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It is shown that there is a more direct extension of the well-known Fundamental
Theorem of Calculus (FTC) to the case of several variables than the one provided
by the General Stokes’ Theorem.

1 The Theorem

Let C(Rn) denote the set of contiuous real-valued functions ofn real variables. Forf ∈C(Rn)
anda,b∈ Rn we defineZ b

a
f (x)dx :=

Z bn

an

(
. . .

(Z b1

a1

f (x1, . . . ,xn)dx1
)
. . .

)
dxn ,

where it is not assumed thatai ≤ bi and it is understood that reversal of boundaries changes the
sign of the integral. Further we define

d
dx

f (x) := f ′(x) :=
∂

∂x1
· · · ∂

∂xn
f (x1, . . . ,xn)

if the objects on the right hand side (i.e. the limits involved) exist and depend onx in such a way
that f ′ ∈C(Rn). Let C̃(Rn) denote the set off s for which f ′ is defined in this sense. Finally we
define thatF is an antiderivative off ∈C(Rn) iff F ∈ C̃(Rn) andF ′ = f .

TheFirst Fundamental Theorem of Calculusstates thatZ b

a
f (x)dx = F

∣∣b
a ,

for all a,b∈ Rn, whereF is any antiderivative off and

F
∣∣b
a :=

1

∑
ε1,...,εn=0

(−1)ε1+...+εnF(ε1a1 + ε1b1, . . . ,εnan + εnbn) , εi := 1− εi . (1)
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This sum of 2n terms reads forn∈ 1,2,3 as follows

F(b1)−F(a1) ,

F(b1,b2)−F(b1,a2)−F(a1,b2)+F(a1,a2) ,

F(b1,b2,b3)−F(b1,a2,b3)−F(a1,b2,b3)+F(a1,a2,b3)
−F(b1,b2,a3)+F(b1,a2,a3)+F(a1,b2,a3)−F(a1,a2,a3) .

TheSecond Fundamental Theorem of Calculussays that for anya∈ Rn

F(x) :=
Z x

a
f (y)dy

defines an antiderivativeF of f and that any antiderivative off deviates fromF at most by a sum
of functions each which depending only on a strict subset of then variables under consideration.

The differential operator∂
∂x1
· · · ∂

∂xn
is of first order with respect to each variable individually,

so it is a very specific instance of a differential operator of ordern. From the previously stated
facts one obtains a formula forf ′(x) which involves only a single limit and is also useful for
numerical computation

f ′(x) = lim h→0
1

(2h)n f
∣∣x+(h,...,h)
x−(h,...,h) .

2 Discussion

It is only a technical matter to proof these statements by induction, starting from their known
truth for n = 1. A more direct evidence comes from observing that then = 1 case implies all
previous statements for functions of the type

f (x1, . . . ,xn) = f1(x1) · · · fn(xn)

and, thus, for all finite linear combinations of such functions.
The present theorem contrasts with an opinion which is inherent in most teaching on calculus

and which is comprehensively stated in

http:/mathforum.org/library/drmath/view/53755.html

as follows:

’In higher dimensions, there is no Fundamental Theorem of Calculus connect-
ing multiple integrals with partial derivatives, so there isn’t an ”antidifferentiation”
process for functions of several variables. The closest correspondence would prob-
ably [be?] the Divergence Theorem or Stokes Theorem, which connects integrals
of certain ...

...Multiple integrals can often be evaluated as iterated (or repeated) one-
dimensional integrals so that the usual techniques can be used, but this doesn’t
always work.’
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Most textbooks avoid such direct statements but create the same impression by their selection
of material.

The reader will probably not escape the feeling that the stated theorem is nearly trivial: In a
sense, the normal FTC is simply applied to repeated one-dimensional integrals (see the citation
above). However, it is not completely trivial to find the notions that allow to give this ‘repeated
FTC’ the form and logical structure of the FTC withn as a variable. That this works suggests
that the antiderivative inn dimensions, as defined above, is a more natural construct than it is
apparently recognized to be. For instance, it is at least a nice change in perspective do understand
the area of a rectangle as resulting from the antiderivativeF(x,y) = xy of the constant function
f (x,y) = 1 via equation (1). Notice thatF can be selected as not containing redundant constants
(althoughF(x,y) = xy+ 137x would also be a valid antiderivative of 1). The repeated integral
approach, by contrast, would inject problem-related constants (edge coordinates of the rectangle)
into the result of the first integration. If expressions are more complicated, such constants can
create in the next integration step excessively complex expressions for which todays computer
algebra systems are unable to find the fitting simplifications. Especially, the programming-
friendly property of equation (1) to represent the result by evaluations of the same function for
varying values of the arguments will get lost in the proposed simplifications.

For a domain of integration which is a union of adjacent axis-parallel rectangular paral-
lelepipeds, which is a useful approximation in computational physics, equation (1), when ap-
plied to each of the parallelepipeds, can easily seen to express the integral of a function as a sum
of evaluations of any antiderivative at surface points. So we have a simple connection between
an integral of a function over such a domain and a sum of values that the antiderivative takes on
the surface. This is an exact relation that could also be obtained from the General Stokes’ The-
orem. However, due to the edgy nature of our surface such an application could not be justified
directly by the student’s version of the theorem which is for smooth surfaces.

Most of the considerations needed to prove this theorem appear in [1], p. 205–207, in a study
of absolutely continuous functions of several variables. Another connection to well-known facts
can be found in [2], p. 3–4 in a study of the partial differential equationuxy = f (x,y).

I came to consider the matter by the practical need (for the work [3]) to have an efficient
explicit formulas for the electrostatic potential of a rectangular patch of uniform surface charge.
Here, the computer algebra systemMathematicaallowed to find Integrate[Integrate[1/r,x],y] (for
r :=

√
x2 +y2 +z2, z is treated as a parameter here) and thus an antiderivative of 1/r. Then the

integral of the Coulomb potential over a rectangular region of the x-y-plane follows from the
’First FTC for 2 variables’ in a form that, due to the repetitive structure of equation (1), can
be programmed compactly. That the required antiderivative can also be requested in the form
Integrate[1/r,x,y] (which seems to be an un-documented feature ofMathematicaso far) shows
that the author of the program is aware of the concept of an antiderivative with respect to several
variables. Since there seems to be no automatic way forMathematicato produce a purely real
result for the antiderivative of 1/r, one has to interfere manually which could introduce errors.
Here it helps that the correctness of an expression for the antiderivative can easily be checked
by differentiation.
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