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Abstract. The paper is divided in three parts: in part 1, we establish a Dobrushin
like criterion for uniqueness of DLR measures, in a relatively abstract and general
context. In part 2 we show that in “generalized” Pirogov-Sinai models the finite
volume corrections to the pressure can be reduced to the analysis of restricted
ensembles which naturally fit in the general scheme of Part 1. In Part 3 we apply
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spins, the LMP models of particles in the continuum, [14], and their quantum
version in the Ginibre loops representation. Our results on the latter are used in a
companion paper, [1], to prove phase transitions.
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1. Introduction

Dobrushin’s high temperature, uniqueness theorem,[7], has a central role in this

paper. Dobrushin showed that if the Vaserstein distance between single spin Gibbs

conditional probabilities with different boundary conditions satisfies a smallness re-

quirement, then there is a unique Gibbs measure and its correlations decay at infinity.

In Sections 2 and 3 we will recall and extend the Dobrushin’s theorem.

Since the Vaserstein distance between single spin conditional probabilities is in

many cases explicitly computable, the uniqueness criterion in the Dobrushin’s theo-

rem has concrete applicability and indeed it has been and it still is very much used.

As shown in [4], the regime of validity of the Dobrushin uniqueness condition

is the semi-infinite interval (Tmf ,∞), Tmf the mean field critical temperature, even

though there may still be uniqueness below Tmf , namely if Tmf > Tc, Tc the critical

temperature. To study the temperature interval (Tc, T
mf), Dobrushin and Shlos-

man, [8], have introduced weaker criteria, essentially based on coarse graining ideas:
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even though they made it clear that the conditions are still checkable with a finite

number of operations, their verification, from an analytical point of view, has been

problematic, with noticeable exceptions.

Below the critical temperature there is no longer uniqueness, yet uniqueness ques-

tions may become relevant when studying a restricted class of boundary conditions.

Correspondingly one may look for Dobrushin like conditions to investigate decay of

correlations in the extremal DLR states, or to verify that a given DLR measure is

extremal. The problem in all such cases is that the Dobrushin single spin condi-

tion cannot be verified for all possible boundary conditions, as it would yield global

uniqueness. One however expects that the boundary conditions for which things go

bad have small probability (w.r.t. the Gibbs measures produced by the given class

of boundary conditions). One thus need a relativized Dobrushin criterion, where

the lack of validity of the original condition is compensated by a priori estimates

on the probability of a bad conditioning. Even though the idea is very simple and

convincing a theorem along these lines has escaped the efforts of many authors.

Van der Berg and Maes, [6], gave important contributions to this subject with

their studies of systems with random temperature fluctuations. They considered

models where typically the local temperature lies inside the Dobrushin regime, but,

due to fluctuations, there are always sites where the uniqueness condition is not

verified. The Dobrushin method then fails and van der Berg and Maes have intro-

duced an alternative algorithm to construct couplings which gives agreement away

from the boundaries, if a disagreement percolation estimate is verified. The ideas

have been applied to several other systems and in particular to Ising systems at low

temperatures with + (or −) boundaries conditions. There are also very interesting

applications to problems of random walks in random sceneries, by den Hollander and

Steif, [12], where the coupling techniques of disagreement percolation are used to

establish Bernoulli properties of the corresponding dynamical systems.

Closer to the content of this paper are the works by Buttà, Merola and Presutti,

[3], and Baffioni, Merola and Presutti, [2], on the structure of the plus and minus

DLR measures in Ising systems with Kac potentials, where disagreement percola-

tion has been applied after a coarse graining transformation, to exploit the scaling

properties of the potential. Here we consider an alternative approach, which applies

to a large class of systems, in particular those obtained from general Pirogov Sinai

models, once described in terms of “restricted ensembles”. The purpose of reduc-

ing the configuration ensemble, is to exclude a priori a class of Gibbs measures and

hence to reduce to a single one, the one we want to examine. Besides the problem of

reconstructing the original measure in the full configuration ensemble, a true proof
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of uniqueness in the restricted ensemble is however not obvious, because of the ap-

pearence of an extra hard core interaction (intrinsic to the definition of restricted

ensembles) which does not fit well with the Dobrushin uniqueness condition. In this

paper we will give conditions for uniqueness in restricted ensembles and check their

validity in a class of systems with Kac potentials.

The paper is divided into three parts. In part 1, Sections 2 and 3, we establish

a criterion for uniqueness, in a relatively abstract and general context. In part 2 ,

Sections 4 and 5, we consider “generalized” Pirogov-Sinai models showing that the

finite volume corrections to the pressure can be reduced to the analysis of restricted

ensembles which naturally fit in the general scheme of Part 1. In Part 3 (consisting

of the remaining sections) we further focus the analysis on systems with Kac poten-

tials, by explicitly considering (see Section 6) the ferromagnetic Ising spins, the LMP

models of particles in the continuum, [14], and their quantum version in the Gini-

bre loops representation. We then show that, once described in terms of restricted

ensembles, all these systems satisfy the general criterion of Sections 2 and 3, thus

getting the decay properties necessary for computing the finite volume corrections

to the pressure. With such estimates, it is then possible, following the Pirogov Sinai

scheme, to prove that, at any temperature below the mean field critical one, there is

a phase transition, at least when the Kac scaling parameter γ is sufficiently small,

see [5], [14], [1].

2. The Dobrushin uniqueness criterion

Content of Section 2: • An abstract definition of “restricted ensembles”; • state-

ment without proof (postponed to Section 3) of Theorem 2.2, which is an extended

version of the Dobrushin uniqueness theorem, with some measurability assumptions

dropped; • proof of decay of correlations in systems where the assumptions of The-

orem 2.2 are verified.

By “restricted ensembles” we will mean probability measures on product spaces

SZ
d
, S a Polish space, which satisfy the DLR equations wity respect to a family of

prescribed conditional probabilities {pΛ(·|s)}, Λ running over the bounded sets in

Zd, having the following properties. Denoting by s the elements of SZ
d

and by sΛ

their restrictions to sets Λ @ Zd, the probabilities pΛ(·|s) are chosen as the Gibbs

specifications with respect to a product measure
∏

x∈Zd

ν(dsx) and an energy given by a
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stable Hamiltonian H plus “a hard core interaction”. We start describing the latter.

Let D = {Ci, i ∈ Zd} be a partition of Zd into equal cubes Ci of side length ` ∈ N,

let Ri @ SZ
d

be sets which depend on {sx, x ∈ Ci} and are one the translate of the

other; then the hard core interaction restricts the configuration space to

X = uiRi (2.1)

in the sense that all pΛ(·|s) and hence all DLR measures must be supported by X ,

which is thus the space of allowed configurations. We will suppose that the sets Ri

are compact and have positive free measure:
∫

Ri

∏
x∈Ci

ν(dsx) > 0 (2.2)

About the hamiltonian H, we suppose that it is invariant by translations which, along

each coordinate direction, are integer multiples of `′, with `′ an integer multiple of `.

The setup is just the one which arises when studying “generalized Pirogov Sinai

models”, as recalled in Section 4, where we will also see that a step in their analysis

requires a proof of uniqueness and decay of correlations. Such results will be derived

by using an extension of the Dobrushin’s uniqueness theorem stated in Theorem 2.2

below and proved in the next section.

Let d(s, s′) be a distance on S, ∆ @ Zd, d∆(s, s′) =
∑
x∈∆

dx(s, s
′), dx(s, s

′) = d(sx, s
′
x).

We will suppose that

‖d‖ := sup
x∈Zd

sup
s,s′∈X

dx(s, s
′) < ∞ (2.3)

For any two probabilities µ and µ′ on SZ
d
, we define

R∆(µ, µ′) = inf
Q

∫

SZd×SZd
d∆(s, s′) Q(ds, ds′) (2.4)

where the inf is over all joint representations (couplings) Q(ds, ds′) of µ and µ′,
namely Q(ds, ds′) is a probability on SZ

d × SZ
d

whose marginal on the first [respec-

tively the second] variable is µ [µ′]. R∆(µ, µ′) is the Vaserstein distance of µ and µ′

relative to the distance d∆.

The uniqueness criterion, which is the main assumption in Theorem 2.2 below, is

based on the existence of a function r : Zd × Zd → R+ such that for all i ∈ Zd and

s, s′ ∈ SZ
d

RCi

(
pCi

(·|s), pCi
(·|s′)) ≤

∑
j

r(i, j)d(sCj
, s′Cj

) (2.5)

sup
i

∑

j 6=i

r(i, j) ≤ δ, 0 < δ < 1 (2.6)
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Without any loss of generality, we have set r(i, i) = 0. Let I @ Zd and rI : Zd×Zd →
R+,

rI(i, j) = r(i, j)1i∈I i, j ∈ Zd (2.7)

We then define iteratively for all n ≥ 1 the “convolutions”

r1
I (i, j) = r(i, j)

rn
I (i, j) =

∑

j′∈Zd

r(i, j′) rn−1
I (j′, j) i, j ∈ Zd

and have:

Proposition 2.1. If (2.6) holds, then, for any bounded set I in Zd and any two

configurations s, s′ ∈ X , there is a unique solution of the equation

u(i) =





∑

j 6=i

r(i, j) u(j) if i ∈ I

dCi
(sCi

, s′Ci
) if i /∈ I

(2.8)

The solution is

uI,s,s′(i) =
∑
j∈Ic

∑
n>0

rn
I (i, j)dCj

(sCj
, s′Cj

) for i ∈ I (2.9)

uI,s,s′(i) ≥ 0,

sup
I,s,s′,i

uI,s,s′(i) = `d‖d‖, (‖d‖ as in (2.3)) (2.10)

and, for any i,

lim
I↗Zd

sup
s,s′∈X

uI,s,s′(i) = 0 (2.11)

Proof. Since
∑

j∈Zd

rn
I (i, j) ≤ δn,

∑

j∈Zd

∑
n>0

rn
I (i, j) ≤ δ

1− δ
(2.12)

Then the r.h.s. of (2.9) is well defined and the function v(i) equal for i ∈ I to the

r.h.s. of (2.9) and equal to dCi
(sCi

, s′Ci
) elsewhere, solves (2.8): indeed, for any i ∈ I,

v(i) =
∑

j /∈I

rI(i, j)dCj
(sCj

, s′Cj
) +

∑

j /∈I

∑
n>1

rn
I (i, j)dCj

(sCj
, s′Cj

)

=
∑

j /∈I

rI(i, j)dCj
(sCj

, s′Cj
) +

∑

j /∈I

∑

k∈I

rI(i, k)
∑
n>0

rn
I (k, j)dCj

(sCj
, s′Cj

)

=
∑

j /∈I

r(i, j)dCj
(sCj

, s′Cj
) +

∑

k∈I

r(i, k)v(k) =
∑

j

r(i, j)v(j)
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To prove uniqueness, suppose that v and u are two solutions, then w := u−v vanishes

for j /∈ I, so that

w(i) =
∑

k∈I

rI(i, k)w(k) =
∑

k∈I

rn
I (i, k)w(k)

Hence |w(i)| ≤ δn sup
k∈I

|w(k)| and by the arbitrariness of n, w = 0.

Existence, uniqueness and the formula (2.9) are thus proved. By (2.3), dCi
(sCi

, s′Ci
) ≤

‖d‖ and (2.10) follows from (2.8). To prove (2.11), let ε > 0 and Nε such that

sup
i∈Zd

∑

|j−i|≥Nε

r(i, j) < ε

Calling rI,ε(i, j) := rI(i, j)1|i−j|<Nε , and u = uI,s,s′ , we have

u(i) =
∑
n≥0

∑

k∈I

rn
I,ε(i, k)

∑

h:|h−k|≥Nε

r(h, k)u(k) +
∑
n>0

∑

j /∈I

rn
I,ε(i, j)u(j)

so that,

uI,s,s′(i) ≤ 1

1− δ

(
ε + δdist(i,Ic)/Nε

)
(`d‖d‖)

lim
I↗Zd

sup
s,s′∈X

uI,s,s′(i) ≤ ε
`d‖d‖
1− δ

because dist(i, Ic) →∞ as I ↗ Zd. By letting ε → 0, we then get (2.11). Proposition

2.1 is proved. ¤

Theorem 2.2. Suppose that (2.5)-(2.6) are satisfied, let

∆ =
⊔
i∈J

Ci, Λ =
⊔
i∈I

Ci, J @ I @ Zd, |I| < ∞ (2.13)

then, for any s, s′ ∈ SZ
d

R∆

(
pΛ(·|s), pΛ(·|s′)) ≤

∑
i∈J

uI,s,s′(i) (2.14)

Theorem 2.2 is proved in the next section. Take notice that no measurability

assumption is stated, namely we have not supposed that the inf in the definition of

the Vaserstein distance is over joint representations Q(dsCi
, ds′Ci

|s, s′) which depend

measurably on s and s′. With such an extra assumption the classical proof of Do-

brushin would apply, but, as we will see in the next section, the hypothesis can be

dropped and the assumptions (2.5)-(2.6) as stated are easier to check in some of the

applications we will consider.

Theorem 2.2 and Proposition 2.1 yield uniqueness:
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Corollary 2.3. If (2.6) holds then there is one and only one DLR measure

(corresponding to the specification {pΛ(·, sΛc)}
Λ@Zd,s∈SZd ).

Proof. Let I, J , Λ and ∆ be as in (2.13). Call f a ∆-Lipschitz function with

constant cf if

sup
s,s′

∣∣f(s)− f(s′)
∣∣ ≤ cf

∑
i∈J

dCi
(sCi

, s′Ci
) (2.15)

By Theorem 2.2,
∣∣pΛ(f |s)− pΛ(f |s′)∣∣ ≤ cfR∆

(
pΛ(·|s), pΛ(·|s′)) ≤ cf

∑
i∈J

uI,s,s′(i) (2.16)

Thus, if µ and µ′ are two DLR measures

|µ(f)− µ′(f)| ≤
∫

X×X
µ(ds)µ′(ds′)

∣∣pΛ(f |s)− pΛ(f |s′)
∣∣

By (2.16) and (2.11), letting I ↗ Zd, we conclude that µ(f) = µ(f ′), hence, by the

arbitrariness of f , µ = µ′. Uniqueness of DLR measures is thus proved.

To prove existence, we consider an increasing sequence In ↗ Zd and call Λn =
⊔
i∈In

Ci.

Fix s ∈ X , then, for any Lipschitz f as above

lim
n→∞

pΛn(f |s) =: µ(f) (2.17)

because, as argued above, {pΛn(f |s)} is Cauchy. By the Kolmogorov’s theorem for

projective limits, the limits (2.17) are identified as expectations of a probability

measure µ on X . We will next show that µ(f) = µ
(
pΛ(f |·)), f and Λ as above.

Let I ′ A I, Λ′ :=
⊔

i∈I′
Ci and observe that by (2.16) and (2.9)–(2.10)

sup
s,s′∈X :sΛ′=s′

Λ′

∣∣pΛ(f |s)− pΛ(f |s′)
∣∣ ≤ cf`

d‖d‖
∑

j /∈I′

∑
n>0

rn
I,s,s′(i, j)

which thus vanishes as I ′ ↗ Zd. Then, for any ε > 0 there is I ′ and a Λ′-Lipschitz

function gΛ′(s), so that

sup
s∈X

∣∣pΛ′(f |s)− gΛ′(s)
∣∣ ≤ ε

For n large enough, pΛn(f |s) = pΛn

(
pΛ′(f |·)|s

)
, then, by (2.17),

|pΛn(f |s)− pΛn

(
gΛ′|s)| < ε, |µ(f)− µ

(
pΛ′(f |·)

)| < 2ε

which, by the arbitrariness of ε proves that µ is DLR. Corollary 2.3 is proved. ¤

We will next state some properties of the solution u of (2.8) under additional

assumptions on the coefficients r(i, j). We assume there is a metric ψ(i, j) on Zd
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such that ψ(i, j) ≥ d0 > 0 for all i 6= j ∈ Zd, and

sup
i

∑

j 6=i

r(i, j)eψ(i,j) ≤ 1 (2.18)

Notice that (2.18) implies (2.6), with δ ≤ e−d0 .

Theorem 2.4. Suppose that (2.18) holds. Then, calling u the solution (2.9) of

(2.8), for any i ∈ I,

u(i) ≤
∑

j /∈I

e−ψ(i,j)dCj
(sCj

, s′Cj
) (2.19)

Proof. By (2.9)

u(i) =
∑

j /∈I

∑
n>0

rn
I (i, j) dCj

(sCj
, s′Cj

)

Calling

π(h, k) = rI(h, k)eψ(h,k)

since ψ(i, j) satisfies the triangular inequality,
∑
n>0

rn
I (i, j) ≤ e−ψ(i,j)

∑
n>0

πn(i, j)

By (2.18),
∑

j

π(i, j) ≤ 1, hence
∑
n>0

πn(i, j) ≤ 1. Theorem 2.4 is proved. ¤

Remarks. If r(i, j) decays exponentially, there exists λ > 0 such that ψ(i, j) =

λ|i − j| satisfies (2.18): indeed, at λ = 0, the l.h.s. of (2.18) is equal to δ < 1 and

the statement follows by a continuity argument. Other decay rates can be studied

similarly, for a power decay we would take ψ(i, j) = λ ln(|i− j|+ 1).

As a corollary of Theorem 2.4, if f is ∆-Lipschitz with constant cf , then
∣∣pΛ(f |s)− pΛ(f |s′)

∣∣ ≤ cf

∑

i∈I, j /∈I

e−ψ(i,j)dCj
(sCj

, s′Cj
) (2.20)

and if µ(ds) denotes the unique DLR measure, then
∣∣pΛ(f |s)− µ(f)

∣∣ ≤ cf `d‖d‖
∑

i∈I, j /∈I

e−ψ(i,j) (2.21)
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3. A uniqueness criterion

Content of Section 3: • Proof of Theorem 2.2 (given after Proposition 3.2); •
Theorem 3.1 which gives sufficient conditions (Assumptions 1–4) for the validity

of (2.5)-(2.6) and (Assumptions 1–5) for the validity of (2.18); • construction of

successful couplings when Assumptions 1–5 are verified.

By regarding sCi
as a single spin, the uniqueness criterion (2.6) becomes the

usual Dobrushin uniqueness condition, except for the already remarked absence of

measurability. The beauty of the Dobrushin condition is that it can be explicitly

checked, a fact which relies on the single spin distributions being usually quite easy

to handle. In our applications instead, sCi
is a large collection of spins and the

validity of (2.6) cannot be checked by a direct and explicit computation. The crucial

step in this section is a proof that if the true single spin distribution satisfies the

original Dobrushin condition for “boundary conditions” in a set of large probability,

then (2.6) holds.

Assumption 1. For any x ∈ Zd there is a measurable set Gx @ X , determined

only by the variables {sy, y ∈ C(x) \ x}, C(x) the cube in D which contains x, such

that

Rx

(
px(·|s), px(·|s′)

) ≤
∑

y

b(x, y)d(sy, s
′
y), for all s, s′ in Gx (3.1)

sup
x∈Zd

∑

y∈C(x)

b(x, y), b(x, y) ≥ 0, b(x, x) = 0 (3.2)

Remarks. (3.1)-(3.2) reminds of the usual Dobrushin condition, from which it

differs because of (1), non uniformity on the boundary conditions, as s and s′ are

constrained to Gx; (2), the sum over y is limited to y ∈ C(x); (3), the Vaserstein

distance is defined over joint representations which are not required to depend mea-

surably on the conditioning spins. The next assumptions will cover (1) and (2).

As we will see, in a Pirogov-Sinai scheme, (3.1) is essentially a consequence of the

definition of X , which is chosen in such a way that only small deviations are allowed

from a stable state, so that the Dobrushin condition is satisfied except when “close to

the boundaries of the constraint”. In such cases the conditional distribution becomes

“rigid” and may not satisfy (3.1)-(3.2).
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Assumption 2. There is ε > 0 so that for any x ∈ Ci,

4{
∫

Gc
x

pC(x)(dt|s)}{
∫
|tx|2pC(x)(dt|s)} ≤ ε2, for all s ∈ X (3.3)

Conditions on the smallness of ε will be stated in equations (3.8) and (3.9).

Assumption 3. Calling

Bξ(i) = {j : dist(Ci, Cj) ≤ ξ}, ξ > 0 (3.4)

for any s(1) and s(2) in X , which agree on any Cj, j ∈ Bξ(i) \ i,

RCi

(
pCi

(·|s(1)), pCi
(·|s(2))

) ≤
∑

j /∈Bξ(i)

r(i, j)dCj
(s(1), s(2)) (3.5)

sup
i

∑

j /∈Bξ(i)

r(i, j) < 1 (3.6)

Remarks. This is a condition on the tail of the interaction, which will follow in

the applications from assuming a fast decay of the interaction and by choosing ξ

large enough. The assumption is stated separately from the previous ones, because

in our applications, the estimates for b(x, y) do not have good decay properties for

|i− j| → ∞.

Theorem 3.1 below states that if the above three assumptions plus a fourth one

(involving the smallness of the parameters and stated in the Theorem 3.1 itself) are

satisfied, then the conditional probabilities {pCi
(·|s)} satisfy the uniqueness condition

(2.6). Let

bCi
(x, y) = b(x, y)1x∈Ci

(3.7)

b(x, y) as in (3.1), and let for j ∈ Bξ(i) \ i,

r(i, j) = sup
y∈Cj

∑
x∈Ci

∑
n>0

bn
Ci

(x, y) + 2ε
(
|Ci|+

∑
x,z∈Ci

∑
n>0

bn
Ci

(x, z)
)

(3.8)

where ε is as in (3.3). Thus r(i, j), is defined for all i and j via (3.1), (3.5), (3.7),

(3.8) and by setting r(i, i) = 0.

Theorem 3.1. If, Assumption 4,

sup
i

∑
j

r(i, j) ≤ δ < 1 (3.9)
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then (2.5) and (2.6) are satisfied. If additionally, Assumption 5, there is a metric

ψ(i, j) on Zd such that ψ(i, j) ≥ d0 > 0 for all i 6= j ∈ Zd, and

δeψ(|ξ|) + sup
i

∑

j /∈Bξ(i)

r(i, j)eψ(|i−j|) < 1 (3.10)

δ as in (3.9), then (2.18) is satisfied.

Theorem 3.1 and Theorem 2.2 will be consequence of Proposition 3.2 that we

state after introducing some notation and definitions.

Denote by P a partition of Zd into cubes Ki, which, in a first case, is the partition

D and, in a second one, Zd itself (i.e. Ki are the sites of Zd). Let also IΛ be a finite

set in Zd and

Λ =
⊔
i∈IΛ

Ki (3.11)

By an abuse of notation, given a non negative function v on IΛ, we set

Rv(pΛ(·|s), pΛ(·|s′)) = inf
Q

∫ ∑
i∈IΛ

vidKi
(sKi

, s′Ki
) dQ (3.12)

Thus if v is the characteristic function of a set I∆ @ IΛ where ∆ is the union of Ki,

i ∈ I∆, then if Ki = Ci, Rv is what we have called R∆ in Section 2. We also write

R
(
pKi

(·|s), pKi
(·|s′)) for the Vaserstein distance relative to dKi

(sKi
, s′Ki

).

Proposition 3.2. Suppose that:

R
(
pKi

(·|s), pKi
(·|s′)) ≤ αi(s, s

′) (3.13)

with αi(s, s
′) a measurable function of s and s′ which depends only on sKc

i
and s′Kc

i
.

Then for any non-negative function v on IΛ and any boundary conditions s(1), s(2)

Rv

(
pΛ(·|s(1)), pΛ(·|s(2))

) ≤ inf
Q

∫
τα,Λ,v(s, s

′) dQ(ds, ds′) (3.14)

where the inf is over all couplings Q of pΛ(·|s(1)
Λc ) and pΛ(·|s(2)

Λc ) and

τα,Λ,v(s, s
′) :=

|IΛ| − 1

|IΛ| {v · d}(s, s′) +
1

|IΛ| {v · α}(s, s
′) (3.15)

{v · d}(s, s′) :=
∑
i∈IΛ

vi dKi
(s, s′), {v · α}(s, s′) :=

∑
i∈IΛ

vi αi(s, s
′) (3.16)
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Proof. By the Kantorovich-Rubinstein duality, for any two probabilities µ1 and

µ2 on SΛ,

Rv(µ1, µ2) := inf
Q

∫
dv(s, s

′) dQ = sup
f :‖f‖Lip,v≤1

∣∣
∫

f(s) {µ1(ds)− µ2(ds)}
∣∣

where the inf is over the joint representations Q of µ1 and µ2 and

‖f‖Lip,v := sup
s,s′∈SΛ

dv(s,s′)>0

|f(s)− f(s′)|
dv(s, s′)

is the Lipschitz-norm corresponding to dv. Calling

Af :=
∣∣∣
∫

f(t){pΛ(dt|s(1))− pΛ(dt|s(2))}
∣∣∣, ‖f‖Lip,v ≤ 1 (3.17)

and since pΛ(dt|s(i)) are Gibbs measures, we get

Af =
∣∣∣
∫

f(t)
1

|IΛ|
∑
i∈IΛ

∫
pKi

(dt|s){pΛ(ds|s(1))− pΛ(ds|s(2))}
∣∣∣ (3.18)

Let Q be a joint distribution of pΛ(·|s(1)) and pΛ(·|s(2)), then

Af =
∣∣∣ 1

|IΛ|
∑
i∈IΛ

∫∫∫
f(t){pKi

(dt|s)− pKi
(dt|s′)} Q(ds, ds′)

∣∣∣ (3.19)

For each Ki @ Λ and s, s′ ∈ X , take a joint representation P s,s′
Ki

of pKi
(dt|s) and

pKi
(dt|s′) on SKi , then

∣∣∣
∫

f(t){pKi
(dt|s)− pKi

(dt|s′)}
∣∣∣ =

∣∣∣
∫∫ (

f(t)− f(t′)
)
P s,s′

Ki
(dt, dt′)

∣∣∣

≤ ‖f‖Lip,v

( ∑

j∈IΛ\i
vj dKj

(s, s′) + vi

∫
dKi

(t, t′)P s,s′
Ki

(dt, dt′)
)

Recalling that ‖f‖Lip,v ≤ 1, taking the infimum over all P s,s′
Ki

(dt, dt′) and using (3.13),

we get

∣∣∣
∫

f(t){pKi
(dt|s)− pKi

(dt|s′)}
∣∣∣ ≤

∑

j∈IΛ\i
vj dKj

(s, s′) + vi αi(s, s
′) (3.20)

which, inserted in (3.19), yields

Af ≤ |IΛ| − 1

|IΛ|
∫ ∑

j∈IΛ

vj dKj
(s, s′) Q(ds, ds′) +

1

|IΛ|
∫ ∑

i∈IΛ

vi αi(s, s
′) Q(ds, ds′)

Same bound holds for the sup over f of Af , so that taking the inf over all possible

Q we get (3.14) with τα,Λ,v given by (3.15). ¤
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Proof of Theorem 2.2. We choose P = D, i.e. Ki = Ci. By (2.5), we can take

αi in (3.13) as

αi(s, s
′) =

∑

j 6=i

r(i, j)dCj
(s, s′) (3.21)

Let

T := 1 +
1

|IΛ|(RΛ − 1) ; [RΛ]i,j = r(j, i)1j∈IΛ ; dj ≡ dCj
(s(1), s(2))

By (2.6)

‖T‖ := sup
j

∑
i

|Tij| < 1, ‖RΛ‖ ≤ δ < 1

and

(1− T)−1 ≡ |IΛ|(1−RΛ)−1 = |IΛ|
∞∑

n=0

RΛ
n

Then (3.14) becomes

Rv

(
pΛ(·|s(1)), pΛ(·|s(2))

) ≤ RTv

(
pΛ(·|s(1)), pΛ(·|s(2))

)
+

1

|IΛ|
∑
j∈Ic

Λ

(RΛv)j dj

which iterated n times yields when n →∞, (since [T,RΛ] = 0)

Rv

(
pΛ(·|s(1)), pΛ(·|s(2))

) ≤ 1

|IΛ|
∑
j∈Ic

Λ

∞∑
n=0

(TnRΛv)jdj =
1

|IΛ|
∑
j∈Ic

Λ

((1− T)−1RΛv)jdj

and, finally,

Rv

(
pΛ(·|s(1)), pΛ(·|s(2))

) ≤
∑
j∈Ic

Λ

∞∑
n=1

(RΛ
nv)j dj (3.22)

Setting vi = 1i∈I∆ , (3.22) becomes (2.14), (recall the expression of u(i) given by

(2.9)). Theorem 2.2 is proved.

¤

Proof of Theorem 3.1. We take here P = Zd, i.e. Ki = x, Λ ≡ ∆ = Ci, Ci a

cube of the partition D. Then by (3.1) condition (3.13) holds for

αx(s, s
′) =

∑

y 6=x

b(x, y)d(sy, s
′
y) + (ϕx(s) + ϕx(s

′))
(
1s∈Gc

x
+ 1s′∈Gc

x

)
(3.23)

where

ϕx(s) =

∫
|tx|px(dtx|s) (3.24)
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Since for any coupling Q between pCi
(·|s(1)), pCi

(·|s(2)),
∫

(ϕx(s) + ϕx(s
′))

(
1s∈Gc

x
+ 1s′∈Gc

x

)
dQ

≤ 2 max
s′∈{s(1),s(2)}

pCi
(ϕx(s)1s∈Gc

x
|s′) + 2Q(ϕx(s)1s′∈Gc

x
)

After using Cauchy-Schwartz and Assumption 2, (3.14) becomes

Rv

(
pCi

(·|s(1)), pCi
(·|s(2))

)
≤ RTv

(
pCi

(·|s(1)), pCi
(·|s(2))

)

+
1

|Ci|
∑
y∈Cc

i

(RCi
v)ydy +

2ε

|Ci|
∑
x∈Ci

vy

Proceeding as in the proof of Theorem 2.2

Rv

(
pCi

(·|s(1)), pCi
(·|s(2))

)
≤

∑
n≥1

∑
y∈Cc

i

(Rn
Ci

v)ydy + 2ε
∑
n≥0

∑
x∈Ci

(Rn
Ci

v)x

and when vx = 1x∈Ci
we get

Rv

(
pCi

(·|s(1)), pCi
(·|s(2))

)
≤

∑
y∈Cc

i

∑
x∈Ci

∑
n≥1

b
(n)
Ci

(x, y)dy

+2ε

(
|Ci|+

∑
x,z∈Ci

∑
n≥1

b
(n)
Ci

(x, z)

)

which coincides with (3.8). Theorem 3.1 then follows from the triangular inequality

using Assumption 3.

Proof of (2.18). Since ψ is an increasing function,

∑

j∈Bξ(i)

r(i, j)eψ(|i−j|) ≤
∑

j∈Bξ(i)

r(i, j)eψ(ξ) ≤ δeψ(ξ)

the last inequality being a consequence of Assumption 4; (2.18) then follows from

Assumption 5. Theorem 3.1 is proved.

¤

By Theorem 3.1, if Assumptions 1–4 are satisfied, then (2.5)–(2.6) hold, and, by

Corollary 2.3, we can conclude that there is only one DLR measure, which we denote

by p(ds). To describe its properties we will next construct couplings of p(ds) and

finite volume Gibbs measures and between finite volume Gibbs measures as well. By

adding some extra assumptions, we will prove that these couplings are successful, i.e.

give “large probability to the diagonal”.
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Theorem 3.3. If Assumption 1–5 are verified, the latter with ψ(i, j) = ω0|i− j|,
ω0 > 0, and if dx(·, ·) ≥ 1, then there exists c > 0 so that the following holds. Let Λi,

i = 1, 2, and ∆ be bounded, D-measurable sets, s(i) ∈ X , then there is a coupling P

of pΛ(ds|s(i)
Λc

i
), i = 1, 2, and a coupling Q of pΛ(ds|s(1)

Λc
1
) and p(ds) such that

P (s∆ 6= s′∆) ≤ c|∆|e−ω0dist(∆,Λc
1tΛc

2), Q(s∆ 6= s′∆) ≤ c|∆|e−(ω0/2)dist(∆,Λc
1) (3.25)

Proof. For any ε > 0, there is a coupling Pε such that:∫
1s∆ 6=s′∆dPε(ds, ds′) ≤

∫
d(s∆, s′∆)dPε(ds, ds′)

= R∆

(
pΛ1(·|s(1)), pΛ2(·|s(2))

)
+ ε (3.26)

the first inequality follows from the fact that d(s∆, s∆) ≥ 1 for any s∆ 6= s′∆. Suppos-

ing, without loss of generality, that ∆ @ Λ, Λ = Λ1uΛ2 and calling I∆ = {i : Ci @ ∆}
and IΛc = {i : Ci @ Λc}, by Theorem 2.4

R∆

(
pΛ1(·|s(1)), pΛ2(·|s(2))

) ≤
∑
i∈I∆

∑
j∈IΛc

e−ω0|j−i|dCj
(s

(1)
Cj

, s
(2)
Cj

) ≤ c|∆|e−(ω0/2)dist(∆,Λc)

(3.27)

recalling the assumption that dCj
(·, ·) is uniformly bounded; the first inequality in

(3.25) then follows by the arbitrariness of ε in (3.26). To prove the second one, we

use the Kantorovich-Rubinstein duality to write

R∆(pΛ1(·|s(1)), p(·)) = sup
f :‖f‖Lip,∆≤1

∣∣
∫

f(s) {pΛ1(ds|s(1))− p(ds)}
∣∣ (3.28)

R∆(pΛ1(·|s(1)), pΛ1(·|s(2))) = sup
f :‖f‖Lip,∆≤1

∣∣
∫

f(s) {pΛ1(ds|s(1))− pΛ1(ds|s(2))}
∣∣ (3.29)

(3.29) shows that R∆(pΛ1(·|s(1)), pΛ1(·|s(2))) is a measurable function of (s(1), s(2)).

We use the DLR property in (3.28) to write

R∆(pΛ1(·|s(1)), p(·))
≤

∫
sup

f :‖f‖Lip,∆≤1

∣∣
∫

f(s) {pΛ1(ds|s(3))− pΛ1(ds|s(4))}
∣∣1

s
(3)

Λc
1
=s

(1)

Λc
1

p(ds(4))

so that, by (3.29),

R∆(pΛ1(·|s(1)), p(·)) ≤ sup
s(3),s(4)∈X

R∆(pΛ1(·|s(3)), pΛ1(·|s(4))) (3.30)

and, by (3.27),

R∆(pΛ1(·|s(1)), p(·)) ≤ c|∆|e−(ω0/2)dist(∆,Λc)

The second inequality in (3.25) then follows from the analogue of (3.26) with pΛ1(·|s(1))

and p(·). Theorem 3.3 is proved. ¤
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4. Contour models and restricted ensembles

Content of Section 4: • Definition of “generalized Pirogov-Sinai models”; • Defi-

nition of abstract contour models; • Derivation of restricted ensembles from contour

models, Theorem 4.1; • A formula for the finite volume corrections to the pressure;

• The Pirogov Sinai scheme.

Purpose of this section is to focus on one of the main steps of the Pirogov Sinai

scheme, namely the analysis of the finite volume corrections to the pressure in re-

stricted ensembles. Using an interpolation formula this is reduced to studying decay

of correlations for which the theory of Sections 2 and 3 can be used.

We start with a system in the full space SZ
d

with a stable, translational invariant,

finite range hamiltonian h. Take notice that h is not the hamiltonian H of Section 2

and 3, which only later will enter into the game.

Phase indicators. With in mind a Pirogov-Sinai scenario, we introduce two

functions, η(s; x), Θ(s; x), s ∈ SZ
d
, x ∈ Zd, with values in {±1, 0}. As functions of x

with s fixed, η and Θ are respectively constant on the cubes of two partitions D and

D′ of Zd with D finer than D′. We will denote by {Ci, i ∈ Zd} and by {C ′
i, i ∈ Zd}

the cubes of the two partitions D and D′, Ci having side `, C ′
i side `′ > `, `′/` ∈ N

and `′ larger than the interaction range.

Θ(s; x) has the meaning of a phase indicator and we will say that a site x is in

the plus or in the minus phase if Θ(s; x) = ±1, respectively. The values of Θ(·; ·) are

determined by those of η(·; ·) as follows. Θ(s; x) = 1 (Θ(s; x) = −1) if and only if

η(s; y) = 1 [= −1] for all y in the cube C ′
i which contains x as well as in those cubes of

D′ contiguous to C ′
i, whose union is denoted by δ`′

out[C
′
i]. Θ(s; x) = 0 if neither one of

the above is verified. As a consequence of the definition the plus and minus regions,

i.e. {x : Θ(s; x) = 1} and {x : Θ(s; x) = −1} are not connected to each other, in

fact each one of their connected components is surrounded by {x : Θ(s; x) = 0} (the

connection above is ∗ connection in Zd, i.e. x and y are connected if |xi − yi| ≤ 1,

i = 1, .., d).

Remarks. In most applications, η(s; x) depends only on the values of s on the

cube Ci of D which contains x and Θ(s; x) on the values of s on C ′
i t δ`′

out[C
′
i], Ci the

cube of D′ which contains x. However such measurability conditions may fail, as in

the quantum version of the LMP model, see Section 6.

In a Pirogov-Sinai picture the plus and minus DLR measures (with hamiltonian

h), which are obtained as thermodynamic limits of finite volume Gibbs measures

with “plus and minus boundary conditions”, are supported by configurations with
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mostly Θ = 1 (resp. Θ = −1), and only rare and small “islands” where Θ < 1 (resp.

Θ > −1). Thus, in the plus case, for most cubes Ci ∈ D, with large probability, s is

in the set

R+
i =

{
s : η(s; x) = 1 for any x ∈ Ci

}
(4.1)

which will be later identified to the constraint introduced in Section 2. However with

probability one there will always exist regions where Θ < 1, which are present in the

original model and absent in the restricted ensemble X+ = uR+
i . The main point

here is to show that the presence of regions with Θ < 1 can be taken into account by

only changing the hamiltonian h into a new hamiltonian H, and then working in the

restricted ensemble X+, see Theorem 4.1 below. In this way we recover the setup of

Section 2.

Contours. A contour Γ of a configuration s is a pair Γ = {sp(Γ), ηΓ}, where

sp(Γ) is the closure of a maximal, connected component of {x : Θ(s; x) = 0} and ηΓ

is the restriction of η(s; x) to sp(Γ). An abstract contour is a pair which becomes a

contour in some configuration s.

Given a contour Γ, we decompose sp(Γ)c = ext(Γ)t int(Γ), where ext(Γ) is the

unbounded maximal connected component of sp(Γ)c and call c(Γ) = sp(Γ)t int(Γ).

We call A = δ`′
out[sp(Γ)] the union of all cubes of D′ not in sp(Γ), but contiguous

to sp(Γ). By definition of contour, Θ(s; x) 6= 0 on A and constant on its connected

components, we then denote by A± the subsets of A where Θ(s; x)=± 1. The union

of the connected components of int(Γ) which intersect A+ are called int+(Γ), the

others int−(Γ). We call Γ a plus contour if A+u ext(Γ) 6= ∅ and minus otherwise and

denote

{Γ}± = the collection of all ± contours with sp(Γ) bounded (4.2)

B± =
{
Γ = (Γ1, .., Γn) : n ∈ N+, Γi ∈ {Γ}±, sp(Γi) u sp(Γj) 6= ∅, i 6= j

}
(4.3)

X± = {s : η(s; x) ≡ ±1, x ∈ Zd} (4.4)

{Γ}±Λ and B±Λ are defined similarly, but with the condition that all contours should

have spatial support in Λ.

Contour models. Contour models are systems defined on the product space

X+ ×B+, (to have lighter notation we hereafter restrict to the plus case). Contours

are given a strictly positive statistical weight w+(Γ, s), Γ ∈ {Γ}+, which depends on

the configuration s ∈ X+ only through the restriction of s to sp(Γ). We shorthand

w+(Γ, s) =
∏
Γ∈Γ

w+(Γ, s), Γ ∈ B+ (4.5)
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We then introduce the “dilute”, finite volume Gibbs measures on X+ × B+
Λ , Λ a

bounded D′ measurable region, by setting

µ+
abs,Λ(ds′, Γ|s) =

1s′∈X+

Z+
abs(Λ|s)

w+(Γ, s′)e−hΛ(s′Λ|sΛc )νΛ(ds′Λ)δ(s′Λc − sΛc)ds′Λc (4.6)

where “abs” stands for abstract; s ∈ X+ and

Z+
abs(Λ|s) =

∑

Γ∈B+
Λ

∫

χ+
Λ

w+(Γ, s)e−hΛ(s′Λ|sΛc )νΛ(ds′Λ) (4.7)

having used the shorthand notation νΛ(dsΛ) =
∏

x∈Λ ν(dsx), for the free measure on

SΛ. By hΛ(s′Λ|sΛc) we denote the conditional energy, formally defined as h(s′ΛsΛc)−
h(sΛc).

Remarks. Notice that the elements of a pair (s, Γ) in a contour model are totally

unrelated, as the configuration s, being in X+, has no contour, so that Γ are not at

all contours in the configuration s.

In the classical examples of Pirogov-Sinai models, like in Ising models, the re-

stricted ensemble X+ consists of a single configuration, the plus ground state, and

the (plus) contour model is the space of compatible contours B+. The original theory

has then be generalized to cases where “colors” can be added so that the restricted

ensemble is no longer a singleton; with Kac potentials the restricted ensembles are

the outcome of a coarse graining procedure and they are spaces with a full and rich

structure, we will see examples in Section 6.

The above definitions are not coming from nowhere as it may look, we will in

fact see that, with a proper choice of the weights, we can relate the original Gibbs

measures and partition functions to those of the contour models.

Peierls bounds. The weights {w+(Γ, s)} satisfy the Peierls bounds with positive

constant CP if, for all Γ and s,

w+(Γ, s) ≤ e−CP NΓ (4.8)

where NΓ is the number of cubes from D′ contained in sp(Γ).

Theorem 4.1. If the weights w+(Γ, s) satisfy the Peierls bounds with a constant

CP large enough (in particular CP > 2b, b as in (4.11) below) then there is a hamil-

tonian H+,o
Λ so that for any bounded, D′ measurable region Λ and any s ∈ X+,

Z+
abs(Λ|s) = Z+,o

abs,Λ(s) :=

∫

X+
Λ

e−H+,o
Λ (s′Λ|sΛc)νΛ(ds′Λ) (4.9)
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H+,o
Λ (s′Λ|sΛc) = hΛ(s′Λ|sΛc) + K+

Λ (s′Λ), K+
Λ (s′Λ) =

∑
∆@Λ

U+
∆(s′∆) (4.10)

where the potentials U+
∆(s∆), defined in (4.14) and (4.15) below, vanish unless ∆ is

a bounded, connected, D′-measurable subset of Λ. Moreover,

‖U+
∆(·)‖∞ = sup

s∆

|U+
∆(s∆)| ≤ e−(CP−b)N∆ (4.11)

where N∆ is the number of D′-cubes in ∆; b > 0 a dimension dependent constant,

such that
∑
∆3x

e−bN∆ ≤ 1.

Finally, denoting by p+,o
abs,Λ(·|s) the marginal on X+ of µ+

abs,Λ(·|s),

p+,o
abs,Λ(ds′|s) =

1

Z+
abs,Λ(s)

e−H+,o
Λ (s′Λ|sΛc )νΛ(ds′Λ)δ(s′Λc − sΛc)ds′Λc (4.12)

Proof. (4.9) follows from (4.7) and the first equality in (4.10), by setting

e−K+,o
Λ (sΛ) =

∑

Γ∈B+
Λ

w+(Γ, s) (4.13)

To prove the remaining statements we will use cluster expansion to express the energy

K+,o
Λ (sΛ) in terms of a sum of weights of polymers, which will then identify the many-

body potentials U+
∆(s∆).

Polymers are finite, connected subsets of {Γ}+, two elements in {Γ}+ being called

connected if their spatial supports have non empty intersection. Denoting by P+ the

collection of all polymers and by P+
Λ those made by contours in {Γ}+

Λ , if CP is large

enough, it follows from Kotecki and Preis, [16], that there are numbers $(Γ, s), such

that

log
∑

Γ∈B+
Λ

w+(Γ, s) =
∑

Γ∈P+
Λ

$+(Γ, s) (4.14)

Calling sp(Γ) =
⊔
Γ∈Γ

sp(Γ), we then set

−U+
∆(s∆) =

∑

Γ∈P+
Λ , sp(Γ)=∆

$+(Γ, s∆) (4.15)

and (4.9) follows from (4.7) and (4.13), while (4.11) follows from (4.15) and [16].

The proof of (4.12) is similar and omitted. Theorem 4.1 is proved. ¤

Finite volume corrections to the pressure. Theorem 4.1 reduces the analysis

of Z+
abs(Λ|s) to the study of a partition function in the restricted ensemble, for which

the theory of Sections 2 and 3 can be used. As it will be discussed at the end of this

section, the main step in the Pirogov Sinai scheme is the computation of the surface
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corrections to the pressure in contour models, which, by Theorem 4.1, requires to

study log Z+,o
abs,Λ(s) separating volume and surface effects (for large regions Λ). With

this in mind and following Dobrushin and Shlosman, [9], see also [14], [17], we use

an interpolation procedure to write

log Z+,o
abs,Λ(s) = log Z+

abs,Λ;0(s)

−
∫ 1

0

∫

X+

(
H+,o

Λ (s′Λ|sΛc)−H0;Λ(s′Λ|sΛc)
)
p+,o

abs,Λ;u(ds′|s) du (4.16)

where H0 is a “reference hamiltonian” and Z+
abs,Λ;0(s) the partition function on X+

Λ

with hamiltonian H0 and b.c. given by s; p+,o
abs,Λ;u(ds′|s) is given by (4.12) with

H+,o
Λ (s′Λ|sΛc) replaced by

H+,o
Λ;u(s′Λ|sΛc) = uH+,o

Λ (s′Λ|sΛc) + (1− u)H+
0;Λ(s′Λ|sΛc) (4.17)

In agreement with the examples of Section 6, we choose H+
0 as a free hamiltonian:

H+
0,Λ(sΛ) =

∑
x∈Λ

vx;H+
0
(sx) (4.18)

vx;H+
0

the translate by x of v0;H+
0
. Writing the energy difference in (4.16) as a sum of

potential terms,

H+,o
Λ (s′Λ|sΛc)−H+

0;Λ(s′Λ|sΛc) =
∑

x∈Zd

Dx,Λ(s′Λ, sΛc) (4.19)

we then need a thermodynamic limit result:

lim
Λ↗Zd

Dx,Λ(s) = Dx(s); lim
Λ↗Zd

p+,o
abs,Λ;u(·|s) = p+

abs;u(·) (4.20)

with the assumption of invariance by translations by multiples of `′: namely any Dx

is the translate by x− y of Dy, if y = x modulo D′ and p+
abs;u is a measure invariant

under translations by multiples of `′. Then

lim
Λ↗Zd

log Z+,o
abs,Λ(s)

|Λ| = P+
abs;0 −

∫ 1

0

∫
{ 1

|C ′
0|

∑

x∈C′0

Dx(s)}p+
abs;u(ds) du := P+

abs (4.21)

where C ′
0 and C0 are the cubes of D′ and D which contain the origin and

P+
abs;0 =

1

|C0| log

∫

η(sC0
;x)=1,x∈C0

∏
x∈C0

{e−v
x;H+

0
(sx)

νx(dsx)} (4.22)

Supposing Λ a bounded, D′ measurable region, we then have

log Z+,o
abs,Λ(s) = P+

abs|Λ| −
∑

x∈Zd

∫ 1

0

( ∫

X+

[Dx,Λ(s′Λ, sΛc)− 1x∈ΛDx(s
′
Λ, sΛc)]p+,o

abs,Λ;u(ds′|s)

+

∫

X+

1x∈ΛDx(s
′
Λ, sΛc)[p+,o

abs,Λ;u(ds′|s)− p+
abs;u(ds′|s)]

)
du (4.23)
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P+
abs|Λ| is the volume term, correctly given by the pressure times the volume; the

remaining terms are the finite volume corrections to the pressure, they grow like the

surface if the convergence in (4.20) is exponential, as we will see in Section 5. Here

is where the theory of Sections 2 and 3 enters into play.

Restricted ensembles. Summarizing the discussion of the previous subsection,

we need to study restricted ensembles on X+ (and X− as well !) with hamiltonian

H+
u = u(h + K+) + (1− u)H+

0 , u ∈ [0, 1], K+ as in (4.15) (4.24)

We denote by p+
abs,Λ;u(·|sΛc) the finite volume Gibbs measures with hamiltonian H+

u ,

noticing that p+
abs,Λ;u(·|s) 6= p+,o

abs,Λ;u(·|s).
The measure p+,o

abs,Λ(ds′|s) (i.e. putting u = 0) is the marginal of µ+
abs,Λ(ds′, Γ|s),

obtained by integrating out the variables Γ. The latter is recovered by the formula

µ+
abs,Λ(ds′, Γ|sΛc) = π+

Λ (Γ; s′Λ)p+,o
abs,Λ(ds′|sΛc) (4.25)

with π+
Λ (Γ; s′) the conditional probability of Γ given s′, given by

π+
Λ (Γ; s′) =

1Γ∈B+
Λ

Ξ+(Λ; s′Λ)
w(Γ; s′Λ), Ξ+(Λ; s′Λ) =

∑

Γ∈B+
Λ

w(Γ; s′Λ) (4.26)

Thus π+
Λ (Γ; s′) depends on s′ only through s′Λ and makes the contours Γ pairwise

independent except for the exclusion rule, their distribution however depends on

“the environment” s′.

Remarks. Take notice that the partition function Z+,o
abs,Λ;u(s) is not the partition

function with hamiltonian H+
u , because H+

Λ (sΛ|sΛc) 6= H+,o
Λ (sΛ|sΛc), as in H+

Λ (sΛ|sΛc)

contribute terms U+
∆(s∆) having ∆ uΛ 6= ∅ without ∆ @ Λ which are not present in

H+,o
Λ (sΛ|sΛc).

In contrast to the original one, the new Hamiltonian H+ has infinite range, but

this is due to K+, which being “small” and with exponential decay is easy to handle.

Other hamiltonians enter into play when studying the finite volume corrections to

the pressure, as we will see next when outlining the Pirogov-Sinai scheme.

There are mainly two reasons to study these abstract contour models and re-

stricted ensembles, but first let us explain the terminology. Abstract underlines the

arbitrariness of the weights, which are not related to the structure of the original

hamiltonian. The whole point however is that there is a special choice of weights

(which are then called the “true weights”) for which the abstract partition function

becomes equal to the original one (in the space SZ
d

with hamiltonian h and suitable

boundary conditions). Thus the first reason to study abstract versions of a system is

because one of these version is the “true one”. But, in order to apply Theorem 4.1
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to such a case, we need the a priori knowledge that the true weights fulfill the Peierls

bounds with large enough CP .

The beauty of the Pirogov-Sinai theory is that this crucial step can be established

by studying only contour models. The theory shows that if the computations done

using fictitious weights with cutoffs, which then automatically satisfy the Peierls

bounds, are “consistent” producing bounds which are below the cutoff values, then

the fictitious weights are equal to the true weights and everything works. All that is

discussed in some more details in the sequel.

Dilute measures and partition functions. Let Λ be a bounded D′ measurable

region; δ`′
in[Λ] = δ`′

out[Λ
c] the union of all cubes of D′ which are in Λ and contiguous to

Λc; s ∈ SZ
d
, η(s, x) = 1, x ∈ Λc. We then introduce the “plus, dilute Gibbs measure”

µ+
Λ(ds′|sΛc) =

1

Z+(Λ|sΛc)
1η(s′,x)=1,x∈δ`′

in[Λ]e
−hΛ(s′|sΛc )νΛ(ds′Λ)δ(sΛc − s′Λc)ds′Λc (4.27)

Z+(Λ|s) =

∫

η(s′ΛsΛc ,x)=1,x∈δ`′
in[Λ]

e−hΛ(s′|sΛc )νΛ(ds′Λ) (4.28)

calling Z+(Λ|s) the “plus dilute partition function”: the “plus” referring to the plus

boundary conditions while “dilute” refers to the constraint on δ`′
in[Λ]. The “minus,

dilute Gibbs measure” µ−Λ(ds′|sΛc) and the “minus dilute partition function” Z−(Λ|s)
are defined analogously.

The true weight of a contour. Given a contour Γ ∈ {Γ}+, call c(Γ) =

sp(Γ) t int−(Γ) and K = {Ci ∈ D : Ci @ sp(Γ), dist(Ci, A
+) ≤ `′/2}, `′ the side

length of the cubes of D′. We suppose that D and D′ have been chosen in such a

way that K is D measurable. Then “the true weight” of the plus contour Γ is

w+(Γ, s) =
µc(Γ)\K

(
{s′ : η(s′; x) = ηΓ(x), x ∈ sp(Γ); Θ(s′; x) = −1, x ∈ A−}

∣∣∣s
)

µc(Γ)\K
(
{s′ : η(s′; x) = 1, x ∈ sp(Γ) t A−}

∣∣∣s
)

(4.29)

where µc(Γ)\K(ds′|s) is the Gibbs measure on SZ
d

with hamiltonian h (in the region

c(Γ) \K and with b.c. given by s). Notice that w+(Γ, s) depends only on sK and in

the sequel we may write w+(Γ, sB) if B A K.

Lemma 4.2. The plus dilute partition function Z+(Λ|s) can be written as

Z+(Λ|s) =
∑

Γ∈B+
Λ

∫

η(s′;x)=1,x∈Λ

w+(Γ, s′Λ)e−hΛ(s′Λ|sΛc)νΛ(ds′Λ) (4.30)
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Proof. Calling ∆Γ = int(Γ) \ A(Γ) we have

Z+(Λ|s) =
∑

Γ∈B+,ext
Λ

∫

η(s′,x)=1,x∈Λ\∆Γ

w+(Γ, s′)e−hΛ\∆Γ
(s′|sΛc )

Z+(∆Γ|s′)νΛ\∆Γ
(ds′)

(4.31)

where B+,ext
Λ denotes the set of all collections of external contours: namely, all collec-

tions Γ ∈ B+
Λ such that sp(Γj) @ ext(Γi) and sp(Γi) @ ext(Γj) for any Γi 6= Γj ∈ Γ.

By iterations of (4.31) we then derive (4.30). Lemma 4.2 is proved.

¤

The above reduction to a partition function of a contour model is however only

apparent, as we do not know if the true weights satisfy the Peierls bounds with a

suitably large constant CP , which is the fundamental property of the contour models.

Since the purpose of the Pirogov Sinai scheme was to prove phase transitions and

phase transitions are consequence of such Peierls bounds, it seems we are back to

the starting point. The way to implement the Pirogov-Sinai scheme, as proposed by

Zahradnik, is to introduce an artificial contour model obtained by replacing in (4.30)

the “true weights” by fictitious ones, which satisfy the Peierls condition:

w±,cf(Γ, s) := min{w±(Γ, s), e−CP NΓ/2} (4.32)

If CP is large enough, we can then apply Theorem 4.1, reduce to a restricted ensemble

and then apply the theory of Sections 2 and 3. However, these are not the true

weights, but only cutoff ones.

Let us go back to (4.29) which can be written as the ratio of a numerator N and

a denominator D, where

N =

∫
e−hA− (sA− )Z−(int−(Γ) \ A− |sA−)Z(sp(Γ) \K ; η = ηΓ|sA− , sK)νA−(dsA−)

(4.33)

D =

∫
e−hA− (sA− )Z+(int−(Γ) \ A− |sA−)Z(sp(Γ) \K ; η = 1|sA− , sK)νA−(dsA−)

(4.34)

where the last partition functions in (4.33) and (4.34) are defined with the constraint

that η = ηΓ and, respectively, η = 1 on sp(Γ) \K.

The model for which the approach works, are such that the ratio of the partition

functions on sp(Γ) \K is bounded by e−CP NΓ with CP large enough. If we knew that

the ratio of the other two partition functions is < e(CP /2)NΓ , then overall w±(Γ, s) <

e−(CP /2)NΓ , i.e. smaller than the cutoff value. Now, the beautiful point of the theory is

that it is sufficient to prove that it is < e(CP /2)NΓ the ratio of the partition functions

defined by (4.30) with the weights replaced by the cutoff weights (4.32). If such
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a ratio is < e(CP /2)NΓ , then automatically the cutoff weights are equal to the true

ones and these satisfy the Peierls bounds and we are thus in business. Thus the

computations which are needed involve the finite volume corrections to the pressure

in a restricted ensemble as outlined earlier.

5. Couplings and decay of correlations

Content of Section 5: • Construction of “successful couplings” for restricted en-

sembles; • and for contour models.

We consider in this section the model of Section 4 with hamiltonians H+
u , u ∈

[0, 1], and suppose that the assumptions in Theorem 4.1 are satisfied uniformly in

the interpolating parameter u. We also suppose that the hamiltonians H+
u satisfy

Assumptions 1–5 with ψ(i, j) = ω0|i − j|, ω0 > 0, and with dx(·, ·) ≥ 1 for all x

(again uniformly in u). Thus the assumptions in Theorem 3.3 are all verified, and

its statements can be applied to the finite volume Gibbs measures p+
abs,Λ;u(ds′|sΛc).

In particular there is a unique thermodynamic limit, denoted by p+
abs;u(ds), which is

the candidate for the limit measure in (4.20)-(4.21). To prove it, we need to extend

the analysis to the measures p+,o
abs,Λ;u(ds′|sΛc). We state a preliminary lemma:

Lemma 5.1. Under the above assumptions, there are c′ and ω′1 positive so that

the following holds. Let Λ, ∆ and ∆′ be bounded, D-measurable sets, ∆ @ ∆′ @ Λ,

s(1) in X+; call p+,o

abs,∆′;Λ,s(1);u
(·|s(2)) the conditional probability of p+,o

abs,Λ;u(·|s(1)) given

that the configuration outside ∆′ agrees with s(2); then, for any u ∈ [0, 1],

R∆

(
p+

abs,∆′;u(·|s(2)); p+,o

abs,∆′;Λ,s(1);u
(·|s(2))

) ≤ c′|∆||∆′|e−ω′1dist(∆′,Λc) (5.1)

Proof. By Proposition A.1,

R∆

(
p+

abs,∆′;u(·|s(2)); p+,o

abs,∆′;Λ,s(1);u
(·|s(2))

)

≤ 2c1 sup
s∆′ :η(s∆′ ;·)=1

∣∣H+
∆′;u(s∆′|s(2)

∆′c)−H+,0
∆′;Λ;u(s∆′|s(2)

∆′c)
∣∣ (5.2)

where c1 = sup
s,s′∈S

d(s, s′) and

H+,0
∆′;Λ;u(s∆′|s(2)

∆′c) = u{h(s∆′|s(2)
∆′c) +

∑

∆′′@Λ,∆′′u∆′ 6=∅
U+

∆′′(s∆′′)}+ (1− u)H+
0 (s∆′)(5.3)
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Then, by (4.11),
∣∣H+

∆′;u(s∆′|s(2)
∆′c)−H+,0

∆′;Λ;u(s∆′|s(2)
∆′c)

∣∣ ≤
∑

∆′′uΛc 6=∅,∆′′u∆′ 6=∅
‖U+

∆′′‖∞

≤ { sup
∆′′uΛc 6=∅,∆′′u∆′ 6=∅

e−(Cp−2b)N∆′′}{
∑

∆′′u∆ 6=∅
e−bN∆′′} (5.4)

The second bracket is bounded proportionally to |∆′| while the first bracket decays

exponentially with an exponent proportional to the distance of ∆′ from Λc. Lemma

5.1 is proved.

¤

Theorem 5.2. Under the same assumptions of Lemma 5.1, there are c and ω1

positive so that for any bounded, D-measurable sets Λ and ∆ and any s(1) ∈ X , there

is a coupling Q of p+,o
abs,Λ(·|s(1)) and p+

abs(·) such that

Q(s∆ 6= s′∆) ≤ c|∆|e−ω1dist(∆,Λc
1) (5.5)

Proof. As in (3.26), for any ε > 0 there is a coupling Qε such that

Qε(s∆ 6= s′∆) ≤ R∆

(
p+,o

abs,Λ;u(·|s(1)), p+
abs;u(·)

)
+ ε (5.6)

For Λ large enough, let ∆′ be D-measurable set such that

dist(∆, ∆′c) ≥ dist(∆, Λc)

3
, dist(∆′, Λc) ≥ dist(∆, Λc)

3

Then, by the analogue of (3.30),

R∆

(
p+,o

abs,Λ;u(·|s(1)), p+
abs;u(·)

) ≤ sup
s(2),s(3)

R∆

(
p+,o

abs,∆′;Λ,s(1);u
(·|s(2)), p+

abs,∆′;u(·|s(3))

≤ sup
s(2),s(3)

R∆

(
p+

abs,∆′;u(·|s(2)), p+
abs,∆′;u(·|s(3))

)

+ sup
s(2)

R∆

(
p+

abs,∆′;u(·|s(2); u), (p+,o

abs,∆′;Λ,s(1);u
(·|s(2))

)

Due to Theorem 3.3 the first term on the r.h.s. is bounded by c|∆|e−(ω0/2)dist(∆,(∆′)c)

while the second one is bounded by the r.h.s. of (5.1). Theorem 5.2 is proved.

¤

Corollary 5.3. Under the same assumptions of Theorem 5.2 and with c and ω1

as in Theorem 5.2, for any bounded, D-measurable sets Λi, i = 1, 2, and ∆ and any

s(i) ∈ X , there is a coupling P of p+,o
abs,Λ;u(·|s(i)) such that

P (s∆ 6= s′∆) ≤ 2c|∆|max{e−ω1dist(∆,Λc
1), e−ω1dist(∆,Λc

2)} (5.7)
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Proof. By the triangular inequality,

R∆

(
p+,o

abs,Λ1;u(·|s(1)), p+,o
abs,Λ2;u(·|s(2)) ≤ R∆

(
p+,o

abs,Λ1;u(·|s(1)), p+
abs;u(·)

)

+R∆

(
p+,o

abs,Λ2;u(·|s(2)), p+
abs;u(·)

)

The terms on the r.h.s. have been bounded in the course of the proof of Theorem

5.2. Then, the same argument used in the proofs of Theorems 3.3 and 5.2 leads to

(5.7). Corollary 5.3 is proved. ¤

As explained in the last part of Section 4, a crucial point in the Pirogov Sinai

scheme is to prove that the second term on the r.h.s. of (4.23) goes like a surface. In

our setup, this is a consequence of Theorem 5.2, as we are going to see. Using the

notation

hΛ(sΛ) =
∑
∆@Λ

U∆;h(s∆), K+
Λ (sΛ) =

∑
∆@Λ

U∆;K+(s∆) (5.8)

(with U∆;K+ the term previously denoted by U+
∆), we write Dx,Λ in (4.19) as

Dx,Λ =
∑

∆3x:∆uΛ6=∅

1

|∆|{U∆;h + U∆;K+1∆@Λ} − vx;H+
0
1x∈Λ (5.9)

Its thermodynamic limit is then

Dx =
∑
∆3x

1

|∆|{U∆;h + U∆;K+} − vx;H+
0

(5.10)

and, recalling (4.23),

log Z+,o
abs,Λ(s)− P+

abs|Λ| = Σ
(1;+)
Λ,s + Σ

(2;+)
Λ,s + Σ

(3;+)
Λ,s (5.11)

where

Σ
(1;+)
Λ,s = −

∑

x/∈Λ

∑

∆3x:∆uΛ6=∅

∫ 1

0

∫

X+

U∆;h

|∆| p+,o
abs,Λ;u(ds′|s)du (5.12)

Σ
(2;+)
Λ,s =

∑
x∈Λ

∑

∆3x:∆uΛc 6=∅

∫ 1

0

∫

X+

U∆;K+

|∆| p+,o
abs,Λ;u(ds′|s)du (5.13)

Σ
(3;+)
Λ,s = −

∑
x∈Λ

∫ 1

0

∫

X+

Dx(s
′
Λ, sΛc)[p+,o

abs,Λ;u(ds′|s)− p+
abs;u(ds′|s)] du (5.14)

Σ
(1;+)
Λ,s clearly grows like the surface of Λ because the interaction has finite range;

Σ
(2;+)
Λ,s is also a surface term because of the exponential decay of U+

∆ , see (4.11);

finally Σ
(3;+)
Λ,s by Theorem 5.2.
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Theorem 5.2 and Corollary 5.3 prove the existence of couplings in the context of

the restricted ensembles. As we will see in Appendix B they can be used to prove

the existence of successful couplings also for contour models.

6. The three basic models

Content of Section 6: • Definition of the ferromagnetic Ising model with Kac

potential, the LMP particle model and its Euclidean quantum version; • Character-

ization of their restricted ensembles; • Statement of main results.

Systems with Kac potentials are the systems for which the above theory has been

devised. As an example, we will consider in the rest of the paper three specific

models where in fact the previous theory can be successfully applied. They are the

Ising model with ferromagnetic Kac interactions, the LMP particles model and the

Euclidean representation of the quantum LMP model (QLMP for brevity). The

scaling parameter of the Kac interaction will be denoted by γ > 0, the range of the

interaction scaling as γ−1.

Single-spin state space. (Denoted in Section 2 by S). In the Ising model

S = {−1, 1}. In the classical LMP model, which is a model of point particles in Rd,

we introduce spins in the following way. We start from a partition D(`γ) of Rd into

cubes C
(`γ)
x , x ∈ Zd, C

(`γ)
x being the cube of the partition D(`γ) which contains the

point `γx. We then associate to any particle configuration a spin configuration s,

where the spin sx is the restriction of the particle configuration to the cube C
(`γ)
x .

Thus S is the space of configurations of point particles in a cube of side `γ, which

will be denoted by (n; q1, .., qn), n ∈ N, (q1, .., qn) a sequence of points in the cube.

`γ > 0 is a free parameter which is chosen suitably small, see (6.10) below, so that

typically in each cube there will be at most one particle and the analysis (when

checking Assumption 1 of Section 3) becomes similar to the Ising case.

Similarly, in QLMP the elements of S are (n, q1, .., qn, ω1, .., ωn) where (n, q1, .., qn)

are as in the classical case, while (ω1, .., ωn) are loops, namely each ωi(·) is a contin-

uous function on [0, β] with values in Rd such that ωi(0) = ωi(β) = 0. We then set

qi(t) = qi + ωi(t) and call it a loop with origin qi.
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Free measure. This is a measure (denoted by ν) on S. In the Ising model

ν(±1) = 1. In LMP, instead, the probability density of ν at (n; q1, .., qn) is

e−`d
γ

n!
1q1,..,qn∈C(`γ )dq1 . . . dqn

while in QLMP (we are considering systems which obey the Maxwell-Boltzmann

statistics), it is

e−`d
γ

n!
1q1,..,qn∈C(`γ )dq1 . . . dqnW (dω1) . . . W (dωn)

where W is the law of a Brownian bridge starting from 0 and coming back, at time

β in 0.

Metric. In Ising d(s, s′) := |s − s′|. In LMP, take two configurations s =

(n; q1, . . . , qn) and s′ = (n′; q′1, . . . , q
′
n′), supposing without loss of generality that

n ≤ n′, then

d(s, s′) := n′ − n +
n∑

i=1

1qi 6=q′
π(i)

{π} the collection of all subsets of cardinality n in {1, .., n′}.
In QLMP, calling s = (n; q1, . . . , qn, ω1, . . . , ωn), s′ = (n′; q′1, . . . , q

′
n′ , ω1, . . . , ωn)

and supposing again n ≤ n′,

d(s, s′) := n′ − n +
n∑

i=1

1(qi,ωi)6=(q′
π(i)

,ω′
π(i)

)

Hamiltonian. The Hamiltonian h = hγ, which depends on the scaling pa-

rameter γ, is translational invariant and with finite range, it incorporates the inverse

temperature β > 0 as a factor. In Ising it is given by a spin-spin interaction of the

form

−βJγ(x, y)σ(x)σ(y) (6.1)

where

Jγ(x, y) = γdJ(γx, γy), γ > 0 (6.2)

with J(r, r′) a symmetric probability kernel, translational invariant and with range 1

(i.e. J(0, r) = 0 for |r| ≥ 1) which is differentiable with bounded derivative (a weaker

assumption as in Appendix A of [1] could be used instead). The range of h is γ−1.
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In the LMP model the energy of a configuration sΛ which corresponds to n par-

ticles in Λ at positions q = (q1, .., qn) is

h(sΛ) =

∫

Rd

β eλ (Jγ ∗ q(r)) dr, Jγ ∗ q(r) =
n∑

i=1

Jγ(r, qi) (6.3)

where

eλ(x) := −λx− x2

2!
+

x4

4!
(6.4)

with λ ∈ R having the meaning of a chemical potential. By writing explicitly the

r.h.s. of (6.3) we can check that h is given by up to four body potentials and that

the range of the interaction is 2γ−1. Since eλ is bounded below, the corresponding

h is strongly stable, i.e. hΛ(s′Λ|sΛc) = h(s′ΛsΛc) − h(sΛc) ≥ −B|sΛ| for s, s′ ∈ SZ see

e.g. Appendix A of [1].

In QLMP,

h(sΛ) =

∫ β

0

∫

Rd

eλ (Jγ ∗ qt(r)) dr dt, qt = (qi + ωi(t), i = 1, .., n) (6.5)

where sΛ represents n loops qi(t) = qi + ωi(t), i = 1, .., n, all qi ∈ Λ, By the same

argument as in the classical case, h is again strongly stable.

Mean field limit. In a Pirogov-Sinai scheme, the plus and minus Gibbs

states when γ > 0 is sufficiently small, are regarded as perturbations of the mean

field ground states, defined as the functions constantly equal to a minimizer of the

mean field free energy density. In the Ising case, the latter is

fβ(m) = −1

2
m2 − 1

β
I(m), I(m) = −1−m

2
log

1−m

2
− 1 + m

2
log

1 + m

2
(6.6)

with m ∈ [−1, 1]. The first term corresponds to the energy (6.1) the second one is

proportional to the entropy, which is the entropy of a Bernoulli measure on {−1, 1}Zd

with average m.

If β > 1, fβ(m) has a double well shape with minimum achieved at ±mβ, where

mβ > 0 solves the mean field equation

mβ = tanh{βmβ} (6.7)

We will therefore restrict in the Ising case to β > 1. We also notice that fβ(m)

is quadratic at the minimizers ±mβ and |d tanh{βm}/dm| at m = ±mβ is < 1, a

contraction property which is behind the validity of Assumptions 1–2 of Section 3.

In both LMP and QLMP the mean field free energy is

fβ,λ(ρ) = eλ(ρ)− 1

β
I(ρ), I(ρ) = −ρ

(
log ρ− 1

)
(6.8)
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ρ ≥ 0 having the meaning of a particles density. For β > (3/2)3/2, there is λβ so that

fβ(ρ) ≡ fβ,λβ
(ρ) is a double well function with equal minima at ρ±β , solutions of

ρ = exp
{− βe′λβ

(ρ)
}

The analysis in [14] (for the classical case) and in [1] (for the quantum case) are

restricted to the case
∣∣∣ d

dρ
exp

{− βe′λβ
(ρ)

}∣∣∣ < 1, which holds for β ∈ ((3/2)3/2, β0),

β0 a value larger than (3/2)3/2, and since we rely here on that analysis we restrict as

well to β ∈ ((3/2)3/2, β0).

Basic partitions. The partitions D and D′ of Section 4 are defined in terms of

two scale lengths,

γ−(1±α), α > 0 (6.9)

α < 1. Both α and γ will be very small, so that 1 ¿ γ−(1−α) ¿ γ−(1+α).

In Ising the sides of the cubes of the partitions D and D′ are chosen equal to `±,γ,

with `±,γ ∈ [γ−(1±α), 2γ−(1±α)]: `+,γ is an integer multiple of `−,γ, to enforce the fact

that D should be finer than D′, as required in Section 4.

In LMP and QLMP we consider three partitions of Rd, D(`γ), D(`−,γ) and D(`+,γ)

each one finer than the successive one. We choose

`γ = γ3d (6.10)

`±,γ ∈ [γ−(1±α), 2γ−(1±α)] and such that `+,γ/`−,γ and `−,γ/`γ are integers. Then the

map of Rd onto Zd, which associates to a point r ∈ Rd the site x ∈ Zd such that

C
(`γ)
x 3 r, transforms the partitions D(`γ), D(`−,γ) and D(`+,γ) into Zd, D and D′.

Note that the length of the sides of the cubes of D and D′ (which are measured

in lattice units) are different than those of D(`−,γ) and D(`+,γ), from which they differ

by a factor `γ.

Phase indicators. In the Ising case

η(s; x) = ±1 ⇔ 1

|C(`−,γ)
x |

∣∣∣
∑

y∈C
(`−,γ )
x

(
sy ∓mβ

)∣∣∣ ≤ γa (6.11)

and = 0 otherwise; in (6.11), C
(`−,γ)
x is the cube of D ≡ D(`−,γ) which contains x,

a > 0 is a parameter such that a ¿ α; mβ is defined in (6.7).

In LMP,

η(s; x) = ±1 ⇔
∣∣∣ 1

|C(`−,γ)
x |

|q u C(`−,γ)
x | ∓ ρ±β

∣∣∣ ≤ γa (6.12)

and = 0 otherwise; in (6.12) q is the particle configuration described by s and |quC|
the number of particles in the cube C.
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In QLMP we first define a variable η′(s; x) by the r.h.s. of (6.12) with q the

configuration made of all particles in s whose loops are “short”, where a loop ω(t) is

short if |ω(t)− ω(0)| < γ−1/2 for 0 ≤ t ≤ β. Then η(s; x) = ±1 if η′(s; x) = ±1 and

moreover all trajectories qi(t) = qi + ωi(t) described by s which pass through C
(`−,γ)
x

are short. In all other cases η(s; x) = 0.

In each one of the three models the variable Θ(s; x) is defined in terms of the

corresponding variable η(s; x) according to what said in Section 4.

Reference hamiltonian. There is a reference hamiltonian in the plus and one

in the minus restricted ensembles, as in Section 4 we restrict to the plus case and

denote it by H+
0 . In Ising

H+
0,Λ(sΛ) = −

∑
x∈Λ

mβsx (6.13)

in LMP and QLMP, denoting by n the number of particles in the configuration sΛ,

H+
0,Λ(sΛ) = e′λβ

(ρ+
β )n (6.14)

In Ising, the mean field free energy for the system uh + (1− u)H+
0 is, recalling (6.6),

−u

2
m2 − (1− u)mβm− 1

β
I(m) (6.15)

for which mβ is again a minimizer (and the only one if u < 1). Analogously, in LMP

and QLMP, we have from (6.8),

ueλβ
(ρ) + (1− u)e′λβ

(ρ+
β )ρ− 1

β
I(ρ) (6.16)

which has again ρ+
β as a minimizer.

Peierls bounds. We suppose that the weights of the contours satisfy the bound

(4.8) with CP as follows. In Ising there is a positive constant c and for all γ small

enough, CP = cγ−(1−α)d+2a. The same expression (but with a different value of c)

holds in LMP for all λ which differ from λβ by ≤ γa′ , 0 < a′ < a. In QLMP,

CP = cγ−1 with λ varying in the same interval as in the classical case.

Remarks. Note that in the three models CP increases to infinity as γ ↘ 0. The

Peierls bounds should be regarded in LMP and QLMP above as assumptions, but as

explained in Section 4, the assumption must be consistent within the Pirogov Sinai

scheme. This happens for a proper choice of the positive constant c. We will not

prove it here, but establish, for the above weights, the validity of Assumptions 1–5,

which is the main ingredient in the proof of self consistency of the Peierls bounds.
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In the Ising case the Pirogov Sinai theory is not needed, due to the spin flip

symmetry of the system. However the introduction of restricted ensembles and the

estimates we prove here are useful when studying the surface corrections to the

pressure for plus and minus dilute partition functions.

Choice of parameters. In all three models, the parameter ξ of Section 3 is

chosen equal to

ξ = 3γ−1 (6.17)

The choice is such that the hamiltonian h does not give contribution to the interaction

at distances larger than ξ (3 above is not optimal).

Let ω0 be the parameter introduced in Theorem 3.3. In Ising,

ω0 = c0γ`−,γ (6.18)

where c0 > 0 is a suitably small constant, independent of γ. The choice (6.18)

has the following motivation: In Section 3, ω0 enters in the definition of the metric

ψ(i, j) = ω0|i − j|. i and j are labels for the cubes Ci and Cj of D, whose sides

in Ising scale as `−,γ. Thus ψ(i, j) = c0γ(`−,γ|i − j|) is proportional by c0γ to the

distance between Ci and Cj; the factor γ says that this distance is measured in terms

of interaction lengths (as γ is the inverse of the interaction range).

In LMP and QLMP,

ω0 = c0γ
`−,γ

`γ

(6.19)

with c0 a suitably small constant. The choice (6.19) has the same motivation as

(6.18), the extra factor `γ comes in because the lattice unit in LMP and QLMP

corresponds to a distance `γ in Rd.

Restricted ensembles. We consider in the sequel the plus restricted ensembles

in the above three models, with λ in LMP and QLMP ranging in [λβ − γa′ , λβ + γa]

and 0 < a′ < a.

Theorem 6.1. There is c0 in (6.18) (for Ising) and (6.19) (for LMP and QLMP)

so that Assumption 1–5 (the latter with ψ(i, j) = ω0|i − j|) are satisfied in the

restricted ensembles of the three models uniformly on the interpolation parameter

u ∈ [0, 1].
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We will prove Theorem 6.1 in the remaining sections, considering only the case

u = 1, as the other cases can be handled in a similar way. We conclude this section

stating the results about phase transitions for the three models, which are already

known in Ising and LMP, while they are proved in [1] with the help of the above

Theorem 6.1.

Theorem 6.2. In the Ising case, for all γ small enough, the plus and minus dilute

Gibbs measures converge in the thermodynamic limit to mutually distinct measures.

The same occurs in LMP and QLMP, provided the chemical potential λ is suitably

chosen (λ = λβ,γ, |λβ − λβ,γ| ≤ cγ1/2).

7. Validity of Assumption 1

In this section we will check the validity Assumption 1 of Section 2 in the three

models of Section 6, deriving explicit bounds for the coefficients.

Ising model. For x ∈ Zd, define

Gx =
{
s ∈ X : s(x) ∈ X}

(7.1)

where s
(x)
z = sz, for z 6= x and s

(x)
x = −sx.

Recall that X = {s : η(s; x) = 1, x ∈ Zd} with η(s; x) as in (6.11). Thus, if for

example s ∈ X is such that

∑

y∈C
(`−,γ )
x \x

sy > (mβ + γa)|C(`−,γ)
x | − 1 (7.2)

with C
(`−,γ)
x the cube of D which contains x, then, necessarily, sx = −1 and s /∈ Gx.

On the other hand, if we replace s by a new configuration s′ obtained by changing a

plus into a minus at some y 6= x in C
(`−,γ)
x , then sx is free in this new configuration,

i.e. s′ ∈ Gx. Therefore, the Vaserstein distance between the conditional probabilities

of sx given s and s′ outside x is not “small”. The first assumption will come by an

almost explicit evaluation of the Vaserstein distance. This is possible because of the

simple nature of the space S, which consists of only two points. Closeness to mean

field, as guaranteed by the configurations being in X , and the stability properties of

the mean field ground states, will then yield (3.2).
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Proposition 7.1. For all γ > 0 small enough, (3.1) holds with

b(x, y) = r[Jγ(x, y) + e−(CP−2b)Nγ(x,y)] (7.3)

where r < 1 and b, CP as in (4.11) with CP = cγ−(1−α)d+2a, c > 0, while

Nγ(x, y) ≥ 1 + integer part of
|x− y|
`+,γ

(7.4)

Thus

lim
γ→0

sup
x∈Zd

∑

y∈C
(`−,γ )
x \x

b(x, y) = 0 (7.5)

and (3.2) holds for all γ small enough.

Proof. Let s and s′ be in Gx, then the conditional probabilities px(·|s) and

px(·|s′) are just the usual Gibbs measures, as the constraint of being in X does not

affect the values of sx. Thus

px(sx = σ|s) =
eβk(s)σ

eβk(s) + e−βk(s)
, k(s) =

∑

z 6=x

Jγ(x, z)sz + h+
x (s)

where

h+
x (s) =

1

2

∑
∆3x

[U∆(1, s∆\x)− U∆(−1, s∆\x)] (7.6)

(σ, s∆\x) being the configuration in {−1, 1}∆ equal to σ at x and which agrees with

s on the other sites, U∆ being as in (4.11). Indeed, the interaction energy of σ with

all the other spins due to h+ is h+
x (σ|s) =

∑
∆3x

U∆(σ, s∆\x). Since

h+
x (σ|s) =

1 + σ

2
h+

x (1|s) +
1− σ

2
h+

x (−1|s) = σh+
x (s) + const

where the last term is independent of σ and does not contribute to the conditional

Gibbs measure, hence (7.6).

We will next show that for s and s′ both in Gx,

R
(
px(·|s), px(·|s′)

)
= | tanh{βk(s)} − tanh{βk(s′)}| (7.7)

The Vaserstein distance is attained by the joint representation which has the maximal

mass on the diagonal, namely min{px(·|s), px(·|s′)} and is triangular, (for the first

statement we have used that d is also the variational distance and for the second

statement that sx takes only two values). On the other hand the integral of d(sx, s
′
x) =

|sx − s′x| over a triangular joint representation is the same as the absolute value of

the integral of (sx − s′x) (without modulus), hence (7.7).
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Calling u = min{|k(s)|, |k(s′|}, we have

| tanh{βk(s)} − tanh{βk(s′)}| ≤ β

cosh2(βu)

( ∑

y 6=x

Jγ(x, y)|sy − s′y|+ |h+
x (s)− h+

x (s′)|)

(7.8)

To get the Lipschitz norm of h+
x (s), we write, recalling (7.6),

|h+
x (s)−h+

x (s′)| ≤ 1

2

∑
∆3x

(
|U∆(1, s∆\x)−U∆(1, s′∆\x)|+|U∆(−1, s∆\x)−U∆(−1, s′∆\x)|

)

and

|U∆(±1, s∆\x)− U∆(±1, s′∆\x)| ≤ ‖U∆(·)‖∞
∑

y∈∆\x
|sy − s′y|

Hence

|h+
x (s)− h+

x (s′)| ≤
∑

y 6=x

{
∑

∆3x,y

‖U∆(·)‖∞}|sy − s′y|

From (7.8) we then get (3.1) with

b(x, y) ≤ β

cosh2(βu)

(
Jγ(x, y) +

∑
∆3x,y

‖U∆(·)‖∞
)

(7.9)

To bound the fraction on the r.h.s. we recall that u = min{|k(s)|, |k(s′|} and that

k(s) =
∑

z 6=x

Jγ(x, z)sz + h+
x (s)

so that

|k(s)−mβ| ≤ |
∑

z 6=x

Jγ(x, z)(sz −mβ)|+
∑
∆3x

‖U∆(·)‖∞

By the assumptions on Jγ (see Section 6) and (7.2), the first term is bounded by

c(γ`−,γ + γa + `d
−,γ), c a suitable constant. The first term comes from the variations

of Jγ(x, z) when z varies in a cube of D(`−,γ), the second one by (6.11). Using (4.11)
∑
∆3x

‖U∆(·)‖∞ ≤
∑
∆3x

e−(Cp−b)N∆ ≤ e−(Cp−2b) (7.10)

for b > 0 so large that
∑
∆3x

e−bN∆ ≤ 1. Recall the condition for b in Theorem 4.1;

CP = cγ−(1−α)d+2a. Thus

lim
γ→0

sup
s∈Gx

|k(s)−mβ| = 0

so that, given any ε > 0 there is γε > 0 and for γ ≤ γε we get from (7.9)

b(x, y) ≤ [
β

cosh2(βmβ)
+ ε]

(
Jγ(x, y) +

∑
∆3x,y

‖U∆(·)‖∞
)

(7.11)

The square bracket is < 1 for ε > 0 small enough, because

β

cosh2(βmβ)
< 1



36 F. BAFFIONI, T. KUNA, I. MEROLA, AND E. PRESUTTI

which is the mean field condition of stability of the solution mβ (at β > 1). It thus

only remains to bound the last term in (7.11). We write
∑

∆3x,y

‖U∆(·)‖∞ ≤
∑

∆3x,y

e−(Cp−b)N∆ ≤ e−(Cp−2b)Nγ(x,y)
∑
∆3x

e−bN∆ (7.12)

Hence (7.3) and (7.5). The Proposition is proved. ¤

Classical LMP model. In LMP, the single spin has much more structure than

the simple, ±1 valued Ising spin, being a whole configuration of particles in a cube.

However by choosing small enough the side `γ of the cubes of the partition D(`γ), we

will see that with large probability there will be at most one particle in the cube,

and the analysis will then become similar to the previous one for the Ising case and,

in the end, based on stability properties of the mean field solution.

We will use the following notation. The spin sx, x ∈ Zd, represents the collection

of particles in the cube Cγ,x ofD(`γ) of Rd, the choice of the latter such that `γx ∈ Cγ,x.

We will also denote by n(sx) the number of particles in the configuration sx. Given

x ∈ Zd, let C @ Zd be the cube of D (seen as made up from cubes of D(`γ), such that

tx∈CCγ,x is a cube of side length `−,γ) which contains x and |C| its cardinality, we

then define

Gx =
{

s ∈ X : −γa ≤ |C|−1
∑

y∈C\x
n(sy)− ρ+

β ≤ γa − 1

|C|
}

(7.13)

so that Gx is the set of configurations s ∈ X which remain in X if we replace sx by

s′x with n(s′x) = 0, 1.

Lemma 7.2. Let d(s, s′) =
∑

z

d(sz, s
′
z) and

r̂(x, y) := sup
s,s′∈Gx,d(s,s′)=d(sy ,s′y)=1

R
(
px(·|s), px(·|s′)

)
(7.14)

then

r̂(x, y) ≤ b(x, y) ⇐⇒ (3.1) holds (7.15)

Proof. If (3.1) holds then for s and s′ as in (7.14),

R
(
px(·|s), px(·|s′)

) ≤ b(x, y)

hence r̂(x, y) ≤ b(x, y). To prove the reverse thesis, by the triangular inequality, it is

enough to show that there is a sequence s(i) of elements in Gx so that
∑

y 6=x

d(s(i)
y , s(i+1)

y ) = 1 (7.16)
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and such that, for any y 6= x,

∑
i

d(s(i)
y , s(i+1)

y ) = d(sy, s
′
y) (7.17)

The existence of s(i) can be proved for one cube Cy,γ after another and we just

explain for one of them.

Let then sy, s′y respectively, be described by the configurations qt q′ and qt q′′ in
Cy,γ. Thus, the configuration q is in common to both, while the other particles are

in different positions, respectively q′ and q′′. We are going to change sy with at each

step adding or removing a particle and in such a way that at the end we get s′y: the

number of steps must be equal to n(q′) + n(q′′)− n(q′) ∧ n(q′′) = d(sy, s
′
y) (n(q) the

number of particles in q). If n(q′) > n(q′′), we change successively the configuration q′

by removing one particle at a time, till the number of particles left is equal to n(q′′).
Since initially both configurations were in Gx, the new configuration at any of the

above steps is still in Gx, by (7.13). If instead n(q′) < n(q′′) we add particles, putting

them at the positions of particles in q′′, till we reach parity. Thus it remains to define

the modifications when the number of particles are equal. Then simultaneously we

add a particle to the first configuration q t q′ in a position of those of the second

which are not matched, i.e. q′′, and we subtract a particle among the mismatched

of the first configuration, i.e. q′. This leads again to an equal number of particles in

the two configurations and one less to match. Thus the distance between this two

resulting configurations is 1 and they both are in Gx in agreement with (7.17). By

iterating the procedure we then prove (7.16)-(7.17).

R
(
px(·|s), px(·|s′)

) ≤
∑

y

∑
i

R
(
px(·|s(i)

y ), px(·|s(i+1)
y )

) ≤
∑

i

r̂(x, yi)

≤
∑

y 6=x

∑
i

b(x, y)d(s(i)
y , s(i+1)

y ) =
∑

y 6=x

b(x, y)d(sy, s
′
y)

where yi denotes the indey y of the cube Cγ,x at which s
(1)
y and s

(2)
y disagree. (3.1) is

proved and hence Lemma 7.2. ¤

We might have used the analogue of Lemma 7.2 also in the proof of Proposition

7.1. We state in fact without proofs the following result:

Lemma 7.3. Let s and s′ be two configurations of the Ising model which are both

in X and which differ in a finite set Y . Then d(s, s′) = 2|Y | and there are |Y | + 1

configurations s(i), i = 0, .., |Y |, all in X with s(0) = s and s(|Y |) = s′ such that, for

any i = 1, .., |Y |, s(i+1) differs from s(i) by a spin flip in a site in Y .
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We will next reduce to n(sx) ≤ 1. Let s ∈ Gx, q̄ the collection of all the particles

of sy, y 6= x, and

Vs,x(r) =

∫ (
eλβ,γ

(
(Jγ ∗ q̄)(r′) + Jγ(r

′, r)
)− eλβ,γ

(
Jγ ∗ q̄(r′)

))
dr′, r ∈ Cγ,x (7.18)

Let then mx;≤1(dsx|s) be the Gibbs probability on S, supported by n(sx) ≤ 1, and

defined by

mx;≤1(dsx|s) =
1

Z(x, s)

(
1n(sx)=0 + e−βVs,x(`γx)1n(sx)=1dr

)
(7.19)

with r ∈ Cγ,x the position of the particle of sx when n(sx) = 1, and

Z(x, s) = 1 + e−βVs,x(`γx)`d
γ (7.20)

Note that instead of the real interaction of a particle moving in Cγ,x we just use the

potential at the center of the cube Cγ,x.

Lemma 7.4. For all γ > 0 small enough, x ∈ Zd and s ∈ Gx,

R
(
px(·|s),mx;≤1(·|s)

) ≤ cγ`d+1
γ (7.21)

with c > 0 independent of γ and s.

Proof. By the triangular inequality,

R
(
px(·|s), mx;≤1(·|s)

) ≤ R
(
px(·|s), px(·|s;≤ 1)

)
+ R

(
px(·|s;≤ 1),mx;≤1(·|s)

)
(7.22)

where px(·|s;≤ 1) is px(·|s) conditioned on n(sx) ≤ 1.

For the first term on the r.h.s. we use (A.3) bounding d(sx, s
′
x) ≤ n(sx) + n(s′x),

R
(
px(·|s), px(·|s;≤ 1)

) ≤ 2

∫

n(sx)≥2

n(sx) px(dsx|s)

Denoting by q̄ the collection of all the particles of sy, y 6= x, and by q those of sx, the

conditional energy in px(dsx|s) is

H+(sx|s) = K+(sx|s) +

∫ (
eλβ,γ

(Jγ ∗ q̄(r) + Jγ ∗ q(r))− eλβ,γ
(Jγ ∗ q̄(r))

)
dr

As in (7.10) using (4.11),

|K+(sx|s)| ≤
∑
∆3x

e−(Cp−b)N∆ ≤ e−(Cp−2b) (7.23)

Then, by the strong stability of the hamiltonian h, (see Section 6) there is B > 0 so

that

H+(sx|s) ≥ −Bn(sx)
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Since
∫

n(sx)≥2

n(sx) px(dsx|s) ≤
∑
n≥2

(`d
γe

βB)n

n!
≤ c`2d

γ

we obtain the following bound for the first term on the r.h.s. of (7.22):

R
(
px(·|s), px(·|s;≤ 1)

) ≤ 2c`2d
γ (7.24)

We will next bound the second term on the r.h.s. of (7.22). The two measures

px(·|s;≤ 1) and mx;≤1(·|s) are two measures supported on n(sx) ≤ 1.

px(·|s ≤ 1) =
1

Z̃(x, s)

[
e−K+(sx|s)1n(sx)=0 + e−K+(sx|s)+Vs,x(r)1n(sx)=1

]
(7.25)

where r denotes the position of the particle in the configuration sx when n(sx) = 1

and Vs,x(r) is defined in (7.18). The conditional energy of mx;≤1(·|s) is instead 0

when n(sx) = 0 and otherwise equal to Vs,x(`γx), independently of r.

We apply Proposition A.1 with h the energy of mx;≤1(·|s) and v the difference

between the energy of px(·|s;≤ 1) and mx;≤1(·|s). With the notation of Proposition

A.1, we then have as before that, for a suitable constant c,

µt

(
n(sx) = 1

) ≤ c`d
γ, 0 ≤ t ≤ 1

and by (A.2) and (7.23),

R
(
px(·|s;≤ 1),mx;≤1(·|s)

) ≤ 2c`d
γ

(
e−(Cp−2b) + sup

r∈Cx,γ

|Vs,x(r)− Vs,x(`γx)|)

By the assumptions on Jγ (see Section 6), |Vs,x(r) − Vs,x(`γx)| ≤ cγ`γ hence (7.21),

recalling Cp = cγ−(1−α)d+2a. Lemma 7.4 is proved. ¤

By the triangular inequality, Lemma 7.4 reduces the estimate of (3.1) to that of

measures of the kind mx,≤1(dsx|s), for which we proceed as in the Ising case.

Proposition 7.5. For all γ > 0 small enough, (3.1) holds with

b(x, y) ≤ δ`d
γJ

2
γ (`γx, `γy) + c`d

γγ
2d, δ < 1 (7.26)

where J2
γ = Jγ ∗ Jγ and c > 0 independent of γ.

Proof. By Lemma 7.2 we only need to prove (7.26), with b(x, y) as in (7.14). By

Lemma 7.4 and the triangular inequality, we then have

b(x, y) ≤ sup
s,s′∈Gx:d(s,s′)=d(sy ,s′y)=1

R
(
mx;≤1(·|s),mx;≤1(·|s′)

)
+ 2cγ`d+1

γ (7.27)
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Conditioned on n(sx), mx;≤1(·|s) and mx;≤1(·|s′) become equal, then, by Proposition

A.3, their Vaserstein distance is the same as that of their marginals on n(sx)

1

Z(x, s)

(
1n(sx)=0 + e−βVs,x(`γx)`d

γ1n(sx)=1

)
(7.28)

Since n(sx) = 0, 1, the same argument used for Ising tells us that the Vaserstein

distance is equal to the absolute value of the difference of the expectations of n(sx).

Let us then suppose that q̄ are the particles in all sz, z 6= x, of the configuration s

and that s′ is obtained by a adding a particle at r∗, with r∗ ∈ Cy,γ. We then have,

by a Taylor expansion to third order

Vs,x(`γx) =

∫
e′λβ,γ

(
Jγ ∗ q̄(r)

)
Jγ(`γx, r) +

1

2
e′′λβ,γ

(
Jγ ∗ q̄(r)

)
Jγ(`γx, r)2 + L(r) dr

Vs′,x(`γx) =

∫
e′λβ,γ

(
Jγ ∗ q̄(r)

)
Jγ(`γx, r)

+
1

2
e′′λβ,γ

(
Jγ ∗ q̄(r)

){Jγ(`γx, r)2 + 2Jγ(`γx, r)Jγ(r
∗, r)}+ L̃(r) dr

with L and L′ third order remainders:

|L(r)|+ |L̃(r)| ≤ c
(
Jγ(r

∗, r) + Jγ(`γx, r)
)3

Then, calling Kγ = β

∫
e′λγ,β

(
Jγ ∗ q̄(r)

)
Jγ(`γx, r)dr,

R
(
mx;≤1(·|s),mx;≤1(·|s′)

)
= `d

γ

∣∣∣e
−βVs,x(`γx)

Z(x, s)
− e−βVs′,x(`γx)

Z(x, s′)

∣∣∣

≤ `d
γe
−Kγ

(1 + `d
γe
−Kγ )

(∣∣∣
∫

e′′λβ,γ

(
Jγ ∗ q̄(r)

)
Jγ(`γx, r)Jγ(r

∗, r)dr
∣∣∣ + cγ2d

)

As γ → 0 and recalling that |Jγ ∗ q̄ − ρ+
β | ≤ c′γa, cf. Lemma D.1 in [1], and that for

β < β0, −1 <
d

dρ
e
−βe′λβ

(ρ)
∣∣∣
ρ=ρ+

β

< 1,

lim
γ→0

e−Kγ |e′′λβ,γ

(
Jγ ∗ q̄(r)

)| = e
−βe′λβ

(ρ+
β )|e′′λβ

(ρ+
β )| < 1

we finally get, recalling that r∗ differs from `γy at most by `γ,

R
(
mx;≤1(·|s),mx;≤1(·|s′)

) ≤ δ`d
γJ

2
γ (`γx, `γy) + c`d

γ(`γγ
d+1 + γ2d), δ < 1

where J2
γ = Jγ ∗ Jγ. Proposition 7.5 is proved. ¤

Quantum LMP model. The same argument used in the classical case applies

to the quantum case as well, showing that we can reduce to a measure with at most

one particle in Cx,γ. However, we can only localize, with such an accuracy, the
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initial position r of the particle, while the conditional energy depends on the loop

originating at r and it is given by

∫ β

0

Vs,x(r + ω(t)) dt, see (7.18) for notation. With

large probability, the trajectory r + ω(t) starting at r ∈ Cx,γ will spend most of its

time outside the small cube Cx,γ and, despite having localized the initial position,

the particle is effectively delocalized. This is a purely quantum effect, not present in

the classical case and which requires a new analysis.

We define Gx as in (7.13), Gx being therefore independent of the loops in sx and,

exactly as in the classical case, we get to (7.29) below:

Proposition 7.6. In the quantum LMP model, (3.1) holds using CP defined as

before Theorem 6.1 and

b(x, y) = sup
s,s′∈Gx:d(s,s′)=d(sy ,s′y)=1

R
(
px(·|s;≤ 1), px(·|s′;≤ 1)

)
+ 2c`2d

γ (7.29)

Moreover

b(x, y) ≤ δ`d
γJ

2(`γx, `γy) + c`d
γγ

d+1/2, δ < 1 (7.30)

Proof. As already mentioned (7.29) is proved just as (7.24) in the classical case.

In Lemma 7.4 besides that, we also approximated the interaction with a constant

one, yielding in this model to the too large error `d
γγ

1/2. However, the problem can

be reduced to the classical LMP model in the following manner.

Let s and s′ be both in Gx, call (q̄, ω̄) and (q̄′, ω̄′) the initial positions and loops of

the particles in {sz, z 6= x} and {s′z, z 6= x}. By (7.29), we need to consider the case

where (q̄′, ω̄′) is obtained from (q̄, ω̄) by adding a particle (r∗, ω∗), with r∗ ∈ Cy,γ.

Call q̄(t) = q̄ + ω̄(t), q∗(t) = r∗ + ω∗(t) and q(t) = r + ω(t) the loop of a particle

starting at r ∈ Cx,γ. Shorthand aγ(r, t) := (Jγ ∗ q̄(t))(r). We then define

Ux,q̄(x, ω) =

∫ β

0

∫

Rd

e′λβ,γ
(aγ(r, t))Jγ(r, `γx + ω(t)) +

e′′λβ,γ
(aγ(r, t))

2
Jγ(r, `γx)2drdt

(7.31)

Ux,q̄′(x, ω) = Ux,q̄(x, ω) +

∫ β

0

∫

Rd

e′′λβ,γ
(aγ(r, t))Jγ(r, q

∗(t))Jγ(r, `γx)drdt (7.32)

The r.h.s. of (7.31) and (7.32) collect terms of the Taylor expansion of
∫ β

0

Vx,q̄(t)(x + ω(t))dt

and its analogue with s′. Indeed we have,
∫ β

0

∣∣∣Vx,q̄(t)(r + ω(t))− Ux,q̄(x, ω)
∣∣∣dt ≤ c(γd+1/2 + `γγ) (7.33)
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There are three errors to be considered. The first error comes from the third order

remainder, the second comes from having replaced in the second order, Jγ(r, r
′+ω(t))2

r ∈ Cγ,x, by the term Jγ(r, `γx)2, present in (7.31), and the third error comes from

replacing r by `γx in the first term of (7.31). The first error, due to the third

order terms, is proportional to γ2d. The second error is bounded proportionally to

γdγγ−1/2: γd and γ come from the scaling: Jγ(0, r) = γdJ(0, γr) while γ−1/2 bounds

the excursion |ω(t)|, 0 ≤ t ≤ β. The third error is bounded proportionally to `γγ, here

`γ estimates the uncertainty of r ∈ Cγ,x and γ comes from the scaling. Altogether

(7.33) holds. An analogous computation shows that also
∫ β

0

∣∣∣Vx,q̄(t)+q∗(t)(r + ω(t))− Ux,q̄(t)+q∗(t)(x, ω)
∣∣∣dt ≤ c(γd+1/2 + `γγ) (7.34)

Analogously to (7.19), we then define mx;≤1(dsx|s) as the Gibbs probability on S,

supported by n(sx) ≤ 1, and defined by

mx;≤1(dsx|s) =
1

Z(x, s)

(
1n(sx)=0 + e−Ux,s(x,ω)1|ω(·)|≤γ−1/2W (dω)1n(sx)=1dr

)
(7.35)

with r ∈ Cγ,x the position of the particle of sx when n(sx) = 1, and

Z(x, s) = 1 + `d
γ

∫

|ω(·)|≤γ−1/2

e−Ux,s(x,ω)W (dω) (7.36)

Similarly, we define mx;≤1(dsx|s′) and Z(x, s′) using Ux,s′(x, ω) instead of Ux,s(x, ω).

Using Proposition A.1 we then get from (7.29)

r(x, y) = sup
s,s′∈Gx:d(s,s′)=d(sy ,s′y)=1

R
(
mx;≤1(·|s),mx;≤1(·|s′)

)
+2c(`2d

γ +`d
γ(γ

d+1/2+`γγ))

(7.37)

We regard mx;≤1(·|s) and mx;≤1(·|s′) as probabilities on the space X = {0, (r, ω)}
with 0 the state with no particles, (r, ω) the one particles states, with r ∈ Cx,γ and ω

a loop such that |ω(t)| ≤ γ−1/2. The important features of the two measures that we

have to compare is uniformity in r and that the conditional distributions of ω, given

that n = 1 and the initial position r are identical. Indeed we can rewrite (7.31)-(7.32)

as

Ux,s(x, ω) = u(ω) + b, Ux,s′(x, ω) = u(ω) + b′ (7.38)

where

u(ω) =

∫ β

0

∫

Rd

e′λβ,γ
(aγ(r, t))Jγ(r, `γx + ω(t))drdt (7.39)

b =

∫ β

0

∫

Rd

e′′λβ,γ
(aγ(r, t))

2
Jγ(r, `γx)2drdt (7.40)

b′ = b +

∫ β

0

∫

Rd

e′′λβ,γ
(aγ(r, t))Jγ(r, q

∗(t))Jγ(r, `γx)drdt (7.41)
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Thus, calling

C =

∫

|ω(·)|≤γ−1/2

e−u(ω)W (dω) (7.42)

the marginal distributions of mx;≤1(·|s) and mx;≤1(·|s′) on Xclass = {0}⊕{r ∈ Cx,(`γ)}
are for n = 1

mclass
x;≤1(dr|s) = Z−1Ce−b1r∈Cx,γdr (7.43)

and for n = 0 we define mclass
x;≤1(0|s) = Z−1 with Z = 1 + Ce−b`d

γ .

mclass
x;≤1(·|s′) is defined analogously with b replaced by b′. Finally the conditional

probabilities of mclass
x;≤1(·|s) and mclass

x;≤1(·|s′) given the state with a particle in r are the

same and equal to

C−1e−u(ω)1|ω(·)|≤γ−1/2W (dω) (7.44)

The distances in X and Xclass defined as in Section 6 satisfy the condition (A.4).

Then, by Proposition A.3,

R
(
p+

x (·|s;≤ 1), p+
x (·|s′;≤ 1)

)
= R1

(
mclass

x;≤1(·|s),mclass
x;≤1(·|s′)

)
(7.45)

where R1 is the Vaserstein distance in Xclass. The computation of R1 is exactly as in

the classical case, and in this way we derive (7.30). Proposition 7.6 is proved. ¤

8. Validity of Assumption 2

In this section we will prove the validity of Assumption 2 of Section 3 in the three

models of Section 6. The proofs are very similar to each other, the starting point,

in all of them, being a bound on the probability of the event “not being in Gx” in

terms of a variational problem involving a non local free energy functional. The link

with a variational problem, goes back to the original works of Kac, Uhlenbeck and

Hemmer, [11], and, in particular, to the analysis of Lebowitz and Penrose, [15]. The

variational problem itself is then studied by exploiting the stability properties of the

mean field ground states.

Ising model. We will prove here that there is a constant c > 0 so that for all

γ small enough and for all x ∈ Zd (calling below C(x) the cube of D(`−,γ) which

contains x),

sup
s∈X

pC(x)(G
c
x|s) ≤ e−cγ2a`d

−,γ (8.1)

Since γ2a`d
−,γ = γ−d+2a+2αd and recalling that 0 < a ¿ α ¿ 1. Using that |tx| ≤ 2,

(8.1) proves Assumption 2 of Section 3 for γ small enough with ε = 4e−cγ2a`d
−,γ/2.
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Recalling the definition (7.1) of Gx, for any ζ > 0 there is γ(ζ) > 0 and for all

γ < γ(ζ),

Gc
x @

{
s ∈ X :

∣∣∣ 1

|C|
∑
y∈C

(sy −mβ)
∣∣∣ > (1− ζ)γa

}
(8.2)

where C = C(x) is the cube of D(`−,γ) which contains x.

The non local free energy functional we referred to in the beginning of this section

is the following. Let D = γC, C as above, (thus D is a cube of side `− = γα, α > 0).

For mD ∈ L∞(D, [−1, 1]) and mDc ∈ L∞(Dc, [−1, 1]), we then set

FD(mD|mDc) = −1

2

∫

D

∫

D

J(r, r′)mD(r)mD(r′)drdr′ − 1

β

∫

D

S(mD(r))

−
∫

D

∫

Dc

J(r, r′)mD(r)mDc(r′)drdr′ (8.3)

S(m) = −1−m

2
log

1−m

2
− 1 + m

2
log

1 + m

2
(8.4)

Associating to each x = (x1, .., xd) ∈ Zd the cube {r = (r1, .., rd) ∈ Rd : xi ≤ ri <

xi+1} the partition D(γ−1) becomes a partition of Rd, which, by an abuse of notation,

we denote by the same symbol. Let

X :=
{

m ∈ L∞(Rd, [−1, 1]) :
∣∣
∫
−
D(r)

m(r′)dr′ −mβ

∣∣ ≤ γa, r ∈ Rd
}

(8.5)

where D(r) is the cube of γD(`−,γ) which contains r and
∫
−
A

m(r)dr :=
1

|A|
∫

A

m(r)dr

We then call XΛ the above expression (8.5) when the constrain is imposed on Λ, with

Λ @ Rd, a γD(`−,γ)-measurable set.

Proposition 8.1. There is c > 0 so that, for all γ small enough, all x and calling

C(x) the cube of D(`−,γ) which contains x, and D = γC(x)

sup
s∈X

log pC(x)(G
c
x|s) ≤ −γ−d inf

mDc∈XDc

(
inf

mD∈XD,∣∣∣
∫−
D

m(r)dr−mβ

∣∣∣>(1−ζ)γa

FD(mD|mDc)

− inf
mD∈XD

FD(mD|mDc)

)
+ cγ1/2`d

−,γ (8.6)

Proof. The proof is just as in Lebowitz and Penrose, [15]. We partition the space

into cubes of side proportional to γ−1/2 choosing such a partition, called D(γ−1/2), finer

than D(`−,γ). We then approximate the spin-spin interaction to make it constant on
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any of the cubes of D(γ−1/2). The expression we get for the logarithmic partition

function is then the free energy functional (8.3) while the error is proportional to

the volume of the region involved times the error due to the piecewise constant

approximation of the interaction, and it is given by the last term in (8.6). In this

way Proposition 8.1 is proved.

The usefulness of (8.6) rests on the fact that the first term on the r.h.s. of (8.6)

is so large to kill the error, i.e. the last term in (8.6). We approximate FD(mD|mDc)

by F 0
D(mD|mDc) where

F 0
D(mD|mDc) =

∫

D

−h(r; mDc)mD(r)− 1

β
S(mD(r)) dr

h(r; mDc) =

∫

Dc

J(r, r′)mDc(r′)dr′ (8.7)

getting, for a suitable constant c′ > 0,∣∣∣FD(mD|mDc)− F 0
D(mD|mDc)

∣∣∣ ≤ c′|D|2 = c′γ2αd (8.8)

Indeed F 0
D(mD|mDc) is FD(mD|mDc) without the self interaction energy, i.e. the first

term on the r.h.s. of (8.3) which is bounded proportionally to |D|2.
Being a convex functional on L∞(D, [−1, 1]), F 0

D(mD|mDc) has a unique minimizer

given by

m̄D(r) = tanh{βh(r; mDc)} (8.9)

We can write the difference F 0
D(mD|mDc)− F 0

D(m̄D|mDc) =

∫

D

ψ(mD(r), m̄D(r)) dr,

where, shorthanding m and m̄ for mD(r) and m̄D(r),

ψ(m, m̄) =
1− m̄

2β

(
{1−m

1− m̄
log

1−m

1− m̄
} − 1−m

1− m̄
+ 1

)

+
1 + m̄

2β

(
{1 + m

1 + m̄
log

1 + m

1 + m̄
} − 1 + m

1 + m̄
+ 1

)

Since

x log x− x + 1 ≥ (√
x− 1

)2

F 0
D(mD|mDc)− F 0

D(m̄D|mDc) ≥ 1

2β

∫

D

(√
1−mD(r)−

√
1− m̄D(r)

)2

+
(√

1 + mD(r)−
√

1 + m̄D(r)
)2

dr (8.10)

Writing |√a−
√

b| ≥ |a− b|/(√a +
√

b) ≥ |a− b|/2√2, for a and b in (0, 2], we get

F 0
D(mD|mDc)− F 0

D(m̄D|mDc) ≥ 1

8β

∫

D

(
mD(r)− m̄D(r)

)2

dr (8.11)
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We postpone the proof that there is ε > 0 so that, for all γ > 0 small enough,

|m̄D(r)−mβ| ≤ (1− ε)γa (8.12)

We then get from (8.11), by Cauchy-Schwartz,

F 0
D(mD|mDc)− F 0

D(m̄D|mDc) ≥ 1

8β
|D|(ε− ζ)2γ2a (8.13)

so that, going back to (8.6) and recalling that γ−d|D| = `d
−,γ,

pC(x)(Gx|s) ≤ exp
{
−

((ε− ζ)2

8β
γ2a − 2c′γαd − cγ1/2

)
`d
−,γ

}
(8.14)

Proof of (8.12)

Calling D(r) the cube of D(`−) which contains r, and

J (`−)(r, r′) :=

∫
−
D(r′)

J(r, r′′)dr′′

for γ, and hence `− = γ`−,γ = γα, small enough,

∣∣J(r, r′)− J (`−)(r, r′)
∣∣ ≤ c`−1|r−r′|≤2, c := d‖∇J‖∞ < ∞ (8.15)

d the space dimensions. Then, for any m ∈ L∞(Rd, [−1, 1]),
∣∣J ∗m− J (`−) ∗m

∣∣ ≤ 2dc`−

Letting m(r) = mD(r)1r∈D + mDc(r)1r∈Dc

|J (`−) ∗mDc − J (`−) ∗ u| ≤ c′`d
−, u(r) =

∫
−
D(r)

m(r′)dr′

then, recalling from (8.7) that h(r) ≡ h(r; mDc) = J ∗mDc(r).
∣∣h− J (`−) ∗ u

∣∣ ≤ 2dc`− + c′`d
−

On the other hand, since m ∈ X , |u(r)−mβ| ≤ γa,
∣∣h(r)−mβ

∣∣ ≤ γa + 2dc`− + c′`d
−, r ∈ D (8.16)

Since
d

ds
tanh{βs}

∣∣∣
s=mβ

< 1

there are b ∈ (0, 1) and ζ∗ > 0 so that d tanh{βs}/ds < b for |s−mβ| ≤ ζ∗, hence
∣∣ tanh{βs} −mβ

∣∣ ≤ b
∣∣s−mβ

∣∣, for |s−mβ| ≤ ζ∗ (8.17)

For γ small enough, by (8.16)
∣∣ tanh{βh(r)} −mβ

∣∣ ≤ b(γa + 2dc`− + c′`d
−), r ∈ D
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On the other hand, since `− = γα, α > a,

b(γa + 2dc`− + c′`d
−) ≤ γa

(
1− [(1− b)− b2dcγα−a − bc′γαd−a]

)
≤ γa(1− ε)

with ε < (1− a) and provided γ is small enough. (8.12) is proved. ¤

Classical LMP model. We will prove that (8.1) holds for this case as well.

Then Assumption 2 of Section 3 holds for small γ for

ε = 2`d
−,γ(ρ

+
β + γa)e−cγ2a`d

−,γ/2 (8.18)

using that in this case |tx| ≤ d(tx, ∅) ≤ (ρ+
β + γa)|C(`−,γ)|. ∅ denotes the state with

no particles. The analogue of (8.2) is

Gc
x @

{
s ∈ X :

∣∣∣ 1

|C|
∑
y∈C

(n(sy)− ρ+
β )

∣∣∣ > (1− ζ)γa
}

(8.19)

The non local free energy functional is here

FD(ρD|ρDc) =

∫

Rd

eλβ,γ
(J ∗ ρ(r))− eλβ,γ

(J ∗ ρDc(r)) dr − 1

β

∫

D

S(ρD(r))dr(8.20)

where ρD ∈ L∞(D,R+), ρDc ∈ L∞(Dc,R+), ρ(r) = ρD(r)1r∈D + ρDc(r)1r∈Dc and

S(ρ) = −ρ
(
log ρ− 1

)
(8.21)

With such a functional, the analogue of Proposition 8.1 holds, see [14], and with the

constraint that ρD(r) ≤ C. for a suitable constant C.

By expanding
∣∣∣
∫

eλβ,γ
(J ∗ ρ(r))− eλβ,γ

(J ∗ ρDc(r)) dr −
∫

e′λβ,γ
(J ∗ ρDc(r))J ∗ ρD(r)

∣∣∣ ≤ c|D|2

we get the analogue of (8.8), namely
∣∣∣FD(ρD|ρDc)− F 0

D(ρD|ρDc)
∣∣∣ ≤ cγ2αd (8.22)

with

F 0
D(ρD|ρDc) =

∫

D

−λeff(r)ρD(r)− 1

β
S(ρD(r)) dr

λeff(r) = −
∫

J(r, r′)e′λβ,γ
(J ∗ ρDc(r′))dr′ (8.23)

F 0
D(ρD|ρDc) has a unique minimizer given by

ρ̄D(r) = eβλeff(r) (8.24)

Using again the relative entropy, we get, similarly to (8.10),

F 0
D(ρD|ρDc)− F 0

D(ρ̄D|ρDc) ≥ 1

2β

∫

D

(√
ρD(r)−

√
ρ̄D(r)

)2

(8.25)
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Recalling that ρD(r) ≤ C we then get to the analogue of (8.11) and then to (8.13),

with (8.12) proved in [1]. Thus Assumption 2 is proved to hold, for γ small enough.

Quantum LMP model. By exploiting the definition of restricted ensemble,

where all loops are short, i.e. |ω(t)| ≤ γ−1/2, the delocalization of particles due to

the loops, can be absorbed in the error due to the transition to the continuum, and

indeed the analogue of Proposition 8.1 holds as well for the quantum case. With that

the quantum problem is reduced to the classical one and the remaining of the proof

is unchanged.

9. Validity of Assumptions 3–5

We start with Assumption 3 and, recalling the definition (3.4) of Bξ(i), we choose

ξ > 0 so that the interaction between a cube Ci of D and a cube Cj not in Bξ(i) is

only due to the additional part of the hamiltonian H+, namely the one arising from

K+. Thus ξ = γ−1 in the Ising model, 2γ−1 in the classical LMP model and < 3γ−1

in the quantum LMP model (the extra length because of the loops). To unify the

cases we will thus choose ξ = 3γ−1.

With this choice of ξ, we have to determine r(i, j) from (3.5) and, at this point,

it is convenient to examine the three models separately.

Ising model. By the triangular inequality and Lemma 7.3, we have (denoting

by d(s, s′) the quantity dΛ(s, s′), Λ = Zd)

r(i, j) =
1

2
sup

s,s′:d(s,s′)=dCj
(s,s′)=2

RCi

(
pCi

(·|s), pCi
(·|s′)) (9.1)

and need to check that (3.6) holds.

With s and s′ as in (9.1) (namely with s′ obtained from s by flipping a spin in

Cj), recalling Theorem 4.1,

|H+
Ci

(sCi
|s′Cc

i
)−H+

Ci
(sCi

|sCc
i
)| ≤

∑
∆ACi,Cj

2‖U∆(·)‖∞ (9.2)

where the sets ∆ are D(`+,γ)-measurable, so that the cubes Ci and Cj which belong to

the partition of D(`−,γ) are each one contained in a cube of D(`+,γ). Recalling (7.10)

we get

l.h.s. of (9.2) ≤ 2 sup
x∈Ci,y∈Cj

e−(CP−2b)Nγ(x,y) (9.3)
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(9.3) is proved by the argument used in (7.12), to which we refer for details. By

Proposition A.1 and since dCi
(s, s′) ≤ 2|Ci| = 2γ−(1−α)d, we get from (9.1)-(9.3)

r(i, j) ≤ 2γ−(1−α)d2 sup
x∈Ci,y∈Cj

e−(CP−2b)Nγ(x,y), CP = cγ−(1−α)d+2a (9.4)

hence

lim
γ→0

sup
i

∑

j /∈Bξ(i)

r(i, j) = 0 (9.5)

so that (3.6) holds if γ is small enough.

LMP models. Analogously to (9.1) we have

r(i, j) = sup
s,s′:d(s,s′)=dCj

(s,s′)=1

RCi

(
pCi

(·|s), pCi
(·|s′)) (9.6)

namely s and s′ differ by only one particle somewhere in Cj (or, in the quantum case,

by a loop starting in Cj). The argument hereafter proceeds exactly as in the Ising

model, with CP = cγ−1 in the quantum case, see before Theorem 6.1, and (9.4) holds

in the two LMP models as well.

The validity of Assumption 4 is just a consequence of the estimates obtained so

far. We need to prove that uniformly in i ∈ Zd,
∑

j 6=i

r(i, j) < 1 (9.7)

By (9.4) (established in all the three models), it is enough to prove that there is

u < 1 and γ′ > 0, so that for all γ < γ′
∑

j∈Bξ(i)\i
r(i, j) ≤ u (9.8)

To verify (9.8) we recall the values of b(x, y) and of ε in the three models.

In Ising this is given by (7.3) and given just before Theorem 6.1:

b(x, y) = r[Jγ(x, y) + e−(CP−2b)Nγ(x,y)], CP = cγ−(1−α)d+2a, r < 1 (9.9)

ε = 4e−cγ2a`d
−,γ/2 (9.10)

Using (3.8) with (9.9) and (9.10) one obtains that

∑

j∈Bξ(i)

|Cj| sup
y∈Ci

b(x, y) ≤ r

∫
dy Jγ(x, y) + r3dγ`−,γ + c`d

−,γe
−CP−2b (9.11)

The first error derives from replacing supy∈Cj
Jγ(x, y) by Jγ(x, y) and the second is

the part due to the second summand in the expression for b in (9.9) recalling that
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ξ = 3γ−1. Hence one can consider b(x, y) as a Markov chain. Using similar arguments

as in Theorem 2.4 one sees that this implies
∑

j∈Bξ(i)\i
sup
y∈Cj

∑
x∈Ci

∑
n>0

b
(n)
Ci

(x, y) < 1 (9.12)

(9.8) follows from (9.10) as the bracket in (3.8) grows only polynomially in γ−1.

In the classical LMP model, b(x, y) is given in (7.26):

b(x, y) ≤ δ`d
γJ

2
γ (`γx, `γy) + 2c`d

γγ
2d, δ < 1 (9.13)

with ε given in (8.18)

ε = 2e−cγ2a`d
−,γ/2(ρ+

β + γa)|C`−,γ | (9.14)

Using (9.13) one sees that the analog of (9.11) holds. In this case the second term in

(9.13) gives rise to the error ξd2cγ2d = 2c3dγd, because Bξ(i) contains (ξ/`γ)
d points.

The factor `d
γ in (9.13) is needed to reconstruct the integral in (9.11). Arguing as

before (9.8) follows.

Appendix A. Estimates of Vaserstein distance

In this appendix we will prove some elementary results about the Vaserstein

distance between measures on a metric space Ω. We write d(ω, ω′) for the distance

in Ω and |ω| = d(ω, ω0), ω0 ∈ Ω.

The reader should not be confused by the use of the symbol ω which refers in the

text to loops, while here ω is an element of an abstract space Ω.

Proposition A.1. Let ν(dω) be a probability on Ω and h, v be such that for all

t ∈ [0, 1], e−[h+tv] ∈ L1(Ω, ν). Call

µt = Z−1
t e−[h+tv]ν, Zt =

∫
e−[h+tv]dν (A.1)

then

R(µ1, µ0) ≤ sup
0≤t≤1

(
µt(|v||ω|) + µt(|v|)µt(|ω|)

)
(A.2)

Proof. Calling Dt the density of µt w.r.t. ν and

α(ω) = min{D1(ω), D0(ω)}, c = 1−
∫

α(ω)ν(dω)
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the probability on Ω× Ω, given by

P (dω, dω′) = α(ω)δ(ω − ω′)ν(dω) + c−1[D1(ω)− α(ω)][D0(ω
′)− α(ω′)]ν(dω)ν(dω′)

is a joint representation of µ1 and µ0. Thus,

R(µ1, µ0) ≤
∫

d(ω, ω′)P (dω, dω′) ≤
∫

(|D1(ω)− α(ω)|+ |D0(ω)− α(ω)|)|ω|ν(dω)

=

∫
|D1(ω)−D0(ω)||ω|ν(dω)

having bounded d(ω, ω′) ≤ |ω|+ |ω′| and integrated out the missing variable.

(A.2) is then obtained by writing D1(ω)−D0(ω) as an integral of the t-derivative

of Dt. Proposition A.1 is proved. ¤

Proposition A.2. Let µ be a probability on Ω, A @ Ω, µ(A) ∈ (0, 1) and µA the

conditional probability given A. Then

R(µA, µ) ≤
∫

ω∈Ac,ω′∈A

µ(dω)µA(dω′)d(ω, ω′) (A.3)

Proof. The same argument used in the proof of Proposition A.1 shows that

P (dω, dω′) = δ(ω − ω′)1ω∈Aµ(dω) + (1− µ(A))−11ω∈Ac,ω′∈Aµ(dω)[µA(dω′)− µ(dω′)]

is a joint triangular representation of µ and µA. Hence (A.3) and Proposition A.2

are proved. ¤

Suppose Ω = {(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2(ω1)} and that

d
(
(ω1, ω2), (ω

′
1, ω

′
2)

) ≥ d1(ω1, ω
′
1) with equality if ω1 6= ω′1 (A.4)

where d1(ω1, ω
′
1) is the distance on the space Ω1. We denote by R(·, ·) and R1(·, ·)

the Vaserstein distances in Ω and Ω1, the latter relative to d1. Let also µ and µ′ be

probabilities on Ω, µ1 and µ′1 their marginals on Ω1, and µ(dω2|ω1), µ′(dω2|ω1) their

conditional probabilities given ω1.

Proposition A.3. Let µ and µ′ be as above and µ(dω2|ω1) = µ′(dω2|ω1) on Ω1,

then

R(µ, µ′) = R1(µ1, µ
′
1) (A.5)
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Proof. Let P1(dω1, dω′1) be a joint representation of µ1 and µ′1, then

P (dω, dω′) = P1(dω1, dω′1)
(
1ω1=ω′1δ(ω2 − ω′2)µ(dω2|ω1) + 1ω1 6=ω′1µ(dω2|ω1)µ(dω′2|ω′1)

)

(A.6)

is a joint representation of µ and µ′, so that, by (A.4),

R(µ, µ′) ≤ R1(µ1, µ
′
1) (A.7)

To prove the reverse inequality, let P (dω, dω′) be a joint representation of µ and µ′,
then by (A.4)
∫

d
(
(ω1, ω2), (ω

′
1, ω

′
2)

)
P (dω, dω′) ≥

∫
d1

(
ω1, ω

′
1

)
P (dω, dω′) =

∫
d1

(
ω1, ω

′
1

)
Q(dω1, dω′1)

where, denoting by f(ω1, ω
′
1) any bounded measurable function on Ω1 × Ω1 and by

g((ω1, ω2), (ω
′
1, ω

′
2)) = f(ω1, ω

′
1)

then ∫
f(ω1, ω

′
1)Q(dω1, dω′1) =

∫
g(ω, ω′)P (dω, dω′)

Thus Q is a joint representation of µ1 and µ′1 and R ≥ R1. Together with (A.6) this

proves (A.5). The proposition is proved. ¤

Appendix B. Couplings of Gibbs measures in contour models

Theorems 3.3 and 5.2 prove the existence of successful couplings (i.e. with a “large

mass” on the diagonal) for Gibbs measures in restricted ensembles. The construc-

tion of successful couplings for the corresponding contour models requires a different

strategy. Recall from Section 4, see (4.25), that the finite volume Gibbs measures in

a contour model are the probabilities on X+ × B+
Λ , defined by

µ+
abs,Λ(ds′, Γ|s) = π+

Λ (Γ; s′)p+,o
abs,Λ(ds′|s) (B.1)

with π+
Λ (Γ; s′Λ) as in (4.26). We thus start from two measures µ+

abs,Λi
(ds, Γ|s(i)),

i = 1, 2, with Λi bounded, D′ measurable sets and s(i) ∈ X+. By Corollary 5.3, there

is a coupling P of p+,o
abs,Λi

(·|s(i)) such that

P (s∆′ 6= s′∆′) ≤ 2c|∆′|max{e−ω1dist(∆′,Λc
1), e−ω1dist(∆′,Λc

2)} (B.2)

with ∆′ a bounded, D′ measurable set.

We are interested in the case where Λi are very large and, consequently, ∆′ large.

Except for a set of small probability, we can then reduce to pairs s(i), i = 3, 4, which

agree on ∆′. The next theorem starts from such a setup and uses the following
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notation. Let Γ ∈ B+ and ∆ a bounded, D′ measurable set, then Γ∆ denotes the

following element of B+:

Γ∆ =
{
Γ ∈ Γ : sp(Γ) u∆ 6= ∅} (B.3)

We also write

sp(Γ∆) =
⊔

Γ∈Γ∆

sp(Γ) (B.4)

Theorem B.1. There are positive constants c2 and ω2 so that if Λi, ∆′ and s(i)

are as above, then there is a coupling Qs,s′ of π+
Λ1

(Γ|s(3)) and π+
Λ2

(Γ′|s(4)) such that

Qs,s′

(
{Γ∆ 6= Γ′∆} u {sp(Γ∆) @ ∆′}

)
≤ c2|∆|e−ω2dist(∆,∆′c) (B.5)

(the inclusion above being strict). Moreover, for any (Γ, Γ′), Qs,s′ depends measurably

on (s, s′) ∈ X+ ×X+.

Proof. We introduce spin configurations ξ = (ξi)i∈Zd ∈ {0, 1}Zd
as follows. Given

a configuration Γ ∈ B+, we define ξi as equal to 0, if Ci does not belong to sp(Γ),

otherwise ξi = 1; ξ′ is the configuration associated to Γ′ and the distributions of ξ

and ξ′ are those inherited from π+
Λ1

(Γ; s(3)) and π+
Λ2

(Γ; s(4)), respectively.

While the interaction among the spins ξi has infinite range, the distribution of

{ξi, i ∈ A}, A a bounded set, conditioned on {ξ∗i , i ∈ Ac}, has the following inde-

pendence property. If all ξ∗i = 0 with i ∈ Ac and contiguous to A, (we then call A

“good”) then the conditional distribution of Γr(A) is supported by B+
r(A) and inde-

pendent of the other values of ξ∗i . Thus the conditional distribution of (ξi)i∈A is that

inherited by π+
r(A)(Γ|s(3)) and depends only on s

(3)
r(A). To prove the theorem, it is then

enough to construct a coupling for which there is a set A simultaneously good for

both ξ and ξ′ and with r(A) @ ∆′.
We will construct the coupling using the disagreement percolation algorithm of

van der Berg and Maes, [6]. We call A unsuccessful for the pair (ξ, ξ′) unless A is

good for both of them, in which case A is successful. We start from A = ∆′ and we

consider a sequence of sets till success is reached. If ∆ is successful for (ξ, ξ′), we are

finished. Otherwise, we define A(j+1) from an unsuccessful A(j) by removing all sites

i ∈ A(j) which are contiguous to a site k outside A(j) where either ξk = 1 or ξ′k = 1,

or both. We call A(ξ, ξ′) the first successful set, noticing that it has the property of

a stopping time, namely that A(ξ, ξ′) = A does not depend on the values ξi, ξ′i with

i ∈ A.

Let then Qs,s′ on B+
Λ × BΛ′+ be

Qs,s′(Γ, Γ′) = 1Γ∈B+
Λ
1Γ′∈B+

Λ′
1Γ=Γ′onAs(Γ,Γ′)w

+(ΓAs(Γ,Γ′); s∆) (B.6)

· Ξ+(As(Γ, Γ′); s∆)π+
Λ (ΓΛ\As(Γ,Γ′)|sΛ)π+

Λ (Γ′Λ′\As(Γ,Γ′))|s′Λ′)
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where As(Γ, Γ′) is r(As(ξ, ξ
′)) for ξ (ξ′ respectively) corresponding to Γ (Γ′ respec-

tively) and ΓA = {Γi ∈ Γ|sp(Γi) @ A}.
By an argument similar to the one used by van der Berg and Maes, see also [2],

one can show that the above is indeed a coupling of π+
Λ (Γ|sΛc) and π+

Λ (Γ′|s′Λc) and

(B.5) follows from the assumptions on the weights (which fulfill the Peierls bounds

with large enough constant CP ). Theorem B.1 is proved

¤

As a immediate corollary of the Theorem 3.3 and Corollary 5.3, ?? we have the

following result for the skew measures µ+
abs,Λ(Γ, dsΛ|sΛc) = π±Λ (Γ; sΛ)p±,Λ

abs (dsΛ|sΛc) on

the space X±
Λ ×B±Λ , cf. (4.25). We call ∆ a set of agreement for (Γ(1), s(1)), (Γ(2), s(2))

if s
(1)
∆ = s

(2)
∆ and Γ(1) = Γ(2) on ∆.

Corollary B.2. There are positive constants c2, ω2 so that the following holds.

Let ∆, Λ, Λ′ be D′ bounded measurable sets, with ∆ contained in Λ u Λ′, for any

two measures µ+
abs,Λ(Γ(1), ds

(1)
Λ |sΛc), µ+

abs,Λ′(Γ
(2), ds

(2)
Λ |s′Λc) there exists a coupling Q so

that:

Q
((

(Γ(1), s(1)), (Γ(2), s(2))
)∣∣∣there is ∆̃ A ∆, such that ∆̃ is a set of agrement

)

≤ 1− c2|∆|e−ω2dist(∆,Λc) (B.7)

{µ+
abs,Λ(·|sΛc)}Λ,s converges to a unique limit probability measure µ+

abs. This measure

is `′-translation invariant and given any bounded D′-measurable sets Λ, ∆ with ∆ @ Λ

and any s ∈ X+, there is a coupling Q of µ+
abs,Λ(ds(1)|sΛc) and µ+

abs(ds(2)) such that

(B.7) holds. The analogous result holds for the minus case.
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