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1. INTRODUCTION

1.1 Overview.

In the recent papers [1, 2], we presented a general theory of partition function zeros in models
with periodic boundary conditions and interaction depending on one complex parameter. The
analysis was based on a set of assumptions, called Assumptions A and B in [2], which are es-
sentially statements concerning differentiability properties of certain free energies supplemented
by appropriate non-degeneracy conditions. On the basis of these assumptions we characterized
the topology of the resulting phase diagram and showed that the partition function zeros are in
one-to-one correspondence with the solutions to specific (and simple) equations. In addition, the
maximal degeneracy of the zeros was proved to be bounded by the number of thermodynamically
stable phases, and the distance between the zeros and the corresponding solutions was shown to
be generically exponentially small in the linear size of the system.

The reliance on Assumptions A and B in [2] permitted us to split the analysis of partition
function zeros into two parts, which are distinct in both mathematical and physical content: one
concerning the zeros of a complex (in fact, analytic) function—namely the partition function
with periodic boundary conditions—subject to specific requirements, and the other concerning
the control of the partition function in a statistical mechanical model depending on one complex
parameter. The former part of the analysis was carried out in [2]; the latter is the subject of this
paper. Explicitly, the principal goal of this paper can be summarized as follows: We will define a
large class of lattice spin models (which includes several well-known systems, e.g., the Ising and
Blume-Capel models) and show that Assumptions A and B are satisfied for every model in this
class. On the basis of [2], for any model in this class we then have complete control of the zeros
of the partition function with periodic boundary conditions.

The models we consider are characterized by two properties: the existence of only a finite
number ofground statesnd the availability of @ontourrepresentation. In our setting, the term
ground state will simply mean a constant—or, after some reinterpretations, a periodic—infinite
volume spin configuration. Roughly speaking, the contour representation will be such that the
contours correspond to finite, connected subsets of the lattice where the spin configuration differs
from any of the possible ground states. A precise definition of these notions is a bit technical,
details will be provided in Section 3. Besides these properties, there will also be a few quantitative
requirements on the ground state energies and the scaling of the excess contour energy with the
size of the contour—the Peierls condition—see Sections 2.1 and 3.2.

These two characteristic properties enable us to apply Pirogov-Sinai theory—a general method
for determining low-temperature properties of a statistical mechanical model by perturbing about
zero-temperature. The first formulation of this perturbation technique [16, 17] applied to a class
of models with real, positive weights. The original “Banach space” approach of [16, 17] was
later replaced by inductive methods [9], which resulted in a complete classification of translation-
invariant Gibbs states [21]. The inductive techniques also permitted a generalization of the char-
acterization of phase stability/coexistence to models with complex weights [5]. However, most
relevant for our purposes are the results of [6], dealing with finite-size scaling in the vicinity of
first-order phase transitions. There Pirogov-Sinai theory was used to derive detailed asymptotics
of finite volume patrtition functions. The present paper provides, among other things, a variant of
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[6] that ensures appropriate differentiability of the so-called metastable free energies as required
for the analysis of partition function zeros.

The remainder of this paper is organized as follows. Section 1.2 outlines the class of models
of interest. Section 1.3 defines the ground state and excitation energies and introduces the torus
partition function—the main object of interest in this paper. Section 2.1 lists the assumptions
on the models and Section 2.2 gives the statements of the main results of this paper. These
immediately imply Assumptions A and B of [2] for all models in the class considered. Sections 3
and 4 introduce the necessary tools from Pirogov-Sinai theory. These are applied in Section 5 to
prove the main results of the paper.

1.2 Models of interest.

Here we define the class of models to be considered in this paper. Most of what is to follow in
this and the forthcoming sections is inspired by classic texts on spin models, Gibbs states and
Pirogov-Sinai theory, e.g., [8, 18, 20, 21].

We will consider finite-state spin models on thaimensional hypercubic lattic&” ford > 2.
At each sitex e Z9 thespin denoted bys,, will take values in a finite sef. A spin configuration
o = (ox)xezd 1S @n assignment of a spin to each site of the lattice. The interaction Hamiltonian
will be described using a collection of potentié, ), whereA runs over all finite subsets @ .
The @, are functions on configurations frof7’ with the following properties:

(1) The valued, (¢) depends only oay with X € A.
(2) The potential is translation invariant, i.e.glfis a translate of and A’ is the correspond-
ing translate ofA, then® /(o) = ® A (d).
(3) There exists aR > 1 such thatb, = 0 for all A with diameter exceeding + 1.
Here thediameterof a cubic box withL x - - - x L sites is defined to bk while for a generaA c
74 it is the diameter of the smallest cubic box containfagThe constanR is called therange
of the interaction

Remark 1 Condition (2) has been included mostly for convenience of exposition. In fact, all
of the results of this paper hold under the assumption dhatare periodic in the sense that

@, (0) = D, (d) holds forA ande related toA’ ande’ by a translation frongaZ)¢ for some fixed
integera. This is seen by noting that the periodic cases can always be converted to translation-
invariant ones by considering block-spin variables and integrated potentials.

As usual, the energy of a spin configuration is specified by the Hamiltonian. Formally, the
Hamiltonian is represented by a collection of functigfi$, ) indexed by finite subsets @,
wherefH, is defined by the formula

BHA(@) = D Dulo). (1.1)
AN NNAAD
(The superfluoug, playing the role of the inverse temperature, appears only to maintain formal

correspondence with the fundamental formulas of statistical mechanics.) In light of our restriction
to finite-range interactions, the sum is always finite.

We proceed by listing a few well known examples of models in the above class. With the
exception of the second example, the range of each interaction is equal to 1:
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Ising model. HereS = {—1,+1} and®, (o) # 0 only for A containing a single site or a
nearest-neighbor pair. In this case we have

—hoy, if A = (x],

. . (1.2)
—Joyoy, if A={x,y}with|x —y| =1

Dy (0) = i

HereJ is the coupling constanty is an external field anfk — y| denotes the Euclidean distance
betweerx andy.

Perturbed Ising modelAgain S = {—1, +1}, but now we allow for arbitrary finite range pertur-
bations. Explicitly,

—hoy, if A = (x],

: : (1.3)
—JIn[Tyenox if |[A] > 2and diamA < R+ 1.

Dp(0) = {

The coupling constant3, are assumed to be translation invariant (iJg.= Jx/ if A andA’ are
translates of each other). The constaig again the external field.

Blume-Capel modelln this caseS = {—1, 0, +1} and®, (¢) = 0 unlessA is just a single site
or a nearest-neighbor pair. Explicitly, we have

—Ao2 — hoy, if A ={x)},

J(ox — 0y)?, if A ={x,y}with |x —y| =1.

HereJ is the coupling constant, is a parameter favoringt1 against O-spins arfdis an external
field splitting the symmetry betweepnl and—1.

D) = | (1.4)

Potts model in an external fieldThe state space hgslementsS = {1, ..., q} and®, is again
nontrivial only if A is a one-element set or a pair of nearest-neighbor sites. Explicitly,
—hd,, 1, if A={x},
Op(o) = ot . ) . (1.5)
—J00y.0y5 if A={x,y}with|x—y| =1

Hered, » equals one ib = ¢ and zero otherwise] is the coupling constant arfdis an ex-
ternal field favoring spin value 1. Actually, the results of this paper will hold only for the low-
temperature regime (which in our parametrization corresponds ¥ logq); a more general
argument coveringll temperatures (but under the condition thas sufficiently large) will be
presented elsewhere [3, 4].

Any of the constants appearing in the above Hamiltonian can in principle be complex. How-
ever, not all complex values of, e.g., the coupling constant will be permitted by our additional
restrictions. See Section 2.3 for more discussion.

1.3 Ground states, excitations and torus partition function.

The key idea underlying our formulation is thadnstantconfigurations represent the potential
ground states of the system. (A precise statement of this fact appears in Assumption C2 below.)
This motivates us to define the dimensionlgssund state energy density @ssociated with spin

m € S by the formula

= 3 0A", (L6)

A1 AS0 |A|
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where|A| denotes the cardinality of the s&tand wheres™ is the spin configuration that is equal
to m at every site. By our restriction to finite-range interactions, the sum is effectively finite.
The constant configurations represent the states with minimal energy; all other configurations
are to be regarded as excitations. Given a spin configuratitat Bg(c) denote the union of all
cubic boxesA c Z¢ of diameter R + 1 such that is not constant im\. We think of Bz(o) as
the set on whichr is “bad” in the sense that it is not a ground state at s€alélhe setBg(o)
will be referred to as th&®-boundaryof . Then theexcitation energy &) of configurations is
defined by

E@= > > ﬁ@,\(a). (1.7)
XeBRr(o) A: XeA
To ensure that the sum is finite (and therefore meaningful) we will only consider the configura-
tionse for which Br(o) is a finite set.
The main quantity of interest in this paper is the partition function with periodic boundary

conditions which we now define. Lét > 2R + 1, and letT, denote the torus of x L x
... x L sites inZ4, which can be thought of as the factorZf with respect to the action of the
subgroup(LZ)¢. Let us consider the HamiltonighH, : ST* — C defined by

PHL(@) = D> ®pl0), oeS™, (1.8)

A: ACT,

where®, are retractions of the corresponding potentials fifio T, . (Here we use the trans-
lation invariance ofb,.) Then thepartition function with periodic boundary conditioms T is
defined by

2= 3 e, L9)
0eSTL

In general,z"®" is a complex quantity which depends on all parameters of the Hamiltonian. We
note that various other partition functions will play an important role throughout this paper. How-
ever, none of these will be needed for the statement of our main results in Section 2, so we
postpone the additional definitions and discussion to Section 4.

We conclude this section with a remark concerning the interchangeability of the various spin
states. There are natural examples (e.g., the Potts model) where several spin values are virtually
indistinguishable from each other. To express this property mathematically, we will consider the
situation where there exists a subgrotipof the permutations of such that ifr € & then
€;m = em andE(x (o)) = E(o) for eachm e S and each configuratios with finite Bg(o),
wherer (o) is the spin configuration taking valugoy) at eachx. (Note thatBr(z (¢)) = Br(0)
for any such permutation.) Then we call two spin statem andn interchangeabléf m andn
belong to the same orbit of the grodpon S.

While this extra symmetry has absolutely no effect on the contour analysis of the torus partition
sum, it turns out that interchangeable spin states cannot be treated separately in our analysis of
partition function zeros. (The precise reason is that interchangeable spin states would violate
our non-degeneracy conditions; see Assumption C3-C4 and Theorem A3-4 below.) To avoid this
difficulty, we will use the factor sek = S/®& instead of the original index s& when stating
our assumptions and results. In accordance with the notation of [2], we will alsotasienote



6 M. BISKUP, C. BORGS, J.T. CHAYES, AND R. KOTECK DECEMBER 12, 2003

the cardinality of the sek, i.e., R = {1, 2, ...,r}, andqm, to denote the cardinality of the orbit
corresponding ton € R.

2. ASSUMPTIONS AND RESULTS

In this section we list our precise assumptions on the models of interest and state the main results
of this paper.

2.1 Assumptions.

We will consider the setup outlined in Sections 1.2—-1.3 with the additional assumption that the
parameters of the Hamiltonian depend on one complex parametbich varies in some open
subset” of the complex plane. Typically, we will take= € or z = € whereh is an external
field; see the examples at the end of Section 1.2. Throughout this paper we will assume that the
spin spaceS, the factor seRR, the integers), and the range of the interaction are independent of
the parametez. We will also assume that the spatial dimengibis no less than two.

The assumptions below will be expressed in terms of complex derivatives with resect to
For brevity of exposition, let us use the standard notation

az=%(%—i%) and az=%(%+i%) (2.1)

for the derivatives with respect toand z, respectively. Herx = Rez andy = 3mz. Our
assumptions will be formulated for the exponential weights

oa(0,2) =€ D p (o) =eF"D and On(2) = e, (2.2)

where we have now made the dependence ootationally explicit. In terms of thé,’s and the
quantity
0(2) = max|6m(2)| (2.3)
meR

we define the se¥, (m) by
Z(m) = {ze 0 |0n(2)| > 0(2)¢"}. (2.4)

Informally, %, (m) is the set o& for which mis “almost” a ground state of the Hamiltonian.
Since we want to refer back to Assumptions A and B of [2], we will call our new hypothesis
Assumption C.

Assumption C. There exist a domai@ c C and constants, M, 7 e (0, 00) such that the
following conditions are satisfied.

(0) For eactr € SZ° and each finite\ c Z¢, the functionz — ¢ (v, 2) is holomorphic in&.
(1) Forallme S,allze ¢ and all¢ =0, 1, 2, the ground state weights obey the bounds

|6560m(2)| < M O(2) (2.5)

In addition, the quantity () is uniformly bounded away from zero ifi.
(2) For every configuration with finite R-boundaryBg(o), the Peierls condition

|0%p2(0)| < (MIBr(@)])' (€7"0(2)) > (2.6)
holds for allz € & and¢ = 0, 1, 2.
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(3) Forall distinctm, n € R and allz € .Z,(m) N .Z,(n), we have
026m(2)  0:0n(2) -

Om(2) On(2) 1~

(4) If @ c Ris such thatQ| > 3, then for anyz € (.o -Z, (M) we assume that the complex

quantitiesom(z) = On(2)~13,.0m(2), m € Q, regarded as vectors iR?, are vertices of a
strictly convex polygon. Explicitly, we demand that the bound

2.7)

inf{ ‘vm(z) - z wnon(2) }: wn > 0, Z wp = 1} >a (2.8)

neQ~{mj neQ~.{mj

holds for everym € Q and everyz € (.o Z,(N).

Assumptions CO-2 are very natural; indeed, they are typically a consequence of the fact that
the potential® 5 (o, Z—and hence als&,(z) andp,(o)—arise by analytic continuation from the
positive real axis. Assumptions C3-4 replace the “standard” multidimensional non-degeneracy
conditions which are typically introduced to control the topological structure of the phase dia-
gram, see e.g. [16, 17, 20]. (However, unlike for the “standard” non-degeneracy conditions, here
this control requires a good deal of extra work, see [2].) Assumption C4 is only important in the
vicinity of multiple coexistence points (see Section 3.2); otherwise, it can be omitted.

Remark 2 For many models, including the first three of our examples, the partition function has
both zeros and poles, and sometimes even involves non-integer poveeis dhis situation it is
convenient to multiply the partition function by a suitable powee ¢ obtain a function that is
analytic in a larger domain. Typically, this different normalization also leads to a larger démain

for which Assumption C holds. Taking, e.qg., the Ising model with €?", one easily verifies that

for low enough temperatures, Assumption C holds everywhere in the complex plane—provided
we replace the term-hoy by —h(ox + 1). By contrast, in the original representation (where

o (0, 2) = (/2)™), one needs to take out a neighborhood of the negative real axis (or any other
ray from zero to infinity) to achieve the analyticity required by Assumption CO.

Remark 3 If we replace the term-hoy in (1.2—1.4) by—h(oy + 1), Assumption C (withz = 2"

for the Ising models, anzl= €" for the Blume Capel and Potts model) holds for all four examples
listed in Section 1.2, provided that the nearest-neighbor couplings are ferromagnetic and the
temperature is low enough. (For the perturbed Ising model, one also needs that the nearest-
neighbor coupling is sufficiently dominant.)

2.2 Main results.

Now we are in a position to state our main results, which show that Assumptions A and B from [2]

are satisfied and hence our conclusions concerning the partition function zeros hold. The structure
of these theorems parallels the structure of Assumptions A and B. We caution the reader that the
precise statement of these results is quite technical. For a discussion of the implications of these
theorems, see Section 2.3. The first theorem establishes the existence of metastable free energies
and their relation to the quantitiés,.
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Theorem A Let M € (0, o) anda € (0, c0). Then there is a constang depending on Mg,

the number of spin staté§| and the dimension d such that if Assumption C holds for the con-
stants Mo, some open domaif@ ¢ C and some > o, then there are functiongn: 0 — C,

m e R, for which the following holds:

(1) There are functions,s ¢ — C, m € R, such that,(z) can be expressed as
(n(2) = On(2€™®  and |sp(2)] < &7/ (2.9)

In particular, the quantity (z) = Maxner |cm(2)| is uniformly positive ing.

(2) Each functioryy, viewed as a function of two real variablesx%ez and y= Smz, is twice
continuously differentiable or# and satisfies the Cauchy-Riemann equatienm(z) = 0
for all z € Ay, where

In={ze 0 |tm@| =@} (2.10)
In particular, ¢m is analytic in the interior of#,.
(3) For any pair of distinct indices nm € R and any ze ., N .%, we have
aZCI’T‘I(Z) _ aZé/l’l(z) -
{m(2) m@ |~
(4) If Q C RissuchthalQ| > 3, then for any z= (..o “m,

02¢m(2)
(m(@)
are the vertices of a strictly convex polygonGr~ R2.

o —2e77/2, (2.11)

om(2) = € Q, (2.12)

Theorem A ensures the validity of Assumption A in [2] for any model satisfying Assumption C
with 7 sufficiently large. Assumption A, in turn, allows us to establish several properties of the
topology of the phase diagram, see Section 2.3 below for more details.

Following [2], we will refer to the indices iR asphasesand call a phasen € R stable
at zif |(m(2)| = ¢(2). We will say that a poinz € & is a point ofphase coexistendéthere
are at least two phases € R which are stable at. In [2] we introduced these definitions
without further motivation, anticipating, however, the present work which provides the technical
justification of these concepts. Indeed, using the expansion techniques developed in Sections 3
and 4, one can show that, for eanhe S that corresponds to a stable phas®irthe finite volume
states withm-boundary conditions tend to a unique infinite-volume limjt, in the sense of
weak convergence on linear functionals on local observables. (Here a local observable refers to a
function depending only on a finite number of spins). The limit state is invariant under translations
of Z4, exhibits exponential clustering, and is a small perturbation of the groundsétatethe
sense thatd,, k)m = omk + O(e™"/?) for all x € Z9.

Remark 4 Note that two states), and{-),y are considered as two different versions of the same
phase ifm andm’ are indistinguishable, in accordance with our convention&atnd notS, la-

bels phases. Accordingly, the term phase coexistence refers to the coexistdistimgfiishable
phases, and not to the coexistence of two states labelled by different indices in the sarRe orbit
This interpretation of a “thermodynamic phase” agrees with that used in physics, but disagrees
with that sometimes used in the mathematical physics literature.
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While Theorem A is valid in the whole domaifi, our next theorem will require that we restrict
ourselves to a subseét c & with the property that there exists some- 0 such that for each
pointz € &, the discD, (z) of radiuse centered at is contained in. (Note that this condition
requires? to be a strict subset o/, unless¢ consists of the whole complex plane). In order
to state the next theorem, we will need to recall some notation from [2]. GivemaayR and
0 > 0, let.#s(m) denote the region where the phasés “almost stable,”

Fm) ={ze 0: |tn(@] > €°¢(2)}. (2.13)

For anyQ c R, we also introduce the region where all phases f@mare “almost stable” while
the remaining ones are not,

U(Q) = [ S\ | Fo2(n), (2.14)
meQ ne Q°
with the bar denoting the set closure.

TheoremB LetM, a, ¢ € (0, oo) and letr > g, whererg is the constant from Theorem A, and

letx = 7/4. Letd c Cand& c & be open domains such that that Assumption C holdsamd
D.(z) c & forall z € ¢. Then there are constantgQdepending only on M), W(depending

on M ande), and Ly (depending on d, Mz ande) such that for each ne R and each L> L

there is a functiorg ") : .#, ;. (m) — C such that the following holds for all > Lo:

(1) The function £ is analytic in&.

(2) Each¢ M) is non-vanishing and analytic itv,, (m). Furthermore,

(L)( ) Ls
'Iog D et/ (2.15)
and
0,10 {n’ (@) + |8;l0 ert/8 (2.16)
ng<> chm(z) '

hold for allme R and all ze ., (m).
(3) Foreachme R, all £ > 1, and all ze .#;, (M), we have

D] _ o
(L) < ({H*M,. (2.17)
{m ' (2)
Moreover, for all distinct mn € R and all ze .7, (m) N 7L (n),
(L) O, (L)
(L) B fﬂ @\ o —2er2 (2.18)
(2 '@ |~
(4) ForanyQ c R, the difference
EoL®@ =2 - Y au[cV @] (2.19)
meQ

satisfies the bound

|020.L(2)| < f!(CoLd)"“c(Z)Ld(

> qm)e-fL/16 (2.20)

meR
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forall £ > Oand all ze %, (Q).

Theorem B proves the validity of Assumption B from [2]. Together with Theorem A, this in
turn allows us to give a detailed description of the positions of the patrtition function zeros for all
models in our class, see Section 2.3.

The principal result of Theorem B is stated in part (4): The torus partition function can be
approximated by a finite sum of terms—one for each “almost stable” phas&—which have
well controlled analyticity properties. As a consequence, the zeros of the partition function arise
as a result of destructive interference between almost stable phases, and all zeros are near to the
set of coexistence point§ = (J,,., “m N #n; see Section 2.3 for further details. Representa-
tions of the form (2.19) were crucial for the analysis of finite-size scaling near first-order phase
transitions [6]. The original derivation goes back to [5]. In our case the situation is complicated
by the requirement of analyticity; hence the restrictioa o %, (Q) in (4).

2.3 Discussion.

As mentioned previously, Theorems A and B imply the validity of Assumptions A and B of [2],
which in turn imply the principal conclusions of [2] for any model of the kind introduced in
Section 1.2 that satisfies Assumption C witlsufficiently large. Instead of giving the full state-
ments of the results of [2], we will only describe these theorems on a qualitative level. Readers
interested in more details are referred to Section 2 of [2].

Ouir first result concerns the set of coexistence poiits; Um¢n “m N, giving rise to the
complex phase diagram. Here Theorem 2.1 of [2] asserts4hsthe union of a set of simple,
smooth (open and closed) curves such that exactly two phases coexist at any interior point of the
curve, while at least three phases coexist at the endpoints—these amaltipée points More-
over, in each compact set, any two such curves cannot get too close without intersecting and there
are only a finite number of multiple points. These properties are of course direct consequences of
the non-degeneracy conditions expressed in Theorem A3-4.

Having discussed the phase diagram, we can now turn our attention to the z&5$ dhe
combined results of Theorems 2.2-2.4 of [2] yield the following: First, all zeros lie within—9)
of the set¥. Second, along the two-phase coexistence lines with stable pimases R, the
zeros are withirO(e~°), for somec > 0, of the solutions to the equations

Y@ = 0 I ()L, (2.21)
LY Arg(¢m(2)/¢n(2)) = = mod 2r. (2.22)

Consecutive solutions to these equations are separated by distances afdrder., there are of
the otherL® zeros per unit length of the coexistence line. Scalind.Bythis allows us to define
adensity of zeroalong each two-phase coexistence line, which in the limib oo turns out to
be a smooth function varying only over distances of order one.

Near the multiple points the zeros are still in one-to-one correspondence with the solutions of
a certain equation. However, our control of the errors here is less precise than in the two-phase
coexistence region. In any case, all zeros are at rfnost1)-times degenerate. In addition, for
models with an Ising-like plus-minus symmetry, Theorem 2.5 of [2] gives conditions under which
zeros will lie exactly on the unit circle. This is the local Lee-Yang theorem.
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FIGURE 1. A schematic figure of the solutions to (2.21-2.22) giving the approximate locations of
partition function zeros of the Ising model in paramezewhich is related to the external fieldl

by z = e®. The plot corresponds to dimensidn= 2 and torus sidé. = 8. The expansion used for
calculating the quantitiess. is shown in (2.23). To make the non-uniformity of the spacing between
zeros more apparent, the plot has been rendered for the afdiee 2.5 even though this is beyond
the region where we can prove convergence of our expansions.

Let us demonstrate these results in the context of some of our examples from Section 1.2. We
will begin with the standard Ising model at low temperatures. In this case there are two possible
phases, labeled- and —, with the corresponding metastable free energies given as functions

ofz=¢e" by
{4 (2) = exp{£h + e 217" . O(em“@=27)]. (2.23)

Symmetry considerations now imply that (z)| = |¢-(2)| if and only if Reh = 0, i.e.,|z] = 1,
and, as already known from the celebrated Lee-Yang Circle Theorem [11], the same is true for the
actual zeros oZP®". However, our analysis allows us to go further and approximately calculate the

L .
solutions to the system (2.21-2.22), which shows that the ze@ dfe near the pointg = &',

wherek =0,1,...,L9—1and

O = %ngn + 2724 sin(ZkL—-gln) + O(e™ =27y, (2.24)
Of course, a4 increases, higher and higher-order termsihare needed to pinpoint the location

of any particular zero (given that the distance of close zeros is of the brd&r Thus, rather than
providing the precise location of any given zero, the above formula should be used to calculate
the quantityb,1 — 6k, which is essentially the distance between two consecutive zeros. The
resulting derivation of theensity of zerogs new even in the case of the standard Ising model. A
qualitative picture of how the zeros span the unit circle is provided in Fig. 1.
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FIGURE 2. A picture demonstrating the location of partition function zeros of the Blume-Capel model.
Here the zeros concentrate on two curves, related by the circle inversion, which may or may not coincide
along an arc of the unit circle. There are two critical values,afenoted by%éc, both of ordere=24J, such
thatfor/l < A¢ < 0, the two curves do not intersect; see (a). Ohoecreases throughc , a common piece

starts to develop which grows dsincreases through the intervald, 1Z], see (b) and (c). Finally, both
curves collapse on the unit circle at= A& > 0 and stay there for all > A. With the exception of the
“bifurcation” points, the zeros liexactlyon the unit circle along the shared arc. The non-uniform spacing

of the zeros in (b) comes from the influence of the “unstable” phase near the multiple points.

A similar discussion applies to the “perturbed” Ising model, provided the nearest-neighbor
coupling is ferromagnetic and the remaining terms in the Hamiltonian are small in some appro-
priate norm. In the case of general multi-body couplings, the zeros will lie on a closed curve
which, generically, is not a circle. (For instance, this is easily verified for the three-body inter-
action.) However, if only even terms ifoy) appear in the Hamiltonian, the models have the
plus-minus symmetry required by Theorem 2.5 of [2] and all of the zeros will lie exactly on the
unit circle. This shows that the conclusions of the Lee-Yang theorem hold well beyond the set of
models to which the classic proof applies.

Finally, in order to demonstrate the non-trivial topology of the set of zeros, let us turn our
attention to the Blume-Capel model. In this case there are three possible stable phases, each
corresponding to a particular spin value. In terms of the complex parameteg”, the corre-
sponding metastable free energies are computed from the formulas

£1(2) = 2 € exp{zte X 4 dz2e =232 4 O(e )}
(2 =71 exp{ze_Z‘“_’l 4 d2e@d-23-21 O(e“““)} ’ (2.25)
(0(2) = exp{(z+ 2 He XM 1 d(Z + 277 @2 L O(e )}

Here it is essential that the energy of the plus-minus neighboring pair exceeds that of zero-plus

(or zero-minus) by a factor of four.
A calculation [1] shows that the zeros lie on two curves which are symmetrical with respect to
circle inversion and which may coincide along an arc of the unit circle, depending on the value

of 1; see Fig. 2. Asl increases, the shared portion of these curves grows and, for positive
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exceeding a constant of order??, all zeros will lie on the unit circle. Note that by the methods
of [13], the last result can be established [12] for all temperatures providgesufficiently large,
while our results give the correct criticalbut only hold for low temperatures.

3. CONTOUR MODELS AND CLUSTER EXPANSION

Let us turn to the proofs. We begin by establishing the necessary tools for applying Pirogov-Sinai
theory. Specifically, we will define contours and show that spin configurations and collections of
matching contours are in one-to-one correspondence. This will induce a corresponding relation
between the contour and spin partition functions. We will also summarize the facts we will need
from the theory of cluster expansions.

3.1 Contours.

The goal of this section is to represent spin configurations in terms of contours. Based on the
fact—following from Assumption C—that the constant configurations are the only possible min-
ima of (the real part of) the energy, we will define contours as the regions where the spin config-
uration is not constant.

Recalling our assumptioh > 2R + 1, let o be a spin configuration off, and letBr(o)
be theR-boundary ofs. We equipBg(s) with a graph structure by placing an edge between
any two distinct sitex, y € Br(o) wheneverx andy are contained in a cubic bax c T of
diameter R + 1 whereo is not constant. We will denote the resulting graphGy(s). Some
of our definitions will involve the connectivity induced by the graph(s) but we will also use
the usual concept of connectivity h (or Z%): We say that a set of sites ¢ T\ is connected
if every two sites fromA can be connected by a nearest-neighbor pati\onNote that the
connected components &g (o) and the (vertex sets corresponding to the) components of the
graphGg(o) are often very different sets.

Now we are ready to define contours. We start with contourg%rand then define contours
on the torus in such a way that they can be easily embedde@nto

Definition 1 A contouron Z9 is a pairY = (suppY, oy) Where supjY is afinite connected
subset ofZ¢ and wheresy is a spin configuration ofi® such that the grapBr(oy) is connected
andBg(oy) = suppY.

A contouron T\ is a pairY = (suppY, oy) where suppy is a non-empty, connected subset
of T, with diameter strictly less thah/2 and wherery is a spin configuration offi,. such that
the graphGr(oy) is connected an8g(oy) = suppY.

A contour networlon T is a pairN = (suppN, o), whereN is a (possibly empty or non-
connected) subset @, and wherery is a spin configuration offf, such thatBr(on) = SuppN
and such that the diameter of the vertex set of each compon&y(@iy) is at least /2.

Note that each contour ofi_ has an embedding int@® which is unique up to translation
by multiples ofL. (Informally, we just need to unwrap the torus without cutting through the
contour.) As long as we restrict attention only to finite contours, the concept of a contour network
has no counterpart di°, so there we will always assume thét= @.
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Having defined contours and contour networksTgnabstractly, our next task is to identify
the contoursys, ..., Y, and the contour network( from a general spin configuration dn .
Obviously, the supports ofy, ..., Y, will be defined as the vertex sets of the components of the
graphGr(o) with diameter less thah /2, while suppN will be the remaining vertices iBr(o).

To define the corresponding spin configurations we need to demonstrate that the restrigtion of
to suppY; (resp., suppN) can be extended to spin configuratiens (resp.,on) on T such that
Br(oy,) = suppY; (resp.,Br(on) = suppN). It will turn out to be sufficient to show that is
constant on theéoundaryof each connected componentlf \ Bgr(o).

Given asetA ¢ T, (or A c Z9), let A denote the external boundary of, i.e., A =
{x e T_: dist(x, A) = 1}. For the purposes of this section, we also need to define th&°set
which is justA reduced by the boundary of its complemett,= A \ 6(T, \ A). Animmediate
consequence of Definition 1 (and the restriction B2 1 > 3) is the following fact:

Lemma 3.1 Let(A, o) be either a contour or a contour network @hp, and let C be a connected
component off. \ A°. Thene is constant on C. IfA, o) is a contour orZ¢, thene is constant
on each connected component CZ8f\ A°, with A° now defined ag\° = A \ a(Z9 \ A).

Proof. Assume that is not constant of€. Then there must exist a pair of nearest-neighbor
sitesx, y € C such thay # oy. But thenx and all of its nearest neighbors lie fa = Bgr(o).
SinceCNA° = @ andx € C, we are forced to conclude thate A\ A°. But that contradicts the
fact that all of the neighbors of also lie inA. The same proof applies to contours@h a

Definition 2 Let (A, o) be either a contour or a contour networkBnand letC be a connected
component ofl, \ A. The common value of the spin on this component in configuration
will be called thelabel of C. The same definition applies to contours 8h and to connected
component€ of Z4 \ A.

Let A c T, be a connected set with diameter less th@. Since the diameter was defined by
enclosure into a “cubic” box (see Sect. 1.2), it follows that each #ubhs a well defined exterior
and interior. Indeed, any box of side less that? enclosingA contains less tha¢l /2)¢ < L9/2
sites, so we can define tlegteriorof A, denoted by Ext\, to be the unique component®f \ A
that contains more thah9/2 sites. Thenterior Int A is defined simply by putting Ink =
T. \ (A UExtA). On the other hand, iiA is the union of disjoint connected sets each with
diameter at leadt /2 we define Ex?\ = ¢ and IntA = T \ A. These definitions for connected
sets imply the following definitions for contours @ :

Definition 3 Let Y be a contour or a contour network dh . We then define thexterior
of Y, denoted by EXY, as the set Extsupp, and theinterior of Y, denoted by InY, as the
set Intsuppy. For eachm e S, we let Int, Y be the union of all components of I¥twith
labelm. If Y is a contour ol , we say thalY is am-contourif the label of ExtY is m.

Analogous definitions apply to contours @A, except that the exterior of a contodris now
defined as the infinite component®f \ suppY, while the interior is defined as the union of all
finite components o9 \ suppY.

While most of the following statements can be easily modified to hol@{aas well as for the
torusT,, for the sake of brevity, we henceforth restrict ourselves to the torus.
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Lemma 3.2 Let R> landfix L > 2R+ 1. Lets be a spin configuration off, and letA
be either the vertex set of a component of the grapfidewith diameter less than 12 or the
union of the vertex sets of all components with diameter at leaat lLet A’ be of the same form
with A" # A. Then exactly one of the following is true:

(1) AUIntA c IntA”and A’ UEXtA’ C ExtA, or
(2) ANUIntA’ cIntAand A UExtA c ExtA’, or
(3) AUIntA c ExtA’andA’ UlInt A’ C ExtA.

Proof. It is clearly enough to prove the first half of each of the statements (1-3), since the
second half follow from the first by taking complements (for example in (3), we just use that
AUINntA c ExtA’impliesT,_ \ (AUIntA) D T, \ ExtA’, which is nothing but the statement
that A’ U Int A’ C Ext A by our definition of interiors and exteriors).

In order to prove the first halves of the statements (1-3), we first assume that lamith A’
are vertex sets of components of the gr&pk(o) with diameter less thah /2. Clearly, sinceA
andA’ correspond to different components@g(o), we haveA N A’ = @J. Moreover,A andA’
are both connected (as subset¥pj so we have eitheh c Int A’ or A c Ext A’ andvice versa
Hence, exactly one of the following four statements is true:

(@ A cIntA”andA’ C IntA, or
(b) A cIntA”andA’ C ExtA, or
(c) A c ExtA’andA’ C IntA, or
(d) A c ExtA’ andA’ C ExtA.

We claim that the case (a) cannot happen. Indeed, supposa ttraint A’ and observe that
if B is a box of size less than?/2 such thatA’ ¢ B, then ExtA’ D T, \ B. Hence IntA’ c B.

But thenB also enclosea and thus EXANExtA’ D T\ B # @#. Now A’UExt A’ is a connected
set intersecting Ex& but not intersecting\ (because we assumed thatc Int A’). It follows
that A’ UEXtA’ c ExtA, and hence Ind’ D A U Int A. But then we cannot haw’ C Int A as
well. This excludes the case (a) above, and also shows that (b) actually\givés A c Int A/,
which is the first part of the claim (1), while (c) gives U Int A’ c Int A, which is the first part
of the claim (2).

Turning to the remaining case (d), let us observe thatc ExtA implies IntA N A’ C
IntA N ExtA = @. SinceA N A’ = @ as well, this implies(A U IntA) " A’ = @. But
A UIntA is a connected subset @f , so eitherA UIntA c IntA’ or AU IntA c ExtA’.
SinceA C ExtA’ excludes the first possibility, we have shown that in case (d), we necessarily
haveA U Int A ¢ ExtA’, which is the first part of statement (3). This concludes the proof of the
lemma for the case when bothand A’ are vertex sets of components of the gr&hak(s) with
diameter less thah /2.

Since it is not possible that both and A’ are the union of the vertex sets of all components
of diameter at least /2, it remains to show the statement of the lemma for the case whisn
the vertex set of a component of the graph(o) with diameter less thah /2, while A’ is the
union of the vertex sets of all components of diameter at lea8t By definition we now have
ExtA’ = @, so we will have to prove that UInt A c Int A’, or equivalentlyA’ c ExtA. To this
end, let us first observe thAtN A’ = @, sinceA has diameter less thary2 while all components
of A’ have diameter at leakt/2. Consider the set Int. SinceA has diameter less thadry2, we
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can find a boxB of side length smaller thah/2 that containg\, and hence also lit. But this
implies that none of the componentsAafcan lie in IntA (their diameter is too large). Since all
these components are connected subsets of INExt A, we conclude that they must be part of
Ext A. This gives the desired conclusion c Ext A. a

The previous lemma allows us to organize the componen®x=gé) into a tree-like structure
by regardingA’ to be the “ancestor” of\ (or, equivalently,A to be a “descendant” ok’) if the
first option in Lemma 3.2 occurs. Explicitly, I8¥r(o) be the collection of all seta c T, that
are either the vertex set of a connected componef@gb) with diameter less thah /2 or the
union of the vertex sets of all connected components of diameter atlgastWe useA, to
denote the latter. If there is no component of diamété? or larger, we definé\g = @ and set
INtAg =T,.

We now define gartial order on Wg(o) by settingA < A’ wheneverA U IntA C IntA’.
If A < A/, but there is noA” € Wg(o) such thatA < A” < A’, we say thatA is a child
of A’ andA’ is a parent ofA. Using Lemma 3.2, one easily shows that no child has more than
one parent, implying that the parent child relationship leads to a tree structiég@n, with
root Ag. This opens the possibility for inductive arguments from the innermost contours (the
leaves in the above tree) to the outermost contours (the children of the root). Our first use of such
an argument will be to prove that unique labels can be assigned to the connected components of
the complement oBr(o) .

Lemma 3.3 Leto be a spin configuration of,. and letA be either the vertex set of a component
of the graph Ge(o) with diameter less than 12 or the set of sites in o) that are not contained
in any such component. If C is a connected componéfit af A°, thenes is constant on CY A.

The proof is based on the following fact which is presumably well known:

Lemma 3.4 Let A c Z9 be a finite connected set with a connected complement. Jheis
x-connected in the sense that any two siteg x 0A° are connected by a path ahA® whose
individual steps connect only pairs of sitesZ8fwith Euclidean distance not exceedin@.

Proof. The proof will proceed in three steps. In the first step, we will prove thatdgeboundary

of A, henceforth denoted byA, is aminimal cutset (Here we recall that a set of edgESin a
graphG = (V, E) is called a cutset if the grap®’ = (V, E \ E’) has at least two components,
and a cutseE’ is called minimal if any proper subset &f is not a cutset.) In the second step,
we will prove that the dual of the edge boundawy is a connected set of facets, and in the third
step we will use this fact to prove thahA* is x-connected.

Consider thus a se& which is connected and whose complement is connectedi A be the
edge boundary of and letE4 be the set of nearest-neighbor edge&in The sev A is clearly a
cutset since any nearest-neighbor path joindnig A° must pass through one of the edges
To show thaty A is also minimal, letE’ be a proper subset ofA, and lete € A\ E’. Since
both A and A® are connected, an arbitrary pair of sitles/ € Z9 can be joined by a path that uses
only edges ine} U (Eq \ dA) C Eq4 \ E’. Hence suclE’ is not a cutset which implies tha# is
minimal as claimed.

To continue with the second part of the proof, we need to introduce some notation. As usual,
we use the symbdE*? to denote the set of all points iR with half-integer coordinates. We
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say that a set c Z*Y is ak-cell if the vertices inc are the “corners” of &-dimensional unit
cube inRY. A d-cellc c Z* and a vertexx € Z9 are called dual to each otherjifis the
center ofc (considered as a subset®f). Similarly, a facetf (i.e., a(d — 1)-cell in Z*%) and a
nearest-neighbor edgec Z° are called dual to each other if the midpointeofconsidered as a
line segment ikY) is the center off . The boundaryC of a setC of d-cells inZ*¢ is defined as
the set of facets that are contained in an odd number of cells@amd the boundar§F of a setF

of facets inZ*¢ is defined as the set ¢dl — 2)-cells that are contained in an odd number of facets
in F. Finally, a set of facetf is called connected if any two facefs f’ € F can be joined by a
path of facetsf; = f,..., f, = f’in F suchthatforall =1,...,n— 1, the facetsfj and f; .1
share gd — 2)-cell in Z*“.

Note that an arbitrary finite set of facetshas empty boundary if and only if there exists a
finite set of cube€ such thatr = oC, which follows immediately from the fad®d has trivial
homology. Using this fact, we now prove that the Bebf facets dual t@A is connected. Let
W be the set ofi-cells dual toA, and letF = 6W be the boundary ov. We will now prove
that F is a connected set of facets. Indeed, sikce- 6W, we have thatF has empty boundary,
oF = #. Assume thaF has more than one component, andAet F be one of them. Thek
andF \ F are not connected to each other, and hence shaf@-a®)-cells. But this implies that
the boundary of must be empty itself, so that is the boundary of some sé{. This in turn
implies that the dual oF is a cutset, contradicting the fact thi is a minimal cutset.

Consider now two pointg, y € dA° c A. Then there are point§, y € A° such that{x, X}
and{y, ¥} are edges i@ A. Taking into account the connectedness of the duakofwe can find
a sequence of edges = {X, X}, ..., e, = {y, ¥} indAsuch thatforalk = 1,...,n— 1, the
facets dual te andec,; share ad — 2) cell in 7. As a consequence, the edgrsande, 1
are either parallel, and the four vertices in these two edges form an elementary plaquette of the
form {x, X + ny, X + Ny, X + N1 + Ny} wheren; andny are unit vectors in two different lattice
directions, o ande, 1 are orthogonal and share exactly one endpoint. Sincedyathdey, 1
are edges i@ A, each of them must contains a pointdA®, and by the above case analysis, the

two points are at mos{/2 apart. The sequene, ..., &, thus gives rise to a sequence of (not
necessarily distinct) points,, ..., x, € 0A° such thatx = X1, y = X, and distx, X11) < /2
forallk =1,...,n— 1. This proves that A® is x-connected. O

Proof of Lemma 3.3.Relying on Lemma 3.2, we will prove the statement by induction from
innermost to outermost components of diameter less théh Let A be the vertex set of a
component of the grapB r(o) with diameter less thah /2 and suppos8g(c) N INt A = @. (In
other wordsA is an innermost component &z(s).) Then the same argument that was used in
the proof of Lemma 3.1 shows that all connected components of tiéarly have the desired
property, so we only need to focus on Ext

Let us pick two sitex,y € 0ExXtA = ANJExtA and letA’ = AU IntA. ThenA'is
connected with a connected complement and siides a diameter less thdry2, we may as
well think of A’ as a subset of%. Now Lemma 3.4 guarantees th&(tA’)¢ = GEXtA is -
connected and henceandy are connected by &connected path entirely containedaixt A.
But the spin configuration must be constant on any tox [—R, R]%) N Z9 with z € dExtA
and thus the spin is constant along the path. It followsdhat o, .
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The outcome of the previous argument is that now we can “rewrite” the configuratioii on
without changing the rest @ (o). The resulting configuration will have fewer connected com-
ponents of diameter less th&n2 and, proceeding by induction, the proof is reduced to the cases
when there are no such components at all. But then we are down to the case\veiaply
equalsBg (o). Using again the argument in the proof of Lemma 3.1, the spin must be constant on
each connected componéniof T, \ Br(o)°. O

The previous lemma shows that each component of the gBafth) induces a unique label
on every connected componddiof its complement. Consequently, if two contours share such a
component—which includes the case when their supports are adjacent to each other—they must
induce the same label on it. A precise statement of this “matching” condition is as follows. (Note,
however, that not all collections of contours will have this matching property.)

Definition 4 We say that the paifY, N)—whereY is a set of contours aniy is a contour
network onT'| —is acollection of matching contouigthe following is true:

(1) suppY NsuppY’ = @ for any two distincty, Y’ € Y and supg¥ NsuppN = @ for anyY e Y.

(2) If C is a connected component @f \ [(suppN)° U Jyy(SuppY)©], then the restrictions
of the spin configurationsy (andoy) to C are the same for all contou¥se Y (and contour
networkN) with suppY N C # @ (suppN N C # @). In other words, the contours/contour
network intersectin@ induce the same label dt.

Here we use the convention that there are altogdtfjedistinct pairs(Y, N) with bothY = @
andN = #, each of which corresponds to omee S.

Definition 4 has an obvious analogue for sEtsf contours orZ¢, where we require that (1)
suppY NsuppY’ = @ for any two distincty, Y’ € Y and (2) all contours intersecting a connected
component of Z9 \ [Uyey (suppY)©] induce the same label d.

It remains to check the intuitively obvious fact that spin configurations and collections of
matching contours are in one-to-one correspondence:

Lemma 3.5 For each spin configuratios € S't, there exists a unique collectiafy, ') of
matching contours off . and for any collection(Y, N') of matching contours offf , there exists
a unique spin configuratiom € STt such that the following is true:

(1) The supports of the contoursih(of the contour networly) are the vertex sets (the union of
the vertex sets) of the connected components of the graih) @vith diameter strictly less
than (at least) /2.

(2) The spin configuration corresponding to a collecti@n, N') of matching contours arise by
restricting oy for each Y € Y as well asox to the support of the corresponding contour
(contour network) and then extending the resulting configuration by the common label of the
adjacent connected components.

Proof. Let o be a spin configuration and |at be a component of the gra@w (o) with diameter

less tharl. /2. Then Lemma 3.3 ensures thds constant on the bounda# of each component

C of A°®. Restrictings to A and extending the resulting configuration in such a way that the new
configuration g, restricted to a component componéhbf A€, is equal to the old configuration

on oC, the pair(A, o) thus defines a contour. Similarly, i is the union of all components of
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the graphGr(o) with diameter at leadt /2 andC is a connected component®f \ A°, thenc
is, after removal of all contours, constant@n The contours/contour netwo(k, ) then arise
from ¢ in the way described. The supports of these objects are all disjoint, so the last property to
check is that the labels induced on the adjacent connected components indeed match. But this is
a direct consequence of the construction.

To prove the converse, I€t, N) denote a set of matching contours andddde defined by
the corresponding contour configuration on the support of the contours (or contour network) and
by the common value of the spin in contour configurations for contours adjacent to a connected
component ofT, \ [(SuppN)° U Uy.y(suppY)°]. (If at least one ofY, N is nonempty, then
this value is uniquely specified because of the matching condition; otherwise, it follows by our
convention that emptgY, N)) carries an extra label.)

It remains to show thal are the contours and is the contour network of. Let A be a
component of the grapBr(c). We have to show that it coincides with supgor someY € Y
or with a component of sugd (viewed as a graph). We start with the observation that
suppN U (Uy.y suppY). Next we note that for eack € Y, the graphGg(oy) is connected.
Since the restriction afy to suppY is equal to the corresponding restrictiorspfve conclude that
suppY N A # @ implies suppy c A, and similarly for the components of supp To complete
the proof, we therefore only have to exclude that sdpp A for more than one contof € Y,
or thatA c A for more than one component of supplN, and similarly for the combination of
contours inY and components of supp.

Let us assume that suppc A for more than one contowr € Y. SinceA is a connected
component of the grapBr(c), this implies that there exists a b& = (z + [-R, R]4) N Z¢
and two contourd’, Y, € Y such thats is not constant orB,, suppY; U suppY, C A andB,
is intersecting both supy and suppr,. But this is in contradiction with the fact that is a
collection of matching contours (and a configuration on any such box not contained in the support
of one of the contours iiY or in a component of sugy must be constant). In the same way one
excludes the case combining supgvith a component of sug¥ or combining two components
of suppN. Having excluded everything else, we thus have shownAhateither the support of
one of the contours ilY, or one of the components of supp d

3.2 Partition functions and Peierls’ condition.

A crucial part of our forthcoming derivations concerns various contour partition functions, so our
next task will be to define these quantities. We need some notatioiiYL.&f) be a collection of
matching contours off . A contourY e Y is called arexternal contour ity if suppY c ExtY’
for all Y € Y different fromY, and we will call two contours’, Y’ € Y mutually external
if suppY C ExtY’ and suppy’ c ExtY. Completely analogous definitions apply to a set of
matching contoury onZ (recall that orZ¢, we always seN = #). Note that, by Lemma 3.2,
two contours of a configuratiosm on T are either mutually external or one is contained in the
interior of the other. Inspecting the proof of this Lemma 3.2, the reader may easily verify that this
remains true for configurations &', provided the seBg(o) is finite.

Given a contouryY = (suppY, oy) or a contour networkN = (suppN, oy) let E(Y, 2)
andE(N, z) denote the corresponding excitation enerdi€sy, z) andE (o, 2) from (1.7). We
then introduce exponential weighis(Y) andp,(N), which are related to the quantiti€g, z)
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andE(N, z) according to
pa(Y) =€ F? and p,(N) = e FN2, (3.1)

The next lemma states that the exponential wei@h(z), p.(Y) andp.(N) are analytic functions
of z.

Lemma 3.6 Suppose that Assumption CO holds, let &, let Y be a q-contour and It be a
contour network. Theé,(2), p.(Y) andp,(N) are analytic functions of z i

Proof. By assumption CO, the functios— ¢, (o, Z) = exp{—®4 (s, Z)} are holomorphic i
To prove the lemma, we will show thé§(z), p,(Y) andp,(N) can be written as products over
the exponential potentials, (o, ), with ¢ = 09, 0 = oy ande = o, respectively.

Let us start withgy(z). Showing that), is the product of exponential potentials (¢9, z) is
clearly equivalent to showing thag can be rewritten in the form

&= D DAY, (3.2)
AeVe
whereV, is a collection of subset& c T.. But this is obvious from the definition (1.6) ef:
just chooséV, in such a way that it contains exactly one representative from each equivalence
class under translations.
Consider now a contolY = (suppY, oy) and the corresponding excitation enelgyy, z).
We will want to show tha&(Y, z) can be written in the form

E(Y,2) = D ®alov), (3.3)
AeVy

whereVy is again a collection of subsets C T, . Let Aq = ExtY U Inty Y, andAny = Int, Y
for m #£ g. Consider a poink € Ap. Sincex ¢ suppY = Bgr(oy), the configuratiorry must
be constant on any subs&t c T, that has diameterR + 1 or less and contains the poixt
implying that

1 1
D Oaloy) = D S Dale™) =6 (3.4)
A XeA lAI A XeA |A|
wheneveix € An. Using these facts, we now rewrilY, z) as

1
E(Y,2) =BHLov) — D chmm)

xeT | ~suppY A:xeA

= EL D (oy) — mZS | Aml€m 5)
= > ®A(ay)+z{( > cDA(am)) —|Am|em}.
AcCsuppY meS ACTL

ANAm#AD

To complete the proof, we note that the sum over\alvith A N A, # @ contains at leagtA |
translates of each c T contributing to the right hand side of (3.2). As a consequence, the
difference on the right hand side of (3.5) can be written in the form (3.3), provingethgtz) is
of the form (3.3). The proof that,(N) is an analytic function ot is virtually identical. O
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Next we define partition functions in finite subset<Z5f Fix an indexq € S. Let A c Z9 be
a finite set and letM (A, q) be the set of all collection¥ of matching contours iZ.¢ with the
following properties:

(1) Foreachy € Y, we have suppj ulIntY cC A.
(2) The external contours ii areg-contours.

Note that supjy U IntY c A is implied by the simpler condition that suppc A if Z9\ A is
connected, while in the case wheté \ A is not connected, the condition supp IntY c A
is stronger, since it implies that none of the contoYirs Y contain any hole of\ in its interior.
(Here a hole is defined as a finite componenZéf\, A.) In the sequel, we will say thaf is a
contour inA wheneverY obeys the condition suppu IntY c A.

Thecontour partition functiorin A with boundary conditior is then defined by

ZqA = > [[Ton@" ] ] puv), (3.6)

YeM(A,q) meS YeY

whereAn,(Y) denotes the union of all components/of | J, .y suppY with labelm, and|Am(Y)|
stands for the cardinality of ,(Y).

If we add the condition that the contour netw@tks empty, the definitions of the sat( (A, Q)
and the partition functioq (A, z) clearly extends to any subsatc T, , because off . every
contour has a well defined exterior and interior. However, our goal is to have a contour repre-
sentation for the full torus partition function. Lé&#(, denote the set of all collection¥y, N) of
matching contours ifl; which, according to our convention, include an extra label S when
bothY andN are empty. IftY, N) € M| is such a collection, leA,(Y, N) denote the union of
the components df \ (suppN U y.y SuppY) with labelm. Then we have:

Proposition 3.7(Contour representation)The partition function on the toruk, is given by

2@ =3 [[1om@"" "] p.00 ] p20). (3.7)
Y, NyeM| meS YeY
In particular, we have
2= D pN) [] Zn(An(®@.N). 2). (3.8)
@,N)yeM meS

Proof. By Lemma 3.5, the spin configuratiopsare in one-to-one correspondence with the pairs
(Y, N) € M_. Let (Y, N) be the pair corresponding o Rewriting (1.8) as

EECED D FINC) (3.9)

xeTL A: AcCTL
AsX

we can now split the first sum into several parts: one for gach S corresponding tx
Am(Y,N), one for eachY € Y corresponding tx e suppY, and finally, one for the part of
the sum corresponding to € suppN. Invoking the definitions of the energies (2), E(Y, 2)
andE(N, 2), this gives

BHL(0) = D en@|An(Y.N)| + D E(Y,2) + EWN. 2. (3.10)
meS YeY
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Strictly speaking, the fact that the excitation energy factors (technically, sums) over contours and
contour networks requires a proof. Since this is straightforward using induction as in the proof of
Lemma 3.3, starting again with the innermost contours, we leave the formal proof to the reader.
Using the definitions ofin(2), p-(Y) andp,(N) and noting that, by Lemma 3.5, the sum ower
can be rewritten as the sum ov@f, N) € M, formula (3.7) directly follows.

The second formula, (3.8), formally arises by a resummation of all contours that can contribute
together with a given contour netwop. It only remains to check that i, C Y is the set
of Y e Y with suppY C Am = Am(4, N), thenY, can take any value i (A, m). But this
follows directly from Definition 4 and the definition o¥1(An,, m). O

In order to be useful, the representations (3.7) and (3.8) require that contours and contour
networks are sufficiently suppressed with respect to the maximal ground state @eights
is ensured by Assumption C2, which guarantees haty)| < 0(2)"Yle "l and |p,(N)| <
0(z)Ne=*™I where we used the symbdM| and|N| to denote the cardinality of suppand
suppN, respectively.

3.3 Cluster expansion.

The last ingredient that we will need is thkuster expansianwhich will serve as our principal
tool for evaluating and estimating logarithms of various partition functions. The cluster expansion
is conveniently formulated in the context of so-called abstract polymer models [19, 10, 7, 14].
Let K be a countable set—the set of pttlymers—and let# be therelation of incompatibility
which is a reflexive and symmetric binary relation ién For eachA c K, let M(A) be the set
of multi-indicesX: K — {0} U N that are finite,zyeK X(y) < oo, and that satisf(y) = 0
whenevery ¢ A. Further, letC(A) be the set of all multi-indicex € M (A) with values in{0, 1}
that satisfyX(y)X(y’') = 0 whenever + y" andy # y'.

Let3: K — C be a polymer functional. For each finite sub&set K, let us define the polymer
partition functionZ(A) by the formula

zZw = > [Tse*. (3.11)

XeC(A) yeK

In the most recent formulation [7, 14], the cluster expansion corresponds to a multidimensional
Taylor series for the quantity Ia§(A), where the complex variables are t{e). Hereclusters
are simply multi-indiceX € M (K) for which any nontrivial decomposition of leads to incom-
patible multi-indices. Explicitly, ifX can be written a¥; + X, with X1, X, # 0, then there exist
two (not necessary distinct) polymers v, € K, y; 7 75, such thaiX;(y;)X2(y,) # O.

Given a finite sequence = (y,, ..., y,) of polymers inK, letn(I') = n be the length of the
sequencd’, let G(T") be the set of all connected graphs{an. . ., n} that have no edge between
the vertices andj if y; ~ y;, and letXr be the multi-index for whictXr(y) is equal to the
number of times that appears ifl". For a finite multi-indexx, we then define

a'x)= > T#)‘ > (=, (3.12)

IXp=X geG(I)
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with |g| denoting the number of edgesgnand
3700 =a" ) [ 3. (3.13)
yek

Note thatG(I") = @ if Xt is not a cluster, implying, in particular, that(X) = 0 wheneveiX is
not a cluster. We also use the notatn? y wheneveiX is a cluster such that(y’) > O for at
least one/’ + y.

The main result of [14] (building upon [7]) is then as follows:

Theorem 3.8(Cluster expansion)Let a: K — [0, co) be a function and lep: K — [0, oo) be
polymer weights satisfying the bound

>0 <ap),  yek (3.14)

7' eK

V'#y
ThenZ(A) # 0for any finite seA ¢ K and any collection of polymer weighgs K — C in the
multidiscDy = {(3G(?)): 13(»)] < 30(y), y € A}. Moreover, if we definbbg Z(A) as the unique
continuous branch of the complex logarithm®¢A) on D, normalized so thalbg Z(A) = 0
whenz(y) = Ofor all y € A, then

logZ(A) = > 3" (3.15)
XeM(A)

holds for each finite s&t c K. Here the power series on the right hand side converges absolutely
on the multidisd,. Furthermore, the bounds

STl DD xM[ETX0] < [30)]e? (3.16)
Xe M(K) XeM(K)
X(»=1
and
> 15T 0] < ak) (3.17)
XeM(K)
X#y

hold for eachy € K.

Proof. This is essentially the main result of [14] stated under the (stronger) condition (3.14),
which is originally due to [15, 10]. To make the correspondence with [14] explicit, let

1(y) = log(L+ [3()|€*™) (3.18)

and note thag (y) < [3(y)|€8?) < 30(y)€??). The condition (3.14) then guarantees that we have
24, (7)) < a(y) and hence

501 = @ = De ™ < @~ Hexp[- > u()]. (3.29)
Vry
This implies that any collection of weighgs K — C such thaf3(y)| < 30(y) for all y € K will
fulfill the principal condition of the main theorem of [14]. Hence, we can concludeZiiaj # 0
in D, and that (3.15) holds. Moreover, as shown in [14], both quantities on the left-hand side of
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(3.16) are bounded by — 1 which simply equal$;(y)|e2?”. The bound (3.16) together with
the condition (3.14) immediately give (3.17). a

To facilitate the future use of this result, we will extract the relevant conclusions into two
lemmas. Given a spin statee S, letKq denote the set of atj-contours inZ?. If Y, Y’ € Kq, let
us cally andY’ incompatibleif suppY N suppY’ # @. If A is a finite set ofy-contours, we will
let Z(A) be the polymer sum (3.11) defined using this incompatibility relation. Then we have:

Lemma 3.9 There exists a constang &= ¢co(d, |S]) € (0, co) such that, for all ge S and all
contour functionalg : K — C satisfying the condition

13(Y)] < 30(Y) = e @™ forall Y eKq, (3.20)
for somey > 0, the following holds for all k> 1:
(1) Z(A) # Ofor all finite A C Kq with log Z(A) given by(3.15) and
> e (3.21)

XEM(Kq)
V(X)20, [IX]I=k

Here V(X) = Uy. x(v)-0 V(Y) with V(Y) = suppY U IntY and||X|| = >y, X(Y)[Y].
(2) Furthermore, if the activitieg(Y) are twice continuously differentiable (but not necessarily
analytic) functions of a complex parameter z such that the bounds

|aw3(Y)| < 30(Y) and |amam’3(Y)| < 3O(Y) (322)

hold for anyw, v’ € {z, Z} and any Ye Kg, then

> Jews' 0] <e™ and > JewowsT(X)] < ek (3.23)

XeM(Kq) XeM(Kq)
V(X)20, [X[I=k V(X)=0, [IX]1=k

foranyw, v’ € {z, z}.
Using, for any finiteA c Z9, the notatiorkq a = {Y € Kq: suppY UIntY c A} andoA

for the set of sites ifZ? \ A that have a nearest neighborAn we get the following lemma as an
easy corollary:

Lemma 3.10 Suppose that the weighfssatisfy the bound3.20)and are invariant under the
translations ofZ9. Then thepolymer pressurg; = lim ;74 |A|7tlog Z(Kg,4) exists and is
given by

1
S = > 31 (X). (3.24)

XeM(Kq): V(X)50 IVX)I

Moreover, the bounds
|sql < €7 (3.25)
and
log Z(Kg,a) — SqlAl| < €7"|0A] (3.26)
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hold. Finally, if the condition$3.22)on derivatives of the weighggY) are also met, the polymer
pressure g is twice continuously differentiable in z with the bounds

|0wsy| <€ and |8,0,5] < €7, (3.27)

valid for anyw, v’ € {z, Z}.

Proof of Lemma 3.9Let us consider a polymer model where polymers are either a single site
of Z% or ag-contour fromK,. (The reason for including single sites as polymers will become
apparent below.) Let the compatibility between contours be defined by disjointness of their sup-
ports while that between a contodrand a sitex by disjointness ofx} and suppy U IntY. If we

let 3(y) = 0 whenevey is just a single site, this polymer model is indistinguishable from the one
considered in the statement of the lemma. Let us chogse that

> eFNM < (3.28)
YeKq: V(Y)30

To see that this is possible with a constendepending only on the dimension and the cardinality
of S, we note that each polymer is a connected subsgf ofAs is well known, the number of
such sets of siza containing the origin grows only exponentially with Since there are only
finitely many spin states, this shows that it is possible to chogas claimed.

Defininga(y) = 1if y is a single site and(Y) = |Y]| if Y is ag-contour inKq, the assump-
tion (3.14) of Theorem 3.8 is then satisfied. (Note that assumption (3.14) requires slightly less
than (3.28), namely the analogue of (3.28) with the expone(it-efcy)|Y | instead of(2— co)|Y|;
the reason why we chosg such that (3.28) holds will become clear momentarily.) Theorem 3.8
guarantees thag(A) # 0 and (3.15) holds for the corresponding cluster weigfts Actu-
ally, assumption (3.14) is, for a} > 0, also satisfied wheg(Y) is replaced by (Y)e’™) with
b(Y) = #|Y|, yielding

> YT < al) (3.29)

XeM(K)
X#y

with b(X) = #||X|| instead of (3.17). Using (3.29) withchosen to be the polymer represented by
the site at the origin and observing that the quarity) exceedsk for any cluster contributing
to the sumin (3.21), we get the bound

e > ol DL o™ <1 (3.30)
XeM(Kq) XeM(Kq)
V(X)=0, [IX]I=k V(X)30

i.e., the bound (3.21).
In order to prove the bounds (3.23), we first notice that, in view of (3.13) and (3.22) we have

10,37 (0] < IXI36(X)| < e™1[35(%)] (3.31)
and
1000u3T ()| < IXI2[36()| < &1 [35(X)]. (3.32)
Using (3.29) withb(Y) = ( + 1)|Y| (which is also possible since we choagesuch that (3.28)

holds as stated, instead of the weaker condition wrecy)|Y| is replaced byl — co)|Y|) we
get (3.23) in the same way as (3.21). O
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Proof of Lemma 3.10The bound (3.21) fok = 1 immediately implies that the sum in (3.24)
converges withsy| < e". Using (3.15) and standard resummation techniques, we rewrite the
left hand side of (3.26) as

log Z(Kq.n) = sylAl| = | >
XeM(Kq)
VX)ZA
Next we note that for any clustet e M(Ky), the setV (X) is a connected subset Bf, which
follows immediately from the observations that sifpp/ IntY is connected for all contoursg,
and that incompatibility of two contourg, Y’ implies that suppy N suppY’ # @. Since only
clusters withV (X) N A # @ andV (X) N A® # @ contribute to the right hand side of (3.33), we
conclude that the right hand side of (3.33) can be bounded by a sum over ckistekg with
V (X) N oA # @. Using this fact and the bound (3.21) wikh= 1, (3.26) is proved.
Similarly, using the bounds (3.23) in combination with explicit expression (3.24) in terms of
absolutely converging cluster expansions, the claims (3.27) immediately follow. O

VX)) NA|

TX)|. 3.33
VO] 3 X) (3:33)

Remark 5 The proof of Lemma 3.9 holds without changes if we replace the setgfalhtours

in Z9 by the set of allj-contours on the toru®, . This is not true, however, for the proof of the
bound (3.26) from Lemma 3.10 since one also has to take into account the difference between
clusters wrapped around the torus and clustet&%inThe corresponding modifications will be
discussed in Section 4.4.

4. PROGOV-SINAI ANALYSIS

The main goal of this section is to develop the techniques needed to control the torus partition
function. Along the way we will establish some basic properties of the metastable free energies
which will be used to prove the statements concerning the quantifiedost of this section
concerns the contour model @4. We will return to the torus in Sections 4.4 and 5.

All of the derivations in this section are based on assumptions that are slightly more general
than Assumption C. Specifically, we only make statements concerning a contour model satisfying
the following three conditions (which depend on two parameteasid M):

(1) The partition functionsZ,(A, z) and Z[*(z) are expressed in terms of the energy vari-
ablesfn(2) and contour weightg, as stated in (3.6) and (3.7), respectively.

(2) The weightsp, of contours and contour networks are translation invariant and are twice
continuously differentiable functions afi. They obey the bounds

|850%0,(Y)| < (MIY])+ e MgV, (4.1)
and ) )

|0505p:(N)| < (MIND H em™Nlg(z)N! (4.2)
aslongag,f > 0andf + ¢ < 2.

(3) The energy variables, are twice continuously differentiable functions 6hand obey the
bounds

|656%0m()| < (M) *0(2) (4.3)
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aslong ag, ¢ > 0 and¢ + ¢ < 2. We will assume tha(z) is bounded uniformly from
below throughouty. However, we allow that some of tlélg, vanish at some € 0.

In particular, throughout this section we will not require that any of the quantitie®.(Y)
or p,(N) is analytic inz.

4.1 Truncated contour weights.

The key idea of contour expansions is that, for phases that are thermodynamically stable, contours
appear as heavily suppressed perturbations of the corresponding ground states. At the points of
the phase diagram where all ground states lead to stable phases, cluster expansion should then
allow us to calculate all important physical quantities. However, even in these special circum-
stances, the direct use of the cluster expansion on (3.6) is impeded by the presence of the energy
termsén(2)'A»! and, more seriously, by the requirement that the contour labels match.

To solve these problems, we will express the partition function in a form which does not involve
any matching condition. First we will rewrite the sum in (3.6) as a sum over mutually external
contoursY® times a sum over collections of contours which are contained in the interior of one
of the contours inY®. For a fixed contoulY € Y®<, the sum over all contours inside Y
then contributes the facta, (Int, Y, z), while the exterior of the contours K contributes the
factor Om(2)! I, where Ext= Ext, (Y®") = yoyex(EXtY N A). As a consequence, we can
rewrite the partition function (3.6) as

Z(A, 2 =D 6,2 T {pz(Y)Hzmanth 2}, (4.4)
Yext YEYeXl
where the sum goes over all collections of compatible exterr@ntours inA.
At this point, we use an idea which originally goes back to [9]. Let us multiply each term in
the above sum by 1 in the form

Zy(Intn Y, 2)
1= eV m >4 (4.5)
Yg{[ml;[ Zy(Intm Y, 2)°
Associating the partition functions in the denominator with the corresponding contour, we get
Zq(A D) =D 6, ] (eq(z)'Y'Kq(Y, 2)Z4(IntY, z)), (4.6)
Yext YEYSXI
whereK(Y, z) is given by
_ Zn(Inty Y, 2)
Kq(Y,2) = p(Y) 0, ™M [ | =52 4.7
q(Y,2) = p2(Y) 04(2) H Zq(Ntn Y, 2) (4.7)
meS
Proceeding by induction, this leads to the representation
Zy(A D) =0, D[] KaY.2), (4.8)

YeC(A,q) YeY

whereC(A, q) denotes the set of all collections of non-overlapgipgontours inA. Clearly, the
sum on the right hand side is exactly of the form needed to apply cluster expansion, provided the
contour weights satisfy the necessary convergence assumptions.
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Notwithstanding the appeal of the previous construction, a bit of caution is necessary. Indeed,
in order for the weightK,(Y, ) to be well defined, we are forced to assume—or prove by
cluster expansion, provided we somehow know that the welghtsave the required decay—that
Zy(Inty, Y, 2) # 0. In the “physical” cases when the contour weights are real and positive (and
the ground-state energies are real-valued), this condition usually follows automatically. However,
here we are considering contour models with general complex weights and, in fact, our ultimate
goal is actually to look at situations where a partition function vanishes.

Matters get even more complicated whenever there is a ground state which fails to yield a stable
state (which is what happens at a generic point of the phase diagram). Indeed, for such ground
states, the occurrence of a large contour provides a mechanism for flipping from an unstable to
a stable phase—which is the favored situation once the volume gain of free energy exceeds the
energy penalty at the boundary. Consequently, the relative weights of (large) contours in unstable
phases are generally large, which precludes the use of the cluster expansion altogether. A classic
solution to this difficulty is to modify the contour functionals for unstable phases [21, 5, 6]. We
will follow the strategy of [6], where contour weights are truncated with the aid of a smooth
mollifier.

To introduce the truncated contours weights, let us consi@8(R)-functionx — y (x), such
that0< y() <1, y(x) =0forx < =2 andy(x) = 1forx > —1. Letcy be the constant
from Lemma 3.9. Using, as a regularized truncation factor, we shall inductively define new
contour weightsK (-, 2) so that|K; (Y, 2)| < e ©@**/2¥l for all g-contoursY. By Lemma 3.9,
the associated partition functio2g (-, z) defined by

Z,(A,2)=60,20" > J]KyY.2 (4.9)

YeC(A,q) YeY

can then be controlled by cluster expansion. (Of course, later we will shO\Ath(a,tz) =
Kq(:, 2) andZy (A, 2) = Zq(A, z) whenever the ground stategives rise to a stable phase.)

Letfy(2) # 0O, letY be ag-contour inA, and suppose that; (A’, z) has been defined by (4.9)
forallm e S and allA’ ; A. Let us further assume by induction theg(A’, z) # 0 for all
me SandallA” & A. We then define a smoothed cutoff functigg(Y, z) by

¢a(Y. D) = [ xam(Y. 2, (4.10)
meS
where
Z;,(IntY,2)64 ()"
Z},(INtY,2)0m ()11

Zqm(Y,2) = 1 (Z + % log ) . (4.11)

4
Here yq.m(Y, 2) is interpreted as 1 #»(2) or Z;,(IntY, 2) is zero.

As a consequence of the above definitions and the fact thalifg A for all m € S, the
expressions

) Zn(Inty Y, 2)
K. (Y, 2) = pa(Y I¥1ehg (Y S 5 12
§(Y.2) = po(Y) 04 (2) " hq ’Z)ngg Zy(Intm Y, 2) e
and
) / o —(Co+7/2)|Y]
vz = |62 GO < e, 413
q 0, otherwise
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are meaningful for alk with 64(z) # 0. By Lemma 3.9 we now know that; (A, ) # 0 and the
inductive definition can proceed. B

In the exceptional cask (z) = 0, we letK; (-, 2) = K (-, 2) = 0 andZ; (-, z) = 0. Note that
this is consistent witlp, (Y, z) = 0.

Remark 6 Theorem 4.2 stated and proved below will ensure [4tY, z)| < e~@**/2 for

all g-contoursY and allq € S, providedr > 4cy + 16. Hence, as it turns oat posteriorj the
second alternative in (4.13) never occurs and, once we are done with the proof of Theorem 4.2, we
can safely replacK, everywhere byK;,. The additional truncation allows us to define and use the
relevant metastable free energies before stating and proving the (rather involved) Theorem 4.2.
An alternative strategy would be to define scale dependent free energies as was done e.g. in [6].

4.2 Metastable free energies.

Let us rewriteZ; (A, z) as

Zy (A, 2) = 052N 2 (A, 2) (4.14)

where
Zin = D [IKi. 2. (4.15)

YeC(A,q) YeY
We then define

(q(2) = O04(2)e™?, (4.16)

where

1

52 = lim ——log Z;(A, 2) (4.17)

IAl—>o00, 128 50 A
By Lemma 3.10, the partition functior; (A, z) and the polymer pressusg(z) can be analyzed
by a convergent cluster expansion, leading to the following lemma.
Lemma 4.1 For each qe S and each ze &, the van Hove limi(4.17)exists and obeys the
bound
Ig(2)| < e7*/2. (4.18)
If A is a finite subset d£? anddq(z) # 0, we further have that 4N, z) #0and

llog(¢cq(@™™Z4(A, 2))| < €70, (4.19)
while {q(2) = 0and Z,(A, z) = 0if 64(2) = 0.

Proof. Recalling the definition of compatibility betweepcontours from the paragraph before
Lemma 3.9C(A, q) is exactly the set of all compatible collectionsafontours inA. Using

the bound (4.13), the statements of the lemma are now direct consequences of Lemma 3.10, the
definition (4.16), the representation (4.14) #fj(A, z) and the fact that we s&t (Y, z) = O if

0q(2) = 0. O

The logarithm of4(z)—or at least its real part—has a natural interpretation astastable
free energyof the ground statg. To state our next theorem, we actually need to define these (and
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some other) quantities explicitly: For eazle ¢ and eacly € S with 64(2) # 0, let

fq(2) = —log|gq(2)1,
f(2) = min fn(2), (4.20)
aq(2) = f4(2) — (2.
If 64(2) = 0, we setfq(z) = co andag = co. (Note that sup ; f(z) < co by (4.16), the bound
(4.18) and our assumption thiatz) = max, |04(2)| is bounded away from zero.)
In accord with our previous definition, a phagés stable atz if a;(z) = 0. We will also say
that ag-contourY is stable at zf K((Y, 2) = Kq(Y, 2). As we will see, stability of the phasp

implies that allg-contours are stable. Now we can formulate an analogue of Theorem 3.1 of [5]
and Theorem 1.7 of [21].

Theorem 4.2 Suppose that > 4cy + 16 whgre ¢ is the constant from Lemma 3.9, and let

é = €77/2, Then the following holds for all 2 ¢

(i) Forallg € S and all g-contours Y, we hay&; (Y, 2)| < e ©@+/2I"l and, in particular,
K{(Y, 2) = K{(Y, 2).

(i) IfY is ag-contour with g(2) diamY < 7, then K (Y, 2) = Kq(Y, 2).

(iii) Ifaq(z)diamA < 7, then % (A, 2) = Z4(A, 2) # Oand
|1Z4(A, 2)| > e fa@IN=EloA, (4.21)

(iv) Ifm e S, then
1Zm(A, 2)| < e f@IN&IoN] (4.22)

Before proving Theorem 4.2, we state and prove the following simple lemma which will be
used both in the proof of Theorem 4.2 and in the proof of Proposition 4.5 in the next subsection.

Lemma4.3 LetmqeS,letze & andletY be aq-contour.
(i) 1f ¢q(Y,2) > O, then

aq(|IntY |+ |Y]) < (z/4+ 2+ 4e77/?)|Y]. (4.23)

(i) If ¢q(Y,2) > 0and yq:m(Y, 2) < 1, then
am(| INtY| +1Y]) < (14 8e77?)|Y]|. (4.24)
Proof of Lemma 4.3By the definitions (4.10) and (4.11), the conditipg(Y, z) > O implies that

Z, (IntY, 2)0,(2)'Y!
Z4(IntY, 2)04 ()1

maxlog

na < 2+ 1/9)]|Y]. (4.25)

Next we observe that, (Y, z) > 0 impliesfy(z) # 0. Since the maximum in (4.25) is clearly
attained for soma with 6,(z) # 0, we may use the bound (4.19) to estimate the partition func-
tions on the left hand side of (4.25). Combined with (4.16), (4.18), (4.20) and the estimate
[oIntY] < |Y], this immediately gives the bound (4.23).
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Next we use that the conditign;:m(Y, z2) < 1 implies that

Z! (IntY, 2)0m(2)"!
Z,(IntY, 2)0q(2)!

Since (4.26) is not consistent wifky(z) = 0, we may again use (4.19), (4.16), (4.18) and (4.20)
to estimate the left hand side, leading to the bound

> A+ /41|Y]. (4.26)

(fg — f) ([ INLY] +|Y]) > (z/4 41— 4e77/?)|Y]. (4.27)
Combining (4.27) with (4.23) and expressiag asa — (fq — fm), one easily obtains the bound
(4.24). O

As in [5], Theorem 4.2 is proved using induction on the diameteAandY. The initial
step for the induction, namely, (i-ii) for diath = 1—which is trivially valid since no such
contours exist—and (iii-iv) for diam\ = 1, is established by an argument along the same lines
as that which drives the induction, so we just need to prove the induction stefN tefl and
suppose that the claims (i-iv) have been established (or hold automatically) f6r, All with
diamY’, diamA’ < N. Throughout the proof we will omit the argumenin f,(z) anday(2).

The proof of the induction step is given in four parts:

Proof of (i). Let Y be such that diat¥ = N. First we will show that the second alternative in
(4.13) does not apply. By the bounds (4.1) and (4.18), we have that

0 Y 5

Il e I (4.28)
10q(2)]

while the inductive assumption (iv), the bound (4.19) and the factthat Int,, Y| = | Int Y| and

> mlointy Y| =|oIntY| < |Y], imply that

Zn(Intn Y, 2)
H emi7™m > 4

< eaq|lntY|e3E|Y|‘ 4.29
Za(lntm Y, 2) ( )

meS

Assuming without loss of generality thag (Y, z) > 0 (otherwise there is nothing to prove), we
now combine the bounds (4.28) and (4.29) with (4.23) and the facétha¢™"/? < 2/7 < 1/8,
to conclude thatk/ (Y, 2)| < e~(7=3-59IYI < g=(G7=4II By the assumption > 4c, + 16, this
is bounded by~ (©+7/2I¥l as desired. O

Proof of (ii). Let diamY = N and suppose thaf is ag-contour satisfyingay diamY < z/4.
Using the bounds (4.18) and (4.19), the definitions (4.16) and (4.20), and the faétltiat| <
|Y| we can conclude that

Z! (IntY, 2)0m(2)"!
Z,(IntY, 2)04(2)!

1 suppY U IntY
max—- log < |upp|Y| |+

T
4 <41 4.30
mes [Y] =27 (4.30)

In the last inequality, we used the bouhslippY U IntY| < |Y]|diamY, the assumption that
agdiamY < r/4 and the fact thaté < 1. We also used thal; < oo impliesd; # 0, which
justifies the use of the bound (4.19). By the definitions (4.10) and (4.11), the bound (4.30) implies
that¢q(IntY, z) = 1. On the other handZq(Intm Y, 2) = Z;(Intn Y, 2) for all m € S by the
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inductive assumption (i) and the fact that diamit < diamY = N. Combined with the
inductive assumption (i), we infer thit; (Y, 2) = K, (Y, 2) = Kq(Y, 2). a

Proof of (iii). Let A c Z® be such that diam. = N andag diamA < 7 /4. By the fact that (ii) is
known to hold for all contoury” with diamY < N, we have thaK(;(Y, 2) = Kq(Y, 2) forall Y

in A, implying thatZq(A, 2) = Z4(A, 2). Invoking (4.19) and (4.20), the bound (4.21) follows
directly. d

Proof of (iv). Let A be a subset aE¢ with diamA = N. Following [21, 5], we will apply the
cluster expansion only to contours that are sufficiently suppressed and handle the other contours
by a crude upper bound. Given a compatible collection of confdurscall thainternal contours
are those contained in INt of some otheryY e Y while the others arexternal Let us call
anm-contourY smallif a, diamY < z/4; otherwise we will call itarge. The reason for this
distinction is that ifY is small then it is automatically stable.

Bearing in mind the above definitions, let us partition any collection of contursM (A, m)
into three set¥y™U Y U Yiage Of internal, small-external and large-external contours, respec-

tively. Fixing Ygxrge and resumming the remaining two families of contours, the partition function

Zm(A, z) can be recast in the form

Zn(A, D) = >z Ext, 2) [ { p2() [ Za(ints Y)}. (4.31)
7

YeY neS

Here the sum runs over all séfsof mutually external largen-contours inA, the symbol Ext=
Ext, (Y) denotes the séf), ¢ (ExtY N A) andZSMal(Ext, z) is the partition sum in Ext induced
by Y. Explicitly, Zsma(A, z) is the quantity from (3.6) with the sum restricted to the collections
Y € M(A, m) for which all external contours are small according to the above definition.

In the special case whetkg (z) = 0, all contours are large by definition (recall tlhgt = oo
if O, vanishes) and the partition functi@i™@'(A, z) is defined to be zero unlegs= @, in which
case we set it to one. We will not pay special attention to the &ase 0 in the sequel of this
proof, but as the reader may easily verify, all our estimates remain true in this case, and can be
formally derived by considering the limit, — oc.

Using the inductive assumption (iv) to estimate the partition functigy(ént, Y), the Peierls
condition (4.1) to bound the activitigs(Y), and the bound (4.18) to estimatéz) by e~ ¢,
we get

H {pz(Y) H Zn(Int, Y)} < H {e—rlYle—f(I |ntY|+|Y|)+3€|Y|}

YeY neS YeY (432)

— e—f|A\EXt| H e—(r—3€)|Y|.
YeY

Next we will estimate the partition functioBiS™(Ext, z). Since all smalim-contours are stable

by the inductive hypothesis, this partition function can be analyzed by a convergent cluster ex-
pansion. Let us consider the ratio 8§ (Ext, z) and Z/,(Ext, z). Expressing the logarithm of

this ratio as a sum over clusters we obtain a sum over clusters that contain at least one contour of
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size|Y| > diamY > 7/an > 2/an. Using the bound (3.21) with = 7 /2 we conclude that

I
ZT B e (4.33)
Z! (Ext, 2)
Combined with Lemma 4.1 and the definitions (4.20), this gives
’Zsmall(EXt Z)| <€ (fm—e—7/am)| Ext| e|aA| H e|Y| (4_34)
YeY
We thus conclude that the left hand side of (4.31) is bounded by
|Zm(A, 2)| < max(e @n/21Ex T e (f/“)'Y')
Ye¥ (4.35)
% e~ FIAIgEloA] Ze b| Ext| H e (31/4—4e)|Y|
Y YeY

whereb = a;,/2 — e 73, Note thatb > e~*/3 which is implied by the fact thatet*/am <
4am/t < am.

For the purposes of this proof, it suffices to bound the first factor in (4.35) by 1. In a later
proof, however, we will use a more subtle bound. To bound the second factor, we will invoke
Zahradik’s method (see [21, Main Lemma] or [5, Lemma 3.2]): Consider the contour model with
weightskK (Y) = e=@/4-9I¥I if Y js a largem-contour andK (Y) = O otherwise. LeZ (A) be the
corresponding polymer partition function iv—see (3.11)—and lei be the corresponding free
energy. CIearny(A) > 1sothat—¢ > 0. Since 3/4— 4 > ¢o+ /2, we can use Lemmas 3.9
and 3.10 to obtain further bounds. For the free energy, this gives 9p < min{e, e 7/am}
because the weights of contours smaller thaa,2identically vanish. Sincé > e %/an, this
allows us to bound the sum on the right hand side of (4.35) by

ZegalExtl H e~ Gr/4-40IYI - ZecﬂlExtl H{e""Y'e @e/4- 5f>|Y|} (4.36)

veY YeY

Using Lemma 3.10 once more, we have tBaint Y)e?!"YIeflYl > 1. Inserting into (4.36), we
obtain

Ze—m Ext| H e (3r/4—48)|Y| < Ze¢(| Ext|+ZYey(||ntY|+|Y|)) H{Z(Int Y)K(Y)}

YeY YeY

_ ewlA' D H{Z(IntY)K(Y)}.

Y YeY

(4.37)

Consider, on the other hand, the polymer partition funcffcm) in the representation (3.11).
Resuming all contours but the external ones, we obtain precisely the right hand side of (4.37),
except for the factoe?'*l. This shows that the right hands side of (4.37) is equal ta)e’'!
which—again by Lemma 3.10—is bounded é{/!. Putting this and (4.35) together we obtain

the proof of the claim (iv). O
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4.3 Differentiability of free energies.

Our next item of concern will be the existence of two continuous and bounded derivatives of the
metastable free energies. To this end, we first prove the following proposition, which establishes
a bound of the form (4.22) for the derivatives of the partition functigpsA, z).

Proposition 4.4 Letz and M be the constants fro(d.1)and (4.3), leté = e~*/2, and suppose
thatt > 4cy + 16 where g is the constant from Lemma 3.9. Then

0oL Zm(A, z)‘ < e T@IAl M| A|) el (4.38)

holds for all ze &, allm e S,and all¢, £ > Owith ¢ + ¢ < 2.

Proof. Again, we proceed by induction on the diameterof We start from the representation
(4.4) which we rewrite as

ZuA, )= [[ n@ [ 2(Y. 2. (4.39)

Yext xeExt YeYext

where we abbreviated (Y, z) = p,(Y) [, Zn(Int, Y, 2). Let 1 < £ < oo be fixed (later, we will
use that actually;, < 2) and let us consider the impact of applyi#igon Zn,(A, 2). Clearly, each

of the derivatives acts either on somégfs, or on some of th& (Y, z)’s. Letky be the number of
times the tern®,(2) is differentiated “atx,” and letiy be the number of times the fact@xY, z)

is differentiated. Lek = (k¢) andi = (iy) be the corresponding multiindices. The resummation
of all contoursy for whichiy = 0 andky = 0 for all x € suppY U IntY then contributes a factor
Zm(ExtA(YeXt) \ A, 2), where we use@ to denote the set of all thod¢ e Y for which

iy > 0, EXL\(YeXt) = A\ Uygee(suppY U IntY), andA” = {x: kx > 0}. (Remember the

requirement that no contour in EQ(fYEX[) \ A’ surrounds any of the “holes.”) Using this notation,
the result of differentiating can be concisely written as

LZnhD =D > ZnExta T\ A2

T A cExty (T

| .
x > % [T&0m@ [] a¥z(v.2. (4.40)
k,i xeA’ V7
k+i=¢
Here the first sum goes over all collections (including the empty ﬁﬁ)ét)of mutually external
contours inA and the third sum goes over all pairs of multiindi¢ksi), ky = 1,2,...,x € A/,
iv = 1,2,...,Y € YU (The terms with A’| + [Y°'] > ¢ vanish.) We writek +i = ¢
to abbreviated>" ke + > iy = ¢ and use the symbols! andi! to denote the multi-index
factorials[ [, k<! and[] iy!, respectively.

We now use (4.3) and (4.18) to boun@*dn(2)| by (M)*e‘e="@. Employing (4.1) and
(4.18) to bound the derivatives pf(Y), and the inductive hypothesis to bound the derivatives of
Zn(Inty Y, 2), we estimatgdly Z(Y, 2)| by [2M|V (Y)[]'Ye==3¥lg=T@NVMI (recall thatV (Y)
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was defined as suppu IntY). Finally, we may use the bound (4.22) to estimate

| Zo(Ext, (YGXS \A.2)| < 210EX (TTNA) o T ) Exta (F7N\A|. (4.41)
Combining these estimates and invoking the inequality
BEX T\ AY < [0AI+ AT+ D 1Y, (4.42)
YEYEXt

we get

|05Zm(A, 2)| < 1PN @IS " Z%

T A cExta (T, K

kti=¢
x [TmeXs T @MV e =M, (4.43)
XeA’ yer™

Let us now consider the cage= 1 and¢ = 2. For¢ = 1, the sum on the right hand side of
(4.43) can be rewritten as

S>(Me+ > ameemM), (4.44)

XeA Y:xeV(Y)CA

while for ¢ = 2, it becomes

> ((l\/|e3€)2 +2Me¥eM D e @ emy? > [ e—<f—5€>'Y'), (4.45)
X,yeA Yy)e(\E//(\Q)VC(X) Ty er™
where the last sum goes over sets of mutually external contbursn A such that{x, y} C
Uygee V(Y) and{x, y} N V(Y) # @ for eachY e ¥, Note that the last condition can only be

satisfied ifY™ contains either one or two contours. Introducing the shorthand

S= > e M (4.46)
Y:0eV(Y)cZzd

we bound the expression (4.44) @ + 2S)M|A|[, and the expression (4.45) kg% + 4e¥ S+
4(S+ $))M?|A|%. Recalling thaty was defined in such a way that the bound (3.28) holds, we
may now use the fact that— 5¢ — ¢y > %r to boundS by e2¢. Sinceé < 1/8, this implies
that the above two terms can be estimatede3{ + 2e~2)M|A| < 2M|A| and(e%8 + 1e%/8-2 +
1€ 2+ te)M2AJ? < 4M?|A[?, as desired.

This completes the proof for the derivatives with respect.td@he proof for the derivatives
with respect t@ and the mixed derivatives is completely analogous and is left to the readér.

Next we will establish a bound on the first two derivatives of the contour weightsBe-
fore formulating the next proposition, we recall the definitions of the polymer partition function
Z4(A, 2) and the polymer pressusgin (4.17) and (4.15) .

Proposition 4.5 Letz and M be the constants frod.1) and (4.3), let ¢y be the constant from
Lemma 3.9, and lef = e */2. Then there exists a finite constant > 4cy + 16 depending
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only on M, d andS| such that ifc > 7, the contour weights KY, -) are twice continuously
differentiable in&. Furthermore, the bounds

|050LK L (Y, 2)| < em(@tT/2IY (4.47)

and ) ]
050,24 (A, 2)| < |A|“H @a@INFaRA (4.48)
hold forallq € S, all z € &, all g-contours Y, all finiteA ¢ Z% and all¢, £ > Owith ¢ + ¢ < 2.

Proposition 4.5 immediately implies that the polymer presssy@se twice continuously dif-
ferentiable and obey the bounds of Lemma 3.10. For future reference, we state this in the follow-
ing corollary.

Corollary 4.6 Letr, be as in Proposition 4.5. f > 7, and ge S, then g is a twice continu-
ously differentiable function i# and obeys the bounds

|0uSy| < €% and (0,0, 5| < €2 (4.49)
valid for anyw, v’ € {z, Z} and any ze &.

Proof of Proposition 4.5Le} T > 11 > 4Co + 16. Then Theorem 4.2 is at our disposal. It will be
convenient to cover the sét by the open sets

0 ={z€ 6:104(2)| < & /429 7)) (4.50)

and

O =(z¢e0: |04(2)| > e /289 (z)). (4.51)
We first note thaK (Y, 2) = 0 if z € 6,7. Indeed, assumink; (Y, 2) # 0 we necessarily have
¢q(Y, 2) > 0, which, by (4.23), implies thaty < /44 24 4¢ and thus lo@(z) — log|6,(2)| <
7/4+ 2+ 6¢, which is incompatible witlz € 6% Hence, the claims trivially hold i#\* and
it remains to prove thak( (Y, -) is twice continuously differentiable ir'?, and that (4.47) and

(4.48) hold for allz € ﬁéq). As in the proof of Theorem 4.2 we will proceed by induction on the
diameter ofy andA. Let N > 1 and suppose that (Y, ) € Cz(ﬁé‘”) and obeys the bounds
(4.47) for allg € S and allg-contoursY with diamY < N, and that (4.48) holds for af] € S
and allA c Z% with diamA < N — 1.

We start by proving thaK( (Y, -) € Cz(é’éq)) whenevery is ag-contourY of diameterN. To
this end, we first observe that ", we have thab,(2) # 0 and hence als@;(IntY, z) # 0.
Using the inductive assumption, this implies that the quotient

Z (IntY, 2)6m(2)""!

Qmv(2) = Z,(IntY, 2)6(2)'V

(4.52)

is twice continuously differentiable i\, which in turn implies thatyq.m(Y, 2) is twice con-
tinuously differentiable. Combined with the corresponding continuous differentiabiljay(df),
04(2), Zm(Intn Y, 2), andZ, (Inty Y, 2), this proves the existence of two continuous derivatives of
z— Kg (Y, 2) with respect to botlz andz.
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Next we prove the bound (4.48) for diamn= N — 1. As we will see, these bounds follow im-
mediately from the inductive assumptions (4.47) and Lemma 3.10. Indegg(Yot= K(Y, 2)
if diamY < N — 1, and3q(Y) = O if diamY > N — 1. The inductive assumptions (4.47)
then guarantee the conditions (3.22) of Lemma 3.10. Combining the representation (3.15) for
log Z, (A, 2) with the estimate (3.23) from Lemma 3.10 we thus conclude that

|850%log 2, (A, 2)| < A, (4.53)
while (3.26) gives the bound
|Z4(A, 2)| < eNIAFaeAl (4.54)

Combining these bounds with the estimaigs| < |A| andé?|A|2 + E|A| < |A|?, we obtain the
desired bounds (4.48). )
Before turning to the proof of (4.47) we will show that foe ﬁéq), the bound (4.48) implies

o+ _
{afafz (A, Z)‘ (Mler/4+3|A|) o= fa@IAI+EI0A] (4.55)

with M1 = 1+ M. Indeed, invoking the assumption (4.3), the definitioﬁé‘f), and the fact that
¢ < 1/8, we may estimate the first and second derivativé, f)'*! by

3 A 6(2)
™| < (inigicy

Combined with (4.14) and (4.48) this gives (4.55).
Let Y be ag-contour with dian¥ = N, and let us consider the derivatives with resped;to

the other derivatives are handled analogously. By the assumption (4.1) and the bound (4.18), we
have

40 _
) 16,2 < (MIA[E/*3) ™ 6,IN.  (4.56)

|05p,(Y)| < [Y["Mlem 2N lgaalYl|g, (2)|M], (4.57)
while (4.3) and the assumption that G\ (cf (4.56)) yields
020a@ 7| < (1Y + D (Me”*2) 164(2) (4.58)
Further, combining the bound (4.55) with Theorem 4.2 and Proposition 4.4 we have

}—IYI.

Zn(Inty Y, 2)
% Z ity 2

~ T 67 ~
2N Y.2) | < [IntY["(2M + 2M;e*!1e¥t/4) ¥ I¥Ighal IntY1, (4.59)

Finally, let us con3|der one of the factorg.m(Y, z). To bound its derivative, we may assume
thatz is an accumulation point & with yq4.m(Y, Z') < 1 (otherwise its derivative is zero), so by
Lemma 4.3(ii) we have that, < 1+ 8¢ and thus lo@(z) —log |0m(2)| < 14+10¢ < 7/4+4-2+8¢,
implying thatz e ﬁém). We may therefore use the bounds (4.56) and (4.55) to estimate the
derivatives ofyq.m(Y, 2), yielding the bound

| xaqm(Y, 2)] < CAINEY| + YD) (4M,e37/4e2V)* (4.60)

whereC is a constant bounding both the first and the second derivative of the mollifier fupction
Combining all these estimates, we obtain a bound of the form

05K (Y, 2)| < C(lIntY] + [Y]) e/ e (r=eONVIghallint¥I+IYD (4.61)
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with a constanC that depends oM and the number of spin statgS|, and a constant that
depends only ofS|. Using the bound (4.23) and the fact teét’* < e“/®I¥l (note that|Y| >
(2R + 1)? > 4 by our definition of contours), we conclude that

04K (Y, 2)| < C(lIntY] + |Y]) e Cr/8-3-caIv, (4.62)
Increasingr; if necessary to absorb all of the prefactors, the bound (4.47) follows. O

We close the subsection with a lemma concerning the Lipschitz continuity of real-valued func-
tionsz— f(z) andz— e %@ ono:

Lemma~4.7 Let z; be as in Proposition 4.5 and Ieiﬁl = 4M + 1L Ifz >7,9e S, andif
Z,29 € 0 are such thafzy, z]|= {sz+ (1 —5)z: 0 < s < 1} c 7, then

|f(20) — f(2)] < My|z— 2o (4.63)
and _ _
|e—aq(z) - e—aq<Zo)| < 2M;|z — zo| M1z, (4.64)

Proof. Let ;4(2) be the quantity defined in (4.16), and &t e~*/2. Combining the assumption
(4.3) with the bounds (4.49) and (4.18), we get the estimate

0b0(@)] < (Me* +6)e™ '@, w,w' e (z,2). (4.65)
With the help of the bountle® + ¢ < 2M + 1/2 = M, /2, we conclude that

|e™fa®) — g7 < Ml/ e '@z, 2.,z elz, 7, (4.66)
[21,20]
where|dZ'| denotes the Lebesgue measure on the intepgak]. Using thatf = max; fq, this
implies
le="@ — e~ T@)| < M, / e '@z,  z,2 el (4.67)
[21,22]
Now if (4.63) is violated, i.e., whenf (z) — f(z)| > (My + €)|z — 29|, then the same is true
either about the first or the second half of the segnmnt] . This shows that there is a sequence
of intervals [ n, z» 0] of length 27|z — z| where|f (z1,n) — f(Z2n)] > (M1 4+ €)|Z1n — Zonl.
But that would be in contradiction with (4.67) which implies that
. |e—f(zl,n) _ e_f(ZZ‘n)I -

[ (zun) = 22
nILrTgO — — n|Lmoo —@) |dz < M17 (468)
|len Zz,nl jizl,n’ZZ,n] € | z |

where we use the mean-value Theorem and a compactness argument to infer the first equality.
Hence, (4.63) must be true after all.

To prove (4.64), we combine the triangle inequality and the bofgiizh) > f (zo) with (4.66)
and (4.67) to conclude that

je%® _ g (@] = |¢f De~a® _ gf G0)g~lalt0)|

f f f e f®) f f
S e (Z)le_ q(z) — e_ q(ZO)l + |e_ (ZO) — e_ (Z)l

z
< Zml/ ef@=1@)4z|.
2
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Bounding f (z) — f(Z)) by M|z — zo|, we obtain the bound (4.64). a

4.4 Torus partition functions.

In this subsection we consider the partition functiahg A, z), defined forA c T, in (3.6).

Since all contours contributing td4(A, z) have diameter strictly less thdn/2, the partition
function Z4(A, z) can be represented in the form (4.8), wiK(Y, z) defined by embedding the
contourY into Z9. Let Z,(A, 2) be the corresponding truncated partition function, defined with
weightsKj (Y, 2) given by (4.12). Notice, however, that even though every confoarA can be
individually embedded int&?, the relation of incompatibility is formulated on torus. The poly-
mer partition functionz; (A, z) andZ (A, z) can then again be analyzed by a convergent cluster
expansion, bearing in mind, however, the torus incompatibility relation. The torus analogue of
Lemma 4.1 is then as follows:

Lemma A~1.8 Assume that > 1, wherer; is the constant from Proposition 4.5 and letgS
and ze 0 be such thabfl;(z) # 0. Then

0%, 109 (¢q(2 ™M Z (A, 2))| < €77/210A] + 2| Ale™" /" (4.70)
foranyA c T.,any ze &,¢ =0,1, andw € {z, Z}.

Proof. Let us write Z( (A, 2) in the form (4.14). Taking into account the torus compatibility
relation when comparing the cluster expansion foriggA, z) with the corresponding terms
contributing tosy|A|, we see that the difference stems not only from clusters passing through the
boundarysA, but also from the clusters that are wrapped around the torus in the former as well
as the clusters that cannot be placed on the torus in the latter. For such clusters, however, we
necessarily have_,, X(Y)|Y| > L/2. Since the functiong(Y) = Kq (Y, 2) satisfies the bound

(3.20) withy = 7 /2, we may use the bound (3.21) to estimate the contribution of these clusters.
This yields

log Z,(A, 2) — sglAl| < €7?]oA| + 2|Ale™™ 4, (4.71)
which is (4.70) for = 0. To handle the cage= 1, we just need to recall that, by Proposition 4.5,
the functional3(Y) = K(Y, 2) satisfies the bounds (3.22) with = z/2. Then the desired

estimate for = 1 follows with help of (3.23) by a straightforward generalization of the above
proof of (4.71). a

Next we provide the corresponding extension of Theorem 4.2 to the torus:

Theorem 4.9 Letr z~4co + 16 where g is the constant from Lemma 3.9, and let us abbreviate
¢ =e /2 Forall z € 0, the following holds for all subsets of the torusT :

(i) Ifag(z)diamA < 7, then Z (A, 2) = Z((A, 2) # Oand
|Zq(A, 2)| > e fa@INlgéloni=2Ane (4.72)
(i) Ifme S, then
1Zm(A, 2)| < g f@IAI+2810A1+4|AleTH (4.73)
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(i) Ifm e S, then

e-TL/4

1Zn(T0, 2)| < & "L max{e an@L?/2 gt /41 gt (4.74)

Remark 7 The bounds (4.72) and (4.73) are obvious generalizations of the corresponding bounds
in Theorem 4.2 to the torus. But unlike in Proposition 4.5, we will not need to prove the bounds
for the derivatives with respect to When such bounds will be needed in the next section, we
will invoke analyticity inz and estimate the derivatives using Cauchy’s Theorem.

Proof of (i). Since all contours can by definition be embedded ZftoTheorem 4.2(ii) guarantees
that K (Y, 2) = Kq(Y, 2) for all g-contours inA and hence&Zq(A, 2) = Zy(A, z). Then (4.72)
follows by Lemma 4.8 and the definition d§. O

Proof of (ii). We will only indicate the changes relative to the proof of part (iv) of Theorem 4.2.
First, since all contours can be embedded #ftpwe have that a corresponding bound— namely,
(4.22)—holds for the interiors of all contours ix. This means that all of the derivation (4.31—
4.35) carries over, with the exception of the faa@t®! in (4.34) and (4.35) which by Lemma 4.8
should now be replaced kgfloA+2A1e % " |n order to estimate the last sum in (4.35), we will
again invoke the trick described in (4.36—4.37). This brings in yet another fef¢&dr-2ae™",
From here (4.73) follows. a

Proof of (iii). The estimate is analogous to that in (ii); the only difference is that now we have to
make use of the extra decay from the maximum in (4.35). (Note that forT, we haveloA| =

0 and|A| = LY. Following [5], this is done as follows: ¥ is a contour, a standard isoperimetric
inequality yields

1 _
Y] 2 o5la(suppY U IntY)| > | suppY U IntY|s. (4.75)

Hence, ifY is a collection of external contours i and Ext is the corresponding exterior set,
we have
%

— d—1
PN E leuppYUIntY|d‘cFl > (Z|suppYU IntY|) = (LY~ |Ext]) . (4.76)
YeY YeY YeY
Writing | Ext| = (1 — x)LY wherex € [0, 1], the maximum in (4.35) is bounded by
8m, ¢ T d-1,951
sup expi——L"(1—x) — — X T . 4.77
xe[O,Fl)] p{ 2 ( ) 4 } “-77)

The function in the exponent is convex and the supremum is thus clearly dominated by the bigger
of the values akx = 0 andx = 1. This gives the maximum in (4.74). O

Apart from the partition function&€(T\, z), we will also need to deal with the situations
where there is a non-trivial contour network. To this end, we need a suitable estimate on the
difference

2292 = 22 - > Zm(TL, 2). (4.78)
meS

This is the content of the last lemma of this section.



PARTITION FUNCTION ZEROS AT FIRST-ORDER PHASE TRANSITIONS 41

Lemma 4.10 There exists a constadg depending only on d and| such that forr > 4, +16
and all ze &, we have
e—zL/4

1209(2)] < Lo /A (o)L (4.79)

Proof. Let ¢y be the constant from Lemma 3.9, anddgt= €y(d, |S|) > ¢o be such that
> (Slem )M < LY, (4.80)
AcCTL

where the sum goes over all connected subAeaifthe torusT, (the existence of such a constant
follows immediately from the fact that the number of connected subsetsZ? that contain a
given pointx and have siz& is bounded by a-dependent constant raised to the poler

The proof of the lemma is now a straightforward corollary of Theorem 4.9. Indeed, invoking
the representation (3.8) we have

2= > pN) [] Zn(An®.N), 2), (4.81)

B,N)eM, meS
NS

whereAm(9, N) is defined before Proposition 3.7. Using (4.2) and (4.73) in conjunction with the
bounds9(2) < ¢(2)€* andy .5 [0Am(@, N)| < |N], we get

2@ < (@ ST e, (4.82)

@,N)yeM
N0

Taking into account that each connected component of Sulpas size at leadt/2, the last sum
can be bounded by

N *© 1

—(1—46)|N|

> e < st“ < se (4.83)

@N)eM, n=1
N£G
where Al
s= > (|3|e—<f—4€>) (4.84)

AcCTL
|AI>L/2

is a sum over connected setsc T, of size at least. /2. Extracting a factoe~*-/# from the
right hand side of (4.84), observing tha2 — 4¢ > €y, and recalling thaf, was defined in such
a way that (4.80) holds, we get the estim&te L% /4. Combined with (4.82) and (4.83) this
gives the desired bound (4.79). O

5. PROOFS OF MAIN RESULTS

We are finally in a position to prove our main results. Unlike in Section 4, all of the derivations
will assume the validity of Assumption C. Note that the assumptions (4.1-4.3) follow from As-
sumptions C0-C2, so all results from Section 4 are at our disposal. Note alsg t¥iat p,(N)
andédm(z) are analytic functions afby Lemma 3.6, implying that the partition functiodg (A, -)
andZ}® are analytic functions df.
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We will prove Theorems A and B for
70 = max{ty, 4¢y + 16, 2log(2/a)} (5.1)

wherer; is the constant from Proposition 4&, is the constant from Lemma 4.10 ands the
constant from Assumption C. Recall that> 4cqy + 16, so forr > 7o we can use all results of
Section 4.

First, we will attend to the proof of Theorem A:

Proof of Theorem AMost of the required properties have already been established. Indegd, let
be as defined in (4.16). Then (2.9) is exactly (4.18) which proves part (1) of the Theorem A.
In order to prove thaby(q(z) = 0 wheneverz € .%,, we recall that;q(z) = 04(2)e™?
wheredy(2) is holomorphic ing andsy(2) is given in terms of its Taylor expansion in the contour
activitiesK (Y, 2). Now, if aq(z) = 0—which is implied byz € #q—thenK( (Y, z) = Kq(Y, 2)
for anyg-contourY by Theorem 4.2. But; K (Y, z) = 0 by the fact thap,(Y), Zq(Inty, Y, z) and
Zn(Inty, Y, 2) are holomorphic andq (Inty Y, z) # 0. Sinces, is given in terms of an absolutely
converging power series in th€,’s, we thus also have thage™® = 0. Hencedy4(z) = 0 for
allze ..
To prove part (3), lez € ., N .7, for some distinct indicem, n € R. Using Lemma 4.1 we
then have

Om(2) > 0(2)e° (5.2)
and similarly forn. Sincea > 2e7%/? > 2e~%/?2, we thus have € .%,(m) N .%Z,(n). Using the
first bound in (4.49), we further have

02{m(2)  02(n(2)
{m(2) &n(2)

Applying Assumption C3, the right hand side is not less than 2e~*/2. Part (4) is proved
analogously; we leave the details to the reader. O

> [0:6m(2) — 0z6n(2)| — 2677/, (5.3)

Before proving Theorem B, we prove the following lemma.

Lemmab5.1 Lete > 0, letz; be the constant from Proposition 4.5, and let

V(2 = |71| log Z4(T., 2) (5.4)
and
P @ = to@e . (55)
Then there exists a constangMepending only oa and M such that
62057 @] < (€MoY' |4 @) (5.6)

holds forallqge S,all¢ > 1,allt > r;,allL > z/2and all ze & with 8(2) < r/(4L) and
dist(z, °) > .

Proof. We will prove the lemma withe the help of Cauchy’s theorem. Starting with the derivatives
of 6y, leteg = minfe, 1/(4M;)} whereM; = 1 4 4M is the constant from Lemma 4.7, and et
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be a point in the dis®,,(z) of radiuseo aroundz. Using the bounds (4.18) and (4.63), we now
bound

‘gq(zf)‘ < g€ f@) < e€+M160e—f(Z) < e€+M160+6q(Z)e—fq(Z) < |(9q(z)|62€+l\]160+8q(2). (5.7)
With the help of Cauchy’s theorem and the estimates1/8, Mie < 1/4 andag(2) < 1/2, this
implies

|004(2)|
164(2)]
In order to bound the derivatives sgt), let us consider a multiindex contributing to the cluster
expansion ofs[gL), and letk = maxy.x(y)-o diamY. Defining
ex = minfe, (20eM1k) ™1}, (5.9)

whereM; = 1 + 4M is the constant from Lemma 4.7, we will show that the weightY, -) of
any contourY with X(Y) > 0 is analytic inside the disB,, (z) of radiusex aboutz. Indeed, let
|z — 7| < ex. Combining the assumptiaay(z) < v/(4L) < 1/2 with Lemma 4.7, we have

e @ > g%® _ 2eMy¢, > 1 — aq(2) — 2eMy¢y

< Lley Y2 < 1(2¢51). (5.8)

6 - . (5.10)
> 1 - £ maxX(aq(2), 10eMie} > g2 MaX3 (@), 10eMaeid)

Here we used the fact that+ y < g max{x, 5y} wheneverx, y > 0 in the last but one step, and
the factthae™>* <1 - (1—e H2x < 1— gx wheneveix < 1/2 in the last step. We thus have
proven that

aq(Z) < max(2a4(2), 20eNyei} < max{, 1} < i, (5.12)
so by Theorem 4.2 (Y, Z') = Kq(Y, Z) andZq(Intn Y, Z)) # O for allm € S andz’ € D, (2).
As a consequenc&,(Y, -) is analytic inside the disB,, (2), as claimed.

At this point, the proof of the lemma is an easy exercise. Indeed, combining Cauchy’s theorem
with the bound K/ (Y, 2)| < e /2@l < e=lYlg=(/2dam¥ e get the estimate

< f!gﬁne—(coﬂﬂ)lYIX(Y) < f!gk_ge_(f/z)kHe_COMX(Y). (5.12)
Y Y

o, [ [ Kg(Y. 2%
Y

Boundinge, ‘e~ /2% by e 'kle ™ < (tetes 1), we conclude that

TRy, z’)XW)) < ot [T e, (5.13)
Y Y
Inserted into the cluster expansion Bé'r), this gives the bound
s ()] < 1 (te e Y, (5.14)
which in turn implies that
|oles @ | < p1(telerty 2 o8 @), (5.15)

Combining this bound with the bound (5.8), we obtain the bound (5.6) with a cordatitat
depends only om andM3, and hence only oa andM. O
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Next we will prove Theorem B. Recall the definitions of the sefdm) and % (Q) from
(2.13) and (2.14) and the fact that in Theorem B, wecsetz /4.

Proof of Theorem B(1-3Rart (1) is a trivial consequence of the fact thatz), p,(N) andp,(Y)
are analytic functions af throughout?.

In order to prove part (2), we note thate .7, (q) implies thataq(z) < x/L = 7/(4L)
and hence by Theorem 4.2(ii) we have thf{(Y, z) = Kq(Y, 2) for anyg-contour contributing
to Z4(T., 2). This immediately implies that the functiosg-’ and¢{"(z) defined in (5.4) and
(5.5) are analytic function i, (). Next we observe that > 4¢, 4 16 implies thatrL /8 >
7/8 > log4 and henceef™-/4 < e7L/8, Sincez e .7,/ (q) impliesaq(z) < oo and hence
04(2) # 0, the bounds (2.15-2.16) are then direct consequences of Lemma 4.8 and the fact
that@TL =4.

The bound (2.17) in part (3) finally is nothing but the bound (5.6) from Lemma 5.1, while he
bound (2.18) is proved exactly as for Theorem A. Note that so far, we only have usecthat
except for the proof of (2.17), which through the conditions from Lemma 5.1 requires /2,
and give a constaritly depending o andM. O

Proof of Theorem B(4)We will again rely on analyticity and Cauchy’s Theorem. I@tc R
and let@ c S be the set of corresponding interchangeable spin states. Clearlgnfin are
interchangeable, theff-) = (" and, recalling that, denotes the set of spins corresponding
tom e R, we have

d
20@ =202 - D [("@]" =22 - D Z)(TL, 2. (5.16)
ne®@’ neQ’
Pick azg € %L (Q). Forn € Q', we then have,(zp) < 7/(4L), and by tbe argument leading
to (5.11) we have thati,(z) < 7/(2L) providedz/(4L) < 1/2 and 2M;|z — 75| < %ﬁ.
On the other hand, im € S\ Q', thenan(z) > ¢/(8L), and by a similar argument, we get
thatan(z) > 7/(16L) if z/(8L) < 1 and 2M;|z — 79| < %8%. Noting thatr > 7 implies
T > 4¢cy + 16 > 16, we now set
¢ = min{e, (10eM, L%~} (5.17)

Forz € D,w(z9) andn € Q’, we then havean(z)§ < r/4 and henc&[ (T, z) = Z,(T\, 2),
implying in particular that

20@ =2+ > Zn(TL.2). (5.18)
meS~\Q’
Note that this implies, in particular, tha&ity () is analytic inD,«) (2o).

Our next goal is to prove a suitable bound on the right hand side of (5.18). By Lemma 4.10, the
first term contributes no more thah % (z)-"e~*L/4, providedr > 4&,+ 16 andL is so large that
5L9e~7L/4 < log 2. On the other hand, sinzee D,w)(z0) implies that thay,(z) > 7/(16L)
forallm ¢ @', the bound (4.74) implies that ea@h, (T, z) on the right hand side of (5.18)
contributes less than2z)-"e~"-""/32 onceL is so large that 49%e~"/4 < log 2. By putting
all of these bounds together and using th@)-" < ¢(zg)-"eMiiz-2IL? < el/(109)(z5)L by the
bound (4.63) and our definition ef™), we get that

120(2)| < 5ISILY (z0) &7t /32 (5.19)
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wheneverz € D, () andL is so large that. > 7/2 and 8.%e™"/% < log 2. Increasing. if
necessary to guarantee thét) = (10eM;L%)~! and applying Cauchy’s theorem to bound the
derivatives of='o(z), we thus get

64202, < £1(10eMy)!5S| LD (zg) L g7 1/32 (5.20)

providedL > Lo, whereLo = Lo(d, M, 7, €) is chosen in such a way that far> Lo, we have
L > 7/2,5L% /% < log2 and(10eM;L%)~* < €. Sincezy € %,.(Q) was arbitrary and
IS] = > mer Am, this proves the desired bound (2.20) with= 10eM; = 10e(1 + 4M). O
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