of a tree has been pointed
out in [Gol]. This algebra contains the compact operators on`2(Γ) and an embed-
ding of the quotient algebra into a tensor product, which allows the computation of
the essential spectrum, has also been described in [Gol]. In Section 5 and in the Ap-
pendix we shall improve these results in two directions: we consider more general
types of anisotropy and we develop new abstract techniques for the computation of
the quotient algebra. To clarify this, we give an example below.

We place ourselves in the Fock space setting withH finite dimensional and we
fix a vectoru ∈ H and the isometryU associated to it. We are interested in self-
adjoint operators of the formL = D+V whereD is a “continuous function” ofU
andU∗, i.e. it belongs to theC∗-algebraD generated byU , andV is of the form∑
Vn1n whereVn are bounded operators onH⊗n and are asymptotically constant

in some sense (whenn→∞). In order to get more precise results, we make more
specific assumptions on the operatorsVn.

LetA ⊂ B(H) be aC∗-algebra with1H ∈ A. Let Avo be the set of operators
V as above such thatVn ∈ A⊗n, sup ‖Vn‖ < ∞ and‖Vn − Vn−1 ⊗ 1H‖ → 0 as
n→∞. If ν = 1, i.e. in the setting of Example 2.6,Avo is the algebra of bounded
sequences of vanishing oscillation at infinity. We mention that theC∗-algebra of
bounded continuous functions with vanishing oscillation at infinity on a group has
first been considered in the context of [GeI] in [Man] (cf. also references therein).

Observe that the algebrasA⊗n are embedded in the infinite tensor product
C∗-algebraA⊗∞. Thus we may also introduce theC∗-subalgebraA∞ of Avo

consisting of the operatorsV such thatV∞ := limVn exists in norm inA⊗∞.
Note that the subsetA0 of operatorsV such thatlimVn = 0 is an ideal ofAvo.

The algebras of Hamiltonians of interest for us can now be defined as theC∗-
algebrasCvo andC∞ generated by the operators of the formL = D + V where
D is a polynomial inU,U∗ andV ∈ Avo or V ∈ A∞ respectively. Let us denote
C0 = Cvo ∩ K(H ). Below we assumeH of dimension at least2, see Proposition
A.5 for the one dimensional case.

Theorem 1.2 There are canonical isomorphisms

Cvo/C0 ' (Avo/A0)⊗D , C∞/C0 ' A⊗∞ ⊗D . (1.5)

For applications in the computation of the essential spectrum, see Propositions
5.15 and 5.16. For example, ifD ∈ D andV ∈ A∞ are self-adjoint operators and
L = D + V , then

σess(L) = σ(D) + σ(V∞). (1.6)

The localization ofL at infinity in this case iŝL = 1⊗D + V∞ ⊗ 1.
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To cover perturbations of the Laplacian on a tree by functionsV , it suffices to
consider an abelian algebraA, see Example 5.13. In this case, ifA is the spectrum
of A, thenA⊗∞ = C(A∞) whereA∞ = AN is a compact topological space with
the product topology, and then we can speak of the set of localizations at infinity
of L. Indeed, we have then

A⊗∞ ⊗D ' C(A∞,D),

henceL̂ is a continuous map̂L : A∞ → D and we can say that̂L(x) is the
localization ofL at the pointx ∈ A∞ on the boundary at infinity of the tree (or in
the directionx). More explicitly, ifL = D+V as above, then̂L(x) = D+V∞(x).

Plan of the paper: The notion of number operator associated to an isometry is
introduced and studied in Section 2. The spectral theory of the operatorsL is stud-
ied via the Mourre estimate in Section 3: after some technicalities in the first two
subsections, our main abstract results concerning these matters can be found in
Subsection 3.3 and the applications in the Fock space setting in Subsection 4.2.
Section 5 is devoted to the study of severalC∗-algebras generated by more general
classes of anisotropic Hamiltonians on a Fock space. Subsections 5.1 and 5.2 con-
tain some preparatory material which is used in Subsection 5.3 in order to prove
our main result in this direction, Theorem 5.10. The Appendix, concerned with the
representability of someC∗-algebras as tensor products, is devoted to an important
ingredient of this proof. The caseν = 1, which is simpler but not covered by the
techniques of Section 5, is treated at the end of the Appendix.

Notations: B(H ), K(H ) are the spaces of bounded or compact operators on
a Hilbert spaceH . If S, T are operators such thatS − T ∈ K(H ), we write
S ≈ T . If S, T are quadratic forms with the same domain andS−T is continuous
for the topology ofH , we writeS ∼ T . D(T ) is the domain of the operatorT .
We denote by1 the identity of a unital algebra, but for the clarity of the argument
we sometimes adopt a special notation, e.g. the identity operator onH could be
denoted1H . A morphismbetween twoC∗-algebras is a∗-homomorphism and an
idealof aC∗-algebra is a closed bilateral ideal.

Acknowledgments:We are grateful to George Skandalis for a very helpful conver-
sation related to the questions we treat in the Appendix (see the comments before
Proposition A.2 and in its proof).
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2 Number operator associated to an isometry

2.1 Definition and first examples

Let U be an isometry on a Hilbert spaceH . ThusU∗U = 1 andUU∗ is the
(orthogonal) projection onto the closed subspace ranU = UH , henceP0 :=
[U∗, U ] = 1− UU∗ is the projection onto(ranU)⊥ = kerU∗.

Definition 2.1 A number operator associated toU is a self-adjoint operatorN
satisfyingUNU∗ = N − 1.

In fact,N is a number operator forU if and only ifU∗D(N) ⊂ D(N) and
UNU∗ = N − 1 holds onD(N). Indeed, this meansN − 1 ⊂ UNU∗ andN − 1
is a self-adjoint operator, so it cannot have a strict symmetric extension.

In this section we discuss several aspects of this definition. If the operatorU
is unitary (situation of no interest in this paper), thenUkNU−k is a well defined
self-adjoint operator for eachk ∈ Z and the equalityUNU∗ = N−1 is equivalent
to UkNU−k = N − k for all k ∈ Z. In particular, a number operator associated
to a unitary operator cannot be semibounded. Example 2.5 allows one to easily
understand the structure of a unitary operator which has an associated number ope-
rator.

Note that ifU is unitary, thanN does not exist in general and if it exists, then it
is not unique, sinceN + λ is also a number operator for each realλ. On the other
hand, we will see in the Subsection 2.2 thatN exists, is positive and is uniquely
defined ifU is a completely non unitary isometry.

In order to express Definition 2.1 in other, sometimes more convenient, forms,
we recall some elementary facts. IfA,B are linear operators onH then the do-
main ofAB is the set off ∈ D(B) such thatBf ∈ D(A). It is then clear that ifA
is closed andB is bounded, thenAB is closed, but in generalBA is not. However,
if B is isometric, thenBA is closed. Thus, ifN is self-adjoint andU is isometric,
thenUNU∗ is a closed symmetric operator.

Lemma 2.2 LetN be a number operator associated toU . ThenD(N) is stable
underU andU∗ and we haveNU = U(N+1) andNU∗ = U∗(N−1). Moreover,
ranP0 ⊂ ker(N − 1) andNP0 = P0N = P0.

Proof: FromUNU∗ = N − 1 andU∗U = 1 we getU∗D(N) ⊂ D(N) and
NU∗ = U∗(N − 1) on the domain onN . Moreover, sinceU∗P0 = 0, we have
P0H ⊂ D(UNU∗) = D(N) and(N − 1)P0 = 0, soNP0 = P0, which clearly
impliesP0N = P0. If f, g ∈ D(N) then

〈(N − 1)f, Ug〉 = 〈U∗(N − 1)f, g〉 = 〈NU∗f, g〉 = 〈f, UNg〉
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henceUg ∈ D(N∗) = D(N) andUNg = (N − 1)Ug. ThusUD(N) ⊂ D(N)
andNU = U(N + 1) on the domain onD(N). If f ∈ H andUf ∈ D(N)
thenf = U∗Uf ∈ D(N), so we haveNU = U(N + 1) as operators. Iff ∈ H
andU∗f ∈ D(N) thenUU∗f ∈ D(N) andP0f ∈ D(N), sof = UU∗f + P0f
belongs toD(N), henceNU∗ = U∗(N − 1) as operators.

Note that the relationNU = U(N + 1) can also be written[N,U ] = U .
Reciprocally, we have:

Lemma 2.3 If a self-adjoint operatorN satisfies[N,U ] = U in the sense of forms
onD(N) andP0N = P0 onD(N), thenN is a number operator associated toU .

Proof: The first hypothesis means〈Nf,Ug〉 − 〈U∗f,Ng〉 = 〈f, Ug〉 for all f, g
in D(N). But this clearly impliesU∗f ∈ D(N) andNU∗f = U∗(N − 1)f for all
f ∈ D(N). Then we get

UNU∗f = UU∗(N − 1)f = (N − 1)f − P0(N − 1)f = (N − 1)f

for all suchf , soN is a number operator by the comment after Definition 2.1.

Observe that by induction we get[N,Un] = nUn, hence‖[N,Un]‖ = n if
U 6= 0. In particular,N is not a bounded operator.

Lemma 2.4 If N is a self-adjoint operator, then the condition[N,U ] = U in the
sense of forms onD(N) is equivalent to each of the following ones:

(1) UD(N) ⊂ D(N)and[N,U ] = U as operators onD(N);

(2) eitNUe−itN = eitU for all t ∈ R;

(3) ϕ(N)U = Uϕ(N + 1) for all ϕ : R→ C bounded and Borel.

Proof: The implications (3)⇒ (2) and (1)⇒ (0) are immediate, condition (0)
being that[N,U ] = U in the sense of forms onD(N). If (0) holds, then for all
f, g ∈ D(N) one has〈Nf,Ug〉 − 〈f, UNg〉 = 〈f, Ug〉. This gives usUg ∈
D(N∗) = D(N), hence we get (1). If (2) is satisfied then〈e−itNf, Ue−itNg〉 =
eit〈f, Ug〉 for all f, g ∈ D(N), so by taking the derivatives att = 0, we get (0). If
(1) holds then by usingNU = U(N + 1) we get(N + z)−1U = U(1 +N − z)−1

for all z ∈ C \ R, hence by standard approximation procedures we obtain (3).

It is easy to check that the mapU defined byS 7→ USU∗ is a morphism
of B(H ) ontoB(UH ). We identifyB(UH ) with theC∗-subalgebra ofB(H )
consisting of the operatorsT such thatTP0 = P0T = 0; note thatP⊥0 is the
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identity of the algebraB(UH ) and that the linear positive mapT 7→ U∗TU is a
right-inverse forU . Clearly

Uϕ(N)U∗ = ϕ(N − 1)P⊥0 for all bounded Borel functionsϕ : R→ C. (2.1)

By standard approximation procedures we now see that each of the following con-
ditions is necessary and sufficient in order thatN be a number operator associ-
ated toU : (i) UeitNU∗ = e−iteitNP⊥0 for all t ∈ R; (ii) U(N − z)−1U∗ =
(N − 1− z)−1P⊥0 for somez ∈ C \ R.

We now give the simplest examples of number operators.

Example 2.5 Let H = `2(Z) and(Uf)(x) = f(x− 1). If {en} is the canonical
orthonormal basis ofH thenUen = en+1. It suffices to defineN by the condition
Nen = nen. Any other number operator is of the formN +λ for some realλ. It is
an easy exercise to show that if(U,N) is an abstract irreducible couple consisting
of a unitary operatorU and a self-adjoint operatorN such that[N,U ] = U in
the sense of forms onD(N), then there is a unique realλ such that this couple is
unitarily equivalent to the couple(U,N + λ) constructed above.

Example 2.6 Let H = `2(N) andU as above. ThenU∗en = en−1 with e−1 = 0,
soP0 = |e0〉〈e0|. We obtain a number operator by definingNen = (n + 1)en
and it is easy to see that this is the only possibility. We shall prove this in a more
general context below.

2.2 Completely non unitary isometries

An isometryU is called completely non unitaryif s–limk→∞ U∗k = 0. This is
equivalent to the fact that the only closed subspaceK such thatUK = K is
K = {0}. We introduce below several objects naturally associated to such an
isometry, see [Bea].

Consider the decreasing sequenceH = U0H ⊃ U1H ⊃ U2H ⊃ . . . of
closed subspaces ofH . SinceUk is an isometric operator with rangeUkH , the
operatorP k := UkU∗k is the orthogonal projection ofH ontoUkH and we have
1 = P 0 ≥ P 1 ≥ P 2 . . . and s–limk→∞ P k = 0, because‖P kf‖ = ‖U∗kf‖ → 0.

Recall thatP0 = 1 − UU∗ = 1 − P 1 is the projection ontokerU∗. More
generally, letHk be the closed subspace

Hk = kerU∗k+1 ª kerU∗k = ranUk ª ranUk+1 = Uk(kerU∗)

and letPk be the projection onto it, so

Pk = P k − P k+1 = UkU∗k − Uk+1U∗k+1 = UkP0U
∗k

11



Notice thatPk+1 = UPkU
∗, henceUPk = Pk+1U , and

PkPm = 0 if k 6= m and
∞∑

k=0

Pk = 1. (2.2)

We havedimHk = dimH0 6= 0 for all k ∈ N. Indeed, it suffices to show that
Uk := U |Hk

: Hk → Hk+1 is a bijective isometry with inverse equal toU∗|Hk+1
.

In fact, fromUPk = Pk+1U we getUHk ⊂ Hk+1 soUk is isometric fromHk

to Hk+1. To prove surjectivity, note thatU∗Pk+1 = PkU
∗, henceU∗Hk+1 ⊂ Hk

andUU∗Pk+1 = UPkU
∗ = Pk+1. ThusUk : Hk → Hk+1 is bijective and its

inverse isU∗|Hk+1
.

Proposition 2.7 If U is a completely non unitary isometry then there is a unique
number operator associated to it, and we have

N ≡ NU =
∞∑

k=0

P k =
∞∑

k=0

(k + 1)Pk, (2.3)

the sums being interpreted in form sense. Thus eachk + 1, with k ∈ N, is an
eigenvalue ofNU of multiplicity equal todimkerU∗ andHk is the corresponding
eigenspace.

Proof: SincePk = P k − P k+1, the two sums from (2.3) are equal and define
a self-adjoint operatorNU with N + 1 as spectrum andHk as eigenspace of the
eigenvaluek + 1. SinceUPk = Pk+1U , condition (3) of Lemma 2.4 is clearly
verified, henceNU is a number operator forU by Lemma 2.3. Of course, one can
also check directly that the conditions of the Definition 2.1 are satisfied. It remains
to show uniqueness.

It is clear that an operatorN is a number operator if and only if it is of the form
N = M + 1 whereM is a self-adjoint operator such thatM = UU∗ + UMU∗.
With a notation introduced above, this can be writtenM = UU∗ + U (M) hence
we get a unique formal solution by iteration:M =

∑
k≥0 U k(UU∗) =

∑
k≥1 P

k

which gives (2.3). In order to make this rigorous, we argue as follows.
Recall that, by Lemma 2.2,U andU∗ leave invariant the domain ofM . Hence

by iteration we have onD(M):

M = P 1+UMU∗ = P 1+UP 1U∗+U2MU∗2 = P 1+P 2+. . .+Pn+UnMU∗n

for all n ∈ N. It is clear thatPmD(M) ⊂ D(M) for all m and(1 − Pn)Un =
U∗n(1− Pn) = 0, hence

M(1− Pn) = (1− Pn)M =
∑

1≤k≤n−1

P k(1− Pn) =
∑

1≤k≤n−1

kP k

ThenMPk = PkM = kPk for all k ∈ N, henceM =
∑

k kPk.

12



3 The Mourre estimate

3.1 The free case

Our purpose in this section is to construct a conjugate operatorA and to establish
a Mourre estimate for the “free” operator

∆ := Re(U) =
1
2
(U + U∗) (3.1)

whereU is an isometry which admits a number operatorN on a Hilbert spaceH .
The operatorA will be constructed in terms ofN and of the imaginary part ofU :

S := Im (U) =
1
2
(U − U∗). (3.2)

More precisely, we defineA as the closure of the operator

A0 =
1
2
(SN +NS), D(A0) = D(N). (3.3)

We shall prove below thatA0 is essentially self-adjoint and we shall determine the
domain ofA. ThatA0 is not self-adjoint is clear in the situations considered in
Examples 2.5 and 2.6. Note that in these examplesS is an analog of the derivation
operator. Before, we make some comments concerning the operators introduced
above.

We haveU = ∆ + iS and‖∆‖ = ‖S‖ = 1. In fact, by using [Mur, Theorem
3.5.17] in caseU is not unitary and (2) of Lemma 2.4 ifU is unitary, we see that
σ(∆) = σ(S) = [−1, 1]. By Lemma 2.2 the polynomials inU,U∗ (hence in∆, S)
leave invariant the domain ofN . If not otherwise mentioned, the computations
which follow are done onD(N) and the equalities are understood to hold onD(N).
The main relations

NU = U(N + 1) and NU∗ = U∗(N − 1) (3.4)

will be frequently used without comment. In particular, this gives us

[N,S] = −i∆ and [N,∆] = iS (3.5)

These relations imply that∆ andS are of classC∞(N) (we use the terminology
of [ABG]). We also have

[U,∆] = −P0/2, [U∗,∆] = P0/2, [S,∆] = iP0/2. (3.6)

A simple computation gives then:

∆2 + S2 = 1− P0/2. (3.7)

13



It follows that we have on the domain ofN :

A0 = NS +
i

2
∆ = SN − i

2
∆ =

1
2i

(
(N − 1

2
)U − U∗(N − 1

2
)
)
. (3.8)

Remark: If we denotea = iU∗(N − 1/2) then on the domain ofN we have
A = (a + a∗)/2. Note thata looks like a bosonic annihilation operator (the nor-
malization with respect toN being, however, different) and that

aa∗ = (N + 1/2)2, a∗a = (N − 1/2)2P⊥0 , [a, a∗] = 2N + P0/4, [N, a] = a.

Lemma 3.1 A is self-adjoint withD(A) = D(NS) = {f ∈ H | Sf ∈ D(N)}.
Proof: Note thatNS is closed on the specified domain and thatD(N) ⊂ D(NS),
becauseSD(N) ⊂ D(N). Let us show thatD(N) is dense inD(NS) (i.e.NS is
the closure ofNS|D(N)). Let f ∈ D(NS), thenfε = (1 + iεN)−1f ∈ D(N)
and‖fε − f‖ → 0 whenε→ 0. Then, sinceS ∈ C1(N):

NSfε = NS(1 + iεN)−1f

= N(1 + iεN)−1[iεN, S](1 + iεN)−1f +N(1 + iεN)−1Sf

= εN(1 + iεN)−1∆(1 + iεN)−1f + (1 + iεN)−1NSf.

The last term converges toNSf as ε tends to0. So it suffices to observe that
εN(1 + iεN)−1 → 0 strongly asε→ 0.

LetA0 = SN − i∆/2,D(A0) = D(N). It is trivial to prove thatA∗0 = NS +
i∆/2,D(A∗0) = D(NS). By what we proved and the fact thatA∗0|D(N) = A0, we
see thatA∗0 is the closure ofA0. SoA0 is essentially self-adjoint.

The next proposition clearly implies the Mourre estimate for∆ outside±1.

Proposition 3.2 ∆ ∈ C∞(A) and[∆, iA] = 1−∆2 = S2 + P0/2.

Proof: OnD(N) we have

[∆, iA] = [∆, iNS] = [∆, iN ]S +N [∆, iS]
= S2 +NP0/2 = S2 + P0/2 = 1−∆2,

which implies∆ ∈ C∞(A) by an obvious induction argument.

We mention two other useful commutation relations:

[iA, S] = Re(S∆) and [iA,N ] = −Re(N∆). (3.9)

Indeed:

[iA, S] = [iSN +
1
2
∆, S] = iS[N,S] +

1
2
[∆, S] = S∆ +

1
2
[∆, S]

and

[iA,N ] = [iSN +
1
2
∆, N ] = [iS,N ]N +

1
2
[∆, N ] = −∆N +

1
2
[∆, N ].
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3.2 Commutator bounds

The following abbreviations will be convenient. ForT ∈ B(H ) we setṪ ≡ T · =
[iN, T ], interpreted as a form onD(N), andT ′ = [S, T ], T∆ = [∆, T ], which are
bounded operators onH . Iterated operations likëT ≡ T ··, T ′· or Ṫ ′ ≡ T ·′ are
obviously defined. Note that

Ṫ ′ − T ′· = [S, [iN, T ]]− [iN, [S, T ]] = [T, [iN, S]]] = −T∆ (3.10)

because of the Jacobi identity[X, [Y, Z]]+ [Y, [Z,X]]+ [Z, [X,Y ]] = 0 and (3.5).
If T is a bounded operator then bothNT andTN are well defined quadratic

forms with domainD(N). We write ‖NT‖ = ∞, for example, ifNT is not
continuous for the topology ofH . If NT is continuous, thenTD(N) ⊂ D(N)
and the operatorNT with domainD(N) extends to a unique bounded operator on
H which will also be denotedNT and whose adjoint is the continuous extension
of T ∗N to H . If T ∗ = ±T then the continuity ofNT is equivalent to that ofTN .
Such arguments will be used without comment below.

Proposition 3.3 For eachV ∈ B(H ) we have, in the sense of forms onD(N),

[iA, V ] = V̇ S + iNV ′ − 1
2
V∆. (3.11)

In particular

‖[iA, V ]‖ ≤ ‖V̇ ‖+ ‖NV ′‖+
1
2
‖V ‖. (3.12)

Moreover, for the form[iA, [iA, V ]] with domainD(N2), we have

1
4
‖ [iA, [iA, V ]] ‖ ≤ ‖V ‖+ ‖V̇ ‖+ ‖V̈ ‖+ ‖V ′‖ (3.13)

+ ‖NV ′‖+ ‖NV∆‖+ ‖NV̇ ′‖+ ‖N2V ′′‖.
Proof: The relation (3.11) follows immediately fromA = iNS − 1

2∆. For the
second commutator, note thatAD(N2) ⊂ D(N), hence in the sense of forms on
D(N2) we have:

[iA, [iA, V ]] = [iA, V̇ S] + [iA, iNV ′]− 1
2
[iA, V∆]

= [iA, V̇ ]S + V̇ [iA, S] + [iA, iN ]V ′ + iN [iA, V ′]− 1
2
[iA, V∆].

By (3.9) we have‖V̇ [iA, S]‖ ≤ ‖V̇ ‖ and then (3.5) gives

[iA, iN ]V ′ = −iRe(N∆)V ′ = − i
2
(N∆V ′ + ∆NV ′)

= − i
2
[N,∆]V ′ − i∆NV ′ =

1
2
SV ′ − i∆NV ′
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Thus, we have

‖[iA, [iA, V ]]− [iA, V̇ ]S− iN [iA, V ′]+
1
2
[iA, V∆]‖ ≤ ‖V̇ ‖+‖V ′‖/2+‖NV ′‖.

We now apply (3.11) three times withV replaced successively bẏV , V ′ andV∆.
First, we get

‖[iA, V̇ ]S‖ = ‖V̈ S2 + iNV̇ ′S − V̇∆S/2‖ ≤ ‖V̈ ‖+ ‖NV̇ ′‖+ ‖V̇ ‖.
Then, by using also (3.10) and the notationV ′∆ = (V ′)∆, we get

N [iA, V ′] = NV ′·S + iN2V ′′ −NV ′∆/2 = N(V̇ ′ + V∆)S + iN2V ′′ −NV ′∆/2.
Now (3.5) gives

NV ′∆ = N∆V ′ −NV ′∆ = [N,∆]V ′ + [∆, NV ′] = iSV ′ + [∆, NV ′]

hence

‖N [iA, V ′]‖ ≤ ‖NV̇ ′‖+ ‖NV∆‖+ ‖N2V ′′‖+ ‖V ′‖/2 + ‖NV ′‖.
Then

[iA, V∆] = (V∆)· + iN(V∆)′ − (1/2)V∆∆.

The first two terms on the right hand side are estimated as follows:

(V∆)· = [iN, [∆, V ]] = −[∆, [V, iN ]]− [V, [iN,∆]] = [∆, V̇ ] + [V, S]

and

N(V∆)′ = N [S, [∆, V ]] = −N [∆, [V, S]]−N [V, [S,∆]] = N [∆, V ′]

− i

2
N [V, P0] = [N,∆]V ′ + ∆NV ′ −NV ′∆− i

2
N [V, P0]

= iSV ′ + [∆, NV ′]− i

2
N [V, P0].

SinceNP0 = P0 we have

N [V, P0] = NV P0 −NP0V = [N,V ]P0 + V NP0 −NP0V = −iV̇ + [V, P0].

hence we get

‖[iA, V∆]‖ ≤ 5‖V ‖+ (5/2)‖V̇ ‖+ ‖V ′‖+ ‖NV ′‖.
Adding all these estimates we get a more precise form of the inequality (3.13).

The following result simplifies later computations. The notationX ∼ Y means
thatX,Y are quadratic forms on the domain ofN or N2 andX − Y extends to
a bounded operator.From now on we suppose0 /∈ σ(N). In fact, in the case of
interest for us we haveN ≥ 1.
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Lemma 3.4 Let V be a bounded self-adjoint operator. If[U, V ]N is bounded,
then [U∗, V ]N is bounded, so‖NV ′‖ + ‖NV∆‖ < ∞. If [U, V ]N is compact,
then [U∗, V ]N is compact, soNV ′ is compact. IfV̇ and [U, V̇ ]N are bounded,
then‖NV̇ ′‖ <∞. If [U, [U, V ]]N2 is bounded, then‖N2V ′′‖ <∞.

Proof: We have

N = UU∗N + P0N = U(N + 1)U∗ + P0 (3.14)

hence
[U∗, V ]N = U∗[V,U ](N + 1)U∗ + [U∗, V ]P0, (3.15)

which proves the first two assertions. The assertion involvingV̇ is a particular case,
becausėV is self-adjoint if it is bounded.

For the rest of the proof we need the following relation:

N = P0 + 2P1 + U2(N + 2)U∗2. (3.16)

This follows easily directly from the definition ofN :

N = 1 + UNU∗ = 1 + U(1 + UNU∗)U∗ = 1 + UU∗ + U2NU∗2

= (1− UU∗) + 2(UU∗ − U2U∗2) + U2(N + 2)U∗2.

SincePkU
2 = U∗2Pk = 0 for k = 0, 1, we get from (3.17):

N2 = P0 + 4P1 + U2(N + 2)2U∗2. (3.17)

We clearly have:

−4N2V ′′ = N2[U∗, [U∗, V ]] +N2[U, [U, V ]]−N2([U∗, [U, V ]] + [U, [U∗, V ]]

We shall prove that the three terms from the right hand side are bounded. Since
N2[U∗, [U∗, V ]] = ([U, [U, V ]]N2)∗, this is trivial for the first one. The second
term is the adjoint of[U∗, [U∗, V ]]N2 and due to (3.17) we have

[U∗, [U∗, V ]]N2 = (U∗2V − 2U∗V U∗ + V U∗2)N2

∼ (U∗2V − 2U∗V U∗ + V U∗2)U2(N + 2)2U∗2

= U∗2[U, [U, V ]](N + 2)2U∗2,

hence we have the required boundedness. Finally, the third term is the adjoint of
([U, [U∗, V ]] + [U∗, [U, V ]])N2 and by a simple computation this is equal to

2(V − UV U∗ − U∗V U + V UU∗)N2 ∼ −2U∗[U, [U, V ]](N + 1)2U∗
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where we usedN2 = UU∗N2 + P0N
2 = U(N + 1)2U∗ + P0.

If the right hand side of the relation (3.12) or (3.13) is finite, then the operator
V is of classC1(A) orC2(A) respectively. We shall now point out criteria which
are less general than (3.12), (3.13) but are easier to check.

Proposition 3.5 Let Λ ∈ B(H ) be a self-adjoint operator such that[Λ, N ] = 0
and[U,Λ]N ∈ B(H ). LetV be a bounded self-adjoint operator.
(1) If (V − Λ)N is bounded, thenV ∈ C1(A).
(2) If [U, [U,Λ]]N2 and(V − Λ)N2 are bounded, thenV ∈ C2(A).
(3) If [U,Λ]N, [∆, V ] and(V − Λ)N are compact, then[iA, V ] is compact.

Proof: We have−iV̇ = [N,V ] = [N,V − Λ] = N(V − Λ)− (V − Λ)N so this
is a bounded (or even compact) operator under the conditions of the proposition.
Then by using (3.5) we get

NV ′ = N [S,Λ] +N [S, V − Λ] = N [S,Λ] +NS(V − Λ)−N(V − Λ)S
= N [S,Λ]− i∆(V − Λ) + [S,N(V − Λ)]

henceNV ′ is bounded (or compact). Now in order to get (1) and (3) it suffices to
use (3.11) and (3.12) and Lemma 3.4 withV replaced byΛ.

Now we prove (2). We haveV ∈ C1(A) by what we have shown above.
The assumption‖(V − Λ)N2‖ < ∞ implies ‖N2(V − Λ)‖ < ∞ and then by
interpolation‖N(V − Λ)N‖ <∞. Thus

−V̈ = [N, [N,V ]] = [N, [N,V − Λ]]
= N2(V − Λ)− 2N(V − Λ)N + (V − Λ)N2

is bounded. Moreover,

−iNV̇ ′ = N [S, [N,V ]] = N [S, [N,V − Λ]] = NSN(V − Λ)
− NS(V − Λ)N −N2(V − Λ)S +N(V − Λ)NS,

is bounded by (3.5). Lemma 3.4 shows that[U∗,Λ]N is a bounded operator.
Hence, by using again (3.5),

NV∆ = N [∆, V − Λ] +N [∆,Λ] ∼ N [∆, V − Λ]
= N∆(V − Λ)−N(V − Λ) ∼ ∆N(V − Λ) + iS(V − Λ).

SoNV∆ is bounded. At lastN2V ′′ = N2[S, [S, V ]] ∼ N2[S, [S, V − Λ]] by
Lemma 3.4 applied toΛ, and this is a bounded operator.
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3.3 Spectral and scattering theory

We shall now study the spectral theory of abstract self-adjoint operators of the form
L = ∆ + V with the help of the theory of conjugate operators initiated in [Mou]
and the estimates. We first give conditions which ensure that a Mourre estimate
holds. Recall thatU is an arbitrary isometry on a Hilbert spaceH which admits
a number operatorN such that0 /∈ σ(N) and∆ = ReU . In this subsection
the operatorV is assumed to be at least self-adjoint and compact. We recall the
notation:S ≈ 0 if S ∈ K(H ).

Definition 3.6 We say that the self-adjoint operatorL has normal spectrumif
σess(L) = [−1,+1] and the eigenvalues ofL different from±1 are of finite multi-
plicity and can accumulate only toward±1. Letσp(L) be the set of eigenvalues of
L; thenκ(L) = {−1,+1} ∪ σp(L) is the set ofcritical valuesofL.

Theorem 3.7 Let V be a compact self-adjoint operator onH such that[N,V ]
and [U, V ]N are compact operators. ThenL has normal spectrum and ifJ is a
compact subset of] − 1,+1[, then there are a real numbera > 0 and a compact
operatorK such thatE(J)[L, iA]E(J) ≥ aE(J) + K, whereE is the spectral
measure ofL.

Proof: We haveσess(L) = σess(∆) = [−1,+1] becauseV is compact. This also
implies thatϕ(L) − ϕ(∆) is compact ifϕ is a continuous function. From (3.11)
and Lemma 3.4 it follows that[V, iA] is a compact operator, soV is of classC1(A)
in the sense of [ABG]. Then, if suppϕ is a compact subset of]− 1,+1[ we have

ϕ(L)∗[L, iA]ϕ(L) ≈ ϕ(∆)∗[∆, iA]ϕ(∆) ≥ a|ϕ(∆)|2 ≈ a|ϕ(L)|2

because[∆, iA] = 1 − ∆2 ≥ a on ϕ(∆)H . This clearly implies the Mourre
estimate, which in turn implies the the assertions concerning the eigenvalues, see
[Mou] or [ABG, Corollary 7.2.11].

The next result summarizes the consequences of the Mourre theorem [Mou],
with an improvement concerning the regularity of the boundary values of the re-
solvent, cf. [GGM] and references there. Ifs is a positive real number we denote
by Ns the domain of|N |s equipped with the graph topology and we setN−s :=
(Ns)∗, where the adjoint spaces are defined such as to haveNs ⊂ H ⊂ N−s. If J
is a real set thenJ± is the set of complex numbers of the formλ± iµ with λ ∈ J
andµ > 0.

Theorem 3.8 Let V be a compact self-adjoint operator onH such that[N,V ]
and [U, V ]N are compact operators. Assume also that[N, [N,V ]], [U, [N,V ]]N
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and [U, [U, V ]]N2 are bounded operators. ThenL has no singularly continuous
spectrum. Moreover, ifJ is a compact real set such thatJ ∩ κ(L) = ∅, then for
each reals ∈]1/2, 3/2[ there is a constantC such that for allz1, z2 ∈ J±

‖(L− z1)−1 − (L− z2)−1‖B(Ns,N−s) ≤ C|z1 − z2|s−1/2. (3.18)

We have used the obvious fact thatNs ⊂ D(|A|s) for all reals > 0 (for our
purposes, it suffices to check this fors = 2). The theorem can be improved by
using [ABG, Theorem 7.4.1], in the sense that one can eliminate the conditions
on the second order commutators, replacing them with the optimal Besov type
conditionV ∈ C 1,1(A), but we shall consider this question only in particular
cases below.

With the terminology of [ABG], the r̂ole of the conditions on the second order
commutators imposed in Theorem 3.8 is to ensure thatV (henceL) is of class
C2(A). We shall now consider more general operators, which admit short and
long range type components which are less regular. We also make a statement
concerning scattering theory under short range perturbations.

Definition 3.9 LetW be a bounded self-adjoint operator. We say thatW is short
range with respect toN , or N -short range, if

∫ ∞

1
‖Wχ0(|N |/r)‖dr <∞, (3.19)

whereχ0 is the characteristic function of the interval[1, 2] in R. We say thatW
is long range with respect toN , or N -long range, if [N,W ] and [U,W ]N are
bounded operators and

∫ ∞

1

(
‖[N,W ]χ(|N |/r)‖+ ‖[U,W ]Nχ(|N |/r)‖

)dr
r
<∞, (3.20)

whereχ is the characteristic function of the interval[1,∞[ in R.

The condition (3.19) is obviously satisfied if there isε > 0 such that

‖W |N |1+ε‖ <∞. (3.21)

Similarly, (3.20) is a consequence of

‖[N,W ] |N |ε‖+ ‖[U,W ] |N |1+ε‖ <∞. (3.22)

Lemma 3.10 If W is compact andN -short range, thenWN is a compact opera-
tor. If W isN -long range, then

∫∞
1 ‖[U∗,W ]Nχ(|N |/r)‖dr/r <∞.
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Proof: Let ϕ be a smooth function onR such thatϕ(x) = 0 if x < 1 and
ϕ(x) = 1 if x > 2 and letθ(x) = xϕ(x). Then

∫∞
0 θ(x)dx/x = 1 hence∫∞

0 θ(|N |/r)dr/r = 1 in the strong topology. Ifθ1(x) = xθ(x) then we get∫∞
0 Wθ0(|N |/r)dr = W |N | on the domain ofN , which clearly proves the first

part of the lemma. The second part follows from (3.15) and (3) of Lemma 2.4.

Theorem 3.11 Let V be a compact self-adjoint operator such that[N,V ] and
[U, V ]N are compact. Assume that we can decomposeV = Vs + V` + Vm where
Vs is compact andN -short range,V` isN -long range, andVm is such that

[N, [N,Vm]], [U, [N,Vm]]N and [U, [U, Vm]]N2

are bounded operators. ThenL = ∆ + V has normal spectrum and no singu-
larly continuous spectrum. Moreover,limµ→0(L − λ − iµ)−1 exists in norm in
B(Ns,N−s) if s > 1/2 andλ /∈ κ(L), and the convergence is locally uniform in
λ outsideκ(L). LetL0 = ∆ + V` + Vm and letΠ0,Π be the projections onto
the subspaces orthogonal to the set of eigenvectors ofL0, L respectively. Then the
wave operators

Ω± := s– lim
t→±∞ e

itLe−itL0Π0

exist and are complete, i.e.Ω±H = ΠH .

Proof: From the Lemma 3.10 it follows easily that[N,Vs] and[U, Vs]N are com-
pact operators, hence the potentialsV andV` + Vm satisfy the hypotheses of The-
orem 3.7, so the Mourre estimate holds forL andL0 on each compact subset of
] − 1,+1[. From [ABG, Theorem 7.5.8] it follows that the operatorVs is of class
C 1,1(A). By using (3.11), the second part of Lemma 3.10 and [ABG, Proposition
7.5.7] we see that[iA, V`] is of classC 0,1(A), henceV` is of classC 1,1(A). Fi-
nally,Vm is of classC2(A) by Proposition 3.3 and Lemma 3.4. Thus,L0 andL are
of classC 1,1(A). Then an application of [ABG, Theorem 7.4.1] gives the spectral
properties ofL and the existence of the boundary values of the resolvent. Finally,
the existence and completeness of the wave operators is a consequence of [ABG,
Proposition 7.5.6] and [GeM, Theorem 2.14].

4 A Fock space model

4.1 The Fock space

Let H be a complex Hilbert space and letH =
⊕∞

n=0H
⊗n be the (complete)

Fock space associated to it. We make the conventionsH⊗0 = C andH⊗n = {0}

21



if n < 0. We fix u ∈ H with ‖u‖ = 1. LetU = ρu be the right multiplication by
u. More precisely:

ρuh1 ⊗ . . .⊗ hn = h1 ⊗ . . .⊗ hn ⊗ u

ρ∗uh1 ⊗ . . .⊗ hn =
{
h1 ⊗ . . .⊗ hn−1〈u, hn〉 if n ≥ 1
0 if n = 0.

Clearlyρ∗uρu = 1, soU is an isometric operator. Then∆ = (U + U∗)/2 acts as
follows:

∆h1 ⊗ . . .⊗ hn = h1 ⊗ . . .⊗ hn−1 ⊗ (hn ⊗ u+ 〈u, hn〉)

if n ≥ 1 and∆h = hu if h ∈ C = H⊗0. We have

UH⊗n ⊂ H⊗n+1, U∗H⊗n ⊂ H⊗n−1. (4.1)

In particularU∗nH⊗m = 0 if n > m, hence we have s–limn→∞ U∗n = 0.
ThusU is a completely non unitary isometry, hence there is a unique number

operatorNU ≡ N associated to it. We shall keep the notationsP k = ρk
uρ
∗
u

k and
Pk = ρk

u[ρ∗u, ρu]ρ∗u
k introduced in the general setting of Subsection 2.2.

Let us denote bypu = |u〉〈u| the orthogonal projection inH onto the subspace
Cu. Then it is easy to check that

P k|H⊗n =
{

0 if 0 ≤ n < k
1n−k ⊗ p⊗k

u if n ≥ k.
(4.2)

Here1n is the identity operator inH⊗n and the tensor product refers to the natural
factorizationH⊗n = H⊗n−k ⊗ H⊗k. In particular, we getP kH⊗n ⊂ H⊗n or
[P k,1n] = 0 for all k, n ∈ N and similarly for thePk.

Lemma 4.1 N leaves stable eachH⊗n. We have

Nn := N |H⊗n =
n∑

k=0

(k + 1)Pk|H⊗n (4.3)

andσ(Nn) = {1, 2, . . . n+ 1}, hence1 ≤ Nn ≤ n+ 1 and‖Nn‖ = n+ 1.

Proof: The first assertion is clear because each spectral projectionPk of N leaves
H⊗n invariant. We obtain (4.3) fromPk = P k − P k+1 and the relations (2.3) and
(4.2). To see that eachk + 1 is effectively an eigenvalue, one may check that

Nnw ⊗ v ⊗ u⊗k = (k + 1)w ⊗ v ⊗ u⊗k
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if k < n, w ∈ Hn−k−1 andv ∈ H with v ⊥ u, andNnu
⊗n = (n+ 1)u⊗n.

The following more explicit representations ofNn can be proved without dif-
ficulty. Let p⊥u be the projection inH onto the subspaceK orthogonal tou. Then:

Nn = 1n + 1n−1 ⊗ pu + 1n−2 ⊗ p⊗2
u + · · ·+ p⊗n

u

= 1n−1 ⊗ p⊥u + 21n−2 ⊗ p⊥u ⊗ pu + 31n−3 ⊗ p⊥u ⊗ p⊗2
u + . . .

+ (n+ 1)p⊗n
u .

The last representation corresponds to the following orthogonal decomposition:

H⊗n = ⊕n
k=0(H

⊗n−k−1 ⊗K ⊗ u⊗k)

where the term corresponding tok = n must be interpreted asCu⊗n.
The number operatorN associated toU should not be confused with theparti-

cle number operatorN acting on the Fock space according to the ruleNf = nf
if f ∈ H⊗n. In fact, whileN counts the total number of particles,N − 1 counts
(in some sense, i.e. after a symmetrization) the number of particles in the stateu.
From (4.3) we get a simple estimate ofN in terms ofN :

N ≤ N + 1. (4.4)

It is clear that an operatorV ∈ B(H ) commutes withN if and only if it is of
the form

V =
∑

n≥0

Vn1n, with Vn ∈ B(H⊗n) and sup
n
‖Vn‖ <∞. (4.5)

Note that we use the same notation1n for the identity operator inH⊗n and for the
orthogonal projection ofH ontoH⊗n. For each operatorV of this form we set
V−1 = 0 and then we define

δ(V ) =
∑

n≥0

(Vn−1 ⊗ 1H − Vn)1n, (4.6)

which is again a bounded operator which commutes withN . We have:

[U, V ] = δ(V )U. (4.7)

Indeed, iff ∈ H⊗n then

UV f = UVnf = (Vnf)⊗ u = (Vn ⊗ 1H)(f ⊗ u) = (Vn ⊗ 1H)Uf.

On the other hand, sinceUf ∈ H⊗n+1, we haveV Uf = Vn+1Uf andδ(V )Uf =
(Vn ⊗ 1H − Vn+1)Uf , which proves the relation (4.7).
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Lemma 4.2 If V is a bounded self-adjoint operator which commutes withN then
the quadratic formṡV andV̈ are essentially self-adjoint operators. With the nota-
tions from (4.5), the closures of these operators are given by the direct sums

V̇ =
∑

n≥0

[iNn, Vn]1n ≡
∑

n≥0

V̇n1n, (4.8)

V̈ =
∑

n≥0

[iNn[iNn, Vn]]1n ≡
∑

n≥0

V̈n1n. (4.9)

The proof is easy and will not be given. In particular:V̇ is bounded if and only if
supn ‖[Nn, Vn]‖ <∞ andV̈ is bounded if and only ifsupn ‖[Nn[Nn, Vn]]‖ <∞.

4.2 The Hamiltonian

In this subsectionwe assume thatH is finite dimensionaland we apply the general
theory of Section 3 to the Hamiltonian of the formL = ∆ + V whereV is a
compact self-adjoint operator onH such that[V,N ] = 0, soV preserves the
number of particles (butV does not commute withN in the cases of interest for
us). Equivalently, this means thatV has the form

V =
∑

n≥0

Vn1n, with Vn ∈ B(H⊗n) and lim
n→∞ ‖Vn‖ = 0. (4.10)

We shall also consider perturbations of such anL by potentials which do not com-
mute withN but satisfy stronger decay conditions.

The following results are straightforward consequences of the theorems proved
in Subsection 3.3, of the remarks at the end of Subsection 4.1, and of the relation
(4.7). For example, in order to check the compactness of[U, V ]N , we argue as
follows: we have[U, V ]N = δ(V )UN = δ(V )(N − 1)U and(N + 1)−1N is
bounded, hence the compactness ofδ(V )N suffices. Note also the relations

[U, [U, V ]] = [U, δ(V )U ] = [U, δ(V )]U = δ2(V )U2 (4.11)

δ2(V ) =
∑

n≥0

(Vn−2 ⊗ 1H⊗2 − 2Vn−1 ⊗ 1H + Vn)1n. (4.12)

Proposition 4.3 Assume thatH is finite dimensional and letV be a self-adjoint
operator of the form (4.10) and such that‖V̇n‖+ n‖Vn−1 ⊗ 1H − Vn‖ → 0 when
n→∞. Then the spectrum ofL is normal and the Mourre estimate holds on each
compact subset of]− 1,+1[.
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Proposition 4.4 Assume thatH is finite dimensional and letV be a self-adjoint
operator of the form (4.10) and such that
(1) ‖V̇n‖+ n‖Vn−1 ⊗ 1H − Vn‖ → 0 whenn→∞
(2) ‖V̈n‖+n‖V̇n−1⊗1H − V̇n‖+‖(Vn−2⊗1H⊗2−2Vn−1⊗1H +Vn‖ ≤ C <∞
ThenL has normal spectrum and no singularly continuous spectrum.

This result is of the same nature as those of C. Allard and R. Froese. To see
this, we state a corollary with simpler and explicit conditions on the potential. IfT
is a linear operator on a finite dimensional Hilbert spaceE, we denote by〈T 〉 its
normalized trace:

〈T 〉 =
1

dimE
Tr T (4.13)

Observe that|〈T 〉| ≤ ‖T‖.
Corollary 4.5 LetH be finite dimensional and letV be as in (4.10) and such that:
(1) ‖Vn − 〈Vn〉‖ = O(1/n2),
(2) 〈Vn+1〉 − 〈Vn〉 = o(1/n),
(3) 〈Vn+1〉 − 2〈Vn〉+ 〈Vn−1〉 = O(1/n2).
ThenL has normal spectrum and no singularly continuous spectrum, the Mourre
estimate holds on each compact subset of] − 1,+1[, and estimates of the form
(3.18) are valid.

This follows easily from Proposition 3.5 withΛ =
∑

n≥0〈Vn〉1n. In the case
whenV is a function on a tree, the conditions (1)-(3) of the corollary are equivalent
to those of Lemma 7 and Theorem 8 in [AlF]. Note, however, that even in the tree
case we do not assume that theVn are functions. Now we improve these results.

Let 1≥n =
∑

k≥n 1k be the orthogonal projection ofH onto
⊕

k≥nH
⊗k.

Theorem 4.6 LetH be finite dimensional and letV be a self-adjoint operator of
the form (4.10) and such that

∑

k≥0

sup
n≥k

‖Vn − 〈Vn〉‖ <∞ and 〈Vn+1〉 − 〈Vn〉 = o(1/n). (4.14)

Furthermore, assume that〈Vn〉 = λn + µn where{λn}, {µn} are sequences of
real numbers which converge to zero and such that:
(1) λn+1 − λn = o(1/n) and λn+1 − 2λn + λn−1 = O(1/n2),
(2)

∑
n≥0 supm≥n |µm+1 − µm| <∞.

Finally, letW be a bounded self-adjoint operator satisfying
∑

n ‖W1≥n‖ < ∞.
Then the operatorsL0 = ∆ + V andL = L0 +W have normal spectrum and no
singularly continuous spectrum, and the wave operators for the pair(L,L0) exist
and are complete.
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Proof: Let Λ =
∑
λn1n andM =

∑
µn1n. We shall apply Theorem 3.11 toL

with the following identifications:Vs = V +W −(Λ+M), V` = M andVm = Λ.
Note that the condition imposed onW implies thatW is a compactN -short range
operator (in fact, the condition says thatW is N -short range). Moreover, the first
condition in (4.14) is of the same nature, so it implies thatV − (Λ+M) isN -short
range. HenceVs is compact andN -short range. The fact thatM isN -long range
is an easy consequence of[M,N ] = 0 and of the condition (2) (which says, in
fact, thatM is N -long range). Finally, the fact thatVm satisfies the conditions
required in Theorem 3.11 is obvious, by (1) and by what we have seen before. The
compactness of[N,V ] and[U, V ]N is proved as follows. SinceV − (Λ +M) is
N -short range and due to Lemma 3.10, it suffices to show the compactness of the
operators[N,Λ+M ] and[U,Λ+M ]N . But the first one is zero and for the second
one we use the first part of condition (1) and condition (2). In the case ofV +W
one must use again Lemma 3.10

Under the conditions of the preceding theorem, we also have the following
version of the ”limiting absorption principle”, cf. Theorem 3.11. For reals let
H(s) be the Hilbert space defined by the norm

‖f‖2 = ‖10f‖2 +
∑

n≥1

n2s‖1nf‖2.

Then, ifs > 1/2 andλ /∈ κ(L), the limit limµ→0(L− λ− iµ)−1 exists in norm in
the spaceB(H(s),H(−s)), the convergence being locally uniform onR \ κ(L).

5 The anisotropic tree algebra

5.1 The free algebra

Our purpose now is to study more general operators of the formL = D + V ,
whereD is a function ofU andU∗ (in the sense that it belongs to theC∗-algebra
generated byU ) andV has the same structure as in Subsection 4.2, i.e. is a direct
sum of operatorsVn acting inH⊗n, but Vn does not vanish asn → ∞, soV is
anisotropic in a sense which will be specified later on.

In this section we keep the assumptions and notations of Subsection 4.1 but
assume thatH is of dimensionν ≥ 2 (possibly infinite). Then both the range of
U and the kernel ofU∗ are infinite dimensional. It follows easily that eachPk is a
projection of infinite rank.

The free algebraD is theC∗-algebra of operators onH generated by the
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isometryU . SinceU∗U = 1 onH , the setD0 of operator of the form

D =
∑

n,m≥0

αnmU
nU∗m (5.1)

with αnm ∈ C andαnm 6= 0 only for a finite number ofn,m, is a∗-subalgebra of
D , dense inD . Observe that the projectionsP k = UkU∗k andPk = P k − P k+1

belong toD0. In the tree case the elements ofD are interpreted as “differential”
operators on the tree, which justifies our notation.

We introduce now a formalism needed for the proof of Lemma 5.4, a result
important for what follows. For each operatorS ∈ B(H ) we define

S◦ =
∞∑

n=0

1nS1n. (5.2)

It is clear that the series is strongly convergent and that‖S◦‖ ≤ ‖S‖. ThusS 7→ S◦

is a linear contraction ofB(H ) into itself such that1◦ = 1. This map is also
positive and faithful in the following sense:

S ≥ 0 andS 6= 0 ⇒ S◦ ≥ 0 andS◦ 6= 0 (5.3)

Indeed,S◦ ≥ 0 is obvious and ifS◦ = 0 then(
√
S1n)∗(

√
S1n) = 1nS1n = 0

hence
√
S1n = 0 for all n, so

√
S = 0 and thenS = 0.

We need one more property of the mapS 7→ S◦:

S ∈ K(H ) ⇒ S◦ ∈ K(H ). (5.4)

In fact, this follows from

‖S◦ −
∑

0≤m≤n

1mS1m‖ ≤ sup
m>n

‖1mS1m‖

because‖1nS1n‖ → 0 asn→ 0 if S is compact.

Lemma 5.1 The restriction toD of the mapS 7→ S◦ is a mapθ : D → D whose
range is equal to the (abelian, unital)C∗-algebraP generated by the projections
P k, k ≥ 0. Moreover,θ is a norm one projection ofD onto its linear subspaceP,
i.e. θ(D) = D if and only ifD ∈ P.

Proof: SinceUnU∗mH⊗k ⊂ H⊗(k−m+n), we have1kU
nU∗m1k 6= 0 only if

n = m. Thus, ifD ∈ D0 is as in (5.1), then

1kD1k =
∑

n

αn,n1kU
nU∗n1k =

∑
n

αn,nP
n1k,
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because[Pn,1k] = 0. Thus we getD◦ =
∑

n αn,nP
n ∈ P. SinceD 7→ D◦ is

a linear contraction andD0 is dense inD , we get thatD◦ ∈ P for all D ∈ D .
To finish the proof, note that(Pn)◦ = Pn for all n andP is the closed linear
subspace ofD generated by the operatorsPn, henceD◦ = D for all D ∈ P.

The pairwise orthogonal projectionsPn belong toP but theC∗-algebra (equal
to the norm closed subspace) generated by them is strictly smaller thanP. On the
other hand, the Von Neumann algebraPw generated byP (i.e. the strong closure
of P) coincides with that generated by{Pn}n≥0. Indeed, for eachn ≥ 0 we have
Pn =

∑
m≥n Pm the series being strongly convergent.

Lemma 5.2 For eachD ∈ D there is a unique bounded sequence{αn}n≥0 of
complex numbers such thatD◦ =

∑
n≥0 αnPn. If D ≥ 0 thenαn ≥ 0 for all n.

If D ∈ D , D ≥ 0 andD 6= 0, one hasD◦ ≥ αPn for some realα > 0 and some
n ∈ N.

Proof: SincePnPm = 0 if n 6= m and
∑

k≥0 Pk = 1, each element of the Von
Neumann algebra generated by{Pn}n≥0 can be written as

∑
n≥0 αnPn for some

unique bounded sequence of comples numbersαn. If D ≥ 0, thenD◦ ≥ 0 and
this is equivalent toαn ≥ 0 for all n. If D ≥ 0 andD 6= 0, thenD◦ 6= 0 by (5.3)
henceαn > 0 for somen.

Corollary 5.3 D ∩ K(H ) = {0}.

Proof: D ∩ K(H ) is aC∗-algebra, so that if the intersection is not zero, then it
contains someD with D ≥ 0 andD 6= 0. But thenD◦ is a compact operator by
(5.4) and we haveD◦ ≥ αPn for someα > 0 andn ∈ N.

We note that if0 ≤ S ≤ K andK ≈ 0 thenS ≈ 0. Indeed, for eachε > 0
there is a finite range projectionF such that‖F ′KF ′‖ ≤ ε, whereF ′ = 1 − F .
Thus0 ≤ F ′SF ′ ≤ ε and soS = FS + F ′SF + F ′SF ′ is the sum of a finite
range operator and of an operator of norm≤ ε. HenceS ≈ 0.

ThusPn is compact, orPn is an infinite dimension projection.

Finally, we are able to prove the result we need.

Lemma 5.4 Let V ∈ B(H ) such thatV = V ◦ and [V,U ] ∈ K(H ). If there is
D ∈ D ,D 6= 0, such thatV D ∈ K(H ), thenV P0 ∈ K(H ).

Proof: FromV D ≈ 0 it follows thatV DD∗V ∗ ≈ 0. Then (5.4) gives

V (DD∗)◦V ∗ = (V DD∗V ∗)◦ ≈ 0.

28



By Lemma 5.2, sinceDD∗ ∈ D is positive and not zero, we haveDD∗ ≥ αPn for
somen ≥ 0, with α > 0. Thus0 ≤ V PnV

∗ ≤ α−1V DD∗V ∗. OrV DD∗V ∗ ≈ 0
soV PnV

∗ ≈ 0 and sinceV Pn =
√
V PnV ∗J for some partial isometryJ we see

thatV Pn ≈ 0. But Pn = UnP0U
∗n andU∗U = 1 soV UnP0 ≈ 0. If n ≥ 1

thenUV Un−1P0 = [U, V ]Un−1P0 + V UnP0 ≈ 0 and sinceU∗U = 1 we get
V Un−1P0 ≈ 0. Repeating, if necessary, the argument, we obtain thatV P0 ≈ 0.

5.2 The interaction algebra

The classes of interaction operatorsV ∈ B(H ) we isolate below must be such
thatV = V ◦ andV P0 ≈ 0 ⇒ V ≈ 0. We shall use the embedding (n ≥ 0)

B(H⊗n) ↪→ B(H⊗n+1) defined byS 7→ S ⊗ 1H . (5.5)

Let us setA0 = C and for eachn ≥ 1 letAn be aC∗-algebra of operators onH⊗n

such that
An ⊗ 1H ⊂ An+1. (5.6)

Note that this implies1n ∈ An. The convention (5.5) gives us natural embeddings

A0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ An ⊂ . . . (5.7)

and we can defineA∞ as the completion of the∗-algebra∪∞n=0An under the unique
C∗-norm we have on it (note thatAn+1 induces onAn the initial norm ofAn).
ThusA∞ is a unitalC∗-algebra, eachAn is a unital subalgebra ofA∞ and we can
write:

A∞ =
⋃

n≥0

An (norm closure). (5.8)

We emphasize thatA∞ has nota natural realization as algebra of operators onH .
On the other hand, the following is a unitalC∗-algebra of operators onH :

A =
∏

n≥0

An =
{
V = (Vn)n≥0 | Vn ∈ An and‖V ‖ := sup

n≥0
‖Vn‖ <∞}

. (5.9)

Indeed, iff = (fn)n≥0 ∈ H andV is as above, we setV f = (Vnfn)n≥0. In
other terms, we identify

V =
∞∑

n=0

Vn1n (5.10)

the right hand side being strongly convergent onH . Observe that

A0 =
⊕

n≥0

An =
{
V ∈ A | lim

n→∞ ‖Vn‖ = 0
}
. (5.11)

is an ideal inA .
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Lemma 5.5 We haveA ∩ K(H ) ⊂ A0 and the inclusion becomes an equality if
H is finite dimensional.

Proof: We have1n → 0 strongly onH if n → ∞, hence ifV is compact then
‖V 1n‖ → 0. In the finite dimensional case, note that

∑n
m=0 Vm1m is compact for

all n and converges in norm toV if V ∈ A0.

Let τ : A → A be the morphism defined by:

τ(V0, V1, V2, . . .) = (0, V01H , V1 ⊗ 1H , V2 ⊗ 1H , . . .),

or τ(V )n = Vn−1 ⊗ 1H , whereV−1 = 0. Clearlyτn(V ) → 0 asn→∞ strongly
on H , for eachV ∈ A . Observe that the mapδ = τ − Id coincides with that
defined in (4.6), because

δ(V )n = Vn−1 ⊗ 1H − Vn.

Sinceδ(V ′V ′′) = δ(V ′)τ(V ′′)+V ′δ(V ′′) and sinceA0 is an ideal ofA , the space

Avo = {V ∈ A | δ(V ) ∈ A0} (5.12)

is a C∗-subalgebra ofA which containsA0. This algebra is an analog of the
algebra of bounded continuous functions with vanishing oscillation at infinity on
R, or that of bounded functions with vanishing at infinity derivative onZ orN.

Proposition 5.6 Assume thatH is finite dimensional and letV ∈ Avo. If D ∈ D ,
D 6= 0, andV D ∈ K(H ), thenV ∈ K(H ).

Proof: We haveδ(V ) ≈ 0 and[U, V ] ≈ 0 by (4.7) and Lemma 5.5. Now according
to Lemma 5.4, it remains to prove thatV ≈ 0 follows from V P0 ≈ 0. Since
1n → 0 strongly asn → ∞ and since[1n, P0] = 0 andV 1n = Vn1n, we get
‖VnP01n‖ → 0 asn→∞. By usingP0 = 1− P 1 we get

P01n = 1n − 1n−1 ⊗ pu = 1n−1 ⊗ p′u,

wherep′u = 1H−pu is the projection ofH onto the subspace orthogonal tou, hence
‖p′u‖ = 1 (recall thatdimH = ν ≥ 2). Thus we have‖Vn · 1n−1 ⊗ p′u‖ → 0. But
δ(V ) ∈ A0 means‖Vn − Vn−1 ⊗ 1H‖ → 0. So

‖Vn−1‖ = ‖Vn−1 ⊗ p′u‖ ≤ ‖(Vn − Vn−1 ⊗ 1H) · 1n−1 ⊗ p′u‖+ ‖Vn · 1n−1 ⊗ p′u‖

converges to0 asn→∞.
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We are mainly interested in the particular class of algebrasAn constructed as
follows. LetA be aC∗-algebra of operators onH such that1H ∈ A and let us set:

A0 = A⊗0 = C and An = A⊗n if n ≥ 1. (5.13)

ThenA∞ is just the infinite tensor productA⊗∞. Note that the embeddingA⊗n ⊂
A⊗∞ amounts now to identifyVn ∈ A⊗n with Vn ⊗ 1H ⊗ 1H ⊗ . . . ∈ A⊗∞.
We summarize the preceeding notations and introduce new ones specific to this
situation:

A =
∏

n≥0

A⊗n = {V = (Vn)n≥0 | Vn ∈ A⊗n, ‖V ‖ = sup
n≥0

‖Vn‖ <∞}

A0 =
⊕

n≥0

A⊗n = {V ∈ A | lim
n→∞ ‖Vn‖ = 0}

Avo = {V ∈ A | δ(V ) ∈ A0}
A∞ = {V ∈ A | V∞ := lim

n→∞Vn exists inA⊗∞}
Af = {V ∈ A | ∃N such thatVn = VN if n ≥ N}.

Note thatVn = VN meansVn = VN ⊗ 1n−N if n > N . The space of main interest
for us is theC∗-algebraA∞. Clearly,A0 is a closed self-adjoint ideal inA∞ and

V ∈ A∞ ⇒ δ(V ) ∈ A0, (5.14)

in other termsA∞ ⊂ Avo.

Proposition 5.7 The mapV 7→ V∞ is a surjective morphism of theC∗-algebra
A∞ ontoA⊗∞ whose kernel isA0. Thus, we have a canonical isomorphism

A∞/A0 ' A⊗∞. (5.15)

Moreover,Af is a dense∗-subalgebra ofA∞ and we have

Af =
{
V ∈ A∞ | V∞ ∈

⋃

n≥0

A⊗n
}
. (5.16)

Proof: ThatV 7→ V∞ is a morphism and is obvious.Af is clearly a∗-subalgebra.
If V ∈ A∞ and if we setV N

n = Vn for n ≤ N , V N
n = VN for n > N , then

V N ∈ Af and‖V − V N‖ = supn>N ‖Vn − VN‖ → 0 asN → ∞. ThusAf is
dense inA∞.

If W ∈ A⊗N and if we defineV ∈ A by Vn = 0 for n < N , Vn = W if
n ≥ N , thenV ∈ Af andV∞ = W . Thus the range of the morphismV 7→ V∞
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contains the dense subset∪n≥0A⊗n of A⊗∞. Since the range of a morphism is
closed, the morphism is surjective.

The following remarks concerning the linear mapB(H ) → B(H ) defined by
S 7→ U∗SU will be needed below (see also the comments after Lemma 2.4). If we
use the natural embeddingB(H⊗n) ↪→ B(H ) then we clearly have

U∗B(H⊗n+1)U ⊂ B(H⊗n)

and ifS′ ∈ B(H⊗n) andS′′ ∈ B(H) then

U∗(S′ ⊗ S′′)U = S′〈u, S′′u〉.
Of course,U∗SU = 0 if S ∈ B(H⊗0). It is clear then thatω(V ) := U∗V U defines
a linear positive contractionω : A → A which leaves invariant the subalgebras
A0 andAf , henceA∞ too. From (4.7) we then get for allV ∈ A :

UV = [V + δ(V )]U and U∗V = [V − ω ◦ δ(V )]U∗. (5.17)

We make two final remarks which are not needed in what follows. First, note
that the mapω could be defined with the help of [Tak, Corollary 4.4.25]. Then,
observe that forS ∈ B(H⊗n) we haveUSU∗ = S ⊗ pu. Thus in general the
morphismS 7→ USU∗ does not leave invariant the algebras we are interested in.

5.3 The anisotropic tree algebra

In this subsection we studyC∗-algebras of operators on the Fock spaceH gener-
ated by self-adjoint Hamiltonians of the formL = D+V , whereD is a polynomial
in U andU∗ andV belongs to aC∗-subalgebra ofA . We are interested in comput-
ing the quotient of such an algebra with respect to the ideal of compact operators.
The largest algebra for which this quotient has a rather simple form is obtained
starting withAvo and the quotient becomes quite explicit if we start withA∞.

More precisely, we fix a vectoru ∈ H with ‖u‖ = 1 and aC∗-algebraA of
operators onH containing1H . Recall thatH is a Hilbert space of dimensionν ≥
2. Throughout this subsectionwe assume thatH is finite dimensional, although
part of the results hold in general. Then we defineU = ρu as in Section 4 and we
consider theC∗-algebras onH

A0 ⊂ A∞ ⊂ Avo ⊂ A

associated toA as in Subsection 5.2. Then we define

Cvo = norm closure ofAvo ·D ,
C∞ = norm closure ofA∞ ·D ,
C0 = norm closure ofA0 ·D .
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We recall the notation: ifA,B are subspaces of an algebraC, thenA · B is the
linear subspace ofC generated by the productsab with a ∈ A andb ∈ B. Observe
that,D andAvo being unital algebras, we have andD ∪Avo ⊂ Cvo and, similarly,
D ∪A∞ ⊂ C∞. ClearlyC0 ⊂ C∞ ⊂ Cvo.

Lemma 5.8 Cvo andC∞ areC∗-algebras andC0 is an ideal in each of them.

Proof: Indeed, from (5.17) it follows easily that for eachV ∈ A∞ there are
V ′, V ′′ ∈ A∞ such thatUV = V ′U andU∗V = V ′′U∗ and similarly in the
case ofAvo. This proves the first part of the lemma. Then note thatV ′, V ′′ ∈ A0

if V ∈ A0 and use (5.14).

It is not difficult to prove thatCvo is theC∗-algebra generated by the operators
L = D + V , whereD andV are self-adjoint elements ofD andAvo respectively,
and similarly forC∞ (see the proof of Proposition 4.1 from [GeI]). Since only the
obvious fact that such operators belong to the indicated algebras matters here, we
do not give the details.

Lemma 5.9 If H finite dimensional, thenC0 = K(H ) ∩ C∞ = K(H ) ∩ Cvo. If,
moreover,u is a cyclic vector forA in H, then we haveC0 = K(H ).

Proof: SinceH is finite dimensional, we haveA0 ⊂ K(H ), henceC0 ⊂ K(H ).
Reciprocally, letS ∈ Cvo be a compact operator. Letπn be the projection ofH
onto

⊕
0≤m≤nH

⊗m. Thenπn =
∑

0≤m≤n 1m ∈ A0 andπn → 1H strongly
whenn → ∞. SinceS is compact, we getπnS → S in norm, so it suffices to
show thatπnS ∈ C0 for eachn. We prove that this holds for anyS ∈ C = norm
closure ofA ·D : it suffices to consider the caseS = V D with V ∈ A andD ∈ D ,
and then the assertion is obvious.

SinceH is finite dimensional,u is cyclic forA if and only if Au = H. If
this is the case, thenu⊗n is cyclic forA⊗n onH⊗n for eachn. Let n,m ∈ N
andf ∈ H⊗n, g ∈ H⊗m. Then there areV ∈ A⊗n andW ∈ A⊗m such that
f = V u⊗n = V Une andg = Wu⊗m = WUme, wheree = 1 ∈ C = H⊗0.
So we have|f〉〈g| = V Un|e〉〈e|U∗W ∗. ClearlyV,W and|e〉〈e| belong toA0, so
|f〉〈g| ∈ C0. An easy approximation argument gives thenK(H ) ⊂ C0.

We can now describe the quotientCvo/C0 of the algebraCvo with respect to
the ideal of compact operators which belong to it.

Theorem 5.10 Assume thatH is finite dimensional. Then there is a unique mor-
phismΦ : Cvo → (Avo/A0) ⊗ D such thatΦ(V D) = V̂ ⊗ D for all V ∈ Avo

andD ∈ D , whereV 7→ V̂ is the canonical mapAvo → Avo/A0. This morphism
is surjective andkerΦ = C0, hence we get a canonical isomorphism

Cvo/C0 ' (Avo/A0)⊗D . (5.18)
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Proof: We shall check the hypotheses of Corollary A.4 with the choices:

u ≡ U, B = Avo, C = Cvo, C0 = C0 = Cvo ∩ K(H ).

ThusA = D . From Corollary 5.3 we getA0 = {0} and then

B0 = Avo ∩ C0 = Avo ∩ Cvo ∩ K(H ) = Avo ∩ K(H ) = A0

by Lemma 5.5. Then we use Proposition 5.6 and the fact that[V,U ] ∈ K(H ) if
V ∈ Avo (see (4.7) and note thatδ(V ) ∈ A0 ∈ K(H )).

The quotientC∞/C0 has a more explicit form. This follows immediately from
Theorem 5.10 and Proposition 5.7.

Corollary 5.11 If H is finite dimensional, then there is a unique morphismΦ :
C∞ → A⊗∞⊗D such thatΦ(V D) = V∞⊗D for all V ∈ A∞ andD ∈ D . This
morphism is surjective andkerΦ = C0, hence we have a canonical isomorphism

C∞/C0 ' A⊗∞ ⊗D . (5.19)

Example 5.12 The simplest choice isA = C1H . ThenA⊗n = C1n andA∞ is
the set of operatorsV ∈ B(H ) of the formV =

∑
n≥0 Vn1n, where{Vn} is a

convergent sequence of complex numbers, andV∞ = limn→∞ Vn. In this case,
Theorem 5.10 gives us a canonical isomorphismC∞/C0 ' D . On the other hand,
Avo corresponds to the bounded sequences{Vn} such thatlim |Vn+1 − Vn| = 0,
and the quotientAvo/A0 is quite complicated (it can be described in terms of the
Stone-Cech compactification ofN).

Example 5.13 In order to cover the tree case considered in [Gol] (see the Intro-
duction) it suffices to chooseA an abelian algebra. SinceH is finite dimensional,
the spectrum ofA is a finite setA and we haveA ' C(A) henceA⊗n ' C(An)
canonically. IfA∞ ≡ AN

∗
equipped with the product topology, then we get a na-

tural identificationA⊗∞ ' C(A∞). Let Γ :=
⋃

n≥0A
n, thenA can be identified

with the set of bounded functionsV : Γ → C andA0 is the subset of functions
which tend to zero at infinity. The embedding (5.6) is obtained by extending a
functionϕ : An → C to a function onAn+1 by settingϕ(a1, . . . , an, an+1) =
ϕ(a1, . . . , an). ThusV ∈ Avo if and only if

lim
n→∞ sup

a∈An, b∈A
|V (a, b)− V (a)| = 0.

Let πn : A∞ → An be the projection onto then first factors. ThenV ∈ A∞ if and
only if there isV∞ ∈ C(A∞) such that

lim
n→∞ sup

a∈A∞
|V ◦ πn(a)− V∞(a)| = 0.
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This means that the functioñV defined on the spacẽΓ = Γ∪A∞ equipped with the
natural hyperbolic topology (see [Gol]) by the conditionsṼ |Γ = V andṼ |A∞ =
V∞ is continuous. And reciprocally, each continuous functionṼ : Γ̃ → C defines
by Ṽ |Γ = V an element ofA∞. This shows that our results cover those of [Gol].

We mention that in order to have a complete equivalence with the tree model as
considered in [Gol] the vectoru must be a cyclic vector ofA, in particularAmust
be maximal abelian. Indeed, in this caseA can be identified with an orthonormal
basis ofH diagonalizingA (the vectorsa are uniquely determined modulo a factor
of modulus1 and the associated character ofA is V 7→ 〈a, V a〉). Thenu =∑

a∈A caa is cyclic forA if and only if ca 6= 0 for all a. If ca = |A|−1/2 with |A|
the number of elements ofA, we get the standard tree case.

Example 5.14 Another natural choice isA = B(H). Thenu is a cyclic vector for
A becauseu 6= 0, soC0 = K(H ). In this case we have

C∞/K(H ) ' B(H)⊗∞ ⊗D

andB(H)⊗∞ is a simpleC∗-algebra.

We give an application to the computation of the essential spectrum. Note that

if L =
∑n

k=1 V
kDk, with V k ∈ Avo andDk ∈ D , thenΦ(L) =

∑n
k=1 V̂

k ⊗Dk.
In particular, we get

Proposition 5.15 LetL = D + V withD ∈ D andV ∈ Avo self-adjoint. Then

σess(L) = σ(D) + σ(V̂ ). (5.20)

If V ∈ A∞, then
σess(L) = σ(D) + σ(V∞). (5.21)

Proof: It suffices to note thatΦ(L) = 1⊗D+V̂ ⊗1 and to use the general relation:
if A,B are self-adjoint thenσ(A⊗ 1 + 1⊗B) = σ(A) + σ(B).

In the abelian case the result is more general and more explicit.

Proposition 5.16 Assume that we are in the framework of Example 5.13 and let
L =

∑n
k=1 V

kDk be a self-adjoint operator withV k ∈ A∞ andDk ∈ D . Then

σess(L) =
⋃

a∈A∞
σ
(∑

k

V k
∞(a)Dk

)
. (5.22)
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For the proof, observe thata 7→ ∑
k V

k∞(a)Dk is a norm continuous map on
the compact spaceA∞, which explains why the right hand side above is a closed
set. A formula similar to (5.22) holds ifA∞ is replaced byAvo, the only difference
being thatA∞ must be replaced with the spectrum of the abelian algebraAvo/A0.

Remarks: We shall make some final comments concerning various natural gener-
alizations of the algebras considered above. Assume thatAn areC∗-algebras as at
the beginning of Subsection 5.2 and letA be given by (5.9). Then

Arc =
{
V = (Vn)n≥0 | Vn ∈ An and{Vn | n ≥ 0} is relatively compact inA∞

}

is aC∗-subalgebra ofA which containsAvo. Interesting subalgebras ofArc can be
defined as follows (this is the analog of a construction from [GeI]): letα be a filter
onN finner than the Fŕechet filter and letAα be the set ofV = (Vn) ∈ A such
that limα Vn exists inA∞, wherelimα means norm limit along the filterα. Note
thatAα = Arc if α is an ultrafilter. Now it is natural to consider theC∗-algebra
Crc generated by the Hamiltonians with potentialsV ∈ Arc, so theC∗-algebra
generated byArc∪D , and the similarly defined algebrasCα. It would be interesting
to describe the quotientCα/C0, but neither the techniques of the Appendix nor
those from [GeI] do not seem to be of any use for this. Indeed, the main ingredients
of our proof where Proposition 5.6 and the fact that the commutator of a potential
with U is compact, or these properties will not hold in general. Moreover, the
examples treated in [GeI], more precisely the Klaus (or bumps) algebra, which has
an obvious analog here, show that we cannot expect a simple embedding of the
quotient into a tensor product. Note that “localizations at infinity” in the sense of
[GeI] can be defined for the elements ofCrc by using iterations of the operators
λv of left multiplication by elementsv ∈ H in the Fock spaceH , a technique
already used in [GeI, Gol], and this could be used in order to define the canonical
morphism which describes the quotient.

A Appendix

Let us consider twoC∗-subalgebrasA andB of a C∗-algebraC satisfying the
following conditions:

• A orB is nuclear,

• ab = ba if a ∈ A andb ∈ B.

We denote byA ⊗ B the minimalC∗-algebra tensor product of the two algebras
A andB. Since, by the nuclearity assumption,A ⊗ B is also the maximal tensor
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product ofA andB, there is a unique morphismφ : A ⊗ B → C such that
φ(a⊗ b) = ab, see [Mur, Theorem 6.3.7].

Our purpose is to find conditions which ensure thatφ is injective. Thenφ is
isometric and so it gives a canonical identification of the tensor productA⊗B with
theC∗-subalgebra ofC generated byA andB. The following simple observation
is useful.

Lemma A.1 The morphismφ is injective if and only if the following condition is
satisfied: ifb1, . . . , bn is a linearly independent family of elements ofB, then

a1, . . . , an ∈ A and a1b1 + · · ·+ anbn = 0 ⇒ a1 = · · · = an = 0. (A.1)

Proof: This condition is clearly necessary. Reciprocally, letA¯B be the algebraic
tensor product ofA andB, identified with a dense subspace ofA⊗B. Then each
x ∈ A ¯ B can be writtenx =

∑
ai ⊗ bi for some linearly independent family

b1, . . . , bn of elements ofB and thenφ(x) =
∑
aibi. It follows immediately that

x 7→ ‖φ(x)‖ is aC∗-norm onA ¯ B. But the nuclearity ofA or B ensures that
there is only one such norm, hence‖φ(x)‖ = ‖x‖, so thatφ extends to an isometry
onA⊗B.

The condition (A.1) is not easy to check in general, so it would be convenient
to replace it with the simpler:

a ∈ A, b ∈ B, b 6= 0 and ab = 0 ⇒ a = 0. (A.2)

Exercise 2 in [Tak, Sec. 4.4] treats the case whenA is abelian. The following
result, which was suggested to us by a discussion with Georges Scandalis, is more
suited to our purposes.

Let us say that a self-adjoint projectionp in aC∗-algebraK is minimalif p 6= 0
and if the only projectionsq ∈ K such thatq ≤ p are0 andp. We say that the
algebra isgenerated by minimal projectionsif for each positive non zero element
a ∈ K there is a minimal projectionp and a realα > 0 such thata ≥ αp.

We also recall that an idealK of A is calledessentialif for a ∈ A the relation
aK = 0 impliesa = 0.

Proposition A.2 If (A.2) is fulfilled and ifA contains an essential idealK which
is generated by its minimal projections, thenφ is injective.

Proof: The following proof of the proposition in the caseA = D , which is the only
case of interest in this paper, is due to Georges Scandalis: sinceD is isomorphic to
the Toeplitz algebra,D contains a copyK of the algebra of compact operators on
`2(N) as an essential ideal. Then it is clear that it suffices to assume thatA = K
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and in this case the assertion is essentially obvious, becauseker(ϕ⊗ψ) is an ideal
ofK⊗B. These ideas are certainly sufficient to convince an expert inC∗-algebras,
but since we have in mind a rather different audience, we shall develop and give
the details of the preceding argument. We also follow a different idea in the last
part of the proof.

(i) We first explain why it suffices to consider the caseA = K. Note that one
can identifyK ⊗B with the closed subspace ofA⊗B generated by the elements
of the forma⊗ b with a ∈ K, b ∈ B (see [Mur, Theorem 6.5.1]) and soK ⊗B is
an ideal inA⊗B. Let us show that this is an essential ideal.

We can assume thatK andB are faithfully and non-degenerately represented
on Hilbert spacesE ,F . SinceK is essential inA, the representation ofK extends
to a faithful and non-degenerate representation ofA onE (this is an easy exercise).
Thus we are in the situationK ⊂ A ⊂ B(E ), B ⊂ B(F ), the action ofK on E
being non-degenerate. Let{kα} be an approximate unit ofK. Then s–lim kα = 1
on E , because‖kα‖ ≤ 1 and the linear subspace generated by the vectorske,
with k ∈ K ande ∈ E , is dense inE (in factKE = E ). Similarly, if {bβ} is an
approximate unit forB then s–lim bβ = 1 onF and then clearly s–limα,β kα⊗bβ =
1 onE ⊗F . From our assumptions (the tensor products are equal to the minimal
ones) we getK⊗B ⊂ A⊗B ⊂ B(E ⊗F ). Letx ∈ A⊗B such thatx·K⊗B = 0.
Thenx ·kα⊗bβ = 0 for all α, β, hencex = s–limα,β x ·kα⊗bβ = 0. ThusK⊗B
is an essential ideal inA⊗B.

Now it is obvious that a morphismA⊗B → C whose restriction toK ⊗B is
injective, is injective. Thus it suffices to show that the restriction ofφ toK ⊗B is
injective, so from now on we may, and we shall, assume thatA = K.

(ii) We make a preliminary remark: letP be the set of minimal projections in
A; then for eachp ∈ P we havepAp = Cp. Note that this is equivalent to the fact
that for eachp ∈ P there is a stateτp of A such thatpap = τp(a)p for all a ∈ A.

SincepAp is theC∗-subalgebra ofA consisting of the elementsa such that
ap = pa = a, it suffices to show that eacha ∈ pAp with a ≥ 0, a 6= 0, is of the
form λp for some realλ. Let q ∈ P such thata ≥ εq for some realε > 0. Then
εq ≤ a = pap ≤ ‖a‖p from which it is easy to deduce thatq ≤ p, henceq = p
(p andq being minimal). Letλ be the largest positive number such thata ≥ λp.
If a − λp 6= 0, then there isr ∈ P and a realν > 0 such thata − λp ≥ νr. In
particulara ≥ νr and sor = p by the preceding argument. Hencea ≥ (λ + ν)p,
which contradicts the maximality ofλ. Thusa = λp.

(iii) Finally, we check (A.1). Letb1, . . . , bn be a linearly independent family of
elements ofB anda1, . . . , an ∈ A such that

∑
aibi = 0. Then for alla ∈ A and

p ∈ P we have

p
(∑

τp(aai)bi
)

=
∑

paaipbi = pa
(∑

aibi

)
p = 0.
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Sincep ∈ A, p 6= 0, and
∑
τp(aai)bi ∈ B, we must have

∑
τp(aai)bi = 0.

But τp(aai) are complex numbers, soτp(aai) = 0 for eachi and alla ∈ A. In
particular, we haveτp(a∗i ai) = 0, which is equivalent topa∗i aip = 0 for all p ∈ P .
If a∗i ai 6= 0, then there areα > 0 andq ∈ P such thata∗i ai ≥ αq. By taking
p = q, we get0 = qa∗i aiq ≥ αq, which is absurd. Thusa∗i ai = 0, i.e.ai = 0.

The next proposition is a simple extension of the preceding one. We recall
that aC∗-algebra is calledelementaryif it is isomorphic with theC∗-algebra of all
compact operators on some Hilbert space.

Proposition A.3 Let A,B beC∗-subalgebras of aC∗-algebraC, let C0 be an
ideal ofC, and letA0 = A ∩ C0 andB0 = B ∩ C0 be the corresponding ideals
of A andB respectively. Denote bŷA = A/A0, B̂ = B/B0 and Ĉ = C/C0 the
associated quotient algebras and assume that:

• Â contains an essential idealK which is an elementary algebra and such
that Â/K is nuclear (e.g. abelian)

• if a ∈ A, b ∈ B then[a, b] ∈ C0

• if a ∈ A, b ∈ B andab ∈ C0 then eithera ∈ C0 or b ∈ C0.

• C is theC∗-algebra generated byA ∪B
Then there is a unique morphismΦ : C → Â⊗ B̂ such thatΦ(ab) = â⊗ b̂ for all
a ∈ A, b ∈ B. This morphism is surjective and hasC0 as kernel. In other terms,
we have a canonical isomorphism

C/C0 ' (A/A0)⊗ (B/B0). (A.3)

Proof: It is clear that an elementary algebra is generated by minimal projections
and is nuclear hence, by [Mur, Theorem 6.5.3], the conditions we impose onA
imply the nuclearity ofÂ. Note thatÂ andB̂ areC∗-subalgebras of̂C and that
they generatêC. Moreover, we havêab̂ = b̂â for all a ∈ A, b ∈ B and if âb̂ = 0
thenâ = 0 or b̂ = 0. By Proposition A.2 the natural morphism̂A⊗ B̂ → Ĉ is an
isomorphism. Denoteψ its inverse, letπ : C → Ĉ be the canonical map, and let
Φ = ψ ◦ π. This proves the existence of a morphism with the required properties.
Its uniqueness is obvious.

Now we summarize the facts needed in this paper.

Corollary A.4 LetC be aC∗-algebra,C0 an ideal ofC,B aC∗-subalgebra ofC,
B0 = B ∩ C0, andu ∈ C a non unitary isometry such thatB ∪ {u} generatesC.
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LetA be theC∗-subalgebra generated byu and let us assume thatA ∩ C0 = {0}
and that[u, b] ∈ C0 for all b ∈ B. Finally, assume that:

a ∈ A, b ∈ B and ab ∈ C0 ⇒ a ∈ C0 or b ∈ C0.

Then there is a unique morphismΦ : C → A⊗ (B/B0) such thatΦ(ab) = a⊗ b̂
for all a ∈ A, b ∈ B (where b̂ is the image ofb in B/B0). This morphism is
surjective and hasC0 as kernel. In other terms, we have a canonical isomorphism

C/C0 ' A⊗ (B/B0). (A.4)

Proof: The assumption[u, b] ∈ C0 for all b ∈ B clearly implies[a, b] ∈ C0 for
all a ∈ A, b ∈ B. Moreover, the algebraA = Â is isomorphic with the Toeplitz
algebra, see [Mur, Theorem 3.5.18], and so all the conditions imposed on it in
Proposition A.3 are satisfied, see [Mur, Example 6.5.1].

We shall now study a more elementary situation which is relevant in the context
of Section 5. Our purpose is to treat the case when the Hilbert spaceH is of
dimension1 (this situation, although much simpler, is not covered by the arguments
from Section 5).

This is in fact the case considered in Example 2.6, namely we takeH =
`2(N) and define the isometryU by Uen = en+1. Then theC∗-algebraD(N)
generated byU is just the Toeplitz algebra [Mur, Section 3.5]. We also consider
the situation of Example 2.5, whereH = `2(Z) andU acts in the same way, but
now it is a unitary operator and theC∗-algebraD(Z) generated by it is isomorphic
to the algebraC(T ) of continuous functions on the unit circleT (make a Fourier
transformation). LetK (N) := K(`2(N)) andK (Z) := K(`2(Z)) be the ideals of
compact operators oǹ2(N) and`2(Z) respectively.

It is clear thatD(Z)∩K (Z) = {0} and it is easily shown thatK (N) ⊂ D(N).
From [Mur, Theorem 3.5.11] it follows that we have a canonical isomorphism
D(N)/K (N) ' D(Z). This isomorphism is uniquely defined by the fact that it
sends the shift operatorU onN into the the shift operatorU onZ, cf. the Coburn
theorem [Mur, Theorem 3.5.18]).

We identify`∞(N) with the set of bounded multiplication operators on`2(N).

Proposition A.5 Let A be a unitalC∗-subalgebra of̀ ∞(N) such that for each
V ∈ A the operator[U, V ] is compact. LetC be theC∗-algebra generated by
A ∪ {U} and let us denoteA0 = A ∩K (N) andC0 = C ∩K (N). Then

C /C0 ' (A /A0)⊗D(Z). (A.5)

This relation holds also ifN is replaced withZ.
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Proof: Clearly [D,V ] ∈ K (N) for all D ∈ D(N) andV ∈ A , hence we have
a natural surjective morphism(A /A0) ⊗ D(Z) → C /C0. It remains to show
that this is an injective map. According to [Tak, Sec. 4.4, Exercice 2], it suffices
to prove the following: ifD ∈ D(N) is not compact and ifV ∈ `∞(N) has the
propertyV D ∈ K (N), thenV is compact. We may assume thatD ≥ 0, otherwise
we replace it byDD∗.

To eachα ∈ Cwith |α| = 1 we associate a unitary operatorSα on`2(N) by the
ruleSαen = αnen. We clearly haveSαUS

∗
α = αU , thusA 7→ Aα := SαAS

∗
α is an

automorphism ofB(`2(N)) which leaves invariant the algebraD(N) and the ideal
K (N) and reduces to the identity on`∞(N). ThusV Dα ∈ K (N) for each such
α. We shall prove the following: there areα1, . . . , αn such that

∑
Dαi = A+K,

whereA is an invertible operator andK is compact. ThenV A is compact and
V = V AA−1 too, which finishes the proof of the proposition.

We shall denote bŷS the image of an operatorS ∈ B(`2(N)) in the Calkin
algebraB(`2(N))/K(`2(N)). Thus we havêD ≥ 0, D̂ 6= 0. As explained before
the proof, we haveD(N)/K (N) ' D(Z) ' C(T ). Let θα be the automorphism
of C(T ) defined byθα(ϕ)(z) = ϕ(zα). Then we havêDα = θα(D̂) (because this
holds forU , hence for all the elements of theC∗-algebra generated byU ). But
D̂ is a positive continuous function onT which is strictly positive at some point,
hence the sum of a finite number of translates of the function is strictly positive,
thus invertible inC(T ). So there areα1, . . . , αn such that the image of

∑
Dαi be

invertible in the Calkin algebra and this is exactly what we need.
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