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Abstract

We examine some aspects of the recent results by K. Binder [1]. The equilibrium forma-
tion/dissolution of droplets in finite systems is discussed in the context of the canonical and
the grand canonical distributions.
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In the last few years, a considerable number of computer experiments, for instance
[9–11,13,14], carefully performed on systems exhibiting phase coexistence have
underscored the need for a better understanding of the droplet formation/dissolution
phenomena. In this context, some early analyses [3,15,6] pointed to the existence
of a volume dependent (mesoscopic) scale at which droplets first appear. (Specifi-
cally, it was argued that in a system of volumeLd, one does not observe droplets
below the linear scale ofLd/(d+1).) Recently, a detailed quantitative description
of the actual droplet formation/dissolution inclosedequilibrium systems has been
accomplished [12,2]. For instance, the following was shown in [2] regarding a gas-
liquid system in volumeLd and the number of particles fixed to a value exceeding
that of the ambient gas by amountδN:

(1) There is a dimensionless parameter1 proportional to(δN)(d+1)/d/Ld and a
critical value1c = 1c(d), such that no droplet forms for1 < 1c, while there
is asingledroplet of liquid phase when1 > 1c.

(2) The fractionλ1 ∈ [0, 1] of the excess particles subsumed by the droplet de-
pends on1 via auniversalequation which depends only on dimension (and
which is otherwise independent of the details of the system).
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(3) The minimal fractionλ1c = 2/(d + 1) is stricly positive, so when the droplet
first forms, it indeed has volume of the orderLd2/(d+1).

Further investigations permitted a rigorous proof of the above conclusions in the
context of the two-dimensional Ising lattice gas at all temperatures below criti-
cal [4] (as well as a rigorous derivation of the Gibbs-Thomson formula under cer-
tain conditions [5]).

The intriguing circumstances concerning the systems with coexisting phases
were the subject of a recent paper by K. Binder [1] wherein the existence of the
mesoscopic scale for droplet formation/dissolution was re-derived by phenomeno-
logical arguments. Two additional conclusions of interest were reached in [1]:

(4) A signature discontinuity in theintensivevariable relative to the setup at hand,
that is, themagnetic fieldin a spin system and the chemical potential in a
liquid/gas system.

(5) The scaling window for the “rounding” of this discontinuity in finite systems.

While we are somewhat uneasy about the derivation of (5)—which in our opinion
poorly accounts for the possible influence of lower order corrections—we will fo-
cus our attention on conclusion (4). The substance of this conclusion is apparently
novel and warrants further investigations, particularly because of the purported con-
nection with other “unconventional” phase transitions, see reference 35 of [1]. We
will concentrate on the Ising ferromagnet in ad-dimensional volumeLd. Although
the magnetic language is used in [1], the lattice-gas interpretation is invoked to la-
bel the ensembles: The constrained ensemble with fixed total spin (i.e., fixed mag-
netization) will be referred to as the “canonical” ensemble, whereas the “grand
canonical” ensemble will denote the usual distribution in which the magnetization
is allowed to fluctuate.

Inherently in its nature, the magnetic field is a quantity associated with (and
adjustableonly in the context of) the “grand canonical” ensemble. This leads us to
our first question: How does the purported discontinuity reflect itself in the “grand
canonical” ensemble? To address this issue, let us investigate the problem of the
Ising magnet in a box of linear dimensionL, at the temperatureT < Tc, external
field h and plus boundary conditions. The cases of interest areh ≤ 0 with |h| � 1,
which are the only conditions under which the system might nucleate a droplet.
Denoting byR the linear scale of the purported droplet, the magnetic gain from
its formation would be of the order ofhRd, while the surface cost would scale
asRd−1. Obviously, the two costs balance out forR ∼ 1/|h|, so if L & RpermitsR
to exceed a constant times 1/|h|, such a dropletwill form and otherwise it won’t.
This, of course, is exactly the basis for classical nucleation theory.

Notwithstanding any doubts as to the validity of the above reasoning, the preced-
ing setup has been the subject matter of some rigorous analysis, see [16,17,7,8]. In
particular, the following two-dimensional result was established in [17]: Consider
the setup as described (with plus boundary conditions andh < 0), with |h| → 0
andL → ∞ in such a way that|h|L tends to a definite limit, denoted byB. Then
there is aB0 > 0 (which can be calculated in terms of system characteristics), such
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that the following holds:

• If B < B0, there are no droplets and the entire box is in the plus phase.
• If B > B0, a large droplet of minus phase fills most of the box leaving only a

small fraction of the plus phase in the corners.

Thus, whenever the droplet forms, it subsumes thebulk of the system. Similar (al-
beit weaker) theorems were proved in [7,8] for alld > 2.

These results are of direct relevance and lead to the following inescapable con-
clusion: In the context of the “grand canonical” distribution, there is no window of
opportunity for the formation of amesoscopicdroplet. Explicitly, whenever condi-
tions permit the existence of a “droplet” in the system, it occurs on themacroscopic
scale. Ostensibly, one might still hope for the occurrence of some signature event
when the magnetic field lies in (or in the vicinity of) Binder’s gap. However, this is
not the case: Binder has calculated the edges of the forbidden region,
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whereVd, Sd and d are geometrical constants,mcoex(T), χcoex(T) and ξcoex(T)
is notation for the magnetization, susceptibility and the correlation length, respec-
tively, and c = fs(T)χcoex(T)mcoex(T)−2ξcoex(T)−1—with fs(T) denoting the
surface tension—is a dimensionless ratio (canceling out the superfluousξcoex(T)’s!)
which presumably tends to a constant asT → Tc. But, at the end of the day, both
edges satisfyH (i )

t ∼ L−d/(d+1), which, we emphasize, isdeepinside the droplet
dominated regime.

On the basis of the above deposition, it appears that conclusion (4) has absolutely
no bearing on finite-volume systems described by the “grand canonical” ensemble.
The question is then: How to interpret the magnetic field and its purported disconti-
nuity otherwise? As is clear from the outset, some non-standard interpretation will
be necessary since the only physical framework in which the phenomenon occurs
is the “canonical” ensemble. In the context of the Ising model in volumeLd and
plus boundary conditions, the latter describes the constrained distribution where
the overall magnetizationML is restricted to asinglevalue. (Here, as goes without
saying, the external fieldh in the Hamiltonian simply drops out of the problem.)
To achieve a droplet of minus phase, there has to be adeficit in the magnetization
away from the preferred value ofML . In such circumstances, the general results dis-
cussed in the introductory paragraph imply the existence of a sharp constantΘc (re-
lated to1c) such that no droplet will be created for deficits less thanΘc Ld2/(d+1),
while, for deficits larger thanΘc Ld2/(d+1), a non-trivial fraction of the deficit will
condense into a droplet.

Let us now attempt to elucidate how a magnetic field could have arisen in the
derivations of [1]. Of course, in the “canonical” ensemble, we are always entitled
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to calculate the (finite-volume) free energy as a function of the magnetization. As
is necessarily implied by the nature of the above droplet formation/dissolution phe-
nomenon, this function has two branches depending on what type of configurations
bring the decisive contributions:

• For magnetizations with a deficit less thanΘc Ld2/(d+1), configurations with
no mesoscopic droplets.

• For magnetizations with a deficit in excess ofΘc Ld2/(d+1), configurations
with a single appropriately-sized droplet.

It is not much of a surprise that acuspwill form at the point where the two branches
come together. It appears that the valuesH (1)

t andH (2)
t , which are enunciated ex-

plicitly in [1], are just the one-sided derivatives of the free energy—with respect to
magnetization—at this cusp.

Unfortunately, the physical significance attributed to the valuesH (1)
t , H (2)

t , their
difference and their ratio in [1] is perhaps a bit overplayed. Indeed, following the
dogma ofbulk thermodynamics, the “H ” is proclaimed to be the natural canoni-
cal conjugate of the magnetization and, as such, it is deemed to be the appropriate
measure of the response of the system to the change of the magnetization. How-
ever, here we deal with a system exhibiting mesoscopic phenomena and, more im-
portantly, inhomogeneities. In such systems the meaning of a conjugate variable is
rather murky because the standard interpretations of the thermodynamic potentials
are only clear in the thermodynamic limit, under the auspices of the equivalence of
ensembles. Consequently, for the system at hand, theprimary response functions
should be the “H ’s” associated with the parts of the system outside and inside the
droplet, which we note are perfectly analytic functions of the corresponding mag-
netizations. On the basis of the latter response functions, and the knowledge of the
droplet size, the overall “H ” considered in conclusion (4) can immediately be re-
constructed. But, even if this quantity could be conveniently accessible numerically,
its actual meaning is at best secondary.

We would like to remark that, in our opinion, the probabilistic language of large-
deviation theory provides some additional and worthwhile perspectives in these
situations. In the terminology of large-deviation theory, the actual free energy can
be conveniently expressed as an infimum of a simple function over what seems to
be the natural parameter here: Thefraction of the deficit absorbed by the droplet.
With this parametrization, the relevant calculations of [1], including the jump in
the derivative at the formation point, fit on the back of the proverbial envelope. We
refer to [2,4,12] for more details but we do not wish to overstate our case.

Conclusions

The conclusion/moral is self-evident. In general, given a function, we are always
entitled to take its Legendre transform and express it in terms of the conjugate
variables. In the context of equilibrium statistical mechanics, these transforms are
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invaluable because the equivalence of ensembles allows for the uninhibited two-
way flow of information. For instance, if a particle system is studied at a fixed
density then, except at points of phase transitions, we know everything about the
fluctuating ensemble with the chemical potential adjusted to produce this density.
Even more interesting—and even more useful—are the points of thermodynamic
discontinuities. If one ensemble has a forbidden gap (say the particle density in
the grand canonical distribution), then forcing the “parameter value” into the gap is
essentially guaranteed to have interesting consequences in the other ensemble (e.g.,
phase separation).

But, the equivalence of ensembles is a mathematical—not to mention physical—
fact only in thethermodynamic limit. In finite volume, as the droplet formation/dis-
solution phenomenon dramatically illustrates, the various ensembles arenot equiv-
alent. In these contexts, the assignment of physical—not to mention mathema-
tical—significance to the conjugate variables is of dubious value. We suspect that
this is the generic situation when “phase transitions” on a mesoscopic scale are the
object of study. We believe that the dramatic inequivalence of ensembles in finite
volume is thesignatureof interesting phenomena taking place below the macro-
scopic scale.

It is worth pointing out that, in the present context, the natural thermodynamic
quantity which exhibits the signature jump is the good oldenergy density. There
are several advantages to the use of this quantity as opposed to e.g. the magnetic
field considered in [1]. To list a couple, first, there is no numerical difficulty in the
dynamical construction of the energy histogram and, second, there is no theoret-
ical dispute in the interpretation of this quantity. Some previous efforts to exhibit
the behavior of the energy density can be found in [14,13,12]; but, here we em-
phasize that the actual energy should be measured directly. Notwithstanding, if the
physics of interest concernsdroplets, it appears most natural to look for the droplet
itself. This is evidently numerically feasible [15,13] and, presumably, permits the
exhibition ofall the secondary commodities.
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