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Abstract

Two results are presented: First, we solve the problem of persistence of dis-

sipation for reduction of kinetic models. Kinetic equations with thermodynamic

Lyapunov functions are studied. Uniqueness of thermodynamic projector is proven:

There exists only one projector which transforms the arbitrary vector �eld equipped

with the given Lyapunov function into a vector �eld with the same Lyapunov func-

tion for a given anzatz manifold which is not tangent to the Lyapunov function

levels. Moreover, from the requirement of persistence of the sign of dissipation

follows that the value of dissipation (the entropy production) persists too. The

explicit construction of this thermodynamic projector is described. In example we

apply this projector to derivation the equations of reduced kinetics for the Fokker-

Planck equation. This equation describes the polymer dynamics in 
ow. The new

class of closures is developed: The kinetic multipeak polyhedrons. Distributions

of this type are expected to appear in each kinetic model with multidimensional

instability as universally, as Gaussian distribution appears for stable systems. The

number of possible relatively stable states of polymer molecules grows as 2m, and

the number of macroscopic parameters is in order mn, where n is the dimension

of con�guration space, and m is the number of independent unstable directions in

this space. The elaborated class of closures and equations pretends to describe the

e�ects of \molecular individualism". This is the second result.

�agorban@mat.ethz.ch, ��ikarlin@mat.ethz.ch
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Introduction

Reduction of description for dissipative kinetics assumes (explicitly or implicitly) the fol-

lowing picture: There exists a manifold of slow motions in the space of distributions. From

the initial conditions the system goes quickly in a small neighborhood of the manifold,

and after that moves slowly along it.

There are three basic problems in the model reduction:

1. How to construct the slow manifold;

2. How to project the initial equation onto the constructed slow manifold, i.e. how

to split motions into fast and slow;

3. How to improve the constructed manifold and the projector in order to make the

manifold more invariant and the motion along it slower.

The �rst problem is often named \the closure problem", and its solution is the closure

assumption; the second problem is \the projection problem". Sometimes these problems

are discussed and solved simultaneously (for example, for quasiequilibrium, or, what is

the same, for MaxEnt closure assumptions [1, 2, 3, 4, 5]). Sometimes the time required for

the solution of the projection problem after construction of anzatz may be rather long,

as in the known case of the Tamm{Mott-Smith approximation in the theory of shock

waves (see, for example, [6]). If one has constructed the closure assumption which is the

invariant manifold [6, 7, 8], then the projection problem disappears, because the vector

�eld is tangent to the invariant manifold.

Let us discuss the initial kinetic equation as the abstract ordinary di�erential equation,

d	

dt
= J(	); (1)

where 	 = 	(q) is the distribution function, q is the point in the con�guration (for the

Fokker-Planck equation) or phase (for the Liouville equation) space.

Let the closure assumption be given:

	 = 	(M jq); (2)

where M is the set of macroscopic variables, which are coordinates on the manifold (2).

The tangent space TM0
for the manifold (2) in the pointM0 is the image of the di�erential:

TM0
= im(DM(	(M jq))M0

: (3)

How to construct the dynamic equation for the variables M? This is the projection prob-

lem. The equivalent setting is: how to project J(	(M0jq)) onto TM0
? If dM=dt = F (M)

is the equation for M , then the equation on the manifold is d	(M jq)=dt = (DM	(M jq)) �
F (M):

There exist three common ways to construct the projector onto TM0
:

1. Moment parametrization;

2. Spectral projectors of Jacobians for equation (1);

3. Spectral projectors of \symmetric part" of Jacobians for this equation.
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The moment parametrization is the best way to \hide" the projector problem in a

natural way: Let the macroscopic variables be de�ned not only on the manifold 	(M jq),
but in the neighborhood of this manifold: M = m(	), with the identitym(	(M jq)) � M .

Then we can de�ne dM=dt in a natural way:

dM

dt
= (D	m(	(M jq)))J(	(M jq)): (4)

As it will be demonstrated below, this simple formula is appropriate only for the quasiequi-

librium (MaxEnt) approximation, because in other cases it leads to entropy decreasing

for some initial conditions and, hence, to a perpetuum mobile of the second kind (this

happens in reduced equations, of course, and not in reality).

The idea of slow-fast decomposition through spectral decomposition of Jacobian seems

very attractive (see, for example, the theory of the so-called intrinsic low-dimensional

manifold (ILDM) [9]): Let the spectrum ofD	J(	) can be separated in two parts: Re�sl <

A � B < Re�fst < 0. There are two invariant subspaces which correspond to slow (Esl)

and to fast (Efst) points of the spectrum. The suggested solution of the projection problem

is: The tangent space TM of the slow manifold should be not very di�erent from the slow

invariant subspace Esl, and the projection of J onto TM should be done parallel to the

fast invariant subspace Efst.

The eigenvectors and eigenprojectors of the non-selfadjoint operators may be very

unstable in calculations. So, it may be better to use the selfadjoint operator and it's

spectral decomposition.

Dynamics of distances depends not on the Jacobian, but on the symmetrized Jacobian:

d(�	;�	)

dt
= (�	; [D	J(	) + (D	J(	))

+]�	) + o(�	);

where ( ; ) is usual scalar product, �	 is di�erence between two solutions of equation (1),

	 = 	(t) is one of these solutions.

In the theory of inertial manifolds [10, 11, 12], for example, one usually uses the

following form of equation (1) with selfadjoint linear operator A: _	 + A	 = R(	); and

spectral decomposition of A rules the fast-slow splitting.

There are di�erent physically motivated ways to select the scalar product and create

the symmetrization [13, 14, 15]. But symmetrization does not provide termodinamicity

and the entropy for the projected equations can decrease.

The construction of the thermodynamic projector which always preserve the dissipa-

tion is simple and transparent. We shall describe it now, in the introduction, and it's

uniqueness will be proved in the next section. The proof of uniqueness will give us a

demonstration, that all other ways of projection are thermodynamically inconsistent, and

lead to entropy decrease, and, hence, to the perpetuum mobile of the second kind.

Let for the system (1) the entropy S(	) exist, and

dS

dt
= (D	S)J(	) � 0: (5)

We introduce the entropic scalar product h j i	:

ha j bi	 = �(a; (D2
	S)(b)); (6)
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where D2
	 is the second di�erential of the entropy.

The thermodynamic projector is de�ned for a given point 	 and a subspace T (the

tangent space to an anzatz manifold). Let us consider a subspace T0 � T which is annulled

by the di�erential S in the point 	: (D	S)T0 = 0. If T0 = T , then the thermodynamic

projector is the orthogonal projector on T with respect to the entropic scalar product hji	.
Suppose that T0 6= T . Let eg 2 T , eg ? T0 with respect to the entropic scalar product

h j i	, and (D	S)(eg) = 1. These conditions de�ne vector eg uniquely. The projector onto

T is de�ned by the formula

P (J) = P0(J) + eg(D	S)(J); (7)

where P0 is the orthogonal projector onto T0 with respect to the entropic scalar product

h j i	.
For example, if T a �nite-dimensional space, then the projector (7) is constructed in

the following way. Let e1; ::; en be a basis in T , and for de�niteness, (D	S)(e1) 6= 0.

1) Let us construct a system of vectors

bi = ei+1 � �ie1; (i = 1; ::; n� 1); (8)

where �i = (D	S)(ei+1)=(D	S)(e1), and hence (D	S)(bi) = 0. Thus, fbign�11 is a basis

in T0.

2) Let us orthogonalize fbign�11 with respect to the entropic scalar product h j i	. We get

an orthonormal with respect to h j i	 basis fgign�11 in T0.

3) We �nd eg 2 T from the conditions:

heg j gii	 = 0; (i = 1; ::; n� 1); (D	S)(eg) = 1: (9)

and, �nally we get

P (J) =

n�1X
i=1

gihgi j Ji	 + eg(D	S)(J) (10)

If (D	S)(T ) = 0, then the projector P is simply the orthogonal projector with respect

to the h j i	 scalar product. This is possible if 	 is the global maximum of entropy point

(equilibrium). Then

P (J) =

nX
i=1

gihgijJi	; hgijgji	 = Æij: (11)

The entropy production for projected vector �eld (10) is the same, as for the initial

vector �eld (1):

(D	S)(P (J)) = (D	S)(eg)(D	S)(J): (12)

The signi�cance of the case (D	S)(T ) = 0 may be not clear at the �rst glance, because

such a state 	 should be the equilibrium point with J(	) = 0. Nevertheless, this case is

important as a limit of nonequilibrium 	, and for discussion of persistence of the Onsager

relations1 as well, as for the proof of uniqueness the thermodynamic projector.

1The preservation of the Onsager reciprocity relations for projected equations follows from the re-

quirement of persistence of the sign of dissipation. This seems surprising, because these relations do not

follow from the entropy grows. It should be stressed, that only the conditional statement can be proved:

if for the initial system hold the Onsager reciprocity relations, then these relations hold for the projected

system.
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In this paper we do not discuss the third main problem of model reduction: How to

improve the constructed manifold and the projector in order to make the manifold more

invariant and the motion along it more slow. This discussion can be found in di�erent

works [6, 7, 8, 10, 11, 15].

The discovery of the molecular individualism for dilute polymers in the 
ow [16] was

the challenge to theory from the very beginning. \Our data should serve as a guide in

developing improved microscopic theories for polymer dynamics"... was the concluding

sentence of the paper [16]. P. de Gennes invented the term \molecular individualism" [17].

He stressed that in this case the usual averaging procedures are not applicable. At the

highest strain rates distinct conformation shapes with di�erent dynamics were observed

[16]. Further works for shear 
ow demonstrated not only shape di�erences, but di�erent

large temporal 
uctuations [18].

Equation for the molecules in a 
ow are known. These are the Fokker-Planck equations

with external force. The theory of the molecular individualism is hidden inside these

equations. Following the logic of model reduction we should solve two problems: to

construct the slow manifold, and to project the equation on this manifold. The second

problem is solved: the thermodynamic projector is necessary for this projection. Why

should we use this projector also for driven systems? These systems can be formally

written as
d	

dt
= J(	) + Jex; (13)

where Jex is the external �eld (driven force).

The entropy for system (13) can decrease, but the thermodynamic processes modeled

by the term J(	) should always produce the entropy (both in the initial and in the

projected systems). This is the reason to use the thermodynamic projector also for open

systems.

How to solve the �rst problem? We can �nd a hint in the paper [19]. The Gaussian

distributions form the invariant manifold for the FENE-P model of polymer dynamics,

but, as it was discovered in [19], this manifold can become unstable in the presence of a


ow. We propose to model this instability as dissociation of the Gaussian peak into two

peaks. This dissociation describes appearance of an unstable direction in the con�guration

space.

In the classical FENE-P model of polymer dynamics a polymer molecule is represented

by one coordinate: the stretching of molecule (the connector vector between the beads).

There exists a simple mean �eld generalized models for multidimensional con�guration

spaces of molecules. In these models dynamics of distribution functions is described by

the Fokker-Planck equation in a quadratic potential well. The matrix of coeÆcients of this

quadratic potential depends on the matrix of the second order moments of the distribution

function. The Gaussian distributions form the invariant manifold for these models, and

the �rst dissociation of the Gaussian peak after appearance of the unstable direction in

the con�guration space has the same nature and description, as for the one-dimensional

models of molecules considered below.

At the highest strain there can appear new unstable directions, and corresponding

dissociations of Gaussian peaks form a cascade of dissociation. For m unstable directions

we get the Gaussian parallelepiped: The distribution function is represented as a sum of

2m Gaussian peaks located in the vertixes of parallelepiped:
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	(q) =
1

2m(2�)n=2
p
det �

X
"i=�1; (i=1;:::;m)

exp

 
�1

2

 
��1

 
q +

mX
i=1

"i&i

!
; q +

mX
i=1

"i&i

!!
;(14)

where n is dimension of con�guration space, 2&i is the vector of the ith edge of the

parallelepiped, � is the one peak covariance matrix (in this model � is the same for all

peaks). The macroscopic variables for this model are:

1. The covariance matrix � for one peak;

2. The set of vectors &i (or the parallelepiped edges).

The family of distributions (14) can be improved to include the proper equilibrium

(this is important condition: the equilibrium should belong to the anzatz manifold). There

may be di�erent further re�nements, some of them are discussed below.

1 Uniqueness of thermodynamic projector

In this section, the uniqueness theorem for thermodynamic projector will be proved.

1.1 Projection of linear vector �eld

Let E be a real Hilbert space with the scalar product h j i, Q be a set of linear bounded

operators in E with negatively de�nite quadratic form hAx j xi � 0 for every A 2 Q,

T  E be a nontrivial (T 6= f0g) closed subspace. For every projector P : E ! T

(P 2 = P ) and linear operator A : E ! E we de�ne the projected operator P (A) : T ! T

in such a way:

P (A)x = PAx � PAPx for x 2 T: (15)

The space T is the Hilbert space with the scalar product h j i. Let QT be a set of linear

bounded operators in T with negatively de�ne quadratic form hAx j xi � 0.

Proposition 1. The inclusion P (Q) � QT for a projector P : E ! T holds if and

only if P is the orthogonal projector with respect to the scalar product h j i.
Proof. If P is orthogonal (and, hence, selfadjoint) and hAx j xi � 0, then

hPAPx j xi = hAPx j Pxi � 0:

If P is not orthogonal, then Px 6= 0 for some vector x 2 T? in orthogonal complement

of T . Let us consider the negatively de�ned selfadjoint operator

Ax = � j Px� axihPx� ax j

(Axy = �(Px� ax)hPx� ax j yi): The projection of Ax on T is:

P (Ax) = (a� 1) j PxihPx j :

This operator is not negatively de�nite for a > 1. �

Immediately from this proof follows the Corollary 1.
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Corollary 1. Let Qsym � Q be a subset of selfadjoint operators in E. The inclusion

P (Qsym) � QT for a projector P : E ! T holds if and only if P is the orthogonal projector

with respect to the scalar product h j i. �
Corollary 2. Let Q

sym
T

� QT be a subset of selfadjoint operators in T . If P (Q) � QT

for a projector P : E ! T , then P (Qsym) � Q
sym
T

.

It follows from the Proposition 1 and the obvious remark: If operators A and P are

selfadjoint, then operator PAP is selfadjoint too. �

The Proposition 1 means that a projector which transforms every linear vector �eld Ax

with Lyapunov function hx j xi into projected vector �eld PAPx with the same Lyapunov
function is orthogonal with respect to the scalar product h j i.

According to the Corollary 1, the conditions of the Proposition 1 can be made weaker:

A projector which transforms every selfadjoint linear vector �eld Ax with Lyapunov func-

tion hx j xi into projected vector �eld PAPx with the same Lyapunov function is orthog-

onal with respect to the scalar product h j i. In physical applications it means, that we can
deal with requirement of dissipation persistence for vector �eld with Onsager reciprocity

relations. The consequence of such a requirement will be the same, as for the class of all

continuous linear vector �eld: The projector should be orthogonal.

The Corollary 2 is a statement about persistence of the reciprocity relations.

1.2 The uniqueness theorem

In this subsection we will discuss �nite-dimensional systems. There are technical details

which make the theory of nonlinear in�nite-dimensional case too cumbersome: the Hilbert

space equipped with entropic scalar product h j i	 (12) for di�erent 	 consists of di�erent

functions. Of course, there exists a common dense subspace, and geometrical sense re-

mains the same, as for the �nite-dimensional space, but we prefer to defer the discussion

of all these details till a special mathematical publication.

Let E be n-dimensional real vector space, U � E be a domain in E, and a m-

dimensional space of parameters L be de�ned, m < n, and let W be a domain in L. We

consider di�erentiable maps, F : W ! U , such that, for every y 2 W , the di�erential

of F , DyF : L ! E, is an isomorphism of L on a subspace of E. That is, F are the

manifolds, immersed in the phase space of the dynamic system (1), and parametrized by

parameter set W .

Let the twice di�erentiable function S on U be given (the entropy). We assume that

S is strictly concave in the second approximation: The quadratic form de�ned by second

di�erential of the entropy D2
	S(x; x) is strictly negative de�nite in E for every 	 2 U .

We will use the entropic scalar product (6). Let S have the interior point of maximum in

U : 	eq 2 intU:

The function S is Lyapunov function for a vector �eld J in U , if (D	S)(J(	)) � 0 for

every 	 2 U .

First of all, we shall study vector �elds with Lyapunov function S in the neighborhood

of 	eq. Let 0 2 intW; F : W ! U be an immersion, and F (0) = 	eq: Let us de�ne

Ty = imDyF (y) for each y 2 W: This Ty is the tangent space to F (W ) in the point y.

Suppose that the mapping F is suÆciently smooth, and F (W ) is not tangent to entropy

levels:

Ty * D	Sj	=F (y)
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for every y 6= 0. The thermodynamic projector for a given F is a projector-valued function

y 7! Py; where Py : E ! Ty is a projector. The thermodynamic conditions reads: For

every smooth vector �eld J(	) in U with Lyapunov function S the projected vector �eld

Py(J(F (y))) on F (W ) has the same Lyapunov function S(F (y)).

Proposition 1 and Corollaries 1, 2 make it possible to prove uniqueness of the ther-

modynamic projector for the weakened thermodynamic conditions too: For every smooth

vector �eld J(	) in U with Lyapunov function S and selfadjoint Jacobian operator for

every equilibrium point (zero of J(	)) the projected vector �eld Py(J(F (y))) on F (W )

has the same Lyapunov function S(F (y)). We shall not discuss it separately.

Proposition 2. Let the thermodynamic projector Py be a smooth function of y. Then

P0 = P?0 and Py = P?
y
+O(y); (16)

where P?
y

is orthogonal projector onto Ty with respect to the entropic scalar product hjiF (y).
Proof. A smooth vector �eld in the neighborhood of F (0) = 	eq can be presented as

A(	�	eq)+o(k	�	eqk), where A is a linear operator. If S is Lyapunov function for this

vector �eld, then the quadratic form hAx j xi	eq is negatively de�nite. Py = P0 + O(y),

because Py is a continuous function. Hence, for P0 we have the problem solved by the

Proposition 1, and P0 = P?0 . �

Theorem. Let the thermodynamic projector Py be a smooth function of y. Then

Py = P0y + egD	Sj	=F (y); (17)

where notations of formula (7) are used: T0y is the kernel of linear functional D	Sj	=F (y)
in Ty, P0y : T0y ! E is the orthogonal projector with respect to the entropic scalar product

h j iF (y) (12). Vector eg 2 T is proportional to the Riesz representation gy of linear

functional D	Sj	=F (y) in Ty with respect to the entropic scalar product:

hgy j xiF (y) = (D	Sj	=F (y))(x)
for every x 2 Ty, eg = gy=hgy j gyiF (y).

Proof. Let y 6= 0. Let us consider auxiliary class of vector �elds J on U with

additional linear balance (D	S)	=F (y))(J) = 0. If such a vector �eld has Lyapunov

function S, then 	 = F (y) is its equilibrium point: J(F (y)) = 0. The class of vector

�elds with this additional linear balance and Lyapunov function S is suÆciently rich and

we can use the Propositions 1, 2 for dynamics on the auxiliary phase space

fx 2 U j(D	Sj	=F (y))(x� F (y)) = 0g:
Hence, the restriction of Py on the hyperplane kerD	Sj	=F (y) is P0y. Formula (17) gives

the unique continuation of this projector on the whole E. �

1.3 Thermodynamic projector, quasiequilibrium, and entropy

maximum

The thermodynamic projector projects any vector �eld which satis�es the second law

of thermodynamics into the vector �eld which satis�es the second law too. Another

projectors violate the second law. But what does it mean? Each projector P	 onto

tangent space to an anzatz manifold in a point 	 induces the fast-slow motion splitting:
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Fast motion is the motion parallel to kerP	 (on the aÆne subspace 	 + kerP	 in the

neighborhood of 	), slow motion is the motion on the slow manifold and in the �rst order

it is parallel to the tangent space T	 in the point 	 (in the �rst order this slow manifold

is the aÆne subspace 	+ imP	, T	 = imP	), and velocity of the slow motion in point 	

belongs to image P	.

If P	 is the thermodynamic projector, then 	 is the point of entropy maximum on

the aÆne subspace of fast motion 	 + kerP	. It gives the solution to the problem

S(x)! max; x 2 	+ kerP	: (18)

This is the most important property of thermodynamic projector [6]. Let us call it for

nonequilibrium points 	 the property A:

A: kerP	 � kerD	S: (19)

If the projector P	 with the property A can be continued to the equilibrium point,

	eq, as a smooth function of 	, then in this point kerP	 ? imP	. If this is valid for all

systems (including systems with additional linear balances), then the following property

B holds:

B: (kerP	

\
kerD	S) ? (imP	

\
kerD	S): (20)

Of course, orthogonality in formulae (19,20) is considered with respect to the entropic

scalar product in point 	.

The property A means that the value of entropy production persists for all nonequi-

librium points. The sense of property B is: each point of the slow manifold can be made

an equilibrium point (after the deformation of the system which leads to appearance on

additional balance). And for equilibrium points the orthogonality condition (20) follows

from the property A:

If P	 does not have the property A, then 	 is not the point of entropy maximum on

the aÆne subspace of fast motion 	+kerP	, so either the fast motion along this subspace

does not leads to 	 (and, hence, the point 	 does not belong to slow manifold), or this

motion violates the second law, and the entropy decreases. This is the violation of the

second law of thermodynamics during the fast motion. If P	 does not have the property

A, then such a violation is expected for almost every system.

On the other hand, if P	 is not the thermodynamic projector, then there exists a ther-

modynamic vector �eld J , with non-thermodynamic projection: S is Lyapunov function

for J (it increases), and is not Lyapunov function for P	(J) (it decreases in the neigh-

borhood of 	). The di�erence between violation of the second law of thermodynamics in

fast and slow motions for a projector without the property A is: for the fast motion this

violation typically exists, for the slow (projected) motion there exist some thermodynamic

systems with such a violation. On the other hand, the violation in slow motion is more

important for applications, if we use the slow dynamics as an answer (and assume that

the fast dynamics is relaxed).

If P	 does not have the property B, then there exist systems with violation of the

second law of thermodynamics in fast and slow motions. Here we can not claim that the

second law violates for almost every system, but such systems exist.

One particular case of thermodynamic projector is known during several decades. It

is the quasiequilibrium projector on the tangent space of the quasiequilibrium (MaxEnt)

manifold.
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Let a set of macroscopic (slow) variables be given: M = m(	). The vector of macro-

scopic variables M is a continuous linear function of microscopic variables 	. Let the

anzatz manifold be the manifold of conditional entropy maximum:

S(	)! max; m(	) = M: (21)

The solution of the problem (21) 	
qe
M
parametrized by values of the macroscopic variables

M is the quasiequilibrium manifold.

The projector on the tangent space to the quasiequilibrium manifold is:

�
qe
M
= (DM	

qe
M
)
M
m =

�
D2

	S
��1
	
qe
M

mT

�
m
�
D2

	S
��1
	
qe
M

mT

��1
m: (22)

This formula was essentially obtained by Robertson [20].

First of all, the thermodynamic projector (22) for the quasiequilibrium manifold (21)

is the orthogonal projector with respect to the entropic scalar product (6). In this case

both terms in the thermodynamic projector (7) are orthogonal projectors with respect to

the entropic scalar product (6). The �rst term, P0, is orthogonal projector by construc-

tion. For the second term, eg(D	S), it means that the Riesz representation of the linear

functional D	S in the whole space E with respect to the entropic scalar product belongs

to the tangent space of the quasiequilibrium manifold. This Riesz representation is the

gradient of S with respect to h j i	. The following Proposition gives simple and important
condition of orthogonality of the thermodynamic projector (7). Let M be an anzatz

manifold, and let V be some quasiequilibrium manifold, 	 2M T
V , T	 be the tangent

space to the anzatz manifoldM in the point 	. Suppose that there exists a neighborhood

of 	 where V �M . We will use the notation grad	S for the Riesz representation of the

linear functional D	S in the scalar product h j i	: hgrad	Sjfi	 � (D	S)(f) for f 2 E.

Proposition 3. Under given assumptions, grad	S 2 T	, and the thermodynamic

projector P	 is the orthogonal projector onto T	 with respect to the entropic scalar product

(6). �

So, if a point 	 on the anzatz manifoldM belongs to some quasiequilibrium subman-

ifold V �M , then the thermodynamic projector in this point is simply the orthogonal

projector with respect to the entropic scalar product (6).

Proposition 3 is useful in the following situation. Let the quasiequilibrium approxi-

mation be more or less satisfactory, but the \relevant degrees of freedom" depend on the

current state of the system. It means that for some changes of the state we should change

the list of relevant macroscopic variables (moments of distribution function for genera-

tion the quasiequilibrium). Sometimes it can be described as presence of hidden degrees

of freedom, which are not moments. In these cases the manifold of reduced description

should be extended. We have a family of systems of moments M� = m�(	), and a family

of corresponding quasiequilibrium manifoldsM�: The manifoldM� consist of solutions

of optimization problem S(	)! max, m�(	) = M for given � and all admissible values

for M . To create a manifold of reduced description it is possible to join all the moments

M� in one family, and construct the corresponding quasiequilibrium manifold. Points on

this manifold are parametrized by the family of moments values fM�g for all possible �.
It leads to a huge increase of the quasiequilibrium manifold. Another way to extension

of the quasiequlibrium manifold is a union of all the manifolds M� for all �. In accor-

dance with the Proposition 3, the thermodynamic projector for this union is simply the

orthogonal projector with respect to the entropic scalar product. This kind of manifolds

11



gives a closest generalization of the quasiequilibrium manifolds. An example of such a

construction will be described below.

Quasiequilibrium approximation became very popular after works of Jaynes [1]2.

Thermodynamic projector gives the presentation of almost arbitrary anzatz as the

quasiequilibrium manifold. This property opens the natural �eld for applications of

thermodynamic projector: construction of Galerkin approximations with thermodynamic

properties. Of course, there is a \law of the diÆculty conservation": for the quasiequilib-

rium with the moment parameterization the slow manifold is usually not explicitly given,

and it can be diÆcult to calculate it. Thermodynamic projector completely eliminates

this diÆculty. On the other side, on the quasiequilibrium manifold with the moment

parameterization (if it is found) it is easy to �nd the dynamics: simply write _M = m(J).

The building of the thermodynamic projector may require some e�orts. Finally, for each

of the distributions 	 it is easy to �nd its projection on the classical quasiequilibrium

manifold 	 ! 	
qe

M(	)
: it requires just calculation of the moments M(	). The analogue

projection for the general thermodynamic projector is not so easy: 	! f with the con-

dition Pf(	� f) = 0. This equation de�nes the projection of some neighborhood of the

manifold 
 on 
, but the solution of this equation is rather diÆcult. Fortunately, we need

to build such operators only to analyze the fast processes of the initial relaxation layer,

and it is not necessary to investigate the slow dynamics.

Is it necessary to use the thermodynamic projector everywhere? The persistence of

dissipation is necessary, because the violation of the second law may lead to strange non-

physical e�ects. If one creates a very accurate method for solution of initial equation (1),

then it may be possible to expect that the persistence of dissipation will hold without

additional e�orts. But this situation yet have not appeared. All methods of model

reduction need a special tool to control the persistence of dissipation.

In order to summarize, let us give three reasons to use the thermodynamic projector:

1. It guarantees the persistence of dissipation: all the thermodynamic processes which

should product the entropy conserve this property after projecting, moreover, not

only the sign of dissipation conserves, but the value of entropy production and the

reciprocity relations too;

2. The coeÆcients (and, more generally speaking, the right hand part) of kinetic equa-

tions are known signi�cantly worse then the thermodynamic functionals, so, the

2From time to time it is discussed in the literature, who was the �rst to introduce the quasiequilibrium

approximations, and how to interpret them. At least a part of the discussion is due to a di�erent role

the quasiequilibrium plays in the entropy{conserving and the dissipative dynamics. The very �rst use of

the entropy maximization dates back to the classical work of G. W. Gibbs [21], but it was �rst claimed

for a principle by E. T. Jaynes [1]. Probably the �rst explicit and systematic use of quasiequilibria to

derive dissipation from entropy{conserving systems is due to the works of D. N. Zubarev. Recent detailed

exposition is given in [2]. For dissipative systems, the use of the quasiequilibrium to reduce description

can be traced to the works of H. Grad on the Boltzmann equation [22]. The viewpoint of the present

authors was in
uenced by the papers by L. I. Rozonoer and co-workers, in particular, [3, 4, 23]. A

detailed exposition of the quasiequilibrium approximation for Markov chains is given in the book [24]

(Chapter 3, Quasiequilibrium and entropy maximum, pp. 92-122), and for the BBGKY hierarchy in the

paper [5]. We have applied maximum entropy principle to the description the universal dependence the 3-

particle distribution function F3 on the 2-particle distribution function F2 in classical systems with binary

interactions [25]. A general discussion of the maximum entropy principle with applications to dissipative

kinetics is given in the review [26]. The methods for corrections the quasiequilibrium approximations are

developed in [6, 7, 27, 28]

12



universality of the thermodynamic projector (it depends only on thermodynamic

data) makes the thermodynamic properties of projected system as reliable, as for

the initial system;

3. It is easy (much more easy than spectral projector, for example).

2 The art of anzatz: Multi-peak polyhedrons in ki-

netic systems with instabilities

2.1 How to evaluate the anzatz?

Thermodynamic projector transforms almost arbitrary ansatz into thermodynamically

consistent model. So, the simplest criteria of quality of an anzatz (entropy grows, reci-

procity relations, etc.) are satis�ed by the construction of the projector. How to evaluate

the anzatz now?

First of all, we can estimate the defect of invariance � = J(	)�P	(J(	)): If � is not

small (in comparison with the typical value of J), then the anzatz should be improved (for

details see, for example, [29, 30]). It is possible to use � for error estimation and correction

of an anzatz after solution of projected equations too (it is so-called post-processing

[31, 15]). Let 	0(t); (t 2 [0; T ]) be the solution of projected equations d	(t)=dt =

P	(J(	)); and �(t) = J(	0(t))� P	0(t)(J(	
0(t))): Then the following formula

	1(t) = 	0(t) +

Z
t

0

�(�)d� (23)

gives the Picard iteration for solution of the initial kinetic equation d	(t)=dt = J(	); with

initial approximation 	0(t): The integral in the right hand side of equation (23) gives the

estimation of the deviation the anzatz solution 	0(t) from the true solution as well, as

the correction for this anzatz solution. For a better estimation we can take into account

not only �(t), but the linear part of the vector �eld J(	) near 	0(t), and use di�erent

approximations of this linear part [15]. The following representation gives us one of the

simplest approximations: 	1(t) = 	0(t) + Æ	(t);

d(Æ	(t))

dt
= �(t) +

h�(t)j(DJ)	0(t)�(t)i	0(t)

h�(t)j�(t)i	0(t)

Æ	(t): (24)

where �(t) = J(	0(t)) � P	0(t)(J(	
0(t))); (DJ)	0(t) is the di�erential of J(	(t)) in the

point 	0(t), h j i	0(t) is the entropic scalar product (6) in the point 	0(t).

The solution of equation (24) is

Æ	(t) =

Z
t

0

exp

�Z
t

�

k(�)d�

�
�(�)d�; (25)

where

k(t) =
h�(t)j(DJ)	0(t)�(t)i	0(t)

h�(t)j�(t)i	0(t)

:

The right hand side of equation (25) improves the simplest Picard iteration (23) and gives

both the estimation of the error of the anzatz, and the correction for the solution 	0(t).
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The projection of � on the slow motion anzatz is zero, hence, for post-processing

analysis of the slow motion, the estimation (25) should be supplemented by one more

Picard iteration:

Æ	sl(t) = P	0(t)Æ	(t) +

Z
t

0

P	0(�)((DJ)	0(�))Æ	(�)d�; (26)

where Æ	(t) is calculated by formula (25).

The thermodynamic projector guarantees the thermodynamic consistence of anzatz,

and post-processing gives both the estimations of the error and correction for the solution.

So, the main requirement to an anzatz now is: to capture the essence of the phenomenon.

This is the art of anzatz. Is it possible to formalize this art? In the next subsection we

discuss two special anzatz which are known for several decades and mysteriously are at

the same time simplest and reliable nonperturbative approximations in the domains of

their application. The requested formalization seems to be possible, at least, partially.

2.2 Two-peak approximations

2.2.1 Tamm{Mott-Smith approximation for kinetics of shock waves

Shock waves in gas 
ows are important from practical, as well, as from theoretical points of

view. Some integral parameters of the shock wave front can be obtained by gas dynamics

equations with additional thermodynamic relations, for weak shocks the hydrodynamic

approach can give the shock front structure too [32]. For strong shocks it is necessary

to use the kinetic representation, for rare�ed gases the Boltzmann kinetic equation gives

the framework for studying the structure of strong shocks [33]. This equation describes

the dynamics of the one-particle distribution function f(v;x); where v is the vector of

particle velocity, and x is the particle position in space. One of the common ways to use

the Boltzmann equation in physics away from exact solutions and perturbation expansions

consists of three steps:

1. Construction of a speci�c anzatz for the distribution function for a given physical

problem;

2. Projection of the Boltzmann equation on the anzatz;

3. Estimation and correction of the anzatz (optional).

The �rst and, at the same time, the most successful anzatz for the distribution function

in the shock layer was invented in the middle of the XX century. It is the bimodal

Tamm{Mott-Smith approximation (see, for example, the book [33]):

f(v;x) = fTMS(v; z) = a�(z)f�(v) + a+(z)f+(v); (27)

where z is the space coordinate in the direction of the shock wave motion, f�(v) are the

downstream and the upstream Maxwellian distributions, respectively.

Direct molecular dynamics simulation for the Lennard-Jones gas shows good quanti-

tative agreement of the Tamm{Mott-Smith anzatz (27) with the simulated velocity dis-

tribution functions in the shock fronts for a wide range of Mach number (between 1 and

8.19) [35]. For di�erent points in the shock front the bimodal approximation (27) of the
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simulated velocity distribution function has appropriate accuracy, but the question about

approximation of the a�(z) remained open in the paper [35], because the authors of this

paper had \no way to decide which of the equations proposed in the literature yields

better results".

The thermodynamic projector gives the unique thermodynamically consistent equation

for the Tamm{Mott-Smith approximation (27) [6]. These equations have a simple form

for the variables:

n(z) =

Z
fTMS(v; z)d

3v; s(z) = �kB
Z

fTMS(v; z) ln fTMS(v; z)d
3v:

The particles density n(z) is linear function of a�(z). The entropy density s is a more

complicated function of a�, but there are simple expansions both for weak and for strong

shocks [6, 34].

The equations for n(z; t); s(z; t) in the Tamm{Mott-Smith approximation have the

form:
@s

@t
+
@js

@z
= �;

@n

@t
+
@jn

@z
= 0; (28)

where

js(z) = �kB
Z

vzfTMS(v; z) ln fTMS(v; z)d
3v; jn(z) =

Z
vzfTMS(v; z)d

3v;

and � is the Boltzmann density of entropy production for the TMS distribution (27):

� = �kB
Z

J(fTMS)(v; z) ln fTMS(v; z)d
3v;

where J(f) is the Boltzmann collision integral.

The stationary version of equations (28) was �rst introduced by M. Lampis [34]. in the

ad hoc manner. Direct numerical simulation demonstrated that all other known equations

for the Tamm{Mott-Smith anzatz violate the second law [36].

2.2.2 Langer{Baron{Miller approximation for spinodal decomposition

The spinodal decomposition is the initial stage of a phase separation in thermodynam-

ically unstable solid solution. It requires no activation energy (unstable does not mean

metastable). The order parameter is the composition variable (concentration c of one of

components, for example). Hence, the rate of the spinodal decomposition is limited by

di�usion processes.

The process of spinodal decomposition was described quantitatively in the paper [37].

This model consists of two coupled equations: for the single-point distribution function of


uctuations, and for the pair correlation function. The 
uctuation u(r) = c(r)� c0 is de-

viation of the concentration c from the average concentration c0. The time evolution of the

single-point distribution density of 
uctuation, �1(u) is described by the one-dimensional

Fokker-Planck equation:

@�1

@t
=M

@

@u

�
�1
@F (u)

@u
+ kBTb

@�1

@u

�
; (29)
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where b is a constant, F (u) is a mean-�eld free energy which depends on the value of

u, on the whole function �1 (because F (u) includes some averages in the mean �eld

approximation), and on the two-point correlation function (because it depends on average

square of ru(r)). The assumption
�2[u(r); u(r0)] �= �1[u(r)]�1[u(r0)]f1 + 
(jr � r0j)u(r)u(r0)g (30)

allows to truncate the in�nite chain of equations for all correlation functions, and to write

the equation for the two-point correlation function. Details are presented in the paper

[37].

The mean-�eld free energy function F (u) is non-stationary and may be non-convex.

Thus, the one-peak representations for �1(u) are far from a physical sense, but it is possible

to try the two-peak anzatz:

�1(u) = a1G�(u� &1) + a2G�(u+ &2); (31)

where a1 = &2=(&1+ &2), a2 = &1=(&1+ &2) (because obvious normalization conditions), and

G�(u) is the Gaussian distribution: G�(u) =
1

�
p
2�
exp

�
� u

2

2�2

�
:

The systematic use of this two-peak anzatz (31) allowed to get the satisfactory quanti-

tative description for some features of spinodal decomposition. The authors of the paper

[37] mentioned that the present computational scheme does appear to be accurate enough

to justify its use in the study of realistic metallurgical systems. Instead of thermody-

namic projector which was not known in 1975, they used the projection onto the �rst

three non-trivial moments (hu2i; hu3i; hu4i).

2.3 Multi-peak anzatz and mean-�eld theory of molecular indi-

vidualism

2.3.1 Two-peak approximation for polymer stretching in 
ow, and explosion

of the Gaussian manifold

We shall consider the simplest case of dilute polymer solutions represented by dumbbell

models. The dumbbell model re
ects the two features of real{world macromolecules to

be orientable and stretchable by a 
owing solvent [39].

Let us consider the simplest one-dimensional kinetic equation for the con�guration

distribution function 	(q; t), where q is the reduced vector connecting the beads of the

dumbbell. This equation is slightly di�erent from the usual Fokker-Planck equation. It

is nonlinear, because of the dependence of potential energy U on the moment M2[	] =R
q2	(q)dq. This dependence allows us to get the exact quasiequilibrium equations on

M2, but this equations are not solving the problem: this quasiequilibrium manifold may

become unstable when the 
ow is present [19]. Here is this model:

@t	 = �@qf�(t)q	g+ 1

2
@2
q
	: (32)

Here

�(t) = �(t)� 1

2
f(M2(t)); (33)

�(t) is the given time-independent velocity gradient, t is the reduced time, and the function

�fq is the reduced spring force. Function f may depend on the second moment of the
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distribution function M2 =
R
q2	(q; t)dq. In particular, the case f � 1 corresponds to

the linear Hookean spring, while f = [1 �M2(t)=b]
�1 corresponds to the self-consistent

�nite extension nonlinear elastic spring (the FENE-P model, �rst introduced in [40]).

The second moment M2 occurs in the FENE-P force f as the result of the pre-averaging

approximation to the original FENE model (with nonlinear spring force f = [1�q2=b]�1).

The parameter b changes the characteristics of the force law from Hookean at small

extensions to a con�ning force for q2 ! b. Parameter b is roughly equal to the number of

monomer units represented by the dumbell and should therefore be a large number. In

the limit b ! 1, the Hookean spring is recovered. Recently, it has been demonstrated

that FENE-P model appears as �rst approximation within a systematic self-con�dent

expansion of nonlinear forces [29].

Equation (32) describes an ensemble of non-interacting dumbells subject to a pseudo-

elongational 
ow with �xed kinematics. As is well known, the Gaussian distribution

function,

	G(M2) =
1p

2�M2

exp

�
� q2

2M2

�
; (34)

solves equation (32) provided the second moment M2 satis�es

dM2

dt
= 1 + 2�(t)M2: (35)

Solution (34) and (35) is the valid macroscopic description if all other solutions of the

equation (32) are rapidly attracted to the family of Gaussian distributions (34). In other

words [7], the special solution (34) and (35) is the macroscopic description if equation (34)

is the stable invariant manifold of the kinetic equation (32). If not, then the Gaussian

solution is just a member of the family of solutions, and equation (35) has no meaning of

the macroscopic equation. Thus, the complete answer to the question of validity of the

equation (35) as the macroscopic equation requires a study of dynamics in the neighbor-

hood of the manifold (34). Because of the simplicity of the model (32), this is possible to

a satisfactory level even for M2-dependent spring forces.

In the paper [19] it was shown, that there is a possibility of \explosion" of the Gaussian

manifold: with the small initial deviation from it, the solutions of the equation (32) are

very fast going far from, and then slowly come back to the stationary point which is

located on the Gaussian manifold. The distribution function 	 is stretched fast, but

looses the Gaussian form, and after that the Gaussian form recovers slowly with the new

value of M2. Let us describe brie
y the results of [19].

Let M2n =
R
q2n	dq denote the even moments (odd moments vanish by symmetry).

We consider deviations �2n = M2n �MG
2n, where M

G
2n =

R
q2n	Gdq are moments of the

Gaussian distribution function (34). Let 	(q; t0) be the initial condition to the Eq. (32)

at time t = t0. Introducing functions,

p2n(t; t0) = exp

�
4n

Z
t

t0

�(t0)dt0
�
; (36)

where t � t0, and 2n � 4, the exact time evolution of the deviations �2n for 2n � 4 reads

�4(t) = p4(t; t0)�4(t0); (37)

17



and

�2n(t) =

�
�2n(t0) + 2n(4n� 1)

Z
t

t0

�2n�2(t
0)p�12n (t

0; t0)dt
0
�
p2n(t; t0); (38)

for 2n � 6. Equations (36), (37) and (38) describe evolution near the Gaussian solution

for arbitrary initial condition 	(q; t0). Notice that explicit evaluation of the integral in

the Eq. (36) requires solution to the moment equation (35) which is not available in the

analytical form for the FENE-P model.

It is straightforward to conclude that any solution with a non-Gaussian initial condi-

tion converges to the Gaussian solution asymptotically as t!1 if

lim
t!1

Z
t

t0

�(t0)dt0 < 0: (39)

However, even if this asymptotic condition is met, deviations from the Gaussian solution

may survive for considerable �nite times. For example, if for some �nite time T , the

integral in the Eq. (36) is estimated as
R
t

t0
�(t0)dt0 > �(t � t0), � > 0, t � T , then the

Gaussian solution becomes exponentially unstable during this time interval. If this is the

case, the moment equation (35) cannot be regarded as the macroscopic equation. Let us

consider speci�c examples.

For the Hookean spring (f � 1) under a constant elongation (� = const), the Gaussian

solution is exponentially stable for � < 0:5, and it becomes exponentially unstable for

� > 0:5. The exponential instability in this case is accompanied by the well known

breakdown of the solution to the Eq. (35) due to in�nite stretching of the dumbbell. The

situation is much more interesting for the FENE-P model because this nonlinear spring

force does not allow the in�nite stretching of the dumbbell.

Eqs. (35) and (37) were integrated by the 5-th order Runge-Kutta method with adap-

tive time step. The FENE-P parameter b was set equal to 50. The initial condition was

	(q; 0) = C(1 � q2=b)b=2, where C is the normalization (the equilibrium of the FENE

model, notoriously close to the FENE-P equilibrium [41]). For this initial condition, in

particular, �4(0) = �6b2=[(b + 3)2(b + 5)] which is about 4% of the value of M4 in the

Gaussian equilibrium for b = 50. In Fig. 1 we demonstrate deviation �4(t) as a function

of time for several values of the 
ow. Function M2(t) is also given for comparison. For

small enough � we �nd an adiabatic regime, that is �4 relaxes exponentially to zero. For

stronger 
ows, we observe an initial fast runaway from the invariant manifold with j�4j
growing over three orders of magnitude compared to its initial value. After the maximum

deviation has been reached, �4 relaxes to zero. This relaxation is exponential as soon as

the solution to Eq. (35) approaches the steady state. However, the time constant for this

exponential relaxation j�1j is very small. Speci�cally, for large �,

�1 = lim
t!1

�(t) = � 1

2b
+O(��1): (40)

Thus, the steady state solution is unique and Gaussian but the stronger is the 
ow, the

larger is the initial runaway from the Gaussian solution, while the return to it thereafter

becomes 
ow-independent. Our observation demonstrates that, though the stability con-

dition (39) is met, signi�cant deviations from the Gaussian solution persist over the times

when the solution of Eq. (35) is already reasonably close to the stationary state. If we

accept the usually quoted physically reasonable minimal value of parameter b of the order
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Figure 1: Deviations of reduced moments from the Gaussian solution as a function of

reduced time t in pseudo-elongation 
ow for the FENE-P model. Upper part: Reduced

second moment X = M2=b. Lower part: Reduced deviation of fourth moment from

Gaussian solution Y = ��1=24 =b. Solid: � = 2, dash-dot: � = 1, dash: � = 0:75, long

dash: � = 0:5. (The �gure from the paper [19], computed by P. Ilg.)

20 then the minimal relaxation time is of order 40 in the reduced time units of Fig. 1.

We should also stress that the two limits, � ! 1 and b ! 1, are not commutative,

thus it is not surprising that the estimation (40) does not reduce to the above mentioned

Hookean result as b ! 1. Finally, peculiarities of convergence to the Gaussian solution

are even furthered if we consider more complicated (in particular, oscillating) 
ows �(t).

Further numerical experiments are presented in [42]. The statistics of FENE-P solutions

with random strains was studied recently by J.-L. Thi�eault [43]

In accordance with [38] the anzatz for 	 can be suggested in the following form:

	An(f�; &g; q) = 1

2�
p
2�

�
e�

(q+&)2

2�2 + e�
(q�&)2

2�2

�
: (41)

Natural inner coordinates on this manifold are � and &. Note, that now �2 6= M2. The

value �2 is a dispersion of one of the Gaussian summands in (41),

M2(	
An(f�; &g; q)) = �2 + &2:
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To build the thermodynamic projector on the manifold (41), the thermodynamic Lya-

punov function is necessary. It is necessary to emphasize, that equations (32) are non-

linear. For such equations, the arbitrarity in the choice of the thermodynamic Lyapunov

function is much smaller than for the linear Fokker Planck equation. Nevertheless, such

a function exists. It is the free energy

F = U(M2[	])� TS[	]; (42)

where

S[	] = �
Z

	(ln	� 1)dq;

U(M2[	]) is the potential energy in the mean �eld approximation, T is the temperature

(further we assume that T = 1).

Note, that Kullback-form entropy Sk = � R 	 ln
�
	
	�

�
also has the form Sk = �F=T :

	� = exp(�U);
Sk[	] = �hUi �

Z
	 ln	dq:

If U(M2[	]) in the mean �eld approximation is the convex function of M2, then the free

energy (42) is the convex functional too.

For the FENE-P model U = � ln[1�M2=b].

In accordance to the thermodynamics the vector of 
ow of 	 must be proportional to

the gradient of the corresponding chemical potential �:

J = �B(	)rq�; (43)

where � = ÆF

Æ	
, B � 0. From the equation (42) it follows, that

� =
dU(M2)

dM2

� q2 + ln	

J = �B(	)
�
2
dU

dM2

� q +	�1rq	

�
: (44)

If we suppose here B = D

2
	, then we get

J = �D
�
dU

dM2

� q	+
1

2
rq	

�
@	

@t
= divqJ = D

dU(M2)

dM2

@q(q	) +
D

2
@2q	; (45)

When D = 1 this equations coincide with (32) in the absence of the 
ow: due to equation

(45) dF=dt � 0.

Let us construct the thermodynamic projector with the help of the thermodynamic

Lyapunov function F (42). Corresponding entropic scalar product in the point 	 has the

form

hf jgi	 =
d2U

dM2
2

����
M2=M2[	]

�
Z

q2f(q)dq �
Z

q2g(q)dq +

Z
f(q)g(q)

	(q)
dq (46)
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During the investigation of the anzatz (41) the scalar product (46), constructed for the

corresponding point of the Gaussian manifold with M2 = �2, will be used. It will let us

to investigate the neighborhood of the Gaussian manifold (and to get all the results in

the analytical form):

hf jgi�2 = d2U

dM2
2

����
M2=�2

�
Z

q2f(q)dq �
Z

q2g(q)dq + �
p
2�

Z
e

q2

2�2 f(q)g(q)dq (47)

Also we will need to know the functional DF in the point of Gaussian manifold:

DF�2(f) =

�
dU(M2)

dM2

����
M2=�2

� 1

2�2

!Z
q2f(q)dq; (48)

(with the condition
R
f(q)dq = 0). The point

dU(M2)

dM2

����
M2=�2

=
1

2�2
;

corresponds to the equilibrium.

The tangent space to the manifold (41) is spanned by the vectors

f� =
@	An

@(�2)
; f& =

@	An

@(&2)
;

f� =
1

4�3
p
2�

�
e�

(q+&)2

2�2
(q + &)2 � �2

�2
+ e�

(q�&)2

2�2
(q � &)2 � �2

�2

�
; (49)

f& =
1

4�2&
p
2�

�
�e� (q+&)2

2�2
q + &

�
+ e�

(q�&)2

2�2
(q � &)

�

�
;

The Gaussian entropy (free energy) production in the directions f� and f& (48) has a very

simple form:

DF�2(f&) = DF�2(f�) =
dU(M2)

dM2

����
M2=�2

� 1

2�2
: (50)

The linear subspace kerDF�2 in linff�; f&g is spanned by the vector f& � f�.

Let us have the given vector �eld d	=dt = �(	) in the point 	(f�; &g). We need to

build the projection of � onto the tangent space T�;& in the point 	(f�; &g):
P th

�;&
(�) = '�f� + '&f& : (51)

This equation means, that the equations for �2 and &2 will have the form

d�2

dt
= '�;

d&2

dt
= '& (52)

Projection ('�; '&) can be found from the following two equations:

'� + '& =

Z
q2�(	)(q)dq;

h'�f� + '&f& jf� � f&i�2 = h�(	)jf� � f&i�2 ; (53)
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Figure 2: Phase trajectories for the two-peak approximation, FENE-P model. The vertical

axis (& = 0) corresponds to the Gaussian manifold. The triangle with �(M2) > 0 is the

domain of exponential instability.

where hf jgi�2 = h�(	)jf� � f&i�2 , (46). First equation of (53) means, that the time

derivative dM2=dt is the same for the initial and the reduced equations. Due to the

formula for the dissipation of the free energy (48), this equality is equivalent to the

persistence of the dissipation in the neighborhood of the Gaussian manifold.

The second equation in (53) means, that � is projected orthogonally on kerDS
T
T�;& .

Let us use the orthogonality with respect to the entropic scalar product (47). The solution

of equations (53) has the form

d�2

dt
= '� =

h�jf� � f&i�2 +M2(�)(hf& jf&i�2 � hf�jf&i�2)
hf� � f& jf� � f&i�2 ;

(54)

d&2

dt
= '& =

�h�jf� � f&i�2 +M2(�)(hf�jf�i�2 � hf�jf&i�2)
hf� � f& jf� � f&i�2 ;

where � = �(	), M2(�) =
R
q2�(	)dq.

It is easy to check, that the formulas (54) are indeed de�ning the projector: if f�
(or f&) is substituted there instead of the function �, then we will get '� = 1; '& = 0
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Figure 3: Phase trajectories for the two-peak approximation, FENE model: a) A stable

equilibrium on the vertical axis, one stable peak; b) A stable equilibrium with & > 0,

stable two-peak con�guration.

(or '� = 0; '& = 1, respectively). Let us substitute the right part of the initial kinetic

equations (32), calculated in the point 	(q) = 	(f�; &g; q) (see the equation (41)) in the

equation (54) instead of �. We will get the closed system of equations on �2; &2 in the

neighborhood of the Gaussian manifold.

This system describes the dynamics of the distribution function 	. The distribution

function is represented as the half-sum of two Gaussian distributions with the averages

of distribution �& and mean-square deviations �. All integrals in the right-hand part of

(54) are possible to calculate analytically.

Basis (f�; f&) is convenient to use everywhere, except the points in the Gaussian man-

ifold, & = 0, because if & ! 0, then

f� � f& = O

�
&2

�2

�
! 0:

Let us analyze the stability of the Gaussian manifold to the \dissociation" of the

Gaussian peak in two peaks (41). To do this, it is necessary to �nd �rst nonzero term

in the Taylor expansion in &2 of the right-hand side of the second equation in the system

(54). The denominator has the order of &4, the numerator has, as it is easy to see, the

order not less, than &6 (because the Gaussian manifold is invariant with respect to the

initial system).

With the accuracy up to &4:

1

�2
d&2

dt
= 2�

&2

�2
+ o

�
&4

�4

�
; (55)
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where

� = �� dU(M2)

dM2

����
M2=�2

:

So, if � > 0, then &2 grows exponentially (& � e�t) and the Gaussian manifold is

unstable; if � < 0, then &2 decreases exponentially and the Gaussian manifold is stable.

Near the vertical axis d�2=dt = 1+ 2��2. The form of the phase trajectories is shown

qualitative on Fig. 2. Note that this result completely agrees with equation (37).

For the real equation FPE (for example, with the FENE potential) the motion in

presence of the 
ow can be represented as the motion in the e�ective potential well
~U(q) = U(q) � 1

2
�q2. Di�erent variants of the phase portrait for the FENE potential

are present on Fig. 3. Instability and dissociation of the unimodal distribution functions

(\peaks") for the FPE is the general e�ect when the 
ow is present.

The instability occurs when the matrix @2 ~U=@qi@qj starts to have negative eigenvalues

( ~U is the e�ective potential energy, ~U(q) = U(q)� 1
2

P
i;j
�i;jqiqj).

2.3.2 Polymodal polyhedron

The stationary polymodal distribution for the Fokker-Planck equation corresponds to the

persistence of several local minima of the function ~U(q). The multidimensional case is

di�erent from one-dimensional because it has the huge amount of possible con�gurations.

All normal forms of the catastrophe of \birth of the critical point" are well investigated

and known [44]. Every dissociation of the peak is connected with such a catastrophe. The

number of the new peaks is equal to the number of the new local minima of U .

The possible cascade of peaks dissociation is presented qualitatively on Fig. 4. The

important property of this qualitative picture is the linear complexity of dynamical de-

scription with exponential complexity of geometrical picture. Let m be the number of

bifurcation steps in the cascade. Then

� For description of parallelepiped it is suÆcient to describe m edges;

� There are 2m�1 geometrically di�erent conformations associated with 2m vertex of

parallelepiped (central symmetry halved this number).

Another important property is the threshold nature of each dissociation: It appears in

points of stability loss for new directions, in these points the dimension of unstable direc-

tion increases.

The simplest multidimensional dynamic model is the Fokker-Planck equation with

quadratic mean �eld potential. This is direct generalization of the FENE-P model: the

quadratic potential U(q) depends on the tensor of second moments M 2 = hqiqji (here
the angle brackets denote the averaging). This dependence should provide the �nite

extensibility. This may be, for example, a simple matrix generalization of the FENE-P

energy:

U(q) =
X
ij

Kijqiqj; K =K0 + �(M 2=b); hU(q)i = tr(KM 2=b)

where b is a constant (the limit of extensibility),K0 is a constant matrix,M 2 is the matrix

of second moments, and � is a positive analytical monotone increasing function of one

variable on the interval (0; 1), �(x)! 1 for x ! 1 (for example, �(x) = � ln(1� x)=x,

or �(x) = (1� x)�1).
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Figure 4: Cartoon representing the steps of molecular individualism. Black dots are ver-

tices of Gaussian parallelepiped. Zero, one, and four-dimensional polyhedrons are drawn.

Dashed is the three-dimensional polyhedron used to draw the four-dimensional object.

Each new dimension of the polyhedron adds as soon as the corresponding bifurcation

occurs. Quasi-stable polymeric conformations are associated with each vertex. First bi-

furcation pertinent to the instability of a dumbbell model in elongational 
ow is described

in the text.
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For quadratic multidimensional mean �eld models persists the qualitative picture of

Fig. 2: there is non-stationary moleqular individualism for stationary \molecular collec-

tivism". The stationary distribution is the Gaussian distribution, and on the way to this

stationary point there exists an unstable region, where the distribution dissociates onto

2m peaks (m is the number of unstable degrees of freedom).

Dispersion of individual peak in unstable region increases too. This e�ect can deform

the observed situation: If some of the peaks have signi�cant intersection, then these peaks

join into new extended classes of observed molecules. The stochastic walk of molecules be-

tween connected peaks can be observed as \large non-periodical 
uctuations". This walk

can be unexpected fast, because it can be e�ectively a motion in a low-dimensional space,

for example, in one-dimensional space (in a neighborhood of a part of one-dimensional

skeleton of the polyhedron).

2.4 Generalization: neurons and particles

The Gaussian parallelepiped (14) seems to be a \rigid" structure: the possibilities to ex-

tend this anzatz, to make it more exact, but with preservation of more or less transparent

structure, are not obvious. The simple transformation can improve this situation. Let

us mention the obvious relation: exp(�(x� a)2) = exp(�x2) exp(2ax) exp(�a2): We can

write the simple generalization of equation (14):

	(q) = 	�(q)

mY
i=1

'i((&i; q)); (56)

where 	�(q) is the distribution density for one peak, for example, it may be the mul-

tidimensional Gaussian distribution 	�(q) = 1

(2�)n=2
p
det �

exp
��1

2
(��1q; q)

�
; &i, (i =

1; : : : ; m) are vectors in the con�guration space, (&i; q) is the usual scalar product, 'i(x)

are nonnegative functions of one variable x. for example, 'i(x) = Aich(�ix+ �i).

The form (56) is more 
exible then original Gaussian parallelepiped (14). It gives the

possibility to extend the space for model adaptation. Functions of one variable 'i(x) are

additional variables. They can form a �nite-parametric family: For example, 'i(x) =

Aich(�ix) give the Gaussian peaks, and if we use 'i(x) = A+
i
exp(�+

i
x) + A�

i
exp(��

i
x),

then we obtain a non-symmetric picture of shifted peaks. On following steps we may use

di�erent spaces (or manifolds) of functions 'i(x) to extend the approximation capacity of

the anzatz (56).

Let us describe the tangent space T for the anzatz (56) with functions �i(x) = ln'i(x)

from some space L. The space of functions of n variables

L((&; q)) = f�((&; q))j' 2 Lg

corresponds to a given vector & and the space L: The tangent space T	 for the anzatz

(56) in a point 	 has a form:

T	 = 	

"
mX
i=1

L((&i; q)) +

mX
i=1

�
d�i(x)

dx

�
x=(&i;q)

E�

#
; (57)

where E� is the space of linear functions of q.

26



If the space L includes all suÆciently smooth functions, then to avoid intersection

between L((&i; q)) and
�
d�i(x)

dx

�
x=(&i;q)

E� it is convenient to change in equation (57) the

space of all linear functions E� to the space of linear functions orthogonal to (&i; q),

E�
i
= f(&; q)j& ? &ig (without any change in the resulting space):

T	 = 	

"
mX
i=1

L((&i; q)) +

mX
i=1

�
d�i(x)

dx

�
x=(&i;q)

E�
i

#
: (58)

It means that for suÆciently rich spaces L the vectors &i in the anzatz (56) could be chosen

on the sphere, (&i; &i) = 1, to provide the independence of variables.

The form (56) appears as a quasiequilibrium distribution density in the following

particular case of the problem (21):

S(	)! max;

Z
Æ(x� (&i; q))	(q)d

nq = fi(x); i = 1; : : : ; m; (59)

where S(	) is the Kullback-form Bolzmann-Gibbs-Shannon entropy which measures a

deviation of the distribution density 	(q) from the equilibrium density 	�(q):

S(	) = �
Z

	(q) ln

�
	(q)

	�(q)

�
dnq: (60)

Hence, for �xed values of &i and for a space of arbitrary nonnegative smooth functions

'i(x) the anzatz (56) is the quasiequilibrium approximation with macroscopic variables

fi(x) =

Z
Æ(x� (&i; q))	(q)d

nq:

Let us de�ne the anzatz manifold (56) as a union of the quasiequilibrium manifolds

(59) for all sets of values f&igmi=1 on the unit sphere. In this case we can apply Proposition
3: The thermodynamic projector is the orthogonal projector on T	 with respect to the

entropic scalar product in the point 	: In the space of density functions

hf jgi	 =

Z
f(q)g(q)

	(q)
dq; (61)

and in the conjugated space (for example, for functions � from space L in (57),(58))

h�j�ic	 =

Z
�(q)�(q)	(q)dq; (62)

where the scalar product for the conjugated space is marked by the upper index c.

The orthogonal projector P on the direct sum of subspaces

mX
i=1

L((&i; q)) +

mX
i=1

�
d�i(x)

dx

�
x=(&i;q)

E�
i

(63)

is a sum of operators: P =
P

m

i=1(P�i
+ P&i

), where

imP�i
= L((&i; q)); imP&i

=

�
d�i(x)

dx

�
x=(&i;q)

E�
i
: (64)
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Operators P�i
, P&i can be founded from the de�nition of their images (64) and the con-

ditions: P 2 = P; P+ = P; where P+ is the conjugated to P operator with respect of

the scalar product h j ic (62). From the �rst equation of (P 2 = P ) it follows that each

operator A from the set Q = fP�i
gm
i=1

SfP&j
gm
j=1 is a projector, A2 = A (it may be not

orthogonal), and for any pair of distinct projectors A;B 2 Q the following inclusions

hold: imA � kerB, imB � kerA.

In a general case, the constructive realization of orthogonal projector requires solution

of systems of linear equations, or orthogonalization of systems of vectors, etc. We shall not

discuss the details of computational algorithms here, but one important possibility should

be stressed. The orthogonal projection P (J) can be computed by adaptive minimization

of a quadratic form :

hJ � P (J)jJ � P (J)i	 ! min for P (J) 2 T	 (65)

The gradient methods for solution of the problem (65) are based on the following simple

observation: Let a subspace L � E of the Hilbert space E be the direct sum of subspaces

Li: L =
P

i
Li. The orthogonal projection of a vector J 2 E onto L has an unique

representation in a form: P (J) = x =
P

i
xi; xi 2 Li. The gradient of the quadratic form

(J � x; J � x) in the space L has the form:

gradx(J � x; J � x) = 2
X
i

P?
i
(J � x); (66)

where P?
i
is the orthogonal projector on the space Li. It means: if one has the orthogonal

projectors on the spaces Li, then he can easy write the gradient method for the problem

(65).

The projected kinetic equations, _	 = x, x 2 T	, with the equations for this adaptive

method, for example _x = �hgrad
x
hJ � xjJ � xi	, can be solved together. For a rational

choice of the step h this system is stable, and has a Lyapunov functional (for closed

systems). This functional can be found as a linear combination of the entropy and the

minimized quadratic form hJ � xjJ � xi	.
We consider the FPE of the form

@	(q; t)

@t
= rq fD(q) [	(q; t)(rqU(q)� Fex(q; t)) +rq	(q; t)]g : (67)

Here 	(q; t) is the probability density over the con�guration space q, at the time t,

while U(q) and D(q) are the potential and the positively semi-de�nite ((r;D(q)r) � 0)

symmetric di�usion matrix, Fex(q; t) is an external force (we omit here such multipliers

as kBT , friction coeÆcients, etc). Another form of equation (67) is:

@	(q; t)

@t
= rq

�
D(q)	�(q)(rq � Fex(q; t))

�
	(q; t)

	�(q)

��
; (68)

where 	�(q) is the equilibrium density: 	�(q; t) = exp(�U(q))= R exp(�U(p))dp: For the
anzatz (56) 	(q; t) = 	�(q) exp

P
i
�i((&i; q); t). For this anzatz the left hand side of

equation (68) has the form

J(	) = 	

"X
i

(&i; D(q)&i)

�
@2�i

@x2

�
x=(&i;q)

+
X
i;j

(&j; D(q)&i)

�
@�i

@x

�
x=(&i;q)

�
@�j

@x

�
x=(&j ;q)

�
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X
i

�
@�i

@x

�
x=(&i;q)

((&i; D(q)(rqU(q) + Fex(q; t)))� (rq; D(q)&i)) +

(rqU(q); D(q)Fex(q; t))� (rq; D(q)Fex(q; t))] ; (69)

where �i = �i(x; t), and ( ; ) is the usual scalar product in the con�guration space.

The projected equations have the form:

@�i

@t
= P�i

J(	);
d&i

dt
= P&i

J(	); (70)

where the vector �eld J(	) is calculated by formula (69), and the projectors P�i
; P&i

are

de�ned by equations (64). For adaptive methods the right hand parts of equations (70)

are solutions of auxiliary equations.

We can return from the anzatz (56) to the polymodal polyhedron: It corresponds to a

�nite-dimensional multimodal approximation for each of equations (70). If the number of

maxima in the approximation of �i(x) is ki, then the number of peaks in the polymodal

polyhedron is k =
Q

i
ki.

For the further development of the approximation (56) it is possible add some usual

moments to the system (59). These additional moments can include a stress tensor, and

some other polynomial moments. As a result of such an addition the equilibrium density

in anzatz (56) will be replaced to a more general nonconstant quasiequilibrium density.

The anzatz (56) can be discussed and studied from di�erent points of view:

1. It is a uncorrelated particles representation of kinetics: The distribution density

function (56) is a product of equilibrium density and one-particle distributions,

'i. Each particle has it's own one-dimensional con�guration space with coordinate

x = (&i; q). The representation of uncorrelated particles is well known in statistical

physics, for example, the Vlasov equation is the projection of the Liouville equation

onto uncorrelated anzatz [51]. There are three signi�cant di�erences between the

anzatz (56) and usual uncorrelated anzatz: First, the anzatz (56) is not symmetric

with respect to particles permutation, second, the con�guration spaces of particles

for this anzatz are dynamic variables. The third di�erence is: The anzatz (56)

includes the equilibrium density function explicitly, hence, the uncorrelated particles

represent the nonequlibrium factor of distribution, and equilibrium correlations are

taken into account completely.

2. It is a version of a neural-network approximation [45]. The components of the vector

&i are input synaptic weights for the ith neuron of the hidden layer, and ln'i(x)

is the activation function of this neuron. The activation function of the output

neuron is exp(x). There is no need in di�erent input synaptic weights for the output

neuron, because possible activation functions of the neurons of the hidden layer form

the linear space L, and any real multiplier can be included into ln'i(x). The only

di�erence from usual neural networks is a relatively big space of activation functions

on the hidden layer. Usually, the most part of network abilities is hidden in the net of

connections, and the only requirement to the activation function is their nonlinearity,

it is suÆcient for the approximation omnipotence of connectionism [46, 47, 48].

Nevertheless, the neural networks with relatively rich spaces of activation functions

are in use too [49, 50].
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Conclusion: POET and the di�erence between ellip-

soid and parallelepiped

Let us introduce an abbreviation \POET" (Projection-Of-Everything-Thermodynamic)

for the thermodynamic projector. POET transforms the arbitrary vector �eld equipped

with the given Lyapunov function into a vector �eld with the same Lyapunov function. It

projects each term in kinetic equations into the term with the same entropy production.

Moreover, POET conserves the reciprocity relations: if initial kinetics satis�es the Onsager

relations, then the projected system satis�es these relations too. Thus, the problem of

persistence of thermodynamical properties in model reduction is solved. POET is unique

operator which always preserves the sign of dissipation, any other important features of

this operator follow from this preservation.

It is necessary to use POET even for reduction of kinetic models for open systems,

because the processes which produce the entropy in a closed system should produce the

entropy in open system too: The di�erence between open and closed systems is the

presence of entropy out
ow (or, what is the same, of the free energy in
ow), and the

dissipative processes preserve their dissipativity.

One of the most important impact of POET on the model reduction technology is the

new possibility of constructing thermodynamically consistent reduced model with almost

arbitrary anzatz.

In this paper we discussed the important example of such an anzatz: the multi-

peak models. Two examples of these type of models demonstrated high eÆciency during

decades: the Tamm{Mott-Smith bimodal anzatz for shock waves, and the the Langer{

Baron{Miller approximation for spinodal decomposition.

The multimodal polyhedron appears every time as an appropriate approximation for

distribution functions for systems with instabilities. We create such an approximation for

the Fokker{Planck equation for polymer molecules in a 
ow.

The usual point of view is: The shape of the polymers in a 
ow is either a coiled ball,

or a stretched ellipsoid, and the Fokker{Planck equation describes the stretching from the

ball to the ellipsoid. It is not the whole truth, even for the FENE-P equation, as it was

shown in ref. [19, 38]. The Fokker-Planck equation describes the shape of a probability

cloud in the space of conformations. In the 
ow with increasing strain this shape changes

from the ball to the ellipsoid, but, after some thresholds, this ellipsoid transforms into

a multimodal distribution which can be modeled as the peak parallelepiped. The peaks

describe the �nite number of possible molecule conformations. The number of this distinct

conformations grows for a parallelepiped as 2m with the numberm of independent unstable

direction.

These models pretend to be the kinetic basis for the theory of molecular individualism.

The detailed computations will be presented in following works, but the qualitative fea-

tures of the models are in good agreement with qualitative picture observed in experiment

[16, 17, 18]. Some questions remain open:

� Of course, appearance of 2m peaks in the Gaussian parallelepiped is possible, but

some of these peaks can join in following dynamics, hence the �rst question is:

what is the typical number of signi�cantly di�erent peaks for a m�dimensional
instability?
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� How can we decide what scenario is more realistic from the experimental point of

view: the proposed universal kinetic mechanism, or the scenario with long living

metastable states (for example, the relaxation of knoted molecules in the 
ow can

give an other picture than the relaxation of unknoted molecules)?

� The analysis of random walk of molecules from peak to peak should be done, and

results of this analysis should be compared with observed large 
uctuations.

May be, the most important result of this paper is the systematic discussion of a di�er-

ence between the Gaussian elipsoid (and its generalizations) and the Gaussian multipeak

polyhedron (and its generalizations). This polyhedron appears generically as the e�ective

anzatz for kinetic systems with instabilities.
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