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Abstract

We present basic results, known and new, on nontrivial solutions of periodic sta-
tionary nonlinear Schrödinger equations. We also sketch an application to nonlinear
optics and discuss some open problems.

0 Introduction

We consider the nonlinear Schrödinger equation (NLS)

−∆u+ V (x)u = ±f(x, u), x ∈ RN , (1)

with superlinear subcritical nonlinearity f , f(x, 0) = 0. Our basic assumption is peri-
odicity of V (x) and f(x, u) in x with respect to some lattice Λ ⊂ RN . For the sake of
simplicity in the following we assume that Λ = ZN is the standard integer lattice in RN ,
i.e. the functions V (x) and f(x, u) are 1-periodic in each variable xi, x = (x1, x2, . . . , xN).
We are interesting in nontrivial solutions of equation (1) such that u(∞) = 0.

Problems of such kind appear in many applications. For instance, in condensed matter
physics, the states of atomic gas are described by wave functions ψ(t, x) that satisfy the
Gross-Pitaevski equation (see, e.g., [14])

iψt = −∆ψ + V0(x)ψ − α|ψ|2ψ

(the so-called mean field approximation). Condensed states confined in a finite region
(Bose-Einstein condensates) correspond to the wave functions ψ = u(x) ·exp(−iωt) where
the amplitude u(x) vanishes at infinity, i.e. standing waves. Here V0(x) is the external
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electric potential which can be periodic. Making use the standing wave Ansatz, we arrive
at the equation of the form (1). Another field of applications, gap solitons in photonic
crystals, will be discussed in Section 7 below.

There is a number of papers dealing with periodic NLS and its solutions vanishing at
infinity. First, the case when the operator −∆ + V is positive definite was considered. In
[24] the author has proved an existence theorem using the Nehari variational principle (see,
e.g., [38]) and concentrated compactness results [20]. (Even more general asymptotically
periodic case was treated in that paper). Later P. H. Rabinowitz [30] has obtained the
existence of nontrivial solutions under less restrictive assumptions on the nonlinearity
f . Moreover, in [13] V. Coti Zelati and P. H. Rabinowitz have proved the existence of
infinitely many multi-bump solutions, imposing some condition of general position.

In general, it is known (see, e.g.,[32]) that the spectrum of the self-adjoint operator
−∆ + V in L2(RN) is purely continuous and may contain gaps, i.e. open intervals free of
spectrum. So, it is possible that 0 is in a finite spectral gap and the operator −∆ + V is
not positive definite. In this case first existence results (under very strong assumptions
on the nonlinearity) were found in [4, 15]. Later C. Troestler and M. Willem [37] and
W. Kryszewski and A. Szulkin [17] have proved the existence of nontrivial solutions under
much more natural conditions. Their proofs are based on a generalized linking theorems
applied to the corresponding action functional. The original proofs of such linking results
required new degree theories in order to overcome the lack of compactness and find at
least one Palais-Smale sequence. Moreover, in [17] it is shown that there exists infinitely
many geometrically distinct solutions, provided the nonlinearity is odd. It is not known
whether these solutions are multibumps. In [7], T. Bartsch and Y. Ding considered the
case when 0 is a boundary point of the spectrum and, in addition, gave a simpler proof
the generalized linking theorem. In [25], the author and K. Pflüger suggested another
approach to the periodic NLS based on periodic approximations and standard critical
point theorems. This approach goes back to P. H. Rabinowitz [30] who considered the
positive definite case. Later the same idea was applied to other problems [26, 27, 28]. See
also [1, 4, 5, 15, 11, 19, 39] for some other results on NLS.

Now we list the basic assumptions. Let

F (x, u) =

∫ u

0

f(x, s)ds.

(i) V ∈∞ (RN) is a 1-periodic function in each xi, i = 1, . . . , N .

(ii) f : RN×R → R is a Carathéodory function1 that is 1-periodic in each xi, i = 1, . . . , N .

(iii) |f(x, u)| ≤ C(1+|u|p−1) where 2 < p < 2∗, 2∗ := 2N/(N−2) if N ≥ 3 and 2∗ := +∞
if N = 1, 2.

(iv)
ess sup

x∈RN

|f(x, u)| = o(|u|), u→ 0.

1This means that f(x, u) is measurable in x ∈ RN for all u ∈ R and continuous in u ∈ R for a.e.
x ∈ RN .
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(v) There exists q > 2 such that

0 < qF (x, u) ≤ uf(x, u), u 6= 0.

Assumption (i) implies that the operator −∆ + V with the domain C∞
0 (RN) is essen-

tially self-adjoint in L2(RN). Denote by L its self-adjoint extension and σ(L) the spectrum
of L. The last assumption is the following

(vi) 0 is not in σ(L). In addition, in the case of ‘−’ in equation (1) we assume that
inf σ(L) < 0.

This assumption implies that there is a maximal open interval (−α−, α+), with α± > 0,
free of the spectrum (gap in the spectrum). In the case of ‘+’ sign it is possible that
α− = ∞. However, in the case of ‘−’ sign both α− and α+ are finite, i.e. 0 is in a finite
gap. We set α := min[α+, α−]. Note that α is the distance from 0 to σ(L).

The power nonlinearity f(x, u) = h(x)|u|p−2u, with positive 1-periodic h ∈ L∞(RN)
and 2 < p < 2∗, satisfies all the assumptions. The cubic nonlinearity (p = 4) is admissible
if N = 1, 2 or 3. The last nonlinearity is important for many applications (see, e.g.,
Section 7). Note that in the case N = 1 assumption (iii) can be replaced by the following
one. For any h > 0 there exists a constant C(h) > 0 such that

ess sup
x∈RN

|f(x, u)| ≤ C(h) if |u| ≤ h.

Assumptions (iii) and (v) mean that we consider subcritical superlinear nonlinearities.
For some results for the critical periodic NLS we refer to [12]. Another important problem
concerns the existence of solutions to (1) vanishing at infinity in the case of asymptotically
linear nonlinearity (see a remark in Section 7). Some results in this direction can be found
in [19], but the problem is still not well understood.

As it follows from (v), the nonlinearity f(x, u) does not change sign when x changes.
In the case of periodic NLS with sign changing nonlinearity the existence of vanishing at
infinity solutions is a completely open problem that may have interesting consequences in
the theory of gap solitons (see discussion in Section 7).

Now we summarize the principal result.

Theorem 1 Under assumptions (i)–(vi) equation (1) has a nontrivial weak solution u ∈
H1(RN). This solution is continuous and decays exponentially at infinity.

In subsequent sections we present the proof and discuss some related results. We give
also an application to the problem of existence of gap solitons in photonic crystals.

Throughout the paper we deal basically with the case of ‘+’ sign in (1) and only point
out minor changes needed to cover the case of ‘−’ sign.

Acknowledgments. This article was prepared during author’s staying at Texas
A&M University and College of William & Mary as a visiting professor. The author also
thanks T. Bartsch, P. Kuchment, P. H. Rabinowitz, A. Szulkin and I. Spitkovsky for many
interesting discussions. The work is partially supported by NATO, grant 970179.
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1 Abstract critical point theorems

Let H be a real Hilbert space with the inner product (·, ·) and the norm ‖ · ‖, and J a
functional on H of the class C1(H). Denote by J ′(u) the Gateaux derivative (gradient) of
J at the point u ∈ H. Recall that u ∈ H is a critical point of J if J ′(u) = 0 and c = J(u)
is the corresponding critical value. We shall use the following Palais-Smale condition:

(PS) Any sequence un ∈ H such that J(un) is bounded and J ′(un) → 0, i.e. Palais-Smale
sequence, has a convergent subsequence.

Now we present the Linking Theorem (see [29, 38] for the proof). Let H = Y ⊕ Z,
ρ > r > 0 and let z ∈ Z be such that ‖z‖ = r. Define

M := {u = y + λz : ‖u‖ ≤ ρ, λ ≥ 0, y ∈ Y },

M0 := ∂M = {u = y + λz : y ∈ Y, ‖u‖ = ρ and λ ≥ 0, or ‖u‖ ≤ ρ and λ = 0},
N := {u ∈ Z : ‖u‖ = r}.

We say that the functional J on H possesses the Linking Geometry if

b := inf
u∈N

J(u) > a := sup
u∈M0

J(u).

Theorem 2 Suppose J satisfies (PS) and possesses the Linking Geometry with dimY <
∞. Let

c := inf
γ∈Γ

sup
u∈M

J(γ(u))

where
Γ := {γ ∈ C(M,H) : γ = id on M0}.

Then c is a critical value of J and b ≤ c ≤ supu∈M J(u).

Note that in the case Y = {0} Theorem 2 reduces to the Mountain Pass Theorem
(see, e.g., [29, 38]).

Sometimes one can drop the assumption dimY < ∞ in the Linking Theorem. The
following result was obtained in [9].

Theorem 3 Assume that the functional J possesses the Linking Geometry and satisfies
the following assumptions

(j) J(u) = 1
2
(Au, u) + b(u) where u = u1 + u2 ∈ Y ⊕ Z, Au = A1u1 + A2u2 A1 : Y → Y

and A2 : Z → Z are linear bounded self-adjoint operators;

(jj) b is weakly continuous and uniformly differentiable on bounded sets;

(jjj) Any sequence un ∈ H such that J(un) is bounded from above and J ′(un) → 0 is
bounded.

Then c defined in Theorem 2 is a critical value of J such that b ≤ c ≤ supu∈M J(u).

Note that in the case of Theorem 3 the functional J satisfies the Palais-Smale condition.
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2 Variational setting and periodic problem

Throughout this section we will suppose assumptions (i)–(vi) to be valid.
Let Qk be the cube in RN , with the edge length k, centered at the origin. Denote by

Lk a unique self-adjoint operator in L2(Qk) generated by −∆+V with periodic boundary
conditions. We can (and will consider) this space as the space of all k-periodic functions
from L2

loc(RN). Note that σ(Lk) is discrete and is a subset of σ(L) (see, e.g., [32]). Let
Ek = H1

per(Qk) be the subspace of H1
loc(RN) that consists of k-periodic functions. This is

just the form domain of Lk. Endowed with the standard H1(Qk) norm, Ek is a Hilbert
space. We also set E = H1(RN). This space coincides with the form domain of L.

Let E+
k (respectively, E−

k ) be the intersection of Ek with the positive (respectively,
negative) spectral subspace of Lk. Similarly we introduce the subspaces E+ and E− in
E. It is easily seen that E+

k = (E−
k )⊥ and E+ = (E−)⊥. Thus, Ek = E−

k ⊕ E+
k and

Ek = E−
k ⊕E

+
k . These decompositions define the orthogonal projections P±

k onto E±
k and

P± onto E±. For the sake of convenience, we introduce new inner products (·, ·)k and
(·, ·) in Ek and E, with corresponding norms ‖ · ‖k and ‖ · ‖, so that∫

Qk

(|∇u|2 + V (x)|u|2) dx = −‖u‖2
k for u ∈ E−

k ,∫
Qk

(|∇u|2 + V (x)|u|2) dx = ‖u‖2
k for u ∈ E+

k

and ∫
RN

(|∇u|2 + V (x)|u|2) dx = −‖u‖2 for u ∈ E− ,∫
RN

(|∇u|2 + V (x)|u|2) dx = ‖u‖2 for u ∈ E+ .

These norms are equivalent to the standard H1-norms independently of k, i.e. there exists
a constant C > 0, independent of k, such that

α1/2‖u‖H1(Qk) ≤ ‖u‖k ≤ C‖u‖H1(Qk)

and
α1/2‖u‖H1(RN ) ≤ ‖u‖ ≤ C‖u‖H1(RN ).

On the subspaces E±
k and E± the constant α can be replaced by α±. Moreover, the

constant C can be chosen independent of V when V runs a bounded subset of L∞(RN).
Consider the action functionals

Jk(u) =
1

2
(‖P+

k u‖
2
k − ‖P−

k u‖
2)∓

∫
Qk

F (x, u) dx =

=
1

2

∫
Qk

(|∇u|2 + V (x)|u|2 ∓ F (x, u)) dx
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and

J(u) =
1

2
(‖P+u‖2 − ‖P−u‖2)∓

∫
RN

F (x, u) dx =

=
1

2

∫
RN

(|∇u|2 + V (x)|u|2 ∓ F (x, u)) dx

on Ek and E, respectively. From the standard Sobolev embedding theorem (see, e.g.,
[2, 21]) it follows that these functionals are well defined. One can also check that they
are of the class C1 and the derivatives are given by the formulas

〈J ′k(u), v〉 = (P+
k u, v)k − (P−

k u, v)k ∓
∫

Qk

f(x, u)v dx =

=

∫
Qk

(∇u · ∇v + V (x)uv ∓ f(x, u)v) dx, ∀v ∈ Ek

and

〈J ′(u), v〉 = (P+u, v)− (P−u, v)∓
∫

RN

f(x, u)v dx =

=

∫
RN

(∇u · ∇v + V (x)uv ∓ f(x, u)v) dx ∀v ∈ E.

Therefore, critical points of these functionals are weak solutions of (1), k-periodic in the
case of Jk and vanishing, in a sense, at infinity in the case of J .

Recall that the gradient ∇Jk(u) ∈ Ek (resp., ∇J(u) ∈ E) is defined by (∇Jk(u), v)k =
〈J ′k(u), v〉 (resp., (∇J(u), v)k = 〈J ′(u), v〉) for all v ∈ Ek (resp., v ∈ E).

Lemma 1 There exists a constant C > 0 independent on k such that for any nontrivial
critical points uk ∈ Ek of Jk and u ∈ E of J , with critical values ck and c respectively, we
have

‖uk‖k ≤ C(|ck|1/2 + |ck|1/p′), ‖u‖ ≤ C(|c|1/2 + |c|1/p′)

where p′ := p/(p− 1) is the conjugate exponent.

Proof . From ck = Jk(uk) and J ′k(uk) = 0 we obtain

|ck| = |Jk(uk)−
1

2
〈J ′k(uk), uk〉| ≥

≥
(

1

2
− 1

q

) ∫
Qk

f(x, uk)uk dx. (2)

From assumptions (iii)–(v) we have the inequalities

|f(x, u)|2 ≤ Cuf(x, u) if |u| ≤ 1, (3)
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|f(x, u)|p′ ≤ C|u|(p−1)(p′−1)f(x, u) = Cuf(x, u) if |u| ≥ 1. (4)

Let
Bk = {x ∈ Qk | |uk(x) ≤ 1}

Then from (2)–(4) we obtain

|ck| ≥ C ′
(∫

Bk

|f(x, uk(x))|2 dx+

∫
Qk\Bk

|f(x, uk(x))|p
′
dx

)
(5)

where C ′ = (q − 2)/(2qC). Hence

I1 :=

∫
Bk

|f(x, uk(x)|2 dx ≤ |ck|/C ′,

I2 :=

∫
Qk\Bk

|f(x, uk(x))|p
′
dx ≤ |ck|/C ′.

Let yk = P−
k uk and zk = P+

k uk. From 〈J ′k(uk), yk〉 = 0 and Hölder’s inequality we see that

‖yk‖2
k = −

∫
Qk

f(x, uk)yk dx ≤ I
1/2
1 |yk|2 + I

1/2
2 |yk|p′

where |·|r stands for the standard Lr-norm. Then the Sobolev embedding theorem implies

‖yk‖2
k ≤ C ′′

(
I

1/2
1 + I

1/p′

2

)
‖yk‖k.

Clearly, the same argument works for zk and we obtain

‖zk‖2
k ≤ C ′′

(
I

1/2
1 + I

1/p′

2

)
‖zk‖k.

These two inequalities imply the first estimate of the lemma. Similarly, we obtain the
second one. 2

Remark 1 Similarly, we obtain the following more precise estimates

α1/2‖uk‖H1(Qk) ≤ C(|ck|1/2 + |ck|1/p′), α1/2‖u‖H1(RN ) ≤ C(|c|1/2 + |c|1/p′) .

Lemma 2 There exist constants ε1 > 0 and ε2 > 0 independent on k such that for any
nontrivial critical points uk ∈ Ek of Jk and u ∈ E of J we have ‖uk‖k ≥ ε1, ‖u‖ ≥ ε1,
∓Jk(uk) ≥ ε2 and ±J(u) ≥ ε2.

Proof. Consider ‘+’ sign case. Assumptions (iii) and (iv) implies immediately that
for any ε > 0 there exists Cε > 0 such that

|f(x, t)| ≤ ε|t|+ Cε|t|p−1.
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Since J ′k(uk) = 0, then 〈J ′k(uk), vk〉 = 0 for any vk ∈ Ek. Take vk = u+
k = P+

k uk. Then we
have

‖u+
k ‖

2
k =

∫
Qk

f(x, uk)u
+
k dx ≤

≤ C(ε‖uk‖L2(Qk)‖u+
k ‖L2(Qk) + Cε‖uk‖p−1

Lp(Qk)‖u
+
k ‖Lp(Qk))

≤ C(ε‖uk‖k‖u+
k ‖k + Cε‖uk‖p−1

k ‖u+
k ‖k)

where we have used the Sobolev embedding theorem. Similarly, taking vk = u−k = P−
k uk

we obtain

‖u−k ‖
2
k =

∫
Qk

f(x, uk)u
−
k dx ≤

≤ C(ε‖uk‖k‖u−k ‖k + Cε‖uk‖p−1
k ‖u−k ‖k).

These two inequalities imply immediately

‖uk‖2
k = ‖u+

k ‖
2
k + ‖u−k ‖

2
k ≤ C(ε‖uk‖2

k + Cε‖uk‖p
k) .

If ε is small enough, we obtain

‖uk‖k ≥
(

1− εC

Cε

)1/(p−2)

=: ε1 > 0.

The same argument, with the same choice of constants, works for J . The estimates for
critical values follow from Lemma 1.

The case of ‘−’ sign is similar. 2

Theorem 4 The functional Jk has a nontrivial critical point uk ∈ Ek with critical value
ck. Moreover, there exist a constant C > 0 independent of k such that ‖uk‖k ≤ C and
0 < ±ck ≤ C.

Proof . We start with the Palais-Smale condition. Refining the proof of Lemma 1,
one can show that any Palais-Smale sequence for Jk is bounded in Ek. Now, using the
standard argument [29, 38] based on the compactness of Sobolev embedding, we conclude
that such a sequence is compact in Ek.

Consider ‘+’ sign case. We show that the functional Jk possesses the linking geometry
with Y = E−

k and Z = E+
k .

For z ∈ Z we have

Jk(z) =
1

2
‖z‖2

k −
∫

Qk

F (x, z) dx.

Assumptions (iii) and (iv) imply that for any ε > 0 there exists a constant Cε > 0 such
that 0 ≤ F (x, u) ≤ ε|u|2 + Cε|u|p. By the Sobolev embedding theorem we obtain∫

Qk

F (x, z) dx ≤ C(ε‖z‖2
k + Cε‖z‖p

k).
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Choosing an appropriate ε we see that, for some δ > 0, Jk(z) ≥ δ if ‖z‖k = r is small
enough. Thus, we have chosen the sphere N = {u ∈ Z : ‖u‖k = r}.

Let us now find M . Fix any z0 ∈ Z = E+
k , ‖z0‖k = 1. For y + tz0 ∈ M , y ∈ Y = E−

k

we have

Jk(y + tz0) =
1

2
t2 − 1

2
‖y‖2

k −
∫

Qk

F (x, y + tz0) dx.

Assumptions (iv) and (v) imply that for any ε > 0 there exists a constant Cε > 0 such
that F (x, u) ≥ −ε|u|2 + Cε|u|q. Hence,∫

Qk

F (x, y + tz0) dx ≥ −ε‖y‖2
L2(Qk) − ε‖z0‖2

L2(Qk) + Cε‖y + tz0‖q
Lq(Qk).

Applying the Sobolev embedding theorem, we obtain

Jk(y + tz0) ≤ −1

2
‖y‖2

k + εC‖y‖2
k +

1

2
t2 + εCt2 − Cε‖y + tz0‖q

Lq(Qk). (6)

Consider the space X = Y ⊕Rz0 equipped with the Lq(Qk)-norm. Then y+ tz0 7→ tz0 is
a bounded projector in X. Since its norm is not less then 1, we see that

‖y + tz0‖Lq(Qk) ≥ ‖tz0‖Lq(Qk).

Choosing ε so small that εC = 1/4, we obtain from (6)

Jk(y + tz0) ≤ −1

4
‖y‖2

k +
3

4
t2 − CεC|t|p

(here we have used again the Sobolev embedding). Note that all the constants here are
independent on k. The last inequality implies that we can choose ρ > 0 large enough
such that Jk ≤ 0 on M0. Moreover, supM Jk(u) ≤ K := max(3t2/4 − CεC|t|q) and K is
independent of k. Applying Theorem 2, we obtain the result.

The case ‘−’ sign we need only to apply Theorem 3 to the functional −Jk. 2

Remark 2 If we drop assumption (vi), i.e. allow 0 to be in the spectrum σ(L), we still
can use linking argument to prove the existence of k-periodic solutions. This can be
done as in the case of the Dirichlet problem in a bounded domain (see [38], Section 2.4).
However, in this case we have no uniform (with respect to k) bounds for the solution.

Remark 3 In the case ‘−’, if we drop the requirement inf σ(L) < 0 then there is no
nontrivial solution in Ek, as well as in E. This follows from the obvious fact that in this
case the functionals −Jk and −J have strict global maximum at the origin.
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3 Passage to the limit and finite action solutions

Now we are going to pass to the limit as k →∞ to obtain a finite action solution u ∈ E.
The principal difficulty is to show that the limit is a non-zero function. With this aim we
need some concentration compactness argument.

Lemma 3 Let Q(n) be the cube with the edge length ln → ∞ centered at the origin and
Kr(ξ) the cube centered at ξ with the edge length r. Let u(n) ∈ H1

loc(RN) be a sequence of
ln-periodic functions such that ‖u(n)‖H1(Q(n)) ≤ C. Assume that there exists r > 0 such
that

lim
n→∞

(
sup

ξ

∫
Kr(ξ)

|u(n)|2 dx
)

= 0.

Then ‖u(n)‖Ls(Q(n)) → 0 for all s ∈ (2, 2∗).

Proof . Denote by Q′
(n) and Q′′

(n) the cubes with the sizes ln+r and ln+2r, respectively,

centered at 0. Choose a cut-off function χn ∈ C∞
0 (RN) such that suppχn ⊂ Q′′

(n), 0 ≤
χn(x) ≤ 1, χn = 1 on Q′

(n) and |∇χn(x)‖ ≤ C where C > 0 does not depend on n.
Evidently, such a function exists.

Let us set vn = χnu(n). For n large enough, it is easy to verify, using the periodicity
of u(n), that

sup
ξ

∫
Kr(ξ)

|vn|2 dx = sup
ξ

∫
Kr(ξ)

|u(n)|2 dx

and the sequence vn is bounded in H1(RN). By the well-known lemma of P. L. Lions (see
[20], Lemma I.1, and [38], Lemma 1.21), vn → 0 in Ls(RN), s ∈ (2, 2∗). Since vn = u(n)

on Q(n), we obtain the required. 2

Lemma 4 Let uk ∈ Ek be a sequence such that ‖uk‖k is bounded and J ′k(uk) → 0. Then,
passing to a subsequence still labelled by k, either

10 ‖uk‖k → 0 as k →∞

or

20 there exist a sequence of points ξk ∈ RN and positive numbers r and η such that

lim
k→∞

∫
Kr(ξk)

|uk|2 dx ≥ η.

Proof . Assume that 20 does not hold (along a subsequence still labelled by k). Since
J ′k(uk) → 0, there exists a sequence εk → 0 such that 〈J ′k(uk), v〉 ≤ εk‖v‖k for any v ∈ Ek.
Taking v = P+

k uk and v = P−
k uk we obtain, as in the proof of Lemma 2,

‖uk‖2
k ≤ ε‖uk‖2

k + Cε‖uk‖p
Lp(Qk) + Cεk‖uk‖k .

By Lemma 3, ‖uk‖p
Lp(Qk) → 0 and we obtain the required. 2
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Theorem 5 Let uk ∈ Ek be a sequence of nontrivial critical points of Jk such that the
sequence ck = Jk(uk) is bounded. Then there exists a nontrivial solution u ∈ E = H1(RN)
of equation (1). Moreover, there exist a sequence bk ∈ ZN such that uk(x+ bk) converges
to u in H1

loc(RN), up to the passage to a subsequence.

Proof . By Lemma 1, the norms ‖uk‖k are bounded. Lemma 2 implies that ‖uk‖−k ≥
ε1 > 0. Therefore, case 10 of Lemma 4 is not possible. From Lemma 4, 20, we obtain
that, along a subsequence,

‖uk‖2
L2(Kr(ξk)) ≥ η/2.

There exists a sequence of integer vectors bk such that the sequence of cubes Kr(ξk − bk)
is confined in a bounded region. Set ũk(x) = uk(x+ bk). We have

‖uk‖2
L2(Qk0

) ≥ η/2 (7)

for k ≥ k0 and some k0. Since V and f are ZN -periodic, ũk are critical points of Jk and the
norms ‖ũk‖k are bounded. Passing to a subsequence, one can assume that the sequence
ũk converges weakly in H1

loc(RN) to a function u. Since ‖ũk‖k is bounded, u ∈ H1(RN).
By the compactness of Sobolev embedding, ũk → u in Ls

loc(RN), 2 ≤ s < 2∗, and, hence,
f(x, ũk) → f(x, u) in L1

loc(RN). Now for any test function ϕ ∈ C∞
0 we have

〈J ′(u), ϕ〉 =

∫
RN

(∇u∇ϕ+ V uϕ− f(x, u)ϕ) dx =

= lim
k→∞

∫
RN

(∇ũk∇ϕ+ V ũkϕ− f(x, ũk)ϕ) dx =

= 0 .

Therefore, u is a weak solution of (1) and u 6= 0 in view of (7).
Now let us prove the last statement. Let χ ∈ C∞

0 (RN) and suppχ is contained in an
open bounded set Ω. It is easy to verify the following identity

L(χũk − χu) = h1
k + h2

k + h3
k

where

h1
k = χ[f(x, ũk)− f(x, u)] ,

h2
k = −∇χ∇(ũk − u) ,

h3
k = −(∆χ)(ũk − u) .

We see that h1
k → 0 in Lp−1(Ω), h2

k → 0 weakly in L2(Ω) and h3
k → 0 in L2(Ω). Since the

space Ls(Ω), 2 ≤ s < 2∗, is compactly embedded into H−1(RN), then h1
k + h2

k + h3
k → 0

in the last space. Assumption (vi) implies that the operator L considered as a bounded
linear operator from H1(RN) into H−1(RN) has a bounded inverse operator. Therefore,
(χũk − χu) → 0 in H1(RN) and we are done. 2

Combining Theorems 4 and 5, we obtain

Theorem 6 Equation (1) possesses a nontrivial solution in H1(RN).
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4 Ground states

We say that a nontrivial solution u ∈ E (resp., u ∈ Ek) of equation (1) is a ground state
(resp., a periodic ground state) if the corresponding critical value of the functional ±J
(resp., ±Jk) is minimal possible among all nontrivial critical values of that functional.
Since the functional ±Jk satisfies the Palais-Smale condition, the existence of periodic
ground states follows immediately from Theorem 4 and Lemma 2. The case of ground
states is more delicate. To treat it we need the following

Theorem 7 In addition to assumptions (i) – (vi), suppose that

|f(x, u+ v)− f(x, u) ≤ C|v|(1 + |u|p−1) if |v| ≤ ε (8)

with some positive C and ε.
(a) Let uk ∈ E be a bounded sequence such that J ′(uk) → 0 and J(uk) → c > 0. Then

there exist critical points ui of J and sequences bik ∈ ZN , i = 1, . . . , n such that

n∑
i=1

J(ui) = c (9)

and

‖uk −
n∑

i=1

ui(·+ bik)‖ → 0 as k →∞.

(b) Let uk ∈ Ek be a sequence such that ‖uk‖k is bounded, J ′k(uk) → 0 and Jk(uk) → c > 0.
Then there exist critical points ui of J satisfying (9) and sequences bik ∈ ZN , i = 1, . . . , n
such that

‖uk −
n∑

i=1

ui(·+ bik)‖H1(Qk) → 0 as k →∞.

For the proof of part (a) we refer to [17]. Part (b) is borrowed from [25].
From Theorem 7 and previous remarks it follows

Theorem 8 Under assumptions (i) – (vi) and (8) there exist at least one k-periodic
ground state and at least one ground state.

Now we want to study the behavior of k-periodic ground states as k →∞. We replace
assumption (v) by the following stronger assumption

(v′)The function f(x, u) is C1 in u, f ′u is a Carathéodory function and there exists
θ ∈ (0, 1) such that

0 < u−1f(x, u) ≤ θf ′u(x, u)

for every u 6= 0 and
|f ′u(x, u)| ≤ C(1 + |u|)p−2 (10)

for all u ∈ R, with C > 0.
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This implies, in particular, that

0 < F (x, u) ≤ θ

1 + θ
f(x, u)u (11)

for u 6= 0, and θ/(1 + θ) < 1/2. Therefore, (v) follows from (v′). Moreover, in this case
inequality (8) holds as well. The functionals Jk and J are C2, and

〈J ′′k (u)w, v〉 = (P+
k w, v)− (P−

k w, v)±
∫

Qk

f ′(x, u)wv dx =

=

∫
Qk

(∇w∇v + V (x)wv ± f ′(x, u)wv) dx, (12)

〈J ′′(u)w, v〉 = (P+w, v)− (P−w, v)±
∫

RN

f ′(x, u)wv dx =

=

∫
RN

(∇w∇v + V (x)wv ± f ′(x, u)wv) dx. (13)

Define the set S±k ⊂ Ek that consists of all nonzero u ∈ Ek such that

Ik(u) := 〈J ′k(u), u〉 = 0

and
〈J ′k(u), v〉 = 0 ∀v ∈ E∓

k .

Similarly, the set S± ⊂ E consists of all nonzero u ∈ E such that

I(u) := 〈J ′k(u), u〉 = 0

and
〈J ′(u), v〉 = 0 ∀v ∈ E∓ .

These sets are nonempty, because they contain solutions.
Now let us consider the following minimization problems

m±
k = inf{±Jk(u) : u ∈ S±k } (14)

and
m± = inf{±J(u) : u ∈ S±} . (15)

Inspection of the proof of Lemmas 1 and 2 gives us the following result.

Lemma 5 There exist constants ε1 > 0 and ε2 > 0 independent on k such that for
every uk ∈ S±k and every u ∈ S± we have ‖uk‖k ≥ ε1, ‖u‖ ≥ ε1, ±Jk(uk) ≥ ε2 and
±J(u) ≥ ε2.Moreover,

‖uk‖k ≤ C(|Jk(uk)|1/2 + |Jk(uk)|1/p′) , ‖u‖ ≤ C(|J(u)|1/2 + |J(u)|1/p′) .
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Let E
±
k = R ⊕ E±

k and E
±

= R ⊕ E±. Consider the operators G±
k : E → E

∓
k and

G± : E → E
∓

defined by

G±
k (u) = (〈J ′k(u), u〉, P∓

k J
′
k(u)) ,

G±(u) = (〈J ′(u), u〉, P∓J ′(u)) ,

respectively. Obviously, S±k = (G±
k )−1(0) \ {0} and S± = (G±)−1(0) \ {0}. Moreover,

these operators are C1, and

(G±
k )′(u)v =

(
〈J ′′k (u)v, u〉+ 〈J ′k(u), v〉 , P∓

k J
′′
k (u)v

)
, (16)

(G±)′(u)v =
(
〈J ′′(u)v, u〉+ 〈J ′(u), v〉 , P∓J ′′k (u)v

)
. (17)

Lemma 6 The set S±k (respectively, S±) is a closed C1-submanifold of Ek (respectively,
E).

Proof . We consider S+ only. The remaining cases are similar. The result follows
from the implicit function theorem if we check that G′ is onto at every point of S+. For
notational convenience we skip the superscript in G and the domain of integration.

Let u0 ∈ E (u0 6= 0), 〈J ′(u0), u0〉 = α0 and P−∇J(u0) = α. Identifying E
−

and the
subspace Ru0 ⊕ E− via (τ, h) = τu0 + h, a direct calculation gives

(G′(u0)(τ, h), (τ, h)) = 2α0τ
2 − 3τ(P−u0, h) + τ 2

∫
[f(x, u0)u0 − f ′u(x, u0)u

2
0] dx−

− (h, h)− τ

∫
[2f ′u(x, u0)u0 + f(x, u0)]h dx−

∫
f ′u(x, u0)h

2 dx .

Since for h ∈ E−

(P+u0, h)− (P−u0, h)−
∫
f(x, u0)h dx =

= −(P−u0, h)−
∫
f(x, u0)h dx = (α, h) ,

we obtain
(G′(u0)(τ, h), (τ, h)) = 2α0τ

2 − (h, h) + 3τ(α, h)−

−
∫
{[f ′u(x, u0)u

2
0 − f(x, u0)u0]τ

2 + 2[f ′u(x, u0)u0 − f(x, u0)]τh+ f ′u(x, u0)h
2} dx =

= 2α0τ
2 − (h, h) + 3τ(α, h)−

∫
(Aτ 2 + 2Cτh+Bh2) dx .

Note that B ≥ 0, and B(x) = 0 iff u0(x) = 0. Hence, in the last case also A(x) = C(x) =
0. Since

Aτ 2 + 2Cτh+Bh2 =

(
A− C2

B

)
τ 2 +

(√
Bh+

Cτ√
B

)
,
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|τ(α, h)| ≤ 1

2
‖α‖(τ 2 + ‖h‖2)

and, due to assumption (v′),

A− C2

B
=

(
u0 −

f(x, u0)

f ′u(x, u0)

)
f(x, u0) ≥

≥ (1− θ)f(x, u0)u0 ,

we obtain

(G′(u0)(τ, h), (τ, h)) ≤2α0τ
2 − ‖h‖2 +

3

2
‖α‖τ 2 +

3

2
‖α‖‖h‖2−

− τ 2(1− θ)

∫
f(x, u0)u0 dx .

(18)

Now if u0 ∈ S+, then α0 = 0 and α = 0. Equation (16) implies that on the subspace
Ru0⊕E− ⊂ E the operatorG′(u0) is strictly negative defined, hence, invertible. Therefore,
the implicit function theorem applies and we conclude. 2

Remark 4 It is clear that S+
k has a finite co-dimension, while S−k is finite dimensional.

The tangent space to S±k at u0 consists of all h ∈ Ek such that

〈I ′k(u0), h〉 = 0 , P∓
k ∇Jk(u0)h = 0

and similarly for S±. The subspace Ru0 ⊕ E∓
k ⊂ Ek (resp., Ru0 ⊕ E∓ ⊂ E) is transverse

to S±k (resp., to S±k ) at u0, as it follows from the proof of Lemma 6.

Lemma 7 Any critical point of the restriction of Jk to Sk (respectively, J to S) is a
critical point of Jk (respectively, J). In particular, solutions of problems (14) and (15)
are periodic ground states and ground sates, respectively.

Proof . A direct calculation shows that if u0 ∈ S±k (resp., u0 ∈ S±), then J ′k(u0) (resp.,
J ′k(u0)) vanishes on the subspace Ru0 ⊕ E∓

k ⊂ Ek (resp., Ru0 ⊕ E∓ ⊂ E). Therefore, if
u0 is a critical point of Jk (resp., J) restricted to S±k (resp., to S±), then J ′k(u0) (resp.,
J ′k(u0)) vanishes everywhere, since it is equal to 0 also on the tangent space. 2

Theorem 9 Problem (14) has at least one solution which is a periodic ground state.
Moreover, m±

k ≥ ε2, with ε2 from Lemma 5.

Proof . We only sketch the existence of the minimization problem on S+
k . On this set

we have

Jk(u) = Jk(u)−
1

2
〈J ′k(u), u〉 =

∫
Qk

(
1

2
f(x, u)u− F (x, u)

)
dx . (19)

Hence, due to assumption (v), Jk(u) is bounded below on S+
k . Consider a minimization

sequence un ∈ S+
k . As it follows from the Ekeland principle (see, e.g., [40]), we can assume
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that un is, in addition, a Palais-Smale sequence for Jk |S+
k
. (In [40] functionals defined on a

Banach space are considered, but arguments work in the case of functionals on C1 Banach
manifolds, with only minor change). We shall show that, in fact, un is a Palais-Smale
sequence for the whole functional Jk. This is enough to pass to the limit and get the
result.

Let gn = ∇Jk(un) and gt
n its component tangent to S+

k , i.e. the orthogonal projection
of gn onto the tangent space at un. Then gt

n → 0. We have to show than gn → 0.
Inequality (18), with u0 = un, α0 = 0 and α = 0, implies that the operator (G+

k )
′
(un) has a

right inverse operator, An
k . The image of this operator is the subspace E

−
(un) = Run⊕E−

and its norm is bounded above by a constant C > 0 independently of n. The operator

An
k(G+

k )
′
(un) is the projector, P n

k , onto E
−
(un) parallel to the tangent space at un. The

adjoint operator (P n
k )∗ is the projector onto the orthogonal complement to E

−
(un) parallel

to the normal subspace at un. Hence, gn = (P n
k )∗gt

n and ‖gn‖k ≤ C‖gt
n‖. This completes

the proof. 2

Now we impose the following additional assumption
(vii)There exist C > 0 and γ ∈ (0, 1] such that

|f ′u(x, u1)− f ′u(x, u2)| ≤ C(1 + |u1|+ |u2|)p−2−γ|u1 − u2|γ

for all u1, u2 ∈ R.
This assumption implies, in particular, (10).

Theorem 10 Under assumptions (i)–(iv), (v′), (vi) and (vii) we have

m± = lim
k→∞

m±
k . (20)

Moreover, let uk ∈ Ek be a solution of (14). Then, after passage to a subsequence still
denoted by uk, there exist a solution u of (15) and a sequence bk ∈ ZN such that

‖uk − u(·+ bk)‖H1(Qk) → 0 . (21)

Proof . We again consider only the case of “+” sign. Since u1 is also a k-periodic
solution, we see that m+

k ≤ m+
1 . Hence, the sequence m+

k is bounded and Lemma 5 shows
that the sequence ‖uk‖k is bounded. Due to Theorem 5 we can assume that uk converges
in H1

loc(R
N) to a nontrivial solution u ∈ E. Note that J(u) ≥ m+.

Equation (19) implies that

m+
k =

∫
Qk

(
1

2
f(x, uk)uk − F (x, uk)

)
dx =:

∫
Qk

g(x, uk) dx .

Since the integrand here is nonnegative, we see that for any bounded domain Ω ⊂ RN

and k large enough

m+
k ≥

∫
Ω

g(x, uk) dx
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and, therefore,

lim infm+
k ≥

∫
Ω

g(x, uk) dx .

Since Ω is an arbitrary domain and u is a nontrivial solution, we obtain

lim infm+
k ≥

∫
RN

g(x, uk) dx = J(u) ≥ m+ . (22)

To prove (20), we have now to show that

lim supm+
k ≤ m+ . (23)

Let v ∈ S+. Since C∞
0 (RN) is dense in E there exists a sequence of smooth functions

vk → v in E such that vk has a compact support in Qk. Having in mind periodic extension,
we can also consider vk as an element of Ek. Let αk = P−

k ∇Jk(vk) and αk
0 = Ik(vk).

Inequality (18), with u0 = vk, shows that the derivative of the map G+
k at vk has a right

inverse whose norm is bounded independently of k, provided k is large enough. Note
that, due to assumption (vii), G+

k is Hölder equicontinuous, with the exponent γ, say, on
the ball of radius 2‖v‖ in Ek centered at the origin. Inspecting the proof of the implicit
function theorem (see, e.g., [40]), we get right inverse map, Tk, to G+

k defined on the ball
Bk ⊂ R⊕E−

k of radius r centered at (αk
0, α

k), where r is independent of k. Moreover, Tk

is Hölder eqicontinuous. For k large enough, 0 ∈ Bk and is close to the point (αk
0, α

k).
Hence, wk = Tk(0) is close to vk, wk ∈ S+

k and

Jk(wk) ≤ J(v) + ε

if k is large enough. This implies (23).
The remaining part of the theorem follows from Theorem 7, part (b). 2

5 Exponential decay

Now let us study the decay of finite action solutions to equation (1).

Theorem 11 Let u ∈ H1(RN) be a solution of (1). Then u is a continuous function and
there exist positive constants C and λ such that

|u(x)| ≤ C exp(−λ|x|)

where λ ≤ c dist (0, σ(L)) = cα.

Proof . First, we have to show that u ∈ L∞(RN). This can be done exactly as in the
proof of Lemma 5.1, [8]. (That proof is based on the Sobolev estimates for Schrödinger
operators). Next, Theorem B.3.3 of [35] implies that u is continuous. Now we set W (x) :=
−f(x, u(x))/u(x) (with W (x) = 0 if u(x) = 0). Hence, u solves the equation

−∆ + (V (x) +W (x))u = 0 (24)
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on RN . Since V +W ∈ L∞(RN), Theorem C.3.1 of [35] shows that u(x) → 0 as x→∞.
Since W (x) → 0 as x→∞, the potential W defines a relatively compact perturbation

of the operator L. Hence, L + W has the same essential spectrum as L and may have
only isolated eigenvalues of finite multiplicity outside the essential spectrum. Equation
(24) means that 0 is an eigenvalue of L + W outside the essential spectrum, hence, of
finite multiplicity, and u is the corresponding eigenfunction. Now Theorem C.3.5, [35],
provides the required exponential bound. 2

Remark 5 Using estimates for Green’s function of L (see [18], Section 7.6.3), one can
improve the estimate for λ as follows: a ≤ cα1/2.

6 Further results

Now we discuss assumption (vi). More precisely, what may happen if 0 is in the spectrum
of L? It is commonly believed that in this case well localized solutions of (1) do not exist.
As we see from equation (24), the question is closely related to the problem of absence
of embedded eigenvalues for periodic Schrödinger operators perturbed by a decaying po-
tential. Unfortunately, there is no satisfactory general result on embedded eigenvalues,
except the case N = 1. In the case N = 1 F. S. Rofe-Beketov [33] (see also [34]) has
proved that L+W has no embedded eigenvalues if (1 + |x|)W (x) ∈ L1(R). This implies
immediately the following result.

Theorem 12 Let N = 1. Suppose that assumptions (i) and (ii) are satisfied and, for
some r > 1, |f(x, u)| ≤ c|u|r for a.e. x ∈ R and u in a neighborhood of 0. Then equation
(1) has no nontrivial weak solutions such that (1 + |x|)|u(x)|r−1 ∈ L1(R). In particular,
there is no nontrivial exponentially decaying solutions.

On the other hand, T. Bartsch and Y. Ding have found the following existence result.

Theorem 13 In addition to (i)–(v), assume that V and g are continuous functions of all
their arguments, there exist constants r ∈ [q, 2∗), s ∈ [p, 2∗), a1 > 0 and a2 > 0 such that

a1|u|r ≤ F (x, u) ,

|f(x, u)| ≤ a2(|u|p−1 + |u|s−1)

for all x ∈ RN and u ∈ R. Let 0 ∈ σ(L) and there exists b > 0 such that (0, b)∩ σ(L) = ∅
in the case of ‘+’ sign in (1) and (−b, 0) ∩ σ(L) = ∅ in the case of ‘−’ sign. Then
equation (1) has a nontrivial weak solution u ∈ H2

loc(RN). This solution lies in Lt(RN)
for r ≤ t ≤ 2∗, is continuous and u(x) → 0 as x→∞.

Certainly, the solution obtained in the last theorem should be not well decaying. If
N = 1, Theorem 12 implies that this solution cannot decay too fast.

Thus, we conjecture that if 0 ∈ σ(L), then nontrivial well-decaying at infinity solutions
to periodic NLS 1 do not exist. To support this conjecture assume that 0 ∈ σ(L) and
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is not a lower (resp., upper) edge of a spectral gap in the case of ‘+’ (resp., ‘-’) sign in
(1). Let kj → infty be a sequence of integers such that 0 6∈ σ(Lkj

). Recall that σ(Lk) is
discrete and the countable set ∪σ(Lk) is dense in σ(L). Therefore, kj is a generic sequence.
Let uj = ukj

∈ Ekj
be the kj-periodic solution obtained by linking (see Remark 2) and

cj = ckj
be the corresponding linking critical value defined in Theorem 4. Note that it

does not depend on particular choice of z0. Denote by αj the distance from 0 to σ(Lkj
).

Then we have

Proposition 1 Under the assumptions imposed above

‖uj‖H1(Qkj
) ≤ Cα

q
2(q−2) ,

where C > 0 does not depend on j.

Proof . Since the result seems to be not exact, we only sketch the proof in the case of
‘+’ sign.

Following the proof of Lemma 1 (see also Remark 1), we obtain

‖uj‖H1(Qkj
) ≤ Cα−1/2(|cj|1/p′ + |cj|1/2) , (25)

where p′ is the conjugate exponent to p.
Now we estimate the linking critical value as in the proof of Theorem 4. We re-

fine the argument after inequality (6). Take as z0 ∈ E+
kj

, the eigenvector of Lkj
with

‖z0‖kj
= 1 that correspond to the first positive eigenvalue λ0 of Lkj

. Then ‖z0‖H−1(Qkj
) ≤

C‖z0‖Lq(Qkj
), with C > 0 independent of j. Since

−∆z0 + z0 = λ0z
0 − V (x)z0 ,

we have that ‖z0‖H1(Qkj
) ≤ C‖z0‖Lq(Qkj

). From (6) we get

cj ≤ sup
M

Jkj
(u) ≤ max(3t2 − Cα

−q/2
j tp .

A direct calculation gives us

cj ≤ Cα
q

q−2

j .

Since 1 < p′ < 2, this together with (25) implies the required. 2

Remark 6 Certainly, the conclusion of Proposition 1 holds also for periodic ground
states.

Construction of ground states in Section s4 shows that the ground critical value does
not exceed the linking value, which is not necessary a critical value in this case. Therefore,
arguing as in Proposition 1, we obtain the following result.
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Proposition 2 Let u ∈ E be a ground state of equation (1). Under the assumptions of
Theorem 8 we have the estimate

‖u‖H1(RN ) ≤ C(α±)
q

2(q−2) ,

where (−α−, α+) is the spectral gap containing 0.

As consequence, we see that ground states bifurcate from the trivial solution corre-
sponding to an appropriate edge of the spectral gap.

7 Gap solitons

In this section we give an application of the previous results to a problem that arises in the
theory of photonic crystals, the existence of gap solitons. Photonic crystals are dielectric
media with spatially periodic (or close-to-periodic) structure. A good introduction into
this field can be found in [16]. For a survey of rigorous mathematical results we refer to
[18]. Both these publications deal with linear optical media. If the medium we consider
is nonlinear, many new phenomena occur. Among them one of the most interesting is
the possibility of gap solitons, i.e. spatially localized light patterns with the frequency
prohibited by the linear theory. On physical level a simple description of this phenomenon
is presented in [22]. However, up to now there was no mathematically rigorous proof of
the existence of gap solitons even in simplest situations. Here we show that some existence
result can be extracted from the results on periodic NLS.

In a dielectric medium we consider the system of Maxwell equations

∇× E = −∂B
∂t

,

∇×H =
∂D

∂t
,

∇D = 0 ,

∇B = 0 .

Since we assume that the medium is non-magnetic, we set B = H. We consider the
following constitutive relation between displacement and electric fields:

D = (ε(x) + χ(x)〈|E|〉2)E

where 〈·〉 stands for time average. Such type of nonlinear response was introduced by
N. N. Akhmediev [3] (see also [36] and references therein). The cubic form of the nonlin-
earity means that we concentrate on Kerr-like media.

In the case of two dimensional structure we assume that the functions ε(x) = ε(x1, x2)
and χ(x) = χ(x1, x2) are independent on x3, periodic in (x1, x2) and of the class L∞.
Moreover, we suppose that ε(x) ≥ ε0 > 0 and either χ(x) > 0, or χ(x) < 0 everywhere.
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The assumption means that the medium we consider is either everywhere self-focusing,
or everywhere defocusing [22]. We restrict ourself to the so-called E-mode E = (0, 0, E)
and look for solutions of the form

E = u(x1, x2) cos(βx3 − ωt+ θ0) (26)

where the amplitude vanishes at infinity. Such solutions represent light patterns of the
frequency ω that are localized in (x1, x2) directions and propagate along the x3-axis, with
the wave number β. Obviously, the problem reduces to the two dimensional NLS

−∆u− ω2εu+ β2u = ω2χu3. (27)

Now we can apply the previous results. In the self-focusing case (χ > 0) we obtain a
nontrivial exponentially decaying solution if −β2 is not in the spectrum of the operator
Lω := −∆ − ω2ε. In particular, given ω such a solution exists for all |β| large enough.
In the defocusing case (χ < 0) nontrivial exponentially localized solutions exist, provided
−β2 is not in σ(Lω), but not below the spectrum. This means that −β2 must belong to
a finite spectral gap of Lω.

The case β = 0 is of particular interest. Let us assume that 0 6∈ σ(Lω). This means
that ω is a prohibited frequency [18]. Since the potential of Lω is negative, 0 belongs to a
finite gap. Therefore, independently of the sign of χ there exists a nontrivial solution of
the form u(x1, x2) cos(−ωt+ θ0) with exponentially decaying amplitude u. Such solutions
represent so-called standing gap solitons. Hence, we obtain the existence of gap solitons
for every prohibited frequency. In fact, in this case (0 ∈ σ(Lω)) there exists a nontrivial
exponentially localized solution of the form (26) for all β close enough to 0.

Exactly the same results hold for one dimensional structures. This case reduces to the
one dimensional periodic NLS.

Now let us discuss the behavior of gap solitons with respect to ω. Let (−α−, α+) be
the spectral gap of Lω containing 0 and (ω−, ω+) the corresponding gap of (nonnegative)
frequencies. Note that if ω goes to ω±, then αpm goes to 0. Indeed, the spectrum of Lω

is the union of closed intervals

[ min
θ∈[0,2π]

λj(θ), max
θ∈[0,2π]

λj(θ)] ,

where λj(θ) are the Bloch eigenvalues (see, e.g., [32]). Since the potential −ω2ε(x) de-
creases monotonically as ω increases, the comparison principle for eigenvalues (see, e.g.,
[10]) tells us that the eigenvalues λj(θ) decreases monotonically and continuously, and
we are done. Now Proposition 2 shows that gap solitons bifurcate from zero solutions
corresponding to ω = ω+ in the self-focusing case and ω = ω− in the defocusing case.

We have considered here the case when χ(x) does not change sign. The case of sign
changing χ(x) is not less important, but completely open. It corresponds to a mixture of
self-focusing and defocusing optical materials.

Another important problem is the existence of gap solitons in periodic media with
saturation. In this case the nonlinearity is asymptotically linear. In the context of ap-
plications to nonlinear optical wave guides (one dimensional nonperiodic problem) such
nonlinearities were studied extensively by C. Stuart (see, in particulary, [36]).
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