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Abstract

We consider the dynamics of three point masses, where we assume that the mass of the
third body is so small that it does not affect the motion of the primaries. In the framework
of the restricted three–body problem, we investigate the collisional trajectories, which corre-
spond to a singularity of the equations of motion. We investigate the regularizing techniques
known as Levi–Civita, Kustaanheimo–Stiefel and Birkhoff transformations. The Levi–Civita
regularization is adapted to the study of the planar restricted three–body problem, when
considering a single collision with one of the primaries. The Kustaanheimo–Stiefel method
concerns the same problem when the bodies are allowed to move in the 3–dimensional space.
A simultaneous regularization with both primaries is achieved through the implementation
of Birkhoff’s transformation.

1 Introduction

The motion of the celestial bodies of the solar system is ruled by Newton’s law, which states
that the attraction between massive bodies is directly proportional to the product of the masses
and inversely proportional to the square of their distance. Indeed, a collision between any two
objects is marked by the fact that their distance becomes zero, which corresponds to a sin-
gularity of Newton’s equations. The aim of regularization theory is to transform the singular

differential equations into regular ones, thus providing an efficient mathematical tool to analyze
motions leading to collisions. We shall be concerned with the restricted three–body problem,
dealing with the motion of a small body in the gravitational field of two massive primaries. It
is assumed that the primaries move on circular orbits around their common center of mass. In
this framework, we start our discussion by introducing the basic technique to regularize the dy-

namics ([5], [7]), i.e. the so–called Levi–Civita transformation, which is convenient when dealing
with the planar three–body problem (i.e., when neglecting the mutual inclinations). When the
three bodies are allowed to move in the space, a different method must be adopted, i.e. the so–
called Kustaanheimo–Stiefel regularization theory ([3]), often denoted as KS–transformation.
Both Levi–Civita and KS methods are local transformations, in the sense that their application
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allows to regularize collisions with only one of the two primaries. A suitable extension of such
techniques allows to obtain a simultaneous regularization with both primaries, thus obtaining
a global transformation, known as Birkhoff’s method ([5], [7]). All these techniques rely on a
common procedure, which consists in performing a suitable change of variables, a rescaling of

time and in using the preservation of energy (see also [1], [4], [5], [6], [7], [8]).

Before entering into the intriguing world of the regularizing transformations, we premise some
facts about concrete collisional events that occurred in the solar system (see also [2]). When
thinking to impacts of heavy objects with the Earth, one is immediately led back to 65 million
years ago: it is widely accepted that the disappearance of dinosaurs was caused by the collision
of a large body with the Earth. The astroblame is the so–called Chicxulub’s crater of about 180
km of diameter, which was located in the depth of the ocean, close to the Yucatan peninsula.

Beside this catastrophic event, many other impacts marked the life of the Earth. Just to give a
few examples, other astroblames were found throughout our planet: from Arizona (the Meteor
Crater of about 1200 m of diameter), to Australia (the Wolf Creek crater of about 850 m), to
Arabia (the Waqar crater of about 100 m of diameter). Live images of an impact in the solar
system were provided in 1994 by the spectacular collision of the Shoemaker–Levy 9 comet with

Jupiter, which fragmented in several pieces before the impact with the giant planet.

This paper is organized as follows. In section 2 we provide the application of the Levi–Civita
regularization theory to a simple example, namely the motion of two bodies on a straight line.
In section 3 we recall the equations of motion governing the two–body problem, while in section
4 we describe the equations concerning the planar, circular, restricted 3–body problem. The
Levi–Civita and Kustaanheimo–Stiefel regularization techniques are presented, respectively, in

sections 5 and 6. Birkhoff’s global transformation is outlined in section 7.

2 The idea of regularization theory

The standard technique concerning regularization theory is essentially based on three steps:
• a change of coordinates, known as the Levi–Civita transformation;
• the introduction of a fictitious time, in order to get rid of the fact that the velocity becomes
infinite at the singularity;
• the use of the conservation of energy, in order to transform the singular differential equations

into regular ones, through the introduction of the extended phase space.
We begin the presentation of regularization theory using a very simple example: consider

two bodies, P 1 and P 2 (with masses, respectively, m1 and m2), which interact through Newton’s
law. We assume that the two bodies move on a straight line; as a consequence, we select a
reference frame with the origin located in P 2 and with the abscissa coinciding with the line of

motion. Let us introduce the quantity K = G(m1 + m2), where G denotes the gravitational
constant. The motion of P 1 with respect to P 2 is ruled by the equation

ẍ +
K

x2
= 0 ;
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the corresponding energy integral is provided by

h =
K

x
− 1

2
ẋ2 .

We remark that the velocity ẋ = ±
√

2(K
x − h) becomes infinite at the collision, i.e. whenever

x = 0.
We start by performing a change of coordinates, the Levi–Civita transformation, which can be
written (in the present case) as

x = u2 .

The equation of motion in the new coordinate becomes

ü +
1

u
u̇2 +

K

2u5
= 0 ,

while the energy integral takes the form

h =
K

u2
− 2u2u̇2 .

The new velocity is given by

u̇ = ±
√

K

2u4
− h

2u2
;

we notice that u̇ becomes infinite at collision (i.e., at u = 0). Since the equation is still singular,
we proceed to apply a change of time by introducing a fictitious time: to control the increase
of speed at collision, we multiply the velocity by a suitable scaling factor which is zero at the
singularity. Therefore, we introduce a fictitious time s defined by

dt = x ds = u2 ds or
dt

ds
= x = u2 .

Denoting by u′ ≡ du
ds , one has

u̇ =
du

dt
=

du

ds

ds

dt
=

1

u2
u′ ,

ü =
1

u2

d

ds
(

1

u2
u′) =

1

u4
u′′ − 2

u5
u′2 .

The equation of motion and the energy integral become

u′′ − 1

u
u′2 +

K

2u
= 0 , h =

K

u2
− 2u′2

u2
.

Finally, we make use of the preservation of energy as follows. Let us rewrite the equation of

motion as

u′′ +
1

2

(K

u2
− 2u′2

u2

)
u = 0 ;

using the expression of the energy integral, we get the differential equation

u′′ +
h

2
u = 0 ,
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which corresponds to the equation of the harmonic oscillator with frequency ω =
√

h
2 . We

conclude by remarking that the above regularizing procedure allowed to obtain a regular dif-

ferential equation, whose solution is a periodic function of the fictitious time s.

3 The two–body problem

We consider two massive bodies, say P 1 and P 2, which attract each other through Newton’s
law. Since the relative motion takes place on a plane (i.e., the motion is no more constrained
on a straight line as in section 2), we select a reference frame coinciding with the plane of
motion and we let (q1, q2) be the relative cartesian coordinates. Let us show that, after a

suitable normalization of the units of measure, the Hamiltonian function describing the two–
body problem is given by

H = H(p1, p2, q1, q2) =
1

2
(p2

1 + p2
2)−

1

(q2
1 + q2

2)
1
2

, (1)

where we defined the momenta as pj ≡ q̇j , j = 1, 2. We remark that the equations of motion
associated to (1) are given by

q̇1 =
∂H

∂p1
= p1 ṗ1 = −∂H

∂q1
= − q1

(q2
1 + q2

2)
3
2

q̇2 =
∂H

∂p2
= p2 ṗ2 = −∂H

∂q2
= − q2

(q2
1 + q2

2)
3
2

.

(2)

Figure 1: The positions of P 1 and P 2 in an inertial reference frame.

In order to derive the Hamiltonian (1), let us denote by R the distance between the center
of mass between P 1 and P 2 and the origin of the reference frame; let r1 and r2 be the distances
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of the two bodies from the center of mass and define r ≡ r2 − r1 (see Figure 2). The kinetic
energy is the sum of the contributions due to the motion of the center of mass and to the
motions of P 1 and P 2 relative to the center of mass, i.e.

T =
1

2
(m1 + m2)Ṙ

2 +
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 .

Since r1 = − m2
m1+m2

r, r2 = m1
m1+m2

r, then the Lagrangian function is given by

L =
m1 + m2

2
Ṙ2 +

1

2

m1m2

m1 + m2
ṙ2 + V (r) ,

where V (r) denotes the Newtonian potential. The first term does not contribute to the equations
of motion; the remaining terms can be expressed in cartesian coordinates (q1, q2) as

L =
1

2
µ(q̇2

1 + q̇2
2) +

K

(q2
1 + q2

2)
1
2

,

where µ ≡ m1m2
m1+m2

is the reduced mass and K is a suitable constant. Normalizing the units of
measure so that µ = 1 and K = 1, one obtains the Hamiltonian (1).

Remark: Every elliptic solution of the classical Newtonian equation is unstable ([5]). In order
to make this statement more precise, let us provide the following

Definition of Lyapunov stability: Consider a reference solution with given initial data at
some time t0; define a second solution, which is obtained by slightly varying the initial data.

The reference solution is called stable, if for any t ≥ t0 the distance between the two solutions
can be made smaller than ε by an appropriate choice of the variations of the initial conditions.

In the two–body approximation, Hamilton’s equations (2) can be written as

q̈ + ω2q = 0 ,

where q = (q1, q2), r =
√

q2
1 + q2

2 and ω = ω(r) = 1
r3/2 . Consider a circular reference solution and

a varied solution, which is also circular. The period of revolution varies with r as 2π
ω = 2π ·r3/2;

therefore, there exists a time when the two particles are opposite to each other with respect to

the center of mass, which is incompatible with Lyapunov stability.

4 The planar, circular, restricted 3–body problem

Let S be a body with an infinitesimal mass, subject to the gravitational attraction of P 1, P 2

(whose masses are, respectively, µ1 and µ2). We assume that the primaries are not affected by
S, i.e. we consider the so–called restricted three–body problem. Moreover, we assume that the
motion takes place on the same plane (i.e., we neglect the relative inclinations) and that the
trajectories of P 1 and P 2 are circular with origin coinciding with their common center of mass.
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Let (x1, x2) be the coordinates of S in an inertial frame centered at the barycenter of P 1 and
P 2 and let us normalize the units of measure so that

µ1 + µ2 = 1 .

We denote by (x
(1)
1 , x

(1)
2 ) and (x

(2)
1 , x

(2)
2 ) the coordinates of P 1 and P 2 (see Figure 3).

Figure 2: The coordinates of P 1, P 2 and S in a fixed reference frame.

The motion of S is described by the Lagrangian function

L = L(ẋ1, ẋ2, x1, x2, t) =
1

2
(ẋ2

1 + ẋ2
2) + V (x1, x2, t) ,

where V (x1, x2, t) ≡ µ1
ρ1

+ µ2
ρ2

and

ρ1 ≡
√

(x1 − x
(1)
1 )2 + (x2 − x

(1)
2 )2 ,

ρ2 ≡
√

(x1 − x
(2)
1 )2 + (x2 − x

(2)
2 )2 .

We remark that x
(1)
1 , x

(1)
2 , x

(2)
1 , x

(2)
2 are explicit functions of the time. Denoting by yi (i = 1, 2)

the kinetic moments conjugated to xi, the Hamiltonian function is given by

H(y1, y2, x1, x2, t) =
1

2
(y2

1 + y2
2)− V (x1, x2, t) .

Remark: In the spatial case, let (x
(1)
1 , x

(1)
2 , x

(1)
3 ), (x

(2)
1 , x

(2)
2 , x

(2)
3 ) be the coordinates of P 1 and

P 2; denoting by yi (i = 1, 2, 3) the kinetic moments conjugated to xi, the Hamiltonian function
reads as

H(y1, y2, y3, x1, x2, x3, t) =
1

2
(y2

1 + y2
2 + y3

3)− V (x1, x2, x3, t) ,
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where

V (x1, x2, x3, t) =
µ1√

(x1 − x
(1)
1 )2 + (x2 − x

(1)
2 )2 + (x3 − x

(1)
3 )2

+
µ2√

(x1 − x
(2)
1 )2 + (x2 − x

(2)
2 )2 + (x3 − x

(2)
3 )2

.

Let us consider a rotating or synodic reference frame centered at the barycenter of P 1 and
P 2; assume that the units of measure are such that the relative angular velocity of P 1 and P 2

is unity. Then, the coordinates of P 1 and P 2 are, respectively, P 1(µ2, 0) and P 2(−µ1, 0). Let
(q1, q2) be the coordinates of S in the synodic frame (see Figure 4).

Figure 3: The coordinates of P 1, P 2 and S in a synodic reference frame.

In order to derive the synodic Hamiltonian, we consider the generating function

W (y1, y2, q1, q2, t) = y1q1 cos t− y1q2 sin t

+ y2q1 sin t + y2q2 cos t ,

which provides the characteristic equations

x1 =
∂W

∂y1
= q1 cos t− q2 sin t

p1 =
∂W

∂q1
= y1 cos t + y2 sin t

x2 =
∂W

∂y2
= q1 sin t + q2 cos t

p2 =
∂W

∂q2
= −y1 sin t + y2 cos t .
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Inverting the above equations, one obtains

q1 = x1 cos t + x2 sin t y1 = p1 cos t− p2 sin t

q2 = −x1 sin t + x2 cos t y2 = p1 sin t + p2 cos t .

It is trivial to check that the synodic Hamiltonian takes the form

H̃(p1, p2, q1, q2, t) = H − ∂W

∂t

=
1

2
(p2

1 + p2
2) + q2p1 − q1p2

− V (q1 cos t− q2 sin t, q1 sin t + q2 cos t, t) .

Recalling that in the fixed frame the bodies P 1 and P 2 describe circles of radius µ2 and µ1, we
can write their coordinates as

x
(1)
1 = µ2 cos t x

(2)
1 = −µ1 cos t

x
(1)
2 = µ2 sin t x

(2)
2 = −µ1 sin t .

The expression of the perturbing function in the rotating coordinates becomes

V (q1, q2) =
µ1√

(q1 − µ2)2 + q2
2

+
µ2√

(q1 + µ1)2 + q2
2

.

Therefore we are led to the following synodic Hamiltonian:

H̃(p1, p2, q1, q2) =
1

2
(p2

1 + p2
2) + q2p1 − q1p2 − V (q1, q2) , (3)

whose associated Hamilton’s equations are

q̇1 = p1 + q2 ṗ1 = p2 + Vq1

q̇2 = p2 − q1 ṗ2 = −p1 + Vq2 .

Denoting by

Ω ≡ 1

2
(q2

1 + q2
2) + V , (4)

we can write the previous equations in the form

q̈1 − 2q̇2 = ṗ1 + q̇2 − 2q̇2 = ṗ1 − q̇2 = q1 + Vq1 ≡ Ωq1

q̈2 + 2q̇1 = ṗ2 − q̇1 + 2q̇1 = ṗ2 + q̇1 = q2 + Vq2 ≡ Ωq2 . (5)

For notational convenience, we define Ω ≡ Ω + 1
2µ1µ2. The expression of the so–called Jacobi

integral is obtained as follows: let us multiply the first equation in (5) by q̇1 and the second by
q̇2; over summation one obtains:

q̇1q̈1 + q̇2q̈2 = q̇1Ωq1 + q̇2Ωq2 .

Therefore one has 1
2

d
dt(q̇

2
1 + q̇2

2) = d
dt (Ω), from which it follows that

q̇2
1 + q̇2

2 = 2Ω− C′ = 2Ω−C .
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We define the Jacobi constant as

C ≡ 2Ω− (q̇2
1 + q̇2

2) .

Since q̇1 = p1 + q2 and q̇2 = p2 − q1, then p1 = q̇1 − q2, p2 = q̇2 + q1. Hence, it is useful to
rewrite (3) as

H̃ =
1

2
(q̇2

1 + q̇2
2)−

1

2
(q2

1 + q2
2)− V (q1, q2)

=
1

2
(q̇2

1 + q̇2
2)− Ω .

Making use of the Jacobi integral one gets

H̃ + Ω =
1

2
µ1µ2 +

1

2
(q̇2

1 + q̇2
2) =

1

2
µ1µ2 + Ω− C

2
,

which provides the relation

H̃ =
µ1µ2 −C

2
.

5 The Levi–Civita transformation

5.1 The regularization of the two–body problem

Recall that the Hamiltonian function describing the two–body problem is given (in normalized
units of measure) by

H(p1, p2, q1, q2) =
1

2
(p2

1 + p2
2)−

1

(q2
1 + q2

2)
1
2

.

Let us consider a canonical transformation with generating function of the form

W (p1, p2,Q1, Q2) = p1f(Q1,Q2) + p2g(Q1, Q2) .

Denoting by i the imaginary unit, the Levi–Civita transformation is obtained setting

f + ig ≡ (Q1 + iQ2)
2 = Q2

1 −Q2
2 + i · 2Q1Q2 ,

namely
f(Q1, Q2) ≡ Q2

1 −Q2
2 , g(Q1,Q2) ≡ 2Q1Q2 .

The change of variables associated to the generating function W is given by

q1 =
∂W

∂p1
= f(Q1, Q2) = Q2

1 −Q2
2

q2 =
∂W

∂p2
= g(Q1,Q2) = 2Q1Q2

P1 =
∂W

∂Q1
= p1

∂f

∂Q1
+ p2

∂g

∂Q1
= 2p1Q1 + 2p2Q2

P2 =
∂W

∂Q2
= p1

∂f

∂Q2
+ p2

∂g

∂Q2
= −2p1Q2 + 2p2Q1 . (6)

9



We refer to (q1, q2) as the physical plane and to (Q1,Q2) as the parametric plane with q1+iq2 =
f + ig = (Q1 + iQ2)

2. Using matrix notation, we remark that the Levi–Civita transformation
can be written as

( q1

q2

)
=

( Q2
1 −Q2

2

2Q1Q2

)
=

( Q1 −Q2

Q2 Q1

)( Q1

Q2

)
= A0

( Q1

Q2

)
,

where we defined the matrix A0 =
( Q1 −Q2

Q2 Q1

)
. It is immediate to check that the Levi–Civita

transformation is characterized by the following properties:

(1) the matrix A0 is orthogonal;

(2) the elements of A0 are linear and homogeneous functions of Q1, Q2;

(3) the first column of the matrix A0 coincides with the Q–vector.

Another important property of the Levi–Civita transformation is that the angles at the origin
are doubled (see Figure 5).

Figure 4: The Levi–Civita transformation doubles the angles at the origin.

Indeed, when the orbital eccentricity tends to 1, the ellipse degenerates into a straight line. In
the physical plane, the position vector makes a sharp bend of angle 2π at the origin. In the
parametric plane, the singularity is removed allowing the particle to pass through the origin;
in this case, the position vector makes an angle π at the origin. More specifically, denoting by

θ and ψ the angles formed by the position vector at the origin, one obtains

tan θ =
q2

q1
=

2Q1Q2

Q2
1 −Q2

2

=
2Q2/Q1

1− (Q2
Q1

)2
=

2 tan ψ

1− tan2 ψ
= tan2 ψ .

Coming back to the Levi–Civita transformation (6), we observe that

P = 2AT
0 p

and that the inverse of the matrix A0 is provided by A−1
0 = 1

detA0
AT

0 . Let us define D ≡
4 detA0 = 4(Q2

1 + Q2
2) > 0; then one obtains

P 2
1 + P 2

2 = D(p2
1 + p2

2) .
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As a consequence, the new Hamiltonian becomes

H̃ = H̃(P1, P2, Q1, Q2) =
1

2D
(P 2

1 + P 2
2 )− 1

(f(Q1,Q2)2 + g(Q1,Q2)2)
1
2

.

The corresponding Hamilton’s equations are

Q̇1 =
P1

D

Q̇2 =
P2

D

Ṗ1 =
1

2D
(P 2

1 + P 2
2 )

∂D

∂Q1
− 1

2

1

(f2 + g2)
3
2

∂(f2 + g2)

∂Q1

Ṗ2 =
1

2D
(P 2

1 + P 2
2 )

∂D

∂Q2
− 1

2

1

(f2 + g2)
3
2

∂(f2 + g2)

∂Q2
.

Let us introduce the extended phase space (see Appendix A) by defining a new variable T
conjugated to time, such that the extended Hamiltonian becomes

Γ(P1, P2, T, Q1, Q2, t) =
1

2D
(P 2

1 + P 2
2 ) + T − 1

(f(Q1,Q2)2 + g(Q1,Q2)2)
1
2

.

Since ṫ = ∂Γ
∂T = 1 and Ṫ = −∂Γ

∂t = 0, one obtains that T is constant and in particular, along

any solution, one has T (t) ≡ T = −H̃.

Next step consists in introducing a fictitious (or regularized) time s defined through the relation

dt = D(Q1,Q2) ds or
d

dt
=

1

D

d

ds
.

Since Q̇ = ∂Γ
∂P , it follows that

Q̇ =
dQ

dt
=

dQ

ds

ds

dt
=

1

D

dQ

ds
=

∂Γ

∂P
;

the above relation implies that dQ
ds = ∂Γ∗

∂P with Γ∗ ≡ DΓ. Similarly, we use Ṗ = − ∂Γ
∂Q to obtain

Ṗ =
dP

dt
=

dP

ds

ds

dt
=

1

D

dP

ds
= − ∂Γ

∂Q
,

which provides
dP

ds
= −∂Γ∗

∂Q
,

where Γ∗ ≡ DΓ; in fact, we observe that

∂Γ∗

∂Q
=

∂D

∂Q
Γ + D

∂Γ

∂Q
= D

∂Γ

∂Q
,

being Γ = 0 along a solution. Finally, the new Hamiltonian Γ∗ is given by

Γ∗ ≡ DΓ = DT +
1

2
(P 2

1 + P 2
2 )− D

(f2 + g2)
1
2

.

11



The associated Hamilton’s equations (j = 1, 2) are

dQj

ds
= Pj

dPj

ds
= − ∂

∂Qj

[
DT − D

(f2 + g2)
1
2

]

dt

ds
= D

dT

ds
= 0 .

Notice that the singularity of the problem is associated to the term D

(f2+g2)
1
2
, which is trans-

formed as

D

(f2 + g2)
1
2

=
D

r
=

4(Q2
1 + Q2

2)

(Q4
1 + Q4

2 − 2Q2
1Q

2
2 + 4Q2

1Q
2
2)

1
2

=
4(Q2

1 + Q2
2)

(Q2
1 + Q2

2)
= 4 ,

where we used f = Q2
1 −Q2

2 and g = 2Q1Q2.

Denoting by a prime the derivative with respect to s and recalling that T = −H̃, the equations
of motion are (j = 1, 2):

Q′
j = Pj

P ′
j = −T

∂D

∂Qj
= −T · 8Qj = 8H̃Qj

Therefore, one gets the second order differential equation

Q′′
j = 8H̃Qj (j = 1, 2) . (7)

Notice that if H̃ < 0 (corresponding to an elliptic orbit), one obtains the equation of an
harmonic oscillator.

Remark: In relation to the remark of section 3, we observe that the equation (7) describes pure
harmonic oscillations with fixed frequency; therefore, one gets regular differential equations and
the solution is stable.

We conclude this section by showing the relation between the fictitious time and the eccentric

anomaly. To this end, setting ω2 = −8H̃, let us write equation (7) as

Q′′
1 + ω2Q1 = 0 , Q′′

2 + ω2Q2 = 0 .

Assuming the initial conditions

Q1(0) = α Q2(0) = 0

Q′
1(0) = 0 Q′

2(0) = βω ,
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the solution is given by

Q1(s) = α cos(ωs) , Q2(s) = β sin(ωs) .

Defining E = 2ωs, we get Q1(E) = α cos(E
2 ), Q2(E) = β sin(E

2 ). Using the transformation
(Q1, Q2) → (q1, q2), we get

q1 = Q2
1 −Q2

2 = −β2 − α2

2
+

β2 + α2

2
cosE

q2 = 2Q1Q2 = αβ sin E ,

which describes an ellipse with center in (−β2−α2

2 , 0). Moreover, the major semiaxis is a = β2+α2

2

and the distance of the focus from the center of the ellipse is given by ae = β2−α2

2 . Therefore

we obtain

r =
√

q2
1 + q2

2 = Q2
1 + Q2

2

=
β2 + α2

2
− β2 − α2

2
cos E = a(1− e cosE) ,

which corresponds to the standard Keplerian relation between the radial distance and the
eccentric anomaly.

5.2 The regularization of the planar, circular, restricted three–body prob-
lem

In a synodic reference frame, the Hamiltonian of the planar, circular, restricted three–body
problem is given by

H(p1, p2, q1, q2) =
1

2
(p2

1 + p2
2) + q2p1 − q1p2 − V (q1, q2) ,

where V (q1, q2) = µ1
r1

+ µ2
r2

and

r1 = [(q1 − µ2)
2 + q2

2]
1
2 , r2 = [(q1 + µ1)

2 + q2
2 ]

1
2 .

To regularize collisions with P 1, we consider again a generating function of the form

W (p1, p2,Q1, Q2) = p1f(Q1,Q2) + p2g(Q1, Q2) ,

with f(Q1,Q2) = Q2
1 −Q2

2 + µ2, g(Q1,Q2) = 2Q1Q2 and characteristic equations

q1 =
∂W

∂p1
= f(Q1,Q2)

q2 =
∂W

∂p2
= g(Q1, Q2)

P1 =
∂W

∂Q1
= p1

∂f

∂Q1
+ p2

∂g

∂Q1

P2 =
∂W

∂Q2
= p1

∂f

∂Q2
+ p2

∂g

∂Q2
.
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Remark: To regularize collisions with P 2, it suffices to substitute f with f(Q1, Q2) = Q2
1 −

Q2
2 − µ1.

The above change of coordinates transforms p2
1+p2

2 into 1
D (P 2

1 +P 2
2 ), while the term q2p1−p2q1

becomes

q2p1 − p2q1 =
1

2D
[P1

∂

∂Q2
(f2 + g2)− P2

∂

∂Q1
(f2 + g2)] .

Therefore, the transformed Hamiltonian is given by

H̃(P1, P2,Q1,Q2) =
1

2D
[P 2

1 + P 2
2 + P1

∂

∂Q2
(f2 + g2)− P2

∂

∂Q1
(f2 + g2)]− Ṽ (Q1,Q2) ,

where Ṽ corresponds to V with q1 replaced by f(Q1, Q2) and q2 replaced by g(Q1,Q2). The
Hamiltonian in the extended phase space becomes

Γ = T +
1

2D
[P 2

1 + P 2
2 + P1

∂

∂Q2
(f 2 + g2)− P2

∂

∂Q1
(f2 + g2)]− Ṽ (Q1,Q2) .

Next, we introduce the fictitious time dt = D ds, obtaining the Hamiltonian

Γ∗ ≡ DΓ = DT +
1

2
[P 2

1 + P 2
2 + P1

∂

∂Q2
(f2 + g2)− P2

∂

∂Q1
(f2 + g2)]−DṼ (Q1,Q2) .

In the following, it will be useful to define the function Φ(Q1,Q2) as

Φ(Q1,Q2) ≡ f(Q1,Q2) + ig(Q1,Q2) .

From equation (4) one gets Ω = 1
2(q2

1 + q2
2) + V = Ω− 1

2µ1µ2 and 1
2(f2 + g2) + Ṽ = Ω− 1

2µ1µ2

(with q1 = f and q2 = g). Observing that |Φ|2 = f2 + g2, one has

1

2
|Φ|2 + Ṽ = Ω− 1

2
µ1µ2 .

From the definition of the Jacobi integral, we obtain

H̃ = −T =
µ1µ2 − C

2
,

namely
1

2
|Φ|2 − T + Ṽ = Ω− C

2
.

Since DṼ = D(Ω− C
2 )− 1

2D|Φ|2 + DT , we notice that the critical term is just D(Ω − C
2 ). In

order to achieve the desired regularization, let us define the complex physical and parametric
coordinates as z = q1 + iq2 and w = Q1 + iQ2. The physical coordinates of the primaries are

z1 = µ2 and z2 = −µ1. The regularizing transformation at P 1 can be written as z = w2 + µ2,
while the transformation z = w2 − µ1 regularizes the singularity at P 2. By means of the first
transformation, the primary P 1 is moved to the origin of the w–plane, while P 2 has coordinates
w1,2 = ±i.
Since r1 = |w|2, r2 = |1 + w2| and since

µ1r
2
1 + µ2r

2
2 = µ1(z − µ2)

2 + µ2(z + µ1)
2 = z2 + µ1µ2 ,
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we obtain that

U = Ω − C

2
=

1

2
µ1µ2 +

1

2
(q2

1 + q2
2) + V − C

2

=
1

2
(µ1r

2
1 + µ2r

2
2) +

µ1

r1
+

µ2

r2
− C

2

=
1

2
[µ1|w|4 + µ2|1 + w2|2] +

µ1

|w|2 +
µ2

|1 + w2| −
C

2
.

Observing that D = 4(Q2
1 + Q2

2) = 4|w|2, we find that the term DU = D(Ω − C
2 ) does not

contain singularities at P 1; in fact, we get

DU = D(Ω − C

2
) = 2|w|2 [µ1|w|4 + µ2|1 + w2|2] + 4µ1 +

4µ2|w|2
|1 + w2| − 2C|w|2 ,

which is regular as far as w 6= ±i, corresponding to the location of the other primary P 2.

Remark: The expression of the velocity in terms of the fictitious time is obtained as follows.
In the physical space the Jacobi integral is |ż|2 = 2U , while in the parametric space it takes

the form
|w′|2 = 8|w|2U ,

where we used D = 4|w|2, z = w2 +µ2, ż = 2wẇ = 2
Dww′, namely |w′|2 = D2

4|w|2 |ż|2 . Therefore,

we have:

|w′|2 = 8µ1 + |w|2
[ 8µ2

|1 + w|2 + 4µ1|w|4 + 4µ2|1 + w2|2 − 4C
]

.

From the previous relation, we conclude that
i) in P 1 one has r1 = 0, namely w = 0, while |w′|2 = 8µ1 and the velocity is finite;

ii) in P 2 one has r2 = 0, namely w = ±i, while |w′|2 = ∞ and the velocity is infinite.

6 The Kustaanheimo–Stiefel transformation

In this section we outline the procedure which allows to regularize the singularities in the
spatial case.

6.1 The equations of motion and the Hamiltonian

In the framework of the circular, restricted three–body problem, let us consider the motion in
the 3–dimensional space of the three bodies S, P 1 and P 2. The primaries move in the q1q2–
plane around their common center of mass, while in the synodic frame their coordinates become

P 1(µ2, 0, 0), P 2(−µ1, 0, 0). Assume that the q1q2–plane rotates with unit angular velocity about
the vertical axis. Then, the Hamiltonian function is given by

H(p1, p2, p3, q1, q2, q3) =
1

2
(p2

1 + p2
2 + p2

3) + q2p1 − q1p2 − V (q1, q2, q3) ,
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where p1, p2, p3 are the momenta conjugated to the coordinates q1, q2, q3. The equations of
motion of S are provided by the differential equations

q̈1 − 2q̇2 = Ωq1

q̈2 + 2q̇1 = Ωq2

q̈3 = Ωq3 ,

where

Ω =
1

2
(q2

1 + q2
2) +

µ1

r1
+

µ2

r2
+

1

2
µ1µ2 ,

with r2
1 ≡ (q1 − µ2)

2 + q2
2 + q2

3 and r2
2 ≡ (q1 + µ1)

2 + q2
2 + q2

3 . More explicitely, the equations of
motion are

q̈1 − 2q̇2 = q1 −
µ1

r3
1

(q1 − µ2)−
µ2

r3
2

(q1 + µ1)

q̈2 + 2q̇1 = q2 −
µ1

r3
1

q2 −
µ2

r3
2

q2

q̈3 = −µ1

r3
1

q3 −
µ2

r3
2

q3 .

6.2 The KS–transformation

As in the Levi–Civita transformation, we define the fictitious time s as

dt = D ds ,

for some factor D to be defined later. The relation between the second derivatives with respect
to t and s is given by

d2

dt2
=

d

dt
(
1

D

d

ds
) =

1

D

d

ds
(

1

D

d

ds
)

=
1

D3
(D

d2

ds2
− dD

ds

d

ds
) =

1

D2

d2

ds2
− 1

D3

dD

ds

d

ds
.

In terms of the fictitious time, the equations of motion are

Dq′′1 −D′q′1 − 2D2q′2 = D3Ωq1

Dq′′2 −D′q′2 + 2D2q′1 = D3Ωq2

Dq′′3 = D3Ωq3 , (8)

where the singular terms are contained in the right hand sides of the previous equations. Notice
that Ωq1 , Ωq2, Ωq3 ∼ O( 1

r3
1
).

Remark: We recall that in the planar case the Levi–Civita transformation is given by
(

q1

q2

)
=

(
Q1 −Q2

Q2 Q1

) (
Q1

Q2

)
=

(
Q2

1 −Q2
2

2Q1Q2

)
,

where every element of the matrix A0(Q) ≡
(

Q1 −Q2

Q2 Q1

)
is linear in Q1, Q2, with the matrix

A0(Q) being orthogonal.
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In order to achieve the regularization in space, we start by investigating the existence of
a generalization A(Q) of the matrix A0(Q) in Rn, with the following properties:

i) the elements of A(Q) must be linear homogeneous functions of the Qi;
ii) the matrix A(Q) must be orthogonal, namely

a) the scalar product of different rows must vanish;

b) each row must have norm Q2
1 + ... + Q2

n.

A result by A. Hurwitz ([5]) proves that such matrix exists only within spaces of dimensions
n = 1, 2, 4 or 8. Therefore, it becomes necessary to map the 3–dimensional physical space into
a 4–dimensional parametric space by defining the matrix

A(Q) =




Q1 −Q2 −Q3 Q4

Q2 Q1 −Q4 −Q3

Q3 Q4 Q1 Q2

Q4 −Q3 Q2 −Q1


 .

Consistently, we will extend the physical space by setting the fourth component equal to zero:
(q1, q2, q3, 0).

Considering a collision with the primary P 1, the Kustaanheimo–Stiefel (KS) regularization is
defined as follows. Let




q1

q2

q3

0


 = A(Q)




Q1

Q2

Q3

Q4


 +




µ2

0
0
0




=




Q1 −Q2 −Q3 Q4

Q2 Q1 −Q4 −Q3

Q3 Q4 Q1 Q2

Q4 −Q3 Q2 −Q1







Q1

Q2

Q3

Q4


 +




µ2

0
0
0


 ,

namely

q1 = Q2
1 −Q2

2 −Q2
3 + Q2

4 + µ2

q2 = 2Q1Q2 − 2Q3Q4

q3 = 2Q1Q3 + 2Q2Q4 .

Remarks:
1) Whenever Q3 = Q4 = 0, the KS–transformation reduces to the planar Levi–Civita transfor-
mation.
2) The norms of each row (or column) of the matrix A are equal to |Q|2 ≡ Q2

1 + Q2
2 + Q2

3 + Q2
4.

3) The regularization with P 2 is obtained by replacing the constant vector (µ2, 0, 0, 0) with
(−µ1, 0, 0, 0).
4) The matrix A is orthogonal: AT (Q)A(Q) = (Q,Q) · Id. Therefore, denoting by q ≡ (q1 −
µ2, q2, q3, 0), one obtains

r2
1 = (q, q) = qT q = QTAT (Q)A(Q)Q

= QTQ(Q,Q) = (Q,Q)2 ,
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namely r1 = (Q,Q) = |Q|2 = Q2
1 + Q2

2 + Q2
3 + Q2

4.
5) A trivial computation shows that A(Q)′ = A(Q′). As a consequence,

q′ = A(Q′)Q + A(Q)Q′ = 2A(Q)Q′ ,

which yields 


q′1
q′2
q′3
0


 = 2A(Q)Q′ = 2




Q1Q
′
1 −Q2Q

′
2 −Q3Q

′
3 + Q4Q

′
4

Q2Q
′
1 + Q1Q

′
2 −Q4Q

′
3 −Q3Q

′
4

Q3Q
′
1 + Q1Q

′
3 + Q4Q

′
2 + Q2Q

′
4

Q4Q
′
1 −Q3Q

′
2 + Q2Q

′
3 −Q1Q

′
4


 .

The last equation is known as the bilinear relation:

Q4Q
′
1 −Q3Q

′
2 + Q2Q

′
3 −Q1Q

′
4 = 0 .

In order to prove the canonicity of the transformation induced by the KS–procedure, it is
necessary to choose the initail conditions in order that the bilinear equation is satisfied.
6) The second derivative with respect to the fictitious time of the physical coordinates is given
by

q′′ = 2A(Q)Q′′ + 2A(Q′)Q′ .

In order to regularize the equations of motion, it is convenient to select the scaling factor D as

D ≡ 4r1 = 4(Q,Q) = 4(Q2
1 + Q2

2 + Q2
3 + Q2

4) .

The regularization is finally obtained mimicking the Levi–Civita procedure. More specifically,
the scheme is the following: express the coordinates and their first and second derivatives in
terms of Q, Q′, Q′′; recall that the singular part of the equations (8) is given by D3Ωq1 , D3Ωq2,
D3Ωq3. In a qualitative way, we proceed to remark that due to the fact that Ωq1 ∝ 1

r3
1

and

that D ∝ r1, one obtains that D3Ωq1 = O(1). Therefore we achieved the regularization of the

singularity in P 1. We refer the reader to [5] for complete details.

7 Birkhoff transformation

Let us consider two bodies P 1, P 2 with masses 1 − µ, µ, moving on circular orbits around
the barycenter O. Let us normalize to unity their distance. In the framework of the circular,

restricted three–body problem, let us consider the motion of a third body S, moving in the
same plane of the primaries. Let its coordinates be (x1, x2) in the synodic reference frame.
The Hamiltonian function governing the motion of S is given by

H(y1, y2, x1, x2) =
1

2
(y2

1 + y2
2) + x2y1 − x1y2 −

1− µ

r1
− µ

r2
,

where
r1 =

√
(x1 + µ)2 + x2

2 , r1 =
√

(x1 − 1 + µ)2 + x2
2 .

We shift the origin of the reference frame to the midpoint between P 1 and P 2, by means of
the complex transformation

q1 + iq2 = x1 + ix2 −
1

2
+ µ . (9)
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Therefore, the primaries will be located at P 1,2(±1
2 , 0) (see Figure 6).

Figure 5: The coordinates of the three bodies after the transformation (9).

Let us write the change of coordinates (9) as

p1 = y1 q1 = x1 −
1

2
+ µ

p2 = y2 q2 = x2 ;

we obtain the Hamiltonian function

H1(p1, p2, q1, q2) =
1

2
(p1

2 + p2
2) + q2p1 − (q1 +

1

2
− µ)p2 −

1− µ

r1
− µ

r2
,

where

r1 =

√
(q1 +

1

2
)2 + q2

2 , r2 =

√
(q1 −

1

2
)2 + q2

2 .

We remark that the singularities are now located at P 1(−1
2 , 0), P 2(

1
2 , 0). The aim of the Birkhoff

transformation will be to regularize simultaneously both collisions with P 1 and P 2. To this end,
let us write the equations of motion as

q̈ + 2iq̇ = ∇qU (q) , (10)

where q = q1 + iq2. Denoting by C the Jacobi constant, one has

U(q) = Ω(q)− C

2
,

where

Ω(q) =
1

2
[(1− µ)r1

2 + µr2
2] +

1− µ

r1
+

µ

r2

=
1

2
[(1− µ)r1

2 + µr2
2] + Ωc(q) .

Let us define Ωc(q) as the critical part given by the expression

Ωc(q) ≡
1− µ

r1
+

µ

r2
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and let us write the Jacobi integral as

|q̇|2 = 2U (q) = 2Ω(q)− C .

In order to determine the regularizing transformation, we perform a change of variables setting
the complex parametric coordinates as w = Q1 + iQ2 and defining

q = h(w) = αw +
β

w
;

the unknown expressions for α and β must be determined in order to achieve the desired
regularization.

We start by implementing a time transformation from the ordinary time t to a fictitious time
s by means of the expression

dt

ds
= g(w) ≡ |k(w)|2 = k(w)k(w) ,

where the function g(w), or equivalently k(w), must be suitably determined. One easily finds
the following relations:

q̇ =
dq

dt
=

dh(w)

dw

dw

ds

ds

dt
= h′(w)w′ṡ

q̈ = h′(w)w′s̈ + (h′′(w)w′2 + h′(w)w′′)ṡ2

∇wU = h′ ∇qU .

As a consequence, the equations of motion (10) become

w′′ + 2i
w′

ṡ
+ w′

s̈

ṡ2
+ w′2

h′′

h′
= ∇wU

1

|h′|2ṡ2
.

Using the relations ṡ = 1
g = 1

kk̄
, s̈ = − ġ

g2 , one finds that s̈
ṡ2 = −ġ. Moreover, from

−ġ =
[
k

dk̄

dw

dw̄

ds
+ k̄

dk

dw

dw

ds

]
ṡ = −

[ k̄′w̄′

k̄
+

k′w′

k

]
,

one obtains

w′′ + 2ikk̄w′ − |w′|2
k̄

k̄′ + w′2(
h′′

h′
− k′

k
) =

|k|4
|h′|2 ∇wU .

Finally, we make use of the energy integral to obtain

|q̇|2 = 2Ω(q)−C = 2U(q) = |h′|2 |w′|2 1

|k|4 ,

which implies that

|w′|2 = 2U
|k|4
|h′|2 .

Since
h′′

h′
− k′

k
=

d

dw

(
log

h′

k

)
,
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we obtain

w′′ + 2ikk̄w′ + |w′|2 d

dw

(
log

h′

k

)
=
|k|4
|h′|2

[
2U

d log k̄

dw
+∇wU

]
.

A suitable choice for the functions k and h is provided by the relation

k = h′ ,

from which it follows that (10) becomes

w′′ + 2i|h′|2w′ = ∇w

(
|h′|2U

)
.

Concerning the choice of α and β, we require that
i) the transformation involving h must eliminate both singularities;
ii) P 1, P 2 must stay fixed.

In order to meet the above requirements, we proceed as follows. Concerning statement i), we
consider the singular term Ωc(w) |h′(w)|2, where

Ωc(w) =
1− µ

r1
+

µ

r2
=

1− µ

|αw + β
w + 1

2 |
+

µ

|αw + β
w − 1

2 |

and

|h′(w)|2 =
|αw2 − β|2

|w|4 ,

namely

Ωc(w) |h′(w)|2 =
1

|w|3
[ (1− µ)|αw2 − β|2
|αw2 + β + w

2 |
+

µ|αw2 − β|2
|αw2 + β − w

2 |
]

.

We remark that the singularity at q = 1
2 corresponds to the solutions of |αw2 + β − w

2 | = 0,
which are given by

w1,2 =
1

4α

[
1±

√
1− 16αβ

]
.

Therefore, the roots of the numerator |αw2 − β| = 0 must coincide with w1,2:

1

4α

[
1±

√
1− 16αβ

]
= ±

√
β

α
,

i.e.
αβ (1− 16αβ) = 0 .

Since α and β are different from zero, it follows that

16αβ = 1 ,

which implies that

w1,2 =
1

4α
.

Concerning statement ii), since P 2(
1
2 , 0) is transformed to P 2(

1
4α , 0), one needs to require that

1
4α = 1

2 . Therefore, one finds

α =
1

2
& β =

1

8
.
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In order to regularize the singularity at P 1, one needs to repeat the above procedure, which
leads to exactly the same results, namely α = 1

2 , β = 1
8 .

Notice that the equations of motion contain also the singular term 1
|w|3 ; however the singularity

w = 0 corresponds to q →∞, which does not have a physical meaning.

In summary, the regularization steps performed to achieve Birkhoff transformation are the
following. Let

q =
1

2
(w +

1

4w
) , w = Q1 + iQ2 ,

namely

q1 =
1

2
(Q1 +

Q1

4(Q2
1 + Q2

2)
) ≡ f(Q1, Q2)

q2 =
1

2
(Q2 −

Q2

4(Q2
1 + Q2

2)
) ≡ g(Q1, Q2) .

We perform a change of coordinates with generating function

W (p1, p2,Q1, Q2) = p1f(Q1,Q2) + p2g(Q1, Q2) .

Let us define the matrix A as

A =
( fQ1 gQ1

fQ2 gQ2

)
;

whose determinant takes the form

det(A) =
1

64(Q2
1 + Q2

2)
2

[
16(Q2

1 + Q2
2)

2 + 1 + 8(Q2
2 −Q2

1)
]

.

We introduce a fictitious time as

dt = D ds , D = det(A) .

The regularization is finally obtained considering the equations of motion in the extended phase
space.

Appendix A: The extended phase space.

We discuss the introduction of the extended phase space. If the Hamiltonian function H̃ =
H̃(P,Q, t) depends explicitely on the time, one can introduce a time–independent Hamiltonian,
defined as

Γ = Γ(P,Q, T, t) = H̃(P,Q, t) + T ,

where T is conjugated to t. We show that Γ is identically zero along any solution.

In fact, if we select the initial conditions such that T (0) = −H̃(P (0),Q(0), 0), one obtains that

T (t) = −H̃(t) along a solution for any t. To this end, we first notice that dH̃
dt = ∂H̃

∂t , since by
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Hamilton’s equations:

dH̃

dt
=

dH̃(P,Q, t)

dt
=

∂H̃

∂t
+

∂H̃

∂Q

dQ

dt
+

∂H̃

∂P

dP

dt

=
∂H̃

∂t
+

∂H̃

∂Q

∂H̃

∂P
− ∂H̃

∂P

∂H̃

∂Q
=

∂H̃

∂t
.

Therefore, by Hamilton’s equations one gets

dT

dt
= −∂H̃

∂t
= −dH̃

dt
,

from which one obtains that

T (t) = T (0) +

∫ t

0

dT (s)

ds
ds = T (0)−

∫ t

0

dH̃(s)

ds
ds

= −H̃(0)−
∫ t

0

dH̃(s)

ds
ds = −H̃(t) .
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