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Abstract. In this paper we investigate the conditions under which periodic solutions of the nonlinear

oscillator ẍ + x3 = 0 persist when the differential equation is perturbed so as to become ẍ + x3 +

εx3 cos t + γẋ = 0. We conjecture that for any periodic orbit, characterized by its frequency ω, there

exists a threshold for the damping coefficient γ, above which the orbit disappears, and that this threshold

is infinitesimal in the perturbation parameter, with integer order depending on the frequency ω. Some

rigorous analytical results toward the proof of these conjectures are provided. Moreover the relative size

and shape of the basins of attraction of the existing stable periodic orbits are investigated numerically,

giving further support to the validity of the conjectures.

1. Introduction

We study the existence of periodic solutions of the ordinary differential equation

ẍ + x3 + εf(t)x3 + γẋ = 0, f(t) = cos t, (1.1)

where γ > 0 is the friction coefficient and ε is a real parameter characterizing the strength of the external

driving force; both are assumed to be small.

As the driving function f(t) has fixed period 2π this means that the period 2π/ω of the motion has to

be commensurable with 2π, that is with ω = p/q, where p and q are relatively prime integers. We refer to

such a case as a p : q resonance. Problems of this type appear in Celestial Mechanics when studying the

problem of resonance locking between the revolution and rotation periods of satellites via the mechanism

of spin-orbit coupling [7, 8, 5].

It is clear that a given periodic orbit can possibly exist only if the friction coefficient γ is not too large:

in fact, if γ is large enough it is easy to show that any trajectory is attracted to the origin [2].

Numerically one finds that for values of γ not too small only a few periodic orbits appear, and they are

asymptotically stable. Moreover the union of (the closure of) the corresponding basins of attraction seems

to fill the entire phase space.

By decreasing the value of γ new periodic orbits can arise. They are less relevant than the old ones, in

the sense that their basins of attraction are very small compared with those of the orbits already appearing

for larger values of γ. In practice it is very difficult to see the orbits arising for very small values of γ; as we

shall see the corresponding basins of attraction are very thin and the convergence to the orbit is obviously

very slow.

We therefore make and investigate the following conjectures.

(1) A periodic orbit of given rational frequency ω, if it exists at all, exists only if γ is less than a

suitable threshold γ0(ω, ε).
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(2) The threshold γ0(ω, ε) is infinitesimal in ε.

(3) The order of magnitude in ε of γ0(ω, ε) is given by an integer exponent m(ω), that is γ0(ω, ε) =

O(εm(ω)).

Therefore the thresholds γ0(ω, ε) are characterized by a scaling law in terms of the perturbation param-

eter ε, with a scaling exponent which depends on the frequency ω.

In this paper we provide both rigorous and numerical results which support these conjectures. For fixed

ε and γ we can write

γ = εmCm (1.2)

(or more generally εmCm + higher order terms, which are irrelevant anyway), and we find that periodic

solutions with given rational frequency ω either are not possible at all or appear only if Cm is less than

some threshold value depending on ω, say Cm < Cm,0(ω).

Inspired by the aforementioned conjectures and numerical results we study analytically the system (1.1)

by writing γ as in (1.2), so that, for fixed m and γ given by (1.2), we can consider ε and Cm as independent

parameters. We shall discuss in detail the cases m = 1 and m = 2; the other cases could be treated in the

same way, and they add nothing new from a qualitative point of view.

For fixed Cm we prove that only a finite number of periodic orbits are present, as an upper bound on

the values of p and q arises. Once a periodic orbit with frequency ω has appeared, it remains for all values

of Cm less than the threshold value Cm,0(ω). In particular this will yield that by increasing the value of m

in (1.2) the periodic orbits found for smaller m still survive, while new ones appear. We call the resonances

appearing for m = 1 primary resonances, those appearing for m = 2 secondary resonances, and so on.

Note that in this way we more or less reverse the point of view explained initially: in fact, given m, we

determine the periodic orbits which are possible using the parameterization (1.2) of the friction coefficient,

and the lowest such m for a given frequency ω = p/q is therefore m(ω).

2. Perturbative theory of periodic solutions for primary resonances

We start by considering ẍ + x3 + εf(t)x3 + εCẋ = 0, with f(t) = cos t, for small ε ∈ R: this corresponds

to m = 1 in (1.2). Here C is a real parameter; we shall be interested in the case εC > 0, so that εCẋ can

be interpreted as a dissipative term.

For ε = 0 the system reduces to

ẍ + x3 = 0, (2.1)

and the solution x(0)(t) can be written in terms of Jacobi elliptic functions. If we set α = (4E)1/4, where

the energy

E = H(x, ẋ) =
1
2
ẋ2 +

1
4
x4, (2.2)

is a constant of motion for (2.1), we can write the solution as x(0)(t) = α cn(α(t − t0)), where cn t ≡
cn(t, 1/

√
2) is the cosine-amplitude function with elliptic modulus k = 1/

√
2, and −αt0 is the initial phase.

In Appendix A we recall some basic properties of elliptic functions.

We can also write f(t + t0) instead of f(t) in (1.1), so obtaining for γ = εC

ẍ + x3 + εf(t + t0)x3 + εCẋ = 0, f(t) = cos t. (2.3)
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The advantage of introducing t0 is that we can suitably choose t0 in order to fix as zero the phase of the

solution, which becomes

x(0)(t) = α cn(αt). (2.4)

In other words, as in principle we have an infinite number of unperturbed solutions of energy E, all differing

just by a phase, we prefer to fix this phase at zero by using implicitly an initial condition x(0)(0) = α, and

move the freedom of choice in the initial condition to the phase of the driving force (the only one which is

time-dependent). In this way no generality is lost in fixing the initial condition as in (2.4).

If we denote with K(k) the complete elliptic integral of the first kind

K(k) =
∫ π/2

0

dθ√
1− k2 sin2 θ

, (2.5)

which for k = 1/
√

2 gives K(1/
√

2) = [Γ(1/4)]2/(4
√

π) ≈ 1.85407, we have that the solution x(0)(t) is

periodic with period T0 = 4K/α, with K = K(1/
√

2). Its derivative is given by

y(0)(t) ≡ ẋ(0)(t) = −α2 sn(αt) dn(αt), (2.6)

with sn t ≡ sn(t, 1/
√

2) and dn t ≡ dn(t, 1/
√

2), and the constant α is determined by the initial conditions

(x̄(0), ȳ(0)) as

x̄(0) ≡ x(0)(0) = α, ȳ(0) ≡ y(0)(0) = 0. (2.7)

It is more convenient to work with action-angle variables. A straightforward calculation gives (see

Appendix B) x = (3I)1/3 cn ϕ,

y = −(3I)2/3 sn ϕ dnϕ,
(2.8)

where (ϕ, I) ∈ R/4KZ× R+ are conjugate variables. Then (2.2) becomes

E =
1
4
(3I)4/3 ≡ H0(I), (2.9)

which yields 3I = (4E)3/4, and the equations of motion (2.1) can be written as (see Appendix B)ϕ̇ = (3I)1/3 + ε (3I)1/3
f(t + t0) cn4 ϕ− ε C cn ϕ sn ϕ dnϕ,

İ = ε (3I)4/3
f(t + t0) cn3 ϕ sn ϕ dnϕ− ε C (3I) sn2 ϕ dn2 ϕ.

(2.10)

In terms of the variables (ϕ, I) the unperturbed solution (ε = 0) becomes (ϕ(0)(t), I(0)(t)) = (αt, I(0)) =

(αt, α3/3), so that one has α = (3I(0))1/3.

The Wronskian matrix W (t) is a solution of the unperturbed linear system

Ẇ = M(t) W, M(t) =

(
0 (3I(0))−2/3

0 0

)
=

(
0 α−2

0 0

)
, (2.11)

so that the matrix W (t) can be taken as

W (t) =

(
1 α−2t

0 1

)
(2.12)

and one can check that W (0) = 1 and det W (t) ≡ 1.

We look for solutions z(t) = (ϕ(t), I(t)) of the form

z(t) =
∞∑

n=0

εnz(n)(t) =
∞∑

n=0

εn
∑
ν∈Z2

eiω·νtz(n)
ν , (2.13)
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where ω = (ω, 1) and z(n) is given by

z(n)(t) =

(
ϕ(n)(t)

I(n)(t)

)
= W (t)

(
ϕ̄(n)

Ī(n)

)
+ W (t)

∫ t

0

dτ W−1(τ)

(
F

(n)
1 (τ)

F
(n)
2 (τ)

)
, (2.14)

with

F
(n)
1 (t) =

[
(3I(t))1/3

f(t + t0) cn4 ϕ(t)− C cn ϕ(t) snϕ(t) dnϕ(t)
](n−1)

,

F
(n)
2 (t) =

[
(3I(t))4/3

f(t + t0) cn3 ϕ(t) snϕ(t) dnϕ(t)− C (3I(t)) sn2 ϕ(t) dn2 ϕ(t)
](n−1)

,

(2.15)

where with [. . .](n) we denote the terms of order n in ε within [. . .]. Of course if ω = p/q ∈ Q we obtain a

periodic solution.

If ε = 0 one has ω = 2π/T0 = 2πα/4K, so that one has a periodic solution with period commensurate

with 2π if 2πα/4K ∈ Q, which imposes a condition on the energy (2.9); the value of t0 can be arbitrarily

chosen.

If ε 6= 0 we study the conditions under which the unperturbed free solution is preserved, i.e. we look for

a solution of the form (2.13), with

ω =
2πα

4K
=

p

q
∈ Q, (2.16)

which reduces to the unperturbed case for ε = 0, only for a suitable choice of the initial time t0. Note that

if ω satisfies (2.16), i.e. if α = α(p, q) ≡ 4Kp/2πq, then the solution z(t) is periodic with period T = 2πq.

In (2.14) we have

W (t)W−1(τ)

(
F

(n)
1 (τ)

F
(n)
2 (τ)

)
=

(
1 α−2 (t− τ)

0 1

)(
F

(n)
1 (τ)

F
(n)
2 (τ)

)
=

(
F

(n)
1 (τ) + α−2 (t− τ) F

(n)
2 (τ)

F
(n)
2 (τ)

)
, (2.17)

so that, by taking into account that one has∫ t

0

dτ (t− τ) F
(n)
2 (τ) =

∫ t

0

dτ

∫ τ

0

dτ ′ F
(n)
2 (τ ′), (2.18)

we can write the first component ϕ(n)(t) of z(n)(t) in (2.14) as

ϕ(n)(t) = ϕ̄(n) + α−2t Ī(n) +
∫ t

0

dτ F
(n)
1 (τ) + α−2

∫ t

0

dτ

∫ τ

0

dτ ′ F
(n)
2 (τ ′), (2.19)

while the second component I(n)(t) is given by

I(n)(t) = Ī(n) +
∫ t

0

dτ F
(n)
2 (τ). (2.20)

Given a periodic function g, let us denote with g0 = 〈g〉 the average of g and with g̃ the zero average

function g − 〈g〉. Suppose that one has〈
F

(n)
2

〉
=

1
T

∫ T

0

dt F
(n)
2 (t) = 0, (2.21)

so that we can write

F (n)
1 (t) =

∫ t

0

dτ F
(n)
1 (τ) =

〈
F

(n)
1

〉
t +
∫ t

0

dτ F̃
(n)
1 (τ),

F (n)
2 (t) =

∫ t

0

dτ F
(n)
2 (τ) =

∫ t

0

dτ F̃
(n)
2 (τ).

(2.22)
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Then in (2.20) we can write

I(n)(t) = Ī(n) + F (n)
2 (t) = Ī(n) +

∫ t

0

dτF̃
(n)
2 (τ), (2.23)

while in (2.19) we have

ϕ(n)(t) = ϕ̄(n) + α−2t Ī(n) +
〈
F

(n)
1

〉
t +
∫ t

0

dτ F̃
(n)
1 (τ) + α−2

〈
F (n)

2

〉
t + α−2

∫ t

0

dτ F̃ (n)
2 (τ), (2.24)

where all terms which are not linear in time are periodic.

Then, by choosing the initial conditions Ī(n) such that one has

Ī(n) = −
(
α2
〈
F

(n)
1

〉
+
〈
F (n)

2

〉)
, (2.25)

we obtain 
ϕ(n)(t) = ϕ̄(n) +

∫ t

0

dτ F̃
(n)
1 (τ) + α−2

∫ t

0

dτ F̃ (n)
2 (τ),

I(n)(t) = Ī(n) +
∫ t

0

dτF̃
(n)
2 (τ),

(2.26)

so that z(n)(t) is a periodic function with period T .

So we are left with the problem of proving (2.21). We shall see that this will require fixing also the

initial phase t0 and the initial conditions ϕ̄(n) (which are corrections to t0).

We shall prove first that the series expansion (2.13) is formally defined, that is that the coefficients

z(n)(t) are well defined to all perturbation orders. Then we shall show that the coefficients admit a bound

|z(n)(t)| < Zn for some constant Z, so that, by taking ε and C small enough, the series (2.13) converges

to a 2π/ω-periodic function, analytic in t, ε and C.

3. Existence of periodic solutions for primary resonances

The validity of assumption (2.21) is guaranteed by the following result.

Lemma. Consider the formal series (2.13). If p/q = 1/2n, n ∈ N, and C is small enough, it is possible

to fix the initial conditions (ϕ̄(n), Ī(n)) in such a way that (2.21) holds for all n ≥ 1. If p/q 6= 1/2n for all

n then (2.21) can be satisfied only for C = 0.

Proof. For n = 1 one has

F
(1)
2 (t) =

(
3I(0)

)4/3

f(t + t0) snϕ(0)(t) dnϕ(0)(t) cn3 ϕ(t)− C
(
3I(0)(t)

)
sn2 ϕ(0)(t) dn2 ϕ(0)(t)

= α4f(t + t0) sn(αt) dn(αt) cn3(αt)− Cα3 sn2(αt) dn2(αt)
(3.1)

Define

∆ =
1
T0

∫ T0

0

dt sn2(αt) dn2(αt) =
1

4K

∫ 4K

0

dt sn2 t dn2 t =
1
3
, (3.2)

(see Appendix C) and

Γ1(t0; p, q) =
1
T

∫ T

0

dt sn(αt) dn(αt) cn3(αt) f((t + t0)

=
1

4Kp

∫ 4Kp

0

dt sn t dn t cn3 t f((t/α) + t0) (3.3)

= cos t0
1

4Kp

∫ 4Kp

0

dt sn t dn t cn3 t cos(t/α)− sin t0
1

4Kp

∫ 4Kp

0

dt sn t dn t cn3 t sin(t/α)
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= − sin t0
1

4Kp

∫ 4Kp

0

dt sn t dn t cn3 t sin(t/α),

(as the integral which multiplies cos t0 is 0 because of parity) which we rewrite as

Γ1(t0; p, q) = − sin t0 G1(p, q), (3.4)

where

G1(p, q) ≡ 1
4Kp

∫ 4Kp

0

dt sn t dn t cn3 t sin(t/α). (3.5)

Then we obtain that, by choosing (if possible) t0 such that

C = G1(t0; p, q) ≡ −α sin t0
G1(p, q)

∆
≡ − sin t0

4K

2π∆

(
p

q
G1(p, q)

)
, (3.6)

one has
〈
F

(1)
2

〉
= 0.

The function G1(p, q) is identically vanishing for odd q, while for even q one has G1(p, q) = 0 for all

p 6= 1 and G1(1, q) 6= 0; see Appendix B for a proof of this assertion. Moreover the function G1(p, q) is

decreasing in q, so that, for a fixed value of C, there will be q0 = q0(C) such that (3.5) can be satisfied only

for q ≤ q0: in other words only a finite number of periodic orbits will exist. Again we refer to Appendix B

for details.

A list of values of nontrivial values for G1(p, q) up to q = 10 is given in table 1.

Table 1: Values of G1(1, q) for q = 2, 4, 6, 8, 10. All the other values of G1(p, q), q ≤ 10, are vanishing.

The corresponding threshold values C0(p/q) for C are computed according to (3.8).

q G1(1, q) α(1/q) C0(1/q)

2 0.100773 0.590170 0.178442

4 0.069555 0.295085 0.061574

6 0.015217 0.196723 0.008980

8 0.002078 0.147543 0.000920

10 0.000220 0.118034 0.000078

Note that the existence of a value t0 satisfying (3.6) is possible only if

min
t0∈[0,2π]

G1(t0; p, q) ≤ C ≤ max
t0∈[0,2π]

G1(t0; p, q), (3.7)

that is only if

|C| ≤ C0(p/q) ≡ 4K

2π∆

(
p

q
G1(p, q)

)
≈ 3.54102

(
p

q
G1(p, q)

)
, (3.8)

which represents a smallness condition on C. See table 1 for some thresholds values C0(p/q).

Once t0 has been set according to (3.5) one has to fix Ī(1) as prescribed by (2.25) for n = 1.

To obtain (2.22) for n ≥ 2 one has to fix the initial conditions ϕ̄(n) for n ≥ 1: notice that in order to

eliminate the terms diverging in time we had to fix only the initial conditions Ī(n).
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For all n ≥ 2 one has

F
(n)
2 (t) =

(
3I(0)

)4/3

f(t + t0)
∂

∂ϕ

(
sn ϕ dn ϕ cn3 ϕ

)∣∣∣∣
ϕ=αt

ϕ̄(n−1)

− C
(
3I(0

) ∂

∂ϕ

(
sn2 ϕ dn2 ϕ

)∣∣∣∣
ϕ=αt

ϕ̄(n−1) + R
(n)
2 (t),

(3.9)

where R
(n)
2 (t) is a suitable function which does not depend on ϕ̄(n−1).

Therefore one has
〈
F

(n)
2

〉
= 0 if and only if one has

〈
R

(n)
2

〉
= α3

(
α

T

∫ T

0

dt f(t + t0)
1
α

d
dt

(
sn (αt) dn(αt) cn3(αt)

)
−C

T

∫ T

0

dt
1
α

d
dt

(
sn2(αt) dn2(αt)

))
ϕ̄(n−1).

(3.10)

An easy computation shows that one has〈
R

(n)
2

〉
= M1(t0; p, q) ϕ̄(n−1), M1(t0; p, q) = α3 cos t0 G1(p, q), (3.11)

so that M1(t0; p, q) is nonvanishing for t0 such that (3.5) is satisfied; for a proof of (3.11) see Appendix C.

Therefore we can fix the initial conditions ϕ̄(n) in such a way that one has 〈F (n)
2 〉 to all orders. This

completes the proof of the lemma. �

The analysis performed so far shows that the coefficients z(n)(t) of the series expansions in (2.13) are well

defined to all orders. To complete the proof of the theorem one has still to show that the series expansions

converge. This is assured by the following result.

Theorem 1. Fix ω = p/q = 1/2n, n ∈ N. Then there exists C0 = C0(1/q), decreasing to zero in q, and,

for all |C| < C0, a value ε0 > 0 such that for all |ε| < ε0 the system (2.3) admits a 2π/ω-periodic solution

x1(t, ε, C) analytic in (t, ε, C). The analyticity domain in (ε, C) contains the region{
(ε, C) ∈ R2 :

( ε

a

)2

+
( C

C0

)2

< 1 and |ε| < b

}
, (3.12)

for two suitable positive constant a and b. Furthermore there are no periodic solutions with frequency

ω 6= 1/2n.

Proof. As we are looking for periodic solutions there are no small divisors, and one easily shows that the

periodic functions z(n)(t) are analytic in t and admit a bound like Zk for some positive constant Z; for

instance one could use the tree expansion as in [6] and [5]. Then it is sufficient to take ε small enough,

say less than some value ε0, and analyticity in ε for |ε| < ε0 follows. The constant ε0 depends on C; to

make explicit such a dependence first of all we can express t0 in terms of C, as sin t0 = −C/C0, with

C0 = α G1(p, q)/∆ (see (3.6)), and hence cos t0 =
√

1− (C/C0)2. The study of the perturbation series

(again we refer to [5] for details) shows that, for ω = 1/2n and |C| < C0(1/2n), as far as the dependence

on C is concerned, to all perturbation orders n the functions z(n)(t) are just polynomials of order n in C

and ϕ̄(n′), n′ < n, and the initial conditions ϕ̄(n) can be written as (1/ cos t0) times a quantity which again

is a polynomial in C and ϕ̄(n′), n′ < n. At the end we find that z(n)(t) can be written as a polynomial of

degree n in C and
√

1− (C/C0)2, so that for |C| < C0 analyticity in C follows.
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The condition of smallness on ε is of the form ε0 < min{b, a| cos t0|}, for suitable positive constants a

and b (again see [5] for details), so that we can write

ε0 < min
{

b, a
√

1− (C/C0)2
}

, (3.13)

and we find that for ε < min{b, a} we can choose any value of C such that |C| < C0

√
1− (ε/a)2; see figure

1. Then the relation (3.12) between ε and C follows.

(a) Case a ≤ b. (b) Case a > b.

Figure 1: Projection on the real plane of the (estimated) analyticity domain in (ε, C) of the periodic

solution x1(t, ε, C).

Finally, from the proof of the lemma (see comments after (3.6)), we obtain that only periodic solutions

with frequency ω = p/q with p = 1 and q even are possible, and the larger the value of q is the smaller is

C0(1/q). �

If one performs explicitly the calculations of the constants a and b appearing in the estimates, one finds

a > b, so that figure 1b gives a shape of the estimated analyticity domain which is more realistic. The

existence of the formal series (that is the fact that the coefficients are well defined to all orders), which

follows from the Lemma, requires a threshold value which is independent of ε, whereas the analysis of

the convergence of that series gives a dependence on ε. An approximately square form of the analyticity

domain would imply that with good approximation one can take the same threshold value for all ε in the

domain.

As the condition (3.6) shows for |C| < C0(1/2n) there are two periodic solutions of (2.13) with frequency

ω = 1/2n: one of them is asymptotically stable, hence attracting, while the other one is unstable, hence

repelling, so that, when performing numerical analysis, only the first one can actually be detected: this

means that numerically, by letting the system evolve in the future for a long time, at most only one periodic

orbit with a frequency ω can be found.

4. Secondary resonances

Consider now the equation

ẍ + x3 + εf(t + t0)x3 + ε2Dẋ = 0, f(t) = cos t, (4.1)
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and look for periodic solutions analytic in ε.

We can repeat the analysis performed in the previous section: the only difference is that now the

contributions due to the dissipative terms start arising from the second order on.

To first order we find 〈
F

(1)
2

〉
= − sin t0 α4 G1(p, q), (4.2)

as immediately follows from (3.1) by taking into account definitions (3.4) to (3.5) and the fact that there

is no term proportional to C.

Existence of the formal solution requires 〈F (1)
2 〉 = 0. Therefore if G1(p, q) = 0, that is if p/q 6= 1/2n, we

have that (4.2) is identically satisfied and t0 is arbitrary, while if G1(p, q) 6= 0, that is if p/q = 1/2n, we

have to fix sin t0 = 0.

The latter solutions are dealt with through the following result.

Theorem 2. Fix ω = p/q = 1/2n. There are 2π/ω-periodic solutions x2(t, ε,D) of (4.1), analytic in

(t, ε,D), and they coincide with the solutions x1(t, ε, εD) of (2.3) given by Theorem 1.

Proof. Fix ω = p/q = 1/2n. By reasoning as for the proof of Theorem 1, we find that there exist 2π/ω-

periodic solutions of (4.1) for ε small enough and D not too large. The equation (4.2) requires sin t0 = 0.

A second order computation gives〈
F

(2)
2

〉
= α3 cos t0 G1(p, q) ϕ̄(1) + α4 Γ2(t0; p, q)− 1

3
α3D, (4.3)

where the first term is that obtained in the previous case, the last one is due to the dissipative term, and

the second one takes into account all the contributions which depend neither on ϕ̄(1) nor on D.

It is easy to see that, just by parity properties, one has Γ2(t0; p, q) = 0 for sin t0 = 0, so that (4.3)

requires

cos t0 G1(p, q) ϕ̄(1) − D

3
= 0, cos t0 = ±1, (4.4)

which imposes a constraint on the two parameters D and ϕ̄(1).

From higher order computations (as in [6] and [5]) one finds also that, in order to have convergence of

the perturbation series, one has to require

εϕ̄(1)c1 < 1, (4.5)

for some positive constant c1. In the end one obtains the result that there exists ε1 > 0 such that for

|ε| < ε1 and D < D0(1/2n) = O(1/ε) the equation (4.1) admits a solution x2(t, ε,D) analytic in t, ε and

D.

For ε small enough choose D so small that, by fixing C = εD, one has |C| < C0 and (3.12) is satisfied.

Then the function x1(t, ε, εD) is analytic in ε, as composition of two analytic functions; note also that for

C = εD the equation (2.3) reduces to (4.1). The analysis of Section 3 shows that there are two periodic

solutions analytic in ε (as there are two possible values of t0 such that (3.6) is satisfied). On the other

hand there are also two periodic solutions of (4.1), corresponding to the two values t0 = 0 and t0 = π, so

that the solutions have to be pairwise equal to each other. By the uniqueness of analytic continuations,

such solutions have to be equal as long as they are defined. �
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For the new periodic solutions (the ones corresponding to frequencies ω = p/q 6= 1/2n) the following

result applies.

Theorem 3. Fix ω = p/q = 1/(2n+1), n ∈ Z+. There exists D0 = D0(1/q), decreasing to zero in q, and,

for all |D| < D0, a value ε0 > 0 such that for all |ε| < ε0 the system (4.1) admits a 2π/ω-periodic solution

analytic in (t, ε,D). There are no periodic solutions with frequency ω = p/q, for p 6= 1.

Proof. Fix ω = p/q 6= 1/2n. As explained in the remark after (4.2) in this case G1(p, q) = 0, hence t0 is

left arbitrary,

To second order a tedious computation (see Appendix C) gives

Γ2(t0; p, q) = sin 2t0 G2(p, q), (4.6)

where

G2(p, q) = − 1
8Kp

∫ 4Kp

0

dt

{
sin(t/α)

d
dt

(
cn3 t sn t dn t

) ∫ t

0

dt′ cos(t′/α) cn4 t′

+ cos(t/α)
d
dt

(
cn3 t sn t dn t

) ∫ t

0

dt′ sin(t′/α) cn4 t′

+ sin(t/α)
d
dt

(
cn3 t sn t dn t

) ∫ t

0

dt′

[∫ t′

0

dt′′ cos(t′′/α) cn3 t′′ sn t′′ dn t′′

− 1
4Kp

∫ 4Kp

0

dt

∫ t

0

dt′ cos(t′/α) cn3 t′ sn t′ dn t′

]

+ cos(t/α)
d
dt

(
cn3 t sn t dn t

) ∫ t

0

dt′
∫ t′

0

dt′′ sin(t′′/α) cn3 t′′ sn t′′ dn t′′

+ 4
(

sin(t/α) cn3 t sn t dn t

∫ t

0

dt′ cos(t′/α) cn3 t′ sn t′ dn t′

+ cos(t/α) cn3 t sn t dn t

∫ t

0

dt′ sin(t′/α) cn3 t′ sn t′ dn t′
)}

,

(4.7)

where the sum of the last two terms gives a vanishing contribution, as it is the average of a total derivative,

so that (4.6) can be satisfied only if

|D| ≤ D0(p/q) ≡ 4K

2π∆

(
p

q
G2(p, q)

)
≈ 3.54102

(
p

q
G2(p, q)

)
, (4.8)

which defines the threshold values D0(p/q).

By reasoning as in Appendix B for G1(p, q), one can show that one can have G2(p, q) 6= 0 only if

p/q = 1/n; see Appendix C. As we are excluding p/q = 1/2n, we obtain the result that p has to be 1, and

q has to be odd. See table 2 for the quantities G2(1, q) and the corresponding threshold values D0(1/q),

for the first odd values of q.

So far we have seen that the first order gives no condition, while the second order fixes the value of the

initial phase t0. Then one can show that the higher order contributions fix the values of the corrections

ϕ̄(n): contrary to what happens in the case discussed in Section 3 now the condition on ϕ̄(n), n ≥ 1, is

found at step n + 2 instead than at step n + 1. We omit the proof, which is rather cumbersome. �

An important difference with respect to the primary resonances discussed in Section 3 is that, as implied

by the condition (4.7) for t0, for |D| < D0(p/q) we now have four periodic orbits with frequency ω = p/q:
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Table 2: Values of G2(1, q) for q = 1, 3, 5, 7, 9. All the other values of G2(p, q), with odd q ≤ 10, are

vanishing. The corresponding threshold values D0(p, q) for D are computed according to (4.7).

q G2(1, q) α(1, q) D0(1/q)

1 0.041322 1.180341 0.146322

3 0.055069 0.393447 0.065001

5 0.009161 0.236068 0.006488

7 0.000351 0.168620 0.000177

9 0.000006 0.131149 0.000002

two of them will be asymptotically stable, while the other two will be unstable, so that, numerically, by

considering only evolution in forward time, only two periodic orbits can be detected. This is in agreement

with the numerical results presented in Section 5.

We can also consider models (1.1) with γ given by (1.2), with other values of m. The general scenario is

that, by increasing the value of m, one still finds all the periodic orbits found for the previous values of m,

and then new periodic orbits appear, with a threshold of order 1 in ε. For fixed m and Cm, only a finite

number of periodic orbits exist, as the following result shows.

Theorem 4. Consider the system (1.1), with γ given by (1.2). For fixed Cm only a finite number of periodic

orbits exist, and the corresponding frequencies ω = p/q are such that |p| ≤ m and 1 ≤ q ≤ qm(Cm), where

qm(Cm) goes to infinity when Cm goes to zero.

Proof. We give only a sketch of the proof, which can be performed by induction. For m = 1 the statement

follows from theorem 1.

Then assume that the statement is true for all m′ < m: one has to check that only a finite number of

new periodic orbits appear. By using the perturbation expansion envisaged in the previous sections one

looks for periodic orbits with frequencies ω which were not possible for any previous value m′. Therefore,

up to order m, no condition has arisen for such new periodic orbits. To order m one obtains a condition

of the form

α4 Γm(t0; p, q)− 1
3
α3Cm = 0, (4.9)

where Γm(t0; p, q) is the average (in t) of a function which depends on t0 as a trigonometric polynomial of

order at most m:

Γm(t0; p, q) =
m∑

r1=−m

m∑
r2=−m

∑
n∈Z

Pr1,r2,neir1t0
1

4Kp

∫ 4kp

0

dt eiπqr2t/2Kpeiπnt/2K , (4.10)

so that one can prove (see Appendix C) that (4.10) can be different from zero only if q/n = n/r2, which

yields |p| ≤ r2 ≤ m. For fixed p only the component with r2 = p, hence with n = q, can contribute to the

average in (4.10). On the other hand the coefficients Pr1,r2,n tend to zero exponentially for n →∞, by the

analyticity of the elliptic functions, so that, for a fixed value of Cm, there is a value q = qm(Cm) such that

the corresponding αγ(t0; p, q) is less than Cm/3, so that (4.9) can not be satisfied. �
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What emerges numerically is that the size of the basins of attraction of the attracting periodic orbits

increases when γ is decreased: we can interpret such a phenomenon by saying that if we let γ decrease,

when it crosses some value γ0(p/q, ε) an attracting periodic orbit with frequency p/q appears, and its basin

of attraction enlarges as γ continues to decrease.

The periodic orbits obtained for m = 1 in (1.2), which were the first to appear, have the largest basins

of attraction, the orbits appeared at m = 2 have smaller basins of attraction, and so on, until the orbits

which appear for the largest values of n will be the less relevant ones, that is the ones with the smallest

basins of attraction.

Such a scenario is well accounted by the numerical results given in the next Section.

5. Numerical results

In this Section we give some numerical results for the model (1.1), with ε = 0.1. For numerical purposes it

is more convenient to have the same initial phase for all solutions: so, if there is some periodic solution x(t)

with frequency ω, then t0 will be defined by the condition that, by denoting with x(0)(t) the corresponding

unperturbed solution, one has x(0)(0) = α cn(−αt0).

If one tries to obtain explicit bounds for the constants a and b appearing in the statement of theorem 1,

by proceeding as outlined in the proof without looking for optimal estimates, the value of ε0 as given by

(3.13) turns out to be very small. However one expects that such bounds can be highly improved through

a more careful analysis, so that we assume that the analytical results found in the previous sections still

apply to the chosen value of ε. Taking ε really small would make any numerical analysis difficult, as the

system would become a very small perturbation of the free system (for ε = 0) and the corresponding value

of the damping coefficient γ would also be small, so that decay of the transient, and hence attraction to

the periodic orbit, would become very slow and hence difficult to detect without increasing the numerical

precision and the running times of the programs.

First of all note that if the value of γ is large enough all trajectories tend to the origin, which is a global

attractor according to the analysis performed in [2]. By decreasing γ new attractors appear.

For instance if we fix γ = 0.005, hence C = 0.05 in (2.3) and D = 0.5 in (4.1), according to table

1 we can have only periodic orbits with frequency 1/2 and 1/4, while no periodic orbit among the ones

described in Section 4 is possible, as the corresponding value of D is above the threshold value (cf. table

2. By taking a grid of 1024× 1024 initial conditions in the square Q = [−1, 1]× [−1, 1] around the origin,

we find indeed that all trajectories are captured either by the origin or by one of the two periodic orbits

represented in figure 2.

The parts contained in the square Q of the basins of attraction of the origin and the periodic orbits

with frequencies ω = 1/2 and ω = 1/4 are represented in figures 6 to 8 in Appendix D.

Of course there are faster and more sophisticated methods one could use to study the basins of attraction,

such as the straddle orbit method or its variants [10, 4, 11, 1]. However we are mostly interested in the

relative sizes of the basins, so the method we use, which consists in just following the evolution of the

initial data point by point, even if very simple and slow, is better suited for our purposes.

If we fix γ = 0.001, hence C = 0.01 in (2.3) and D = 0.1 in (4.1), the analysis in Section 3 predicts

that only the periodic orbits with frequency 1/2 and 1/4 appear, according to table 1, while by using the
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Figure 2: Attracting periodic orbits in the square [−1.4, 1.4]× [−1.4, 1.4]. The frequencies of the two

periodic orbits are 1/4 for the inner one and 1/2 for the external one. Here ε = 0.1 and γ = 0.005.

threshold values in table 2 we see that only the periodic orbits with frequency 1 has to be added to the

previous one. We expect that other models (1.1) with γ given by (1.2) for m ≥ 3 do not imply other

periodic orbits than the considered ones, for the fixed value of γ, so that, in the end, we see that the only

attractors which are possible for ε = 0.1 and γ = 0.001 are, besides the origin, the periodic orbits with

frequencies 1/2, 1/4 and 1. This is in agreement with the numerical results. Indeed if we take as before a

grid of 1024× 1024 initial conditions in the square Q = [−1, 1]× [−1, 1] around the origin we find that all

trajectories are captured either by the origin or by one of the periodic orbits represented in figure 3, which

have exactly the frequencies predicted by the theory. As anticipated there are two attracting periodic

orbits with frequency ω = 1, while, for ω = 1/2 and ω = 1/4, there is only one attracting orbit.

The parts contained in the square Q of the basins of attraction of the origin and of the four periodic

orbits are represented in figures 9 to 13 in Appendix D.

A natural criterion to measure the relative relevance of the basins of attraction is provided by the respec-

tive areas (as given by the number of points of the grid of initial data evolving toward the corresponding

attractor). For instance, for γ = 0.001, one finds that the basin of attraction of the origin is still the largest

one, as it covers 44.39% of the square Q. On the other hand the size of the basin of attraction of the

periodic orbit with frequency 1/2 is comparable, as it covers 40.94% of Q. The relative measures of the

basins of attraction of the periodic orbit with frequency 1/2 and of the two periodic orbits with frequency

1 are, respectively, given by 13.32%, 0.67% and 0.67% of the overall area of the square Q.

An analogous numerical analysis performed for higher and lower values of γ shows that, when γ is

decreasing, the basin of attraction of the origin, which at the beginning (that is for γ such that C = γ/ε is

above the critical threshold C0(1/2)) filled the entire phase space (see also [2]), begins to decrease, to the

advantage of the basins of attraction of the newly appearing attractors.
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Figure 3: Attracting periodic orbits in the square [−1.4, 1.4]× [−1.4, 1.4]. The frequencies of the four

periodic orbits are 1/4 for the inner one 1/2 for the middle one and 1 for the two external ones, denoted

as I and II. Here ε = 0.1 and γ = 0.001.

For γ = 0.0005 there are seven attracting periodic orbits: the ones with frequency 1 and 1/3 appear in

pairs, while there is only one periodic orbit for each frequency of the form ω = 1/q, with q = 2, 4, 6; see

figure 4). The two periodic orbits with frequencies 1/3, which appear as indistinguishable in figure 4, can

be detected as different if the figure is suitably enlarged.

The parts contained in the square Q of the basins of attraction of the origin and of the seven periodic

orbits are represented in figure 14 to 21. in Appendix D.

The relative sizes of the (parts contained in Q) of the basins of attraction of the origin and of the

attracting periodic orbits for some values of γ are given in table 3.

Table 3: Relative sizes of the parts of the basins of attraction contained inside the square Q =

[−1, 1] × [−1, 1] for some values of γ; the value of ε is kept fixed to ε = 0.1. The periodic orbits are

labelled by the corresponding frequencies, and 0 denotes the origin. Vanishing percentages mean that

there is no corresponding attracting orbit.

γ 0 1/2 1/4 1/6 1-I 1-II 1/3-I 1/3-II

0.0200 100.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00%

0.0150 91.08% 08.92% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00%

0.0100 79.12% 20.88% 00.00% 00.00% 00.00% 00.00% 00.00% 00.00%

0.0050 64.83% 31.84% 03.34% 00.00% 00.00% 00.00% 00.00% 00.00%

0.0010 44.39% 40.94% 13.32% 00.00% 00.67% 00.67% 00.00% 00.00%

0.0005 34.03% 41.83% 14.56% 06.44% 01.29% 01.29% 00.29% 00.29%
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Figure 4: Attracting periodic orbits in the square [−1.4, 1.4] × [−1.4, 1.4]. Starting from the outer to

the inner ones, the frequencies of the orbits are 1 (I and II), 1/2, 1/3 (I and II), 1/4,1/6. Here ε = 0.1

and γ = 0.0005.

It emerges from table 3 that as γ decreases new attracting orbits appear and, once either C = γ/ε or

D = γ/ε2 (or whatever else) have became smaller than the corresponding critical threshold, their basins of

attraction get larger at expenses of the basin of attraction of the origin. For example the relative measure

of the basin of attraction of the periodic orbit with frequency 1/2 increases: for instance for γ = 0.001 (that

is for C = 0.01 and D = 0.1) it becomes almost equal to the relative measure of the basin of attraction

of the origin, and for γ = 0.0005 it becomes positively larger. Analogous considerations hold for the other

attracting orbits.

In general to see orbits with frequency p/q, where either q or p or both of them are large, one needs a

small value for the friction coefficient γ: in the limit in which such a constant is negligible (that is if we

put γ = 0) then all periodic orbits appear, as a byproduct of the analysis of the previous sections.

Note the appearence of the moiré-like patterns in some of the basins. We find the phenomenon inter-

esting, though we do not have any explanations for it.

Numerically we find that that each initial condition in our grid belongs to the basin of attraction of

one of the coexisting periodic orbits. This suggests that the union of the closure of all basins of attraction

fills the entire phase space (of course approximation errors in the numerical integration of the ordinary

differential equation makes it impossible to study the forward evolution of the boundaries of the basins of

attraction).

6. Open problems

The analysis performed in Sections 3 and 4 deals with periodic orbits which are obtained for (1.1) in a very

particular way. We expressed γ as an analytic function of ε (in fact as a power) and looked for periodic
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solutions analytic in ε. Numerically all periodic orbits which have been detected are of this kind: it could

be interesting to find a mathematical justification for this phenomenon.

As a byproduct we found that all attractors are, in the investigated cases, periodic orbits. This is

unlikely to be an accident. In general, introducing a dissipation term into Hamiltonian equations can

produce other kind of attractors; see for instance [3]. In our case the system, in the absence of friction, is

a quasi-integrable system (that is a perturbation of an integrable system), whereas in [3], if we look at the

model considered there as a perturbation of an integrable system, strange attractors appear when the values

of the perturbation parameters are large enough, beyond the perturbation regime. Perhaps it is natural

to expect that only periodic orbits appear when adding a dissipative term to a quasi-integrable system

and confining ourselves to small values of the parameters: also such an issue would deserve further study.

Note also that in our case, the unperturbed system has a very simple structure, as there is only a stable

equilibrium point, while in the model studied in [3] there is also a saddle-point, with the corresponding

stable and unstable manifolds, which can be responsible for strange attractors appearing for large values

of the parameters.

It would be also interesting to see what happen in our case when increasing the value of ε, in particular

when we are definitely beyond the range of validity of perturbation theory. Of course an analytic study in

such a case is too difficult, but numerically the problem can be easily approached.

In this paper we limited ourselves to perturbations of the quartic oscillator. Of course one could consider

more general systems, for instance any analytic anharmonic potential. We think that analogous results

can be expected in such cases, even if analytically the unperturbed solutions would no longer have the nice

properties of the Jacobi elliptic functions we have used to perform the calculations of perturbation theory.

Finally a more detailed study of the basins of attraction, for instance with the techniques quoted in

Section 5, could be a further topic of investigation. In particular it would be interesting to elucidate the

moiré-like patterns and the fractal-like boundaries of the basins.

Acknowledgments. All calculations have been done on Compaq Alpha computers using Fortran 77 and

Mathematica. We thank the Department of Physics of the University of Rome “La Sapienza” for providing

us with some of the computing resources.

Appendix A. Basic properties of the elliptic functions

Let us denote by sn(u, k), cn(u, k) and dn(u, k) the Jacobi elliptic functions sine-amplitude, cosine-ampli-

tude and delta-amplitude, respectively; see for instance [9, 12]. Here k ∈ (0, 1) is the elliptic modulus, and

k′ =
√

1− k2 is the complementary modulus. See figure 5.

The Jacobi elliptic functions are doubly periodic functions with periods 4K(k) and 4K ′(k)i, where

K(k) =
∫ π/2

0

dθ√
1− k2 sin2 θ

, K ′(k) = K(k′), (A.1)
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(a) Sine-amplitude

sn(u, k).

(b) Cosine-amplitude

cn(u, k).

(c) Delta-amplitude

dn(u, k).

Figure 5: Jacobi elliptic functions with elliptic modulus k = 1/
√

2.

are the complete elliptic integral of the first kind. More precisely one has

sn(u + 2mK + 2niK ′, k) = (−1)m sn(u, k),

cn(u + 2mK + 2niK ′, k) = (−1)m+n cn(u, k),

dn(u + 2mK + 2niK ′, k) = (−1)n dn(u, k),

(A.2)

where K = K(k) and K ′ = K ′(k), so that, for real values of the arguments, one has

sn(u + 2mK, k) = (−1)m sn(u, k),

cn(u + 2mK, k) = (−1)m cn(u, k),

dn(u + 2mK, k) = dn(u, k),

(A.3)

which means that cn(u, k) and sn(u, k) are periodic functions with period 4K, while dn(u, k) is periodic

with period 2K.

One has

cn(−u, k) = cn(u, k), sn(−u, k) = − sn(u, k), dn(−u, k) = dn(u, k), (A.4)

and

∂

∂u
cn(u, k) = − sn(u, k) dn(u, k),

∂

∂u
sn(u, k) = cn(u, k) dn(u, k),

∂

∂u
dn(u, k) = −k2 sn(u, k) cn(u, k).

(A.5)

Moreover the following identities hold

cn2(u, k) + sn2(u, k) = 1,

dn2(u, k) + k2 sn2(u, k) = 1,

dn2(u, k)− k2 cn2(u, k) = 1− k2.

(A.6)
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Finally one has

sn(u + v, k) =
sn(u, k) cn(v, k) dn(v, k) + cn(u, k) dn(u, k) sn(v, k)

1− k2 sn2(u, k) sn2(v, k)
,

cn(u + v, k) =
cn(u, k) cn(v, k)− sn(u, k) dn(u, k) sn(v, k) dn(v, k)

1− k2 sn2(u, k) sn2(v, k)
,

dn(u + v, k) =
dn(u, k) dn(v, k)− k2 sn(u, k) cn(u, k) sn(v, k) cn(v, k)

1− k2 sn2(u, k) sn2(v, k)
.

(A.7)

If k = 1/
√

2 is fixed, we can write, for simplicity, cn(u) = cn(u, 1/
√

2), sn(u) = sn(u, 1/
√

2) and

dn(u) = dn(u, 1/
√

2).

Appendix B. Action-angle variables for the quartic potential

To show that the coordinates (ϕ, I) given by (2.8) are canonical it is sufficient to show that one has

{x, y} ≡ ∂x

∂ϕ

∂y

∂I
− ∂x

∂I

∂y

∂ϕ
= 1, (B.1)

and this is an easy computation.

To see that the coordinates (ϕ, I) can be interpreted as action-angle variables, just note that, by defining

A ≡ 1
4K

∮
y dx =

1
2
√

2K
(4E)3/4

∫ 1

−1

dx
√

1− x4 =
1

2
√

2K
(4E)3/4 2

√
2K

3
, (B.2)

one obtains I = A (we defer the computation of the integral to Appendix C).

Actually (ϕ, I) are not strictly speaking action-angle variables as ϕ is not an angle (it is defined modulo

4K instead than 2π); formulae are slightly simpler with our choice of ϕ.

In the new variables the Hamiltonian for ε = 0 is given by (2.9). If we neglect the dissipative term, then

the equation of motion can be derived by the Hamiltonian

H(ϕ, I) = H0(I) +
1
4
ε (3I)4/3

f(t + t0) cn4 ϕ, (B.3)

which yields (2.10) for C = 0.

To take into account the dissipative term can just write
ϕ̇ =

∂ϕ

∂x
ẋ +

∂ϕ

∂y
ẏ,

İ =
∂I

∂x
ẋ +

∂I

∂y
ẏ,

(B.4)

where the partial derivatives can be computed in terms of the entries of the Jacobian matrix of the inverse

transformation: 
∂ϕ

∂x

∂ϕ

∂y

∂I

∂x

∂I

∂y

 =


∂x

∂ϕ

∂x

∂I

∂y

∂ϕ

∂y

∂I


−1

=


∂y

∂I
−∂x

∂I

− ∂y

∂ϕ

∂x

∂ϕ

 , (B.5)

as the determinant of a symplectic matrix is 1, so that (2.10) is immediately obtained.
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Appendix C. Some useful integrals

Given ∆ as defined in (3.2), using obvious notational shorthands, one has

∆ =
〈
sn2 dn2

〉
= −〈(cn)′ (sn dn)〉 =

〈
cn (sn dn)′

〉
=
〈

cn
(

cn dn2−1
2

cn sn2

)〉
=
〈

cn2 dn2−1
2

cn2 sn2

〉
=
〈

cn2

(
1− 1

2
sn2

)
− 1

2
cn2 sn2

〉
=
〈
cn2− cn2 sn2

〉
=
〈
cn2−

(
2 dn2−1

)
sn2
〉

=
〈
cn2 +sn2

〉
− 2

〈
sn2 dn2

〉
= 1− 2

〈
sn2 dn2

〉
= 1− 2∆,

(C.1)

where the prime denotes the derivative, and (A.6) have been repeatedly used; hence ∆ = 1/3.

One has∫ 1

−1

dx
√

1− x4 =
∫ 2K

0

dt sn t dn t
√

1− cn4 t

=
∫ 2K

0

dt sn t dn t
√

(1 + cn2 t)(1− cn2 t)

=
∫ 2K

0

dt sn t dn t
√

2 sn2 t dn2 t = 2
√

2K

(
1

4K

∫ 4K

0

dt sn2 dn2 t

)

= 2
√

2K∆ =
2
√

2K

3
,

(C.2)

which implies the last identity in (B.2).

The Fourier series of the Jacobi elliptic functions considered in Appendix A are given by

sn(u, k) =
2π

kK(k)

∞∑
n=1

qn−1/2

1− q2n−1
sin

(2n− 1)πu

2K(k)
,

cn(u, k) =
2π

kK(k)

∞∑
n=1

qn−1/2

1 + q2n−1
cos

(2n− 1)πu

2K(k)
,

dn(u, k) =
π

2K(k)
+

2π

K(k)

∞∑
n=1

qn

1− q2n
cos

2nπu

2K(k)
,

(C.3)

where q = exp(−πK ′(k)/K(k)), so that q = e−π for k = 1/
√

2, while we can write

G1(p, q) =
1

4Kp

∫ 4Kp

0

dt sn t dn t cn3 t sin(t/α)

=
1

4Kp

∫ 4Kp

0

dt

(
−1

4
d
dt

cn4 t

)
sin(t/α)

=
1
4α

(
1

4Kp

∫ 4Kp

0

dt cn4 t cos(t/α)

)
,

(C.4)

with

cos(t/α) = cos
πt

2K(k)
q

p
, (C.5)

so that one can have G1(p, q) only if, for suitable integers nj one has

p (±(2n1 − 1)± (2n2 − 1)± (2n3 − 1)± (2n4 − 1))± q = 0, (C.6)
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which requires for q to be of the form

q = 2np, n ∈ Z. (C.7)

Therefore first of all q has to be even. Moreover, for fixed q, one must have p = q/2n for some n ∈ Z. If

we impose that (q, p) are relatively prime then the identity p/q = 1/2n imposes q = 2n and p = 1. Finally

(C.4) also implies that for p/q = 1/2n one has G1(1/2n) > 0, as G1(p, q) is equal to the qth Fourier label

of the function cn4(t), which is strictly positive by the second of (C.3).

Note moreover that if we choose q to be large enough in (C.7) then also n has to be large, so that

large Fourier labels of the elliptic functions have to be involved in order that the integral G1(p, q) be

nonvanishing. This implies that the corresponding value of G1(p, q) has to be small enough (use the fact

that in the expansions (C.3) one has 0 < q < 1).

Now let us show how the condition (3.10) implies (3.11). One can write (3.10) as〈
R

(n)
2

〉
= α3 (α U(p, q)− C V (p, q)) ϕ̄(n−1), (C.8)

with

U(p, q) ≡ 1
4Kp

∫ 4Kp

0

dt cos(t/α)
1
α

(
d
dt

(
sn t dn t cn3 t

))
cos t0

− 1
4Kp

∫ 4Kp

0

dt sin(t/α)
1
α

(
d
dt

(
sn t dn t cn3 t

))
sin t0

=
1

4Kp

∫ 4Kp

0

dt cos(t/α)
1
α

(
d
dt

(
sn t dn t cn3 t

))
cos t0,

(C.9)

and

V (p, q) ≡ 1
4Kp

∫ 4Kp

0

dt
1
α

(
d
dt

(
sn2 t dn2 t

))
= 0, (C.10)

by parity properties. In (C.9), by integrating twice by parts, we obtain

U(p, q) = − 1
4Kp

∫ 4Kp

0

dt

(
cos(t/α)

1
α

(
d2

dt2

(
1
4

cn4 t

)))
cos t0

= − 1
4α

(
1

4Kp

∫ 4Kp

0

dt sin(t/α)
1
α

(
d
dt

cn4 t

))
cos t0

=
1

4α2

(
1

4Kp

∫ 4Kp

0

dt cos(t/α) cn4 t

)
cos t0 =

1
α

G1(p, q) cos t0,

(C.11)

which implies (3.11).

Now let us consider the case γ = ε2D and p/q 6= 1/2n: first of all we want to prove (4.7). By shortening

O(t) = cn3(αt) sn (αt) dn (αt), E(t) = Ȯ(t), c(t) = cos t and s(t) = sin t, and by denoting with I[F ](t)

the integral of F between 0 and t, we can write〈
F

(2)
2

〉
= α4

{
cos t0 〈cE〉 ϕ̄(1) + cos t0 sin t0

(〈
sEI[cE(1)]

〉
+
〈
cEI[sE(1)]

〉)
+cos t0 sin t0

(〈
sEI[I[cO(1)]− 〈I[cO(1)]〉]

〉
+
〈
cEI[I[sO(1)]]

〉)}
+ 4 α

{
− sin t0 〈sO〉 Ī(1) + α2 cos t0 sin t0

(〈
sOI[cO(1)]

〉
+
〈
cOI[sO(1)]

〉)}
− 1

3
α3D,

(C.12)

for suitable functions E(1) (even) and O(1) (odd); an explicit computation gives

E(1)(t) = −α cn4(αt), O(1)(t) = −α2 cn3(αt) sn (αt) dn (αt) = −α2O(t). (C.13)
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This simply follows from the parity properties of the unperturbed solution (2.4), from the remark that if

F is an even function then I[F ] is odd and from the the Fourier expansions (C.3) of the Jacobi elliptic

functions (which imply that the averages 〈cE(1)〉 and 〈I[sO]〉 are vanishing for p/q 6= 1/2n).

In (C.12) the averages 〈cE〉 and 〈sO〉 are vanishing because of (C.6) and (C.7); note also that the first

one is simply α−1G1(p, q) (see (C.9) and (C.11), so that (4.6) and (4.7) are proved, with γ1(p, q) defined

according to (4.8).

Imposing 〈F (2)
2 〉 = 0 gives

1
3
α3 D =

1
2
α3 sin 2t0

{
α
(〈

sEI[cE(1)]
〉

+
〈
cEI[sE(1)]

〉)
+α

(〈
sEI[I[cO(1)]]

〉
+
〈
cEI[I[sO(1)]]

〉)
+ 4

(〈
sOI[cO(1)]

〉
+
〈
cOI[sO(1)]

〉)}
,

(C.14)

By writing

c(t) =
1
2

∑
σ=±1

eiσt, s(t) =
1
2i

∑
µ=±1

µeiµt, F (t) =
∑
n∈Z

einωtFn, (C.15)

for F = E,O,E(1), O(1), we can rewrite (C.13) as

1
3
α3 D = α3 sin 2t0 G2(p, q),

G2(p, q) =
1
4i

∑
ω(n+n′)+µ+σ=0

{
α

i(µ + ωn′)

(
EnE

(1)
n′

)
(µ + σ)

+
α

i2(µ + ωn′)2
(
EnO

(1)
n′

)
(µ + σ) +

4
i(µ + ωn′)

(
EnO

(1)
n′

)
(µ + σ)

}
,

(C.16)

so that we immediately see that the contributions with µ + σ = 0 disappear. As µ + σ ∈ {−2, 0, 2} then

we have to retain in (C.16) only the contributions with n and n′ such that n + n′ = ±2q/p. As n and n′

have to be even, as it is easy to check from the expressions (C.13) by relying on the Fourier expansions

(C.3), we are left with 2n ± 2q/p = 0, which requires p/q = 1/n. As we are excluding values of p, q such

that p/q = 1/2n we have finally shown that the quantity G2(p, q) in (4.7) can be different from zero only

for p/q = 1/n, with n odd.

Finally we want to prove that for γ = εmCm to order m the equation 〈F (m)
2 〉 = 0 takes the form (4.9).

First note that one has a function f(t + t0) for each perturbation order, so that 〈F (m)
2 〉 is a polynomial of

order m in t0: for the same reason it has to be a polynomial in t/α. Because of the presence of the Jacobi

elliptic functions any further dependence on t has to be analytic and 4K-periodic: hence the expansion

(4.10) follows. In order to have γm(t0; p, q) 6= 0 one has to require (by the same reasoning used to obtain

(C.6) for m = 1) qr2/p = n ∈ Z: as p and q are relatively prime integers and |r2| ≤ m, then one must

have |p| ≤ m. The exponential decay in n of the coefficients Pr1,r2,n can be proved as in the previous case

m = 1, by using the analyticity of the elliptic functions (which in turn implies the exponential decay of

the Fourier coefficients appearing in the expansions (C.3)).

Appendix D. Basins of attraction

In this section we show the images of the basins of attraction for the periodic orbits shown in fig. 2, 3, and

4. Note the singular moiré-like patterns particularly evident in fig. 9, 10, 14 and 15.
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Figure 6: Basin of attraction of the origin contained in the square Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for

ε = 0.1 and γ = 0.005 in (1.1).

Figure 7: Basin of attraction of the periodic orbit with frequency ω = 1/2 contained in the square

Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for ε = 0.1 and γ = 0.005 in (1.1).
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Figure 8: Basin of attraction of the periodic orbit with frequency ω = 1/4 contained in the square

Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for ε = 0.1 and γ = 0.005 in (1.1).

Figure 9: Basin of attraction of the origin contained in the square Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for

ε = 0.1 and γ = 0.001 in (1.1).
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Figure 10: Basin of attraction of the periodic orbit with frequency ω = 1/2 contained in the square

Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for ε = 0.1 and γ = 0.001 in (1.1).

Figure 11: Basin of attraction of the periodic orbit with frequency ω = 1/4 contained in the square

Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for ε = 0.1 and γ = 0.001 in (1.1).
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Figure 12: Basin of attraction of the first periodic orbit with frequency ω = 1 contained in the square

Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for ε = 0.1 and γ = 0.001 in (1.1).

Figure 13: Basin of attraction of the second periodic orbit with frequency ω = 1 contained in the

square Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for ε = 0.1 and γ = 0.001 in (1.1).



26 M. V. BARTUCCELLI, A. BERRETTI, J. H.B. DEANE, G. GENTILE, AND S. A. GOURLEY

Figure 14: Basin of attraction of the origin contained in the square Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for

ε = 0.1 and γ = 0.0005 in (1.1).

Figure 15: Basin of attraction of the periodic orbit with frequency ω = 1/2 contained in the square

Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for ε = 0.1 and γ = 0.0005 in (1.1).
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Figure 16: Basin of attraction of the periodic orbit with frequency ω = 1/4 contained in the square

Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for ε = 0.1 and γ = 0.0005 in (1.1).

Figure 17: Basin of attraction of the periodic orbit with frequency ω = 1/6 contained in the square

Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for ε = 0.1 and γ = 0.0005 in (1.1).
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Figure 18: Basin of attraction of the first periodic orbit with frequency ω = 1 contained in the square

Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for ε = 0.1 and γ = 0.0005 in (1.1).

Figure 19: Basin of attraction of the second periodic orbit with frequency ω = 1 contained in the

square Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for ε = 0.1 and γ = 0.0005 in (1.1).
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Figure 20: Basin of attraction of the first periodic orbit with frequency ω = 1/3 contained in the

square Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for ε = 0.1 and γ = 0.0005 in (1.1).

Figure 21: Basin of attraction of the second periodic orbit with frequency ω = 1/3 contained in the

square Q = {(x, ẋ) ∈ [−1, 1]× [−1, 1]} for ε = 0.1 and γ = 0.0005 in (1.1).
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