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Abstract. We survey recent results on spectral properties of random Schrö-

dinger operators. The focus is set on the integrated density of states (IDS).
First we present a proof of the existence of a self-averaging IDS which is general

enough to be applicable to random Schrödinger and Laplace-Beltrami opera-

tors on manifolds. Subsequently we study more specific models in Euclidean
space, namely of alloy type, and concentrate on the regularity properties of

the IDS. We discuss the role of the integrated density of states and its reg-

ularity properties for the spectral analysis of random Schrödinger operators,
particularly in relation to localisation. Proofs of the central results are given

in detail. Whenever there are alternative proofs, the different approaches are

compared.

Resumen. Revisamos resultados recientes en propiedades espectrales de oper-
adores de Schrödinger aleatorios. Nos enfocamos principialmente en la densi-

dad integrada de estados (IDS). Primero presentamos una prueba de la existen-
cia de la IDS y su propriedad auto-promediadora (self-averaging). El método

es suficientemente general para ser aplicable a operadores de Schrödinger y de

Laplace-Beltrami aleatorios en variedades de Riemann. Posteriormente estu-
diamos los modelos más espećıficos en el espacio Euclidiano, a saber de tipo

aleación, y nos concentramos en las propiedades de la regularidad de la IDS.

Discutimos el papel de la densidad integrada de estados y sus propiedades de
regularidad para el análisis espectral de operadores de Schrödinger aleatorios,

particularmente con relación a localización espectral. Las pruebas de los re-

sultados centrales son descritas en detalle. Cuando hay pruebas alternativas,
los enfoques diferentes se comparan.
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1. Random operators

1.1. Physical background. Random Schrödinger operators are used as models
of disordered solids within the framework of quantum mechanics.

A macroscopic solid consists of an order of magnitude of 1023 of nuclei and
electrons. The resulting Hamiltonian taking into account all interactions is highly
complicated. To arrive at a Schrödinger operator which can be studied in some
detail one neglects the electron-electron interaction and treats the nuclei in the
infinite mass approximation. Thus one arrives at an one-electron Schrödinger oper-
ator with an external potential due to the electric forces between the electron and
the nuclei, which are assumed to be fixed in space.

In the case that the nuclei are arranged periodically on a lattice, the potential
energy of the electron is a periodic function of the space variable.

On the other hand, the electron could be moving in an amorphous medium,
in which case there is no large group of symmetries of the Hamiltonian. However,
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from the physical point of view it is reasonable to assume that the local structure of
the medium will be translation invariant on average. This means that we consider
the potential which the electron experiences as a particular realisation of a random
process and assume stationarity with respect to some group of translations. More-
over, physical intuition suggests to assume that the local properties of the medium
in two regions far apart (on the microscopic scale) are approximately independent
from each other. Therefore the stochastic process describing the potential should
have a correlation function which decays to zero, or — more precisely — should be
ergodic.

There are interesting models which lie between the two extreme cases of lattice-
periodic and amorphous media. They still have an underlying lattice structure
which is, however, modified by disorder. Probably the best studied Hamiltonian
with this properties is the alloy type model. We leave its precise definition for the
next paragraph and introduce here a special case on the intuitive level. Consider
first the potential

Vω(x) :=
∑
k∈Zd

uk(ω, x)

Each k corresponds to a nucleus sitting on a lattice point. The function uk(ω, ·)
describes the atomic or nuclear potential at the site k and depends on the random
parameter ω which models the different realisations of the configuration of the
nuclei. If there is only one type of atom present, which has a spherically symmetric
potential, all the uk(ω, ·) are the same, and Vω is periodic. Now assume that there
are two kinds a and b of atoms present, which have spherically symmetric atomic
potentials of the same shape, but which differ in their nuclear charge numbers.

In this case the potential looks like

Vω(x) :=
∑

k occupied by a

qa u(x− k) +
∑

k occupied by b

qb u(x− k)

If the two sorts of atoms are arranged on the lattice in a regular pattern, this again
gives rise to a periodic potential.

However, there are physically interesting situations (e.g. binary alloys) where the
type of atom sitting on site k is random, for example obeying the law

P{k is occupied by atom a} = P, P{k is occupied by atom b} = 1− P P > 0

Here P{. . . } denotes the probability of an event. If we furthermore assume that the
above probabilities are independent at each site and the parameter P is the same
for all k, we arrive at the continuum Bernoulli-Anderson potential

Vω(x) =
∑

k

qk(ω)u(x− k)

Here qk(ω) ∈ {qa, qb}, k ∈ Zd denotes a collection of independent, identically dis-
tributed Bernoulli random variables and u is some atomic potential.

This model is a prototype which has motivated much research in the physics and
mathematics literature, a part of which we will review in the present work.

Properties of disordered systems are discussed in the books [35, 91, 208] from
the point of view of theoretical physics. The mathematical literature on random
Schrödinger operators includes the books [47, 241], the introductory article [158],
a section on random Jacobi matrices in [65], the Lifshitz memorial issue [207], and
a monograph specialised on localisation phenomena [295].
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In the present work we focus on the spectral features of random Hamiltonians
which are encoded in, or in close relation to the properties of the integrated density
of states (IDS). We present the proofs of most of the results in detail. Indeed, for
the two central theorems — the existence of an self-averaging integrated density
of states and for the Wegner estimate — two independent proofs are given and
compared.

1.2. Model and Notation. Let us start with some mathematical notation. The
symbols R,Z,N,N0 denote the set of reals, the set of integers, the set of natural
numbers, and the set on non-negative integers, respectively. For a set A we denote
by Ac its complement. An open subset of Rd will be denoted by Λ, and if there is a
sequence of such sets its members will be denoted Λ1, . . . ,Λl, . . . . The symbol |Λ|
is used for the Lebesgue measure of Λ. We write |x| for the norm of x ∈ Rd, while
the norm of a vector f in a function space is denoted by ‖f‖.

The Hilbert space of (equivalence classes of) measurable functions on Λ which are
square integrable with respect to Lebesgue measure is denoted by L2(Λ). Similarly,
Lp(Λ) with p ≥ 0 stands for the space of measurable functions f such that |f |p
is integrable, while L∞(Λ) is the set of measurable functions which are essentially
bounded with respect to Lebesgue measure. The space of sequences {an}n∈N such
that |an|p is summable is denoted by lp(N). Note that the case p ∈]0, 1[ is included
in our notation. In our context we will often choose the exponent p dependent on
the dimension of the configuration space. In the following we denote by p(d) any
number in [1,∞[ which satisfies

(1.1) p(d)

{
≥ 2 if d ≤ 3,
> d/2 if d ≥ 4

The symbols C(Λ), C∞(Λ) stand for the continuous, respectively smooth, functions
on Λ. The subscript c in Cc(Λ), C∞c (Λ), Lp

c(Λ) means that we consider only those
functions which have compact support in Λ. In the sequel we will often consider
potentials from the class of functions which are uniformly locally in Lp. More
precisely, f is in the set of uniformly locally Lp-functions, denoted by Lp

unif,loc(Rd),
if and only if there is a constant C such that for each y ∈ Rd∫

|x−y|<1

|f(x)|p dx ≤ C

The infimum over all such constants C is ‖f‖p
p, unif,loc.

Let ∆ denote the Laplacian on Rd. If we choose its operator domain D(∆) to be
the Sobolev space W 2

2 (Rd) of functions in L2(Rd) whose second derivatives (in the
sense of distributions) are square integrable, it becomes a selfadjoint operator. The
restriction of ∆ to a true open subset Λ ⊂ Rd becomes selfadjoint only if we specify
appropriate boundary conditions (b.c.). Dirichlet b.c. are defined in Remark 2.2.3.
For the definition of Neumann and periodic b.c. see for instance [256].

Let A,B be two symmetric operators on a Hilbert space H, whose norm we
denote by ‖ · ‖. We say that B is (relatively) A-bounded if the domains obey the
inclusion D(A) ⊂ D(B) and there are finite constants a and ca such that for all
f ∈ D(A)

(1.2) ‖Bf‖ ≤ a‖Af‖+ ca‖f‖
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The infimum over all a such that the estimate holds with some ca is called relative
bound (of B with respect to A). If B is A-bounded with relative bound zero,
we call it infinitesimally A-bounded. Let A be selfadjoint, and B symmetric and
relatively A-bounded with relative bound smaller than one. Then the operator
sum A + B on the domain D(A) is selfadjoint by the Kato-Rellich Theorem. We
will apply this result to the sum of the negative Laplacian and a potential. A
multiplication operator by a function V ∈ Lp

unif,loc(Rd) is infinitesimally ∆-bounded
if p = p(d), cf. [256, Thm. XIII.96]. Moreover, the constant ca in (1.2) depends
only on ‖V ‖p, unif,loc. Thus the sum H := −∆ + V is selfadjoint on W 2

2 (Rd). If B
is relatively A-bounded in operator sense with relative bound a it implies

〈f,Bf〉 ≤ a〈f,Af〉+ Ca〈f, f〉 for some Ca ∈ R
which is called relative form-boundedness of the form QB(f, g) := 〈f,Bg〉 with
respect to QA(f, g) := 〈f,Ag〉. See § VI.1.7 in [152] for more details.

The triple (Ω,BΩ,P) stands for a probability space with associated σ-algebra
and probability measure, while E {. . . } denotes the expectation value with respect
to P. A collection Tj : Ω → Ω, j ∈ J of measure preserving transformations is
called ergodic if all measurable sets in Ω which are invariant under the action of all
Tj , j ∈ J have measure zero or one.

Definition 1.2.1. Let p = p(d) be as in (1.1), u ∈ Lp
c(Rd) and qk : Ω → R, k ∈ Zd

be a sequence of bounded, independent, identically distributed random variables,
called coupling constants. Then the family of multiplication operators given by the
stochastic process

(1.3) Vω(x) :=
∑
k∈Zd

qk(ω)u(x− k)

is called alloy type potential. The function u is called single site potential. Let
H0 := −∆+Vper be a periodic Schrödinger operator with Vper ∈ Lp

unif,loc(Rd). The
family of operators

(1.4) Hω := H0 + Vω, ω ∈ Ω

is called alloy type model.
The distribution measure of the random variable q0 will be called single site

distribution and denoted by µ. If not stated otherwise, in the sequel we assume
that µ is absolutely continuous with respect to the Lebesgue measure and has a
bounded density. The density function is denoted by f .

Due to our assumptions on the boundedness of the coupling constants, for each
a > 0 there is a constant ca such that for all ω and all ψ ∈ D(∆)

‖Vωψ‖ ≤ a‖∆ψ‖+ ca‖ψ‖, ‖Vperψ‖ ≤ a‖∆ψ‖+ ca‖ψ‖
In particular H0 and all Hω are selfadjoint on the operator domain of ∆. It will
be of importance to us that the constant ca may be chosen independently of the
random parameter ω.

Remark 1.2.2. (a) In several paragraphs we study Hamiltonians as in Definition
1.2.1, but where some of the hypotheses on the single site potential or the coupling
constants are relaxed. More precisely, we will consider single site potentials with
non-compact support and coupling constants which are unbounded, correlated, or
do not have a bounded density.
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(b) If the coupling constants are not bounded, one has to impose some moment
condition to make sure that the alloy type model still makes sense. The main
difference (to the bounded case) is that for ω in a set Ω′ ⊂ Ω of full measure the
operator Hω will be (essentially) selfadjoint, however this will fail to hold for ω in
the complement Ω \ Ω′. See for example [162, 163, 165] for more details.

(c) There is a group of measure preserving transformations Tk, k ∈ Zd on
(Ω,BΩ,P) such that (1.3) obeys

Vω(x− k) = VTkω(x)

In other words the stochastic process V : Ω× R → R is stationary with respect to
translations by vectors in Zd. Moreover, the group Tk, k ∈ Zd acts ergodically on
Ω, therefore we call V an Zd-ergodic potential.

To see that the above statements are true we pass over to the canonical proba-
bility space Ω = ×k∈Zd R, equipped with the product measure P := ⊗k∈Zd µ. Now
the stochastic process {πk}k∈Zd , defined by πk(ω) = ωk for all k ∈ Zd, has the same
finite dimensional distributions as {qk}k. It is easily seen that the transformations
(Tk(ω))j := ωj−k are measure preserving and that the group Zd acts ergodically on
Ω.

Using the stochastic process {πk}k the alloy type potential can be written as

(1.5) Vω(x) :=
∑
k∈Zd

ωk u(x− k)

which we will use without distinction in the sequel.

Abstracting the properties of stationarity and ergodicity we define general ran-
dom potentials and operators with Zd-ergodic structure.

Definition 1.2.3. Let V : Ω×Rd → R be a stochastic process such that for almost
all ω ∈ Ω the realisation of the potential obeys Vω ∈ Lp

unif,loc(Rd), p = p(d) and
additionally E {‖VωχΛ‖p

p} <∞, where Λ is an unit cube. Let Tk, k ∈ Zd be a group
of measure preserving transformations acting ergodically on (Ω,BΩ,P) such that

Vω(x− k) = VTkω(x)

Then we call {Vω}ω a (Zd-ergodic) random potential and {Hω}ω withHω = −∆+Vω

a (Zd-ergodic) random operator.

The restriction of Hω to an open subset Λ will be denoted by HΛ
ω if we impose

Dirichlet boundary conditions and by HΛ,N
ω in the case of Neumann b.c. While we

will be mainly concerned with Zd-ergodic operators we will give some comments
as asides on their counterparts which are ergodic with respect to the group Rd.
The recent overview [203] is devoted to such models that model amorphous media.
Insight in the research on almost periodic operators can be obtained for instance
in [298, 299, 20, 25, 65, 241] and the references therein.

Remark 1.2.4. All Zd-ergodic potentials can be represented in a form which resem-
bles alloy type potentials. Namely, for such V : Ω×Rd → R there exists a sequence
fk, k ∈ Zd of random variables on Ω taking values in the separable Banach space
Lp(Rd) such that V can be written as

(1.6) Vω(x) =
∑
k∈Zd

fk(ω, x− k).
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This representation is of interest because it ensures that after passing to an equiv-
alent probability space and stochastic process one may assume that the sigma al-
gebra on Ω is countably generated. See [156] and Remark 2.8 in [199] for more
information.

1.3. Transport properties and spectral types. The main interest in the study
of random operators is to understand the transport properties of the media they
model. In the particular case of the quantum mechanical Hamiltonian of an electron
in a disordered solid the electric conductance properties are the main object of
interest.

The Hamiltonian governs the equation of motion, i.e. the time dependent Schrö-
dinger equation

∂ψ(t)
∂t

= −iHωψ(t)

The time evolution of the vector ψ(t) in Hilbert space describes the movement of
the electron. Since we chose the space representation in the Schrödinger picture,
we can can think of ψ(t) as a wave packet which evolves in time. The square
of its absolute value |ψ(t, ·)|2 ∈ L1(Rd) is a probability density. More precisely,∫

A
|ψ(t, x)|2dx is the probability to find the electron in the set A ⊂ Rd at time t.
For a given initial state ψ0 := ψ(0) supported in a compact set A one would

like to know whether for large times the function ψ(t) stays (essentially) supported
near A, or moves away to infinity. In the first case one speaks of a bound state,
since it remains localised near its original support for all times. The other extreme
case would be that ψ(t) leaves any compact region in Rd (and never comes back)
as time goes to infinity. Such a state is called a scattering or extended state. By
the RAGE theorem, cf. e.g. [257, 65, 295], it is possible to relate the dynamical
properties of states just described to the spectral properties of the Hamiltonian.
Roughly speaking, bound states correspond to pure point spectrum and scattering
states to (absolutely) continuous spectrum. For a more precise statement consult
for instance [257, 65, 295].

This motivates the systematic study of spectral properties of the introduced
Schrödinger operators. If a random Schrödinger operator exhibits almost surely
only pure point spectrum in an energy region one speaks of Anderson or spectral
localisation. The name goes back to Anderson’s seminal work [13]. This property
has been established for a variety of random models. In most of those cases one
can additionally prove that the corresponding eigenfunctions decay exponentially in
configuration space, a phenomenon called exponential (spectral) localisation. The
situation is different for random potentials with long range correlations, where
sometimes only power-law decay of the eigenfunctions has been established [168,
109, 329].

If an energy interval contains almost surely only pure point spectrum, we call it
localisation interval. An eigenfunction ofHω which decays exponentially is called an
exponentially localised eigenstate. The region or point in space where the localised
state has its highest amplitude will be called localisation centre (we will not need
a mathematically precise definition of this notion).

However, it turns out that the spectrum captures only a rough view on the
dynamical properties of the quantum mechanical system. A more detailed un-
derstanding can be obtained by studying the time evolution of the moments of
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the position operators. This led to a formulation of several criteria of dynami-
cal localisation. The strongest characterisation of this phenomenon, namely strong
dynamical localisation in Hilbert-Schmidt topology means that for all q > 0

(1.7) E

{
sup

‖f‖∞≤1

∥∥∥|X|q/2f(Hω)P l
ω(I)χK

∥∥∥2

HS

}
<∞

Here P l
ω(I) denotes the spectral projection onto the energy interval I associated to

the operator H l
ω, ‖·‖HS denotes the Hilbert-Schmidt norm, K ⊂ Rd is any compact

set, and |X| denotes the operator of multiplication with the function |x|. For the
interpretation of (1.7) as non-spreading of wave-packets one chooses f(y) = e−ity.
Dynamical localisation (1.7) implies in particular that the random Hamiltonian
Hω exhibits spectral localisation in I. The reader can consult e.g. [262, 118, 295,
120, 119, 6] to get an insight how the notion of dynamical localisation evolved and
for recent developments. In [262, 70, 148] examples are discussed where spectral
localisation occurs, but certain dynamical criteria for localisation are not satisfied.

For the purpose of the present paper these distinctions are not crucial. In the
case of the alloy type model, to which we devote most attention, spectral and
dynamical localisation coincide, cf. [67, 119]. In the sequel we mean by localisation
that the considered operator exhibits in a certain energy interval only pure point
spectrum, and that the corresponding eigenfunctions decay sufficiently fast.

Since we are dealing not just with a single Hamiltonian, but with a whole family
of them, we have to say something on how the spectral properties depend on the
parameter ω describing the randomness: most properties of the spectrum of an
operator pertaining to the family {Hω}ω hold almost surely, i.e. for ω in a set such
that its complement has measure zero in Ω. This is at least true for the properties
we discuss in the present paper.

We shortly describe what kinds of spectral types one expects from the physical
point of view for random Schrödinger operators, say of alloy type. In case there are
rigorous results which have confirmed this intuition we quote the reference.

In one space dimension the spectrum is pure point for all energies almost surely.
Rigorous proofs of this statement can for instance be found in [128, 193].

In three or more dimensions it is expected that the spectrum is pure point
near the boundaries of the spectrum while in the interior it is purely absolutely
continuous. In the latter case one speaks also of an energy region with delocalised
states. However, for alloy type Hamiltonians the proof of delocalisation is open.
Some results on existence of absolutely continuous spectrum for random models of
a different type can be found in [176, 102, 160]. The two regions with localised,
respectively delocalised states are separated by a threshold, the so called mobility
edge, for partial results see [147, 160, 119, 103].

The literature on the existence of pure point spectrum is extensive. We discuss
it in more detail in § 3.2.

How large the intervals with point or continuous spectrum are, depends on the
disorder present in the model. For instance, in (1.4) one could introduce a global
coupling constant λ in front of the potential

Hω = H0 + λVω

Now large λ means large disorder, small λ small disorder. The larger the disorder,
the larger is the portion of the spectrum which contains localised states. For other
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types of random Schrödinger operators there are similar ways to introduce a disorder
parameter.

The phenomenon that localised states emerge at the edges of the spectrum can be
understood in terms of the so-called fluctuation boundaries. These are the regions
of the spectrum which correspond to extremely rare configurations of the potential.
Consequently, the density of states (or the spectral density function, see the next
section for a precise definition) is very thin in this region. This has been first
understood on physical grounds by Lifshitz. Today the tails of the density of states
at the fluctuation boundaries bear the name of Lifshitz-asymptotics or Lifshitz-tails.
We give a (non-exhaustive) list of works devoted the study of this asymptotics: [238,
239, 235, 115, 164, 280, 167, 222, 223, 281, 305, 224, 181, 293, 184, 185, 183, 182]
and the references at the end of § 5.6.

The existence of localised states for random Schrödinger operators is in sharp
contrast to the features of periodic operators. Indeed, for operators with periodic
potential, satisfying some mild regularity assumptions, it is known that the spec-
trum is purely absolutely continuous, [32, 288, 273, 274, 195]. This difference might
seem somewhat surprising, given the similarity of the structure of an alloy type and
a periodic operator.

1.4. Outline of the paper. In the present section we discussed the physical moti-
vation to study random operators and introduced the models we will analyse in the
sequel. The next section is devoted to the proof of the existence of the IDS for these
models. In the third section we discuss why regularity properties of the IDS are of
interest. The following two sections give two independent proofs of the continuity
of the IDS. Both approaches are suitable to extensions in various directions. We
review some recently obtained results. For more details see the table of contents.
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2. Existence of the integrated density of states

Intuitively, the integrated density of states (IDS) measures how many electron
energy levels can be found below a given energy per unit volume of a solid. It can
be used to calculate the free energy and hence all basic thermodynamic quantities
of the corresponding non-interacting many-particle system.

To define the IDS mathematically one uses an exhaustion procedure. More
precisely, one takes an increasing sequence Λl of open subsets of Rd such that each Λl

has finite volume and
⋃

l Λl = Rd. Then the operator H l
ω, which is the restriction of

Hω to Λl with Dirichlet boundary conditions, is selfadjoint, bounded below and its
spectrum consists of discrete eigenvalues λ1(H l

ω) ≤ λ2(H l
ω) ≤ · · · ≤ λn(H l

ω) →∞.
Here λn = λn+1 means that the eigenvalue is degenerate and we take this into
account in the enumeration.
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The normalised eigenvalue counting function or finite volume integrated density
of states N l

ω is defined as

(2.1) N l
ω(E) :=

#{n|λn(H l
ω) < E}

|Λl|

The numerator can equally well be expressed using the trace of a spectral projection

#{n|λn(H l
ω) < E} = Tr

[
P l

ω

(
]−∞, E[

)]
Note that N l

ω : R → [0,∞[ is a distribution function of a point measure for all l ∈ N,
i.e. N l

ω(E) = νl
ω(]−∞, E[). Here νl

ω is the finite volume density of states measure
defined by

νl
ω(I) := |Λl|−1 #{n|λn(H l

ω) ∈ I}
By definition a distribution function is non-negative, left-continuous and monotone
increasing. In particular, it has at most countably many points of discontinuity.

Under some additional conditions on the random operator and the exhaustion
sequence Λl, l ∈ N one can prove that

(i) For almost all ω ∈ Ω the sequence N l
ω converges to a distribution function

Nω as l goes to infinity. This means that we have N l
ω(E) → Nω(E) for all

continuity points E of the limit distribution Nω.
(ii) For almost all ω ∈ Ω the distribution functions Nω coincide, i.e. there is

an ω-independent distribution function N such that N = Nω for almost all
ω. This function N is called the integrated density of states. Note that its
independence of ω is not due to an explicit integration over the probability
space Ω, but only to the exhaustion procedure. This is the reason why the
IDS is called self-averaging.

(iii) In most cases there is a formula for the IDS as an expectation value of a trace
of a localised projection. For Zd-ergodic operators it reads

(2.2) N(E) := E
{

Tr
[
χΛPω(]−∞, E[)

]}
Here Λ denotes the unit box ]0, 1[d, which is the periodicity cell of the lattice
Zd. Actually, one could choose certain other functions instead of χΛ, yielding
all the same result, cf. Formula (2.16). The equality (2.2) holds for Rd-ergodic
operators, too. It is sometimes called Pastur-Šubin trace formula.

In the following we prove the properties of the IDS just mentioned by two meth-
ods. In §§ 2.2 – 2.6 a complete proof is given using the Laplace transforms of the
distribution functions N l

ω, while § 2.7 is devoted to a short sketch of an alternative
method. It uses Dirichlet-Neumann bracketing estimates for Schrödinger opera-
tors, which carry over to the corresponding eigenvalue counting functions. These
are thus super- or subadditive processes to which an ergodic theorem [12] can be
applied.

Actually the proof using Laplace transforms will apply to more general situations
than discussed so far, namely to more general geometries than Euclidean space. To
be precise, we will consider random Schrödinger operators on Riemannian covering
manifolds, where both the potential and the metric may depend on the randomness.
This includes random Laplace-Beltrami operators.
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We follow the presentation and proofs in [243, 199]. The general strategy we
use was developed by Pastur and Šubin in [237] and [298] for random and almost-
periodic operators in Euclidean space. A particular idea of this approach is to
prove the convergence of the Laplace transforms Ll

ω of the normalised finite volume
eigenvalue counting functions N l

ω instead of proving the convergence of N l
ω directly.

This is actually the main difference to the second approach we outline in § 2.7,
which is taken from [161]. The Pastur-Šubin strategy seems to be better suited for
geometries with underlying group structure which is non-abelian.

Indeed, one of the differences between random operators on manifolds and those
on Rd is that the operator is equivariant with respect to a group which does not
need to be commutative. This means that one has to use a non-abelian ergodic
theorem to derive the convergence of the distribution functions N l

ω or, alternatively,
of their Laplace transforms Ll

ω.
This imposes some restriction on the strategy of the proof since the ergodic

theorems which apply to non-abelian groups need more restrictive assumptions
than their counterparts for commutative groups, cf. also Remark 2.6.2

For processes which are not additive, but only super- or subadditive, there is a
non-abelian maximal ergodic theorem at disposal (cf. 6.4.1 Theorem in [194]) but
so far no pointwise theorem. This is also the reason why the Dirichlet-Neumann
bracketing approach of § 2.7 does not seem applicable to random operators liv-
ing on a covering manifold with non-abelian deck-transformation group (covering
transformation group).

2.1. Schrödinger operators on manifolds: motivation. In this section we
study the IDS of random Schrödinger operators on manifolds. Let us first explain
the physical motivation for this task.

Consider a particle or a system of particles which are constrained to a sub-
manifold of the ambient (configuration) space. The classical and quantum Hamil-
tonians for such systems have been studied e.g. in [226, 110] (see also the references
therein). To arrive at an effective Hamiltonian describing the constrained motion
on the sub-manifold, a limiting procedure is used: a (sequence of) confining high-
barrier potential(s) is added to the Hamiltonian defined on the ambient space to
restrict the particle (system) to the sub-manifold. In [226, 110] one can find a dis-
cussion of the similarities and differences between the obtained effective quantum
Hamiltonian and its classical analogue.

A important feature of the effective quantum Hamiltonian is the appearance of
a so-called extra-potential depending on the extrinsic curvature of the sub-manifold
and the curvature of the ambient space. This means that even if we disregard
external electric forces the relevant quantum mechanical Hamiltonian of the con-
strained system is not the pure Laplacian but contains (in general) a potential
energy term. This fact explains the existence of curvature-induced bound states in
quantum waveguides and layers, see [100, 89, 211, 90] and the references therein.

As is mentioned in [226], the study of effective Hamiltonians of constrained
systems is motivated by specific physical applications. They include stiff molecular
bonds in (clusters of) rigid molecules and molecular systems evolving along reaction
paths. From the point of view of the present paper quantum wires, wave guides and
layers are particularly interesting physical examples. Indeed, for these models (in
contrast to quantum dots) at least one dimension of the constraint sub-manifold is of
macroscopic size. Moreover, it is natural to assume that the resulting Hamiltonian
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exhibits some form of translation invariance in the macroscopic direction. E.g. it
may be periodic, quasiperiodic or — in the case of a random model — ergodic.

For random quantum waveguides and layers the existence of dense point spec-
trum is expected, cf. the discussion of localisation in Paragraph 1.3. For a waveg-
uide embedded in Euclidean space this has been rigorously proven in [174, 175].
The question of spectral localisation due to random geometries has been raised al-
ready in [69]. There the behaviour of Laplace-Beltrami operators under non-smooth
perturbations of the metric is studied.

A second motivation for the analysis of operators on manifolds studied in this sec-
tion comes from differential geometry. The spectral properties of periodic Schrödinger
operators on manifolds have attracted the interest of various authors. A non-
exhaustive list is [19, 301, 186, 302, 303, 41, 40, 300, 150, 244, 245]. By ’periodic’
we mean that the operator acts on a covering manifold and is invariant under the
unitary operators induced by the deck-transformations.

Particular attention was devoted to the analysis of the gap structure of the spec-
trum of periodic operators of Schrödinger type. More precisely, one is interested
whether the spectrum in interrupted by spectral gaps, i.e. intervals on the real line
which belong to the resolvent set. In case there are gaps: can one establish up-
per and lower bounds for the width and number of gaps and the spectral bands
separating them? Although the gap structure of the spectrum is a mathematically
intriguing question for its own sake, it is also important from the physical point of
view. The features of gaps in the energy spectrum are relevant for the conductance
properties of the physical system. Even for periodic Schrödinger operators in Eu-
clidean space the gap structure is highly non-trivial. This is maybe best illustrated
by works devoted to the Bethe-Sommerfeld conjecture, e.g. [289, 285, 286, 287, 133].
Another interesting feature of some periodic Laplace-Beltrami operators is the ex-
istence of L2-eigenfunctions, cf. the discussion in Remark 3.1.3.

These periodic operators on manifolds are generalised by their random analogues
studied in this section.

2.2. Random Schrödinger operators on manifolds: definitions. Let us ex-
plain the geometric setting in which we are working precisely: let X be a complete
d-dimensional Riemannian manifold with metric g0. We denote the volume form
of g0 by vol0. Let Γ be a discrete, finitely generated subgroup of the isometries of
(X, g0) which acts freely and properly discontinuously on X such that the quotient
M := X/Γ is a compact (d-dimensional) Riemannian manifold. Let (Ω,BΩ,P) be a
probability space on which Γ acts by measure preserving transformations. Assume
moreover that the action of Γ on Ω is ergodic. Now we are in the position to define
what we mean by a random metric and consequently a random Laplace-Beltrami
operator.

Definition 2.2.1. Let {gω}ω∈Ω be a family of Riemannian metrics on X. Denote
the corresponding volume forms by volω. We call the family {gω}ω∈Ω a random
metric on (X, g0) if the following five properties are satisfied:

(2.4) The map Ω× TX → R, (ω, v) 7→ gω(v, v) is jointly measurable.
(2.5) There is a Cg ∈ ]0,∞[ such that

C−1
g g0(v, v) ≤ gω(v, v) ≤ Cg g0(v, v) for all v ∈ TX.
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(2.6) There is a Cρ ∈ ]0,∞[ such that

|∇0 ρω(x)|0 ≤ Cρ for all x ∈ X,

where ∇0 denotes the gradient with respect to g0, ρω is the unique smooth
density of vol0 with respect to volω, and |v|20 = g0(v, v).

(2.7) There is a uniform lower bound (d − 1)K ∈ R for the Ricci curvatures of
all Riemannian manifolds (X, gω). Explicitly, Ric(gω) ≥ (d− 1)Kgω for all
ω ∈ Ω and on the whole of X.

(2.8) The metrics are compatible in the sense that the deck transformations

γ : (X, gω) → (X, gγω), γ : x 7→ γx

are isometries.

Property (2.8) implies in particular that the induced maps

U(ω,γ) : L2(X, volγ−1ω) → L2(X, volω), (U(ω,γ)f)(x) = f(γ−1x)

are unitary operators.
The density ρω appearing in (2.6) satisfies by definition∫

X

f(x) dvol0(x) =
∫

X

f(x)ρω(x) dvolω(x).

It is a smooth function and can be written as

ρω(x) =
(
det g0(ei

ω, e
j
ω)
)1/2

=
(
det gω(ei

0, e
j
0)
)−1/2

Here e10, . . . , e
d
0 denotes any basis of TxX which is orthonormal with respect to the

scalar product g0(x), and e1ω, . . . , e
d
ω ∈ TxX is any basis orthonormal with respect

to gω(x). It follows from (2.5) that

(2.9) C−d/2
g ≤ ρω(x) ≤ Cd/2

g for all x ∈ X, ω ∈ Ω

which in turn, together with property (2.6) and the chain rule, implies

(2.10) |∇0 ρ
± 1/2
ω (x)|0 ≤ C3d/4

g |∇0 ρω(x)|0 for all x ∈ X, ω ∈ Ω

Moreover, for any measurable Λ ⊂ X by (2.9) we have the volume estimate

(2.11) C−d/2
g vol0(Λ) ≤ volω(Λ) ≤ Cd/2

g vol0(Λ)

We denote the Laplace-Beltrami operator with respect to the metric gω by ∆ω.

Associated to the random metric just described we define a random family of
operators.

Definition 2.2.2. Let {gω} be a random metric on (X, g0). Let V : Ω×X → R be a
jointly measurable mapping such that for all ω ∈ Ω the potential Vω := V (ω, ·) ≥ 0
is in L1

loc(X). For each ω ∈ Ω let Hω = −∆ω+Vω be a Schrödinger operator defined
on a dense subspace Dω of the Hilbert space L2(X, volω). The family {Hω}ω∈Ω is
called a random Schrödinger operator if it satisfies for all γ ∈ Γ and ω ∈ Ω the
following equivariance condition

(2.12) Hω = U(ω,γ)Hγ−1ωU
∗
(ω,γ)
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Remark 2.2.3 (Restrictions, quadratic forms and selfadjointness). Some remarks
are in order why the sum of the Laplace-Beltrami operator and the potential is
selfadjoint. We consider the two cases of an operator on the whole manifold X and
on a proper open subset of X simultaneously. The set of all smooth functions with
compact support in an open set Λ ⊂ X is denoted by C∞c (Λ). For each ω ∈ Ω we
define the quadratic form

Q̃(HΛ
ω ) : C∞c (Λ)× C∞c (Λ) → R,(2.13)

(f, h) 7→
∫

Λ

gω(x)
(
∇f(x),∇h(x)

)
dvolω(x) +

∫
Λ

f(x)Vω(x)h(x) dvolω(x)

We infer from Theorem 1.8.1 in [68] that this quadratic from is closable and its
closure Q(HΛ

ω ) gives rise to a densely defined, non-negative selfadjoint operator
HΛ

ω . Actually, Q(HΛ
ω ) is the form sum of the quadratic forms of the negative

Laplacian and the potential. The result in [68] is stated for the Euclidean case
X = Rd but the proof works equally well for general Riemannian manifolds.

The unique selfadjoint operator associated to the above quadratic form is called
Schrödinger operator with Dirichlet boundary conditions. It is the Friedrichs exten-
sion of the restriction HΛ

ω |C∞c (Λ). If the potential term is absent we call it negative
Dirichlet Laplacian.

There are special subsets of the manifold which will play a prominent role later:

Definition 2.2.4. A subset F ⊂ X is called Γ-fundamental domain if it contains
exactly one element of each orbit O(x) := {y ∈ X| ∃γ ∈ Γ : y = γx}, x ∈ X.

In [2, Section 3] it is explained how to obtain a connected, polyhedral Γ-fundamental
domain F ⊂ X by lifting simplices of a triangularisation of M in a suitable manner.
F consists of finitely many smooth images of simplices which can overlap only at
their boundaries. In particular, it has piecewise smooth boundary.

To illustrate the above definitions we will look at some examples. Firstly, we
consider covering manifolds with abelian deck-transformation group.

Example 2.2.5 (Abelian covering manifolds). Consider a covering manifold (X, g0)
with a finitely generated, abelian subgroup Γ of the isometries of X. If the number
of generators of the group Γ equals r, it is isomorphic to Zr0 × Zr0

p1
× . . .Zrn

pn
. Here∑

ri = r and Zp is the cyclic group of order p. Assume as above that the quotient
X/Γ is compact. Periodic Laplace-Beltrami and Schrödinger operators on such
spaces have been analised e.g. in [302, 244, 245].

In the following we will discus some examples studied by Post in [244, 245]. The
aim of this papers was to construct covering manifolds, such that the correspond-
ing Laplace operator has open spectral gaps. More precisely, for any given natural
number N , manifolds are constructed with at least N spectral gaps. For technical
reasons the study is restricted to abelian coverings. In this case the Floquet decom-
position of the periodic operator can be used effectively. Post studies two classes of
examples with spectral gaps. In the first case a conformal perturbation of a given
covering manifold is used to open up gaps in the energy spectrum of the Lapla-
cian. The second type of examples in [245] is of more interest to us. There, one
starts with infinitely many translated copies of a compact manifold and joins them
by cylinders to form a periodic network of ’pipes’. By shrinking the radius of the
connecting cylinders, more and more gaps emerge in the spectrum. Such manifolds
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have in particular a non-trivial fundamental group and are thus topologically not
equivalent to Rd. On the other hand their deck-transformation group is rather easy
to understand, since it is abelian. In particular, it is amenable (cf. Definition 2.3.4),
which is a crucial condition in the study conducted later in this section. Some of
the examples in [244, 245] are manifolds which can be embedded in R3 as surfaces.
They can be thought of as periodic quantum waveguides and networks. See [244]
for some very illustrative figures.

Furthermore, in [245] perturbations techniques for Laplace operators on covering
manifolds have been developed, respectively carried over from earlier versions suited
for compact manifolds, cf. [51, 14, 114]. They include conformal perturbations and
local geometric deformations. Floquet decomposition is used to reduce the problem
to an operator on a fundamental domain with quasi-periodic boundary conditions
and discrete spectrum. Thereafter the min-max principle is applied to geometric
perturbations of the Laplacian.

Related random perturbations of Laplacians are studied in [200, 198], cf. also
Example 2.2.7. In particular a Wegner estimate for such operators is derived.

Now we give an instance of a covering manifold X with non-abelian deck-
transformation group Γ.

Example 2.2.6 (Heisenberg group). The Heisenberg group H3 is the manifold of
3× 3-matrices given by

(2.14) H3 =


 1 x y

0 1 z
0 0 1

 | x, y, z ∈ R


equipped with a left-invariant metric. The Lie-group H3 is diffeomorphic to R3. Its
group structure is not abelian, but nilpotent.

The subset Γ = H3 ∩M(3,Z) forms a discrete subgroup. It acts from the left on
H3 by isometries and the quotient manifold H3/Γ is compact.

Next we give examples of a random potential and a random metric which give rise
to a random Schrödinger operator as in Definition 2.2.2. Both have an underlying
structure which resembles alloy-type models (in Euclidean space).

Example 2.2.7. (a) Consider the case where the metric is fixed, i.e. gω = g0 for all
ω ∈ Ω, and only the potential depends on the randomness in the following way:

(2.15) Vω(x) :=
∑
γ∈Γ

qγ(ω)u(γ−1x),

Here u : X → R is a bounded, compactly supported measurable function and
qγ : Ω → R is a sequence of independent, identically distributed random variables.
By considerations as in Remark 1.2.2 the random operator Hω := −∆ + Vω, ω ∈ Ω
is seen to satisfy the equivariance condition.

(b) Now we consider the situation where the metric has an alloy like structure.
Let (g0, X) be a Riemannian covering manifold and let a family of metrics {gω}ω

be given by

gω(x) =
(∑

γ∈Γ

rγ(ω)u(γ−1x)
)
g0(x)



16 I. VESELIĆ

where u ∈ C∞c (X) and the rγ : Ω → ]0,∞[, γ ∈ Γ are a collection of independent,
identically distributed random variables. Similarly as in the previous example one
sees that the operators ∆ω are equivariant.

2.3. Non-randomness of spectra and existence of the IDS. Here we state
the main theorems on the non-randomness of the spectral components and the
existence and the non-randomness of the IDS. They refer to random Schrödinger
operators as defined in 2.2.2.

Theorem 2.3.1. There exists a subset Ω′ of full measure in (Ω,BΩ,P) and subsets
of the real line Σ and Σ•, where • ∈ {disc, ess, ac, sc, pp} such that for all ω ∈ Ω′

σ(Hω) = Σ and σ•(Hω) = Σ•

for any • = disc, ess, ac, sc, pp. If Γ is infinite, Σdisc = ∅.

The theorem is proven in [201], see Theorem 5.1. The arguments go to a large
part along the lines of [240, 196, 162]. Compare also the literature on almost
periodic Schrödinger operators, for instance [298, 21].

For the proof of the theorem one has to find random variables which encode the
spectrum of {Hω}ω and which are invariant under the action of Γ. By ergodicity
they will be constant almost surely. The natural random variables to use are spec-
tral projections, more precisely, their traces. However, since R is uncountable and
one has to deal also with the different spectral components, some care is needed.

Random operators introduced in Definition 2.2.2 are naturally affiliated to a von
Neumann algebra of operators which we specify in

Definition 2.3.2. A family {Bω}ω∈Ω of bounded operators Bω : L2(X, volω) →
L2(X, volω) is called a bounded random operator if it satisfies:

(i) ω 7→ 〈gω, Bωfω〉 is measurable for arbitrary f, g ∈ L2(Ω×X,P ◦ vol).
(ii) There exists a ω-uniform bound on the norms ‖Bω‖ for almost all ω ∈ Ω.
(iii) For all ω ∈ Ω, γ ∈ Γ the equivariance condition

Bω = U(ω,γ)Bγ−1ωU
∗
(ω,γ)

holds.

By the results of the next paragraph § 2.4, {F (Hω)}ω is a bounded random
operator for any measurable, bounded function F .

It turns out that (equivalence classes of) bounded random operators form a von
Neumann algebra. More precisely, consider two bounded random operators {Aω}ω

and {Bω}ω as equivalent if they differ only on a subset of Ω of measure zero.
Each equivalence class gives rise to a bounded operator on L2(Ω × X,P ◦ vol) by
(Bf)(ω, x) := Bωfω(x), see Appendix A in [201]. This set of operators is a von
Neumann algebra N by Theorem 3.1 in [201]. On N a trace τ of type II∞ is given
by

τ(B) := E [Tr(χF B•)]

Here Tr := Trω denotes the trace on the Hilbert space L2(X, volω). Actually for
any choice of u : Ω ×X → R+ with

∑
γ∈Γ uγ−1ω(γ−1x) ≡ 1 for all (ω, x) ∈ Ω ×X

we have

(2.16) τ(B) = E [Tr(u•B•)]
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In analogy with the case of operators which are Γ-invariant [19] we call τ the Γ-
trace. The spectral projections {Pω

(
]−∞, λ[

)
}ω of {Hω}ω onto the interval ]−∞, λ[

form a bounded random operator. Thus it corresponds to an element of N which
we denote by P (]−∞, λ[). Consider the normalised Γ-trace of P

(2.17) NH(λ) :=
τ(P

(
]−∞, λ[

)
E [vol•(F)]

The following is Theorem 3 in [199], see also [201].

Theorem 2.3.3. P (]−∞, λ[) is the spectral projection of the direct integral operator

H :=
∫

Ω

⊕
Hω dP(ω)

and NH is the distribution function of its spectral measure. In particular, the almost
sure spectrum Σ of {Hω}ω coincides with the points of increase

{λ ∈ R|NH(λ+ ε) > NH(λ− ε) for all ε > 0}

of NH .

That the IDS can be expressed in terms of a trace on a von Neumann Algebra
was known long ago. In [297] and [298] Šubin establishes this relation for almost
periodic elliptic diffential operators in Euclidean space. He attributes the idea of
such an interpretation to Berezin, see the last sentence in Section 3 of [298].

We want to describe the self-averaging IDS by an exhaustion of the whole mani-
fold X along a sequence Λl → X, l ∈ N of subsets of X. To ensure the existence of
a sequence of subsets which is appropriate for the exhaustion procedure, we have
to impose additional conditions on the group Γ.

Definition 2.3.4. A group Γ is called amenable if it has an left invariant mean
mL.

Amenability enters as a key notion in Definition 2.3.6 and Theorem 2.3.8. For
readers acquainted only with Euclidean geometry, its role is motivated in Remark
2.3.10.

Under some conditions on the group amenability can be expressed in other ways.
A locally compact group Γ is amenable if for any ε > 0 and compact K ⊂ Γ there
is a compact G ⊂ Γ such that

mL(G∆KG) < εmL(G)

where mL denotes the left invariant Haar measure, cf. Theorem 4.13 in [242]. This
is a geometric description of amenability of Γ. If Γ is a discrete, finitely generated
group we chose mL to be the counting measure and write instead | · |. In this case
Γ is amenable if and only if a Fœlner sequence exists.

Definition 2.3.5. Let Γ be a discrete, finitely generated group.
(i) A sequence {Il}l of finite, non-empty subsets of Γ is called a Fœlner sequence

if for any finite K ⊂ Γ and ε > 0

|Il∆KIl| ≤ ε |Il|

for all l large enough.
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(ii) We say that a sequence Il ⊂ Γ, l ∈ N of finite sets has the Tempelman or
doubling property if it obeys

sup
l∈N

|IlI−1
l |
|Il|

<∞

(iii) We say that a sequence Il ⊂ Γ, l ∈ N of finite sets has the Shulman property
if it obeys

sup
l∈N

|IlI−1
l−1|
|Il|

<∞

(iv) A Fœlner sequence {Il}l is called a tempered Fœlner sequence if it has the
Shulman property.

In our setting Γ is discrete and finitely generated. (Actually, K := {γ ∈ Γ |
γF ∩ F 6= ∅} is a finite generator set for Γ. This follows from the fact that
the quotient manifold X/Γ is compact, cf. § 3 in [2].) Under this circumstances
a Fœlner sequence exists if and only if there is a sequence Jl ⊂ Γ, l ∈ N such
that liml→∞

|Jl∆γJl|
|Jl| = 0 for all γ ∈ Γ. Moreover, for discrete, finitely generated,

amenable groups there exists a Følner sequence which is increasing and exhausts
Γ, cf. Theorem 4 in [1].

Both properties (ii) and (iii) control the growth of the group Γ. Lindenstrauss
observed in [210] that each Fœlner sequence has a tempered subsequence. Note that
this implies that every amenable group contains a tempered Fœlner sequence. One
of the deep results of Lindenstrauss’ paper is, that this condition is actually suffi-
cient for a pointwise ergodic theorem, cf. Theorem 2.6.1. Earlier it was known that
such theorems can be established under the more restrictive Tempelman property
[309, 194, 310]. Shulman [276] first realised the usefulness of the relaxed condition
(iii).

In the class of countably generated, discrete groups there are several properties
which ensure amenability. Abelian groups are amenable. More generally, all solv-
able groups and groups of subexponential growth, in particular nilpotent groups,
are amenable. This includes the (discrete) Heisenberg group considered in Example
2.2.6. Subgroups and quotient groups of amenable groups are amenable. On the
other hand, the free group with two generators is not amenable.

For the discussion of combinatorial properties of Fœlner sequences in discrete
amenable groups see [1].

Any finite subset I ⊂ Γ defines a corresponding set

φ(I) := int
( ⋃

γ∈I

γF
)
⊂ X

where int(·) stands for the open interior of a set.
In the following we will need some notation for the thickened boundary. Denote

by d0 the distance function on X associated to the Riemannian metric g0. For
h > 0, let ∂hΛ := {x ∈ X| d0(x, ∂Λ) ≤ h} be the boundary tube of width h and Λh

be the interior of the set Λ \ ∂hΛ.

Definition 2.3.6. (a) A sequence {Λl}l of subsets of X is called admissible exhaus-
tion if there exists an increasing, tempered Fœlner sequence {Il}l with

⋃
l Il = Γ

such that Λl = φ(I−1
l ), l ∈ N.
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(b) A sequence Λl, l ∈ N of subsets of (X, g0) is said to satisfy the Van Hove
property [313] if

(2.18) lim
l→∞

vol0(∂hΛl)
vol0(Λl)

= 0 for all h > 0

Remark 2.3.7. In our setting it is always possible to chose the sequences {Il}l

and {Λl}l in such a way that they exhausts the group, respectively the manifold.
However, this is not really necessary for our results.

A simple instance where ∪lΛl 6= X can be given in one space dimension. Let
X = R, Z, Il = {0, . . . , l − 1}, F = [0, 1] and consequently Λl = [0, l]. One can use
this sequence of sets to define the IDS of random Schrödinger operators although
∪lΛl = [0,∞[. A non-trivial example where the sets Λl do not exhaust X can be
found in [304, 306]. There Sznitman considers random Schrödinger operators in
hyperbolic spaces, in which setting the approach presented here does not work due
to lack of amenability. However, it is interesting that Sznitman obtains the IDS by
choosing a sequence Λl which converges to a horosphere which is properly contained
in the hyperbolic space.

Thus an admissible exhaustion always exists in our setting. By Lemma 2.4 in
[243] every admissible exhaustion satisfies the van Hove property. Inequality (2.11)
implies that for a sequence with the van Hove property

lim
l→∞

volω(∂hΛl)
volω(Λl)

= 0 for all h > 0

holds for all ω ∈ Ω. Let us remark that one could require for the sets Λl in the
exhaustion sequence to have smooth boundary, see Definition 2.1 in [243]. Such
sequences also exist for any X with amenable deck-transformation group Γ. This
may be of interest, if one wants to study Laplacians with Neumann boundary
conditions. For groups of polynomial growth it is possible to construct analoga
of admissible exhaustions by taking metric open balls Brl

(o) around a fixed point
o ∈ X with increasing radii r1, . . . , rn, · · · → ∞, cf. Theorem 1.5 in [243].

We denote by H l
ω the Dirichlet restriction of Hω to Λl, cf. Remark 2.2.3, and

define the finite volume IDS by the formula

N l
ω(λ) := volω(Λl)−1#{n | λn(H l

ω) < λ}
Now we are able to state the result on the existence of a self-averaging IDS.

Theorem 2.3.8. Let {Hω}ω be a random Schrödinger operator and Γ an amena-
ble group. For any admissible exhaustion {Λl}l there exists a set Ω′ ⊂ Ω of full
measure such that

(2.19) lim
l→∞

N l
ω(λ) = NH(λ),

for every ω ∈ Ω′ and every continuity point λ ∈ R of NH .

Definition 2.3.9. The limit in (2.19) is called integrated density of states.

Thus all properties (i)–(iii) on page 10 can be established for the model under
study. In particular, formula (2.19) is a variant of the Pastur-Šubin trace formula
in the context of manifolds. The theorem is proven in §§ 2.4–2.6. It recovers in
particular the result of Adachi and Sunada [2] on the existence of the IDS of periodic
Schrödinger operators on manifolds.
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Remark 2.3.10. Let us motivate for readers acquainted only with Euclidean space
why it is natural that the amenability requirement enters in the theorem. In the
theory of random operators and in statistical mechanics one often considers a se-
quence of sets Λl, l ∈ N which tends to the whole space. Even in Euclidean geometry
it is known that the exhaustion sequence Λl, l ∈ N needs to tend to Rd in an appro-
priate way, e.g. in the sense of Van Hove or Fisher [265]. Convergence in the sense
of Van Hove [313] means that

(2.20) lim
l→∞

|∂εΛl|
|Λl|

= 0

for all positive ε.
If one chooses the sequence Λl, l ∈ N, badly, one cannot expect the convergence

of the finite volume IDS’ N l
ω, l ∈ N, to a limit. In a non-amenable geometry, any

exhaustion sequence is bad, since (2.20) cannot be satisfied, cf. Proposition 1.1 in
[2].

Remark 2.3.11. We have assumed the potentials Vω to be nonnegative and some of
our proofs will rely on this fact.

However, the statements of Theorem 2.3.1 on the non-randomness of the spec-
trum and Theorem 2.3.8 on the existence of the IDS carry over to Vω which are
uniformly bounded below by a constant C not depending on ω ∈ Ω. Indeed, in
this case our results directly apply to the shifted operator family {Hω − C}ω∈Ω.
This implies immediately the same statements for the original operators, since the
spectral properties we are considering are invariant under shifts of the spectrum.

2.4. Measurability. Since we want to study the operatorsHΛ
ω as random variables

we need a notion of measurability. To this aim, we extend the definition introduced
by Kirsch and Martinelli [162] for random operators on a fixed Hilbert space to
families of operators where the spaces and domains of definition vary with ω ∈ Ω.

To distinguish between the scalar products of the different L2-spaces we denote
by 〈·, ·〉0 the scalar product on L2(Λ, vol0) and by ‖ · ‖0 the corresponding norm.
Similarly, 〈·, ·〉ω and ‖ · ‖ω are the scaler product and the norm, respectively, of
L2(Λ, volω).

Definition 2.4.1. Consider a family of selfadjoint operators {Hω}ω, where the
domain of Hω is a dense subspace Dω of L2(Λ, volω). The family {Hω}ω is called
a measurable family of operators if

(2.21) ω 7→ 〈fω, F (Hω)fω〉ω
is measurable for all measurable and bounded F : R → C and all measurable func-
tions f : Ω× Λ → R with f(ω, ·) = fω ∈ L2(Λ, volω) for every ω ∈ Ω.

Theorem 2.4.2. A random Schrödinger operator {Hω}ω∈Ω as in Definition 2.2.2
is a measurable family of operators. The same applies to the Dirichlet restrictions
{HΛ

ω }ω∈Ω to any open subset Λ of X.

For the proof of this theorem we need some preliminary considerations.
Assumption (2.5) in our setting implies that it is sufficient to show the weak

measurability (2.21) for functions f which are constant in ω. Note that L2(Λ, vol0)
and L2(Λ, volω) coincide as sets for all ω ∈ Ω, though not in their scalar products.
Thus it makes sense to speak about fω ≡ f ∈ L2(Λ, volω) ” = ”L2(Λ, vol0).
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Lemma 2.4.3. A random Schrödinger operator {Hω}ω is measurable if and only
if

(2.22) ω 7→ 〈f, F (Hω)f〉ω is measurable

for all measurable and bounded F : R → C and all f ∈ L2(Λ, vol0).

Proof. To see this, note that (2.22) implies the same statement if we replace f(x)
by h(ω, x) = g(ω)f(x) where g ∈ L2(Ω) and f ∈ L2(Λ, vol0). Such functions form
a total set in L2(Ω× Λ,P ◦ vol).

Now, consider a measurable h : Ω×Λ → R such that hω := h(ω, ·) ∈ L2(Λ, volω)
for every ω ∈ Ω. Then hn(ω, x) := χh,n(ω)h(ω, x) is in L2(Ω× Λ,P ◦ vol) where
χh,n denotes the characteristic function of the set {ω| ‖hω‖L2(Λ,volω) ≤ n} ⊂ Ω.
Since χh,n → 1 pointwise on Ω for n→∞ we obtain

〈hn
ω, F (Hω)hn

ω〉ω → 〈hω, F (Hω)hω〉ω
which shows that {Hω}ω is a measurable family of operators. �

To prove Theorem 2.4.2 we will pull all operators HΛ
ω onto the same Hilbert

space using the unitary transformation Sω induced by the density ρω

Sω : L2(Λ, vol0) → L2(Λ, volω), (Sωf)(x) = ρ1/2
ω (x)f(x)

The transformed operators are

Aω := −S−1
ω ∆Λ

ω Sω(2.23)

Aω : S−1
ω D(∆Λ

ω) ⊂ L2(Λ, vol0) −→ L2(Λ, vol0)

The domain of definition S−1
ω D(∆Λ

ω) is dense in L2(Λ, vol0) and contains all smooth
functions of compact support in Λ.

The first fact we infer for the operators Aω, ω ∈ Ω is that they are uniformly
bounded with respect to each other, at least in the sense of quadratic forms. This
is the content of Proposition 3.4 in [199] which we quote without proof.

Proposition 2.4.4. Let Q0, Qω be the quadratic forms associated to the operators
−∆Λ

0 and Aω, and D ⊂ L2(Λ, vol0) the closure of C∞c (Λ) with respect to the norm(
Q0(f, f) + ‖f‖20

)1/2. Then

D = D(Q0) = D(Qω)

and there exists a constant CA such that

(2.24) C−1
A

(
Q0(f, f) + ‖f‖20

)
≤ Qω(f, f) + ‖f‖20 ≤ CA

(
Q0(f, f) + ‖f‖20

)
.

for all f ∈ D and ω ∈ Ω.

Here D(Q) denotes the domain of definition of the quadratic form Q. In the proof
of this proposition the bound (2.6) — more precisely (2.10) — on the gradient of the
density ρω is needed. It seems to be a technical assumption and in fact dispensable
by using a trick from [69], at least if Λ is precompact or of finite volume.

Since we are dealing now with a family of operators on a fixed Hilbert space,
we are in the position to apply the theory developed in [162]. The following result
is an extension of Proposition 3 there. It suits our purposes and shows that our
notion of measurability is compatible with the one in [162].

Let H be a Hilbert space, D ⊂ H a (fixed) dense subset and Bω : D → H, ω ∈ Ω
nonnegative operators. Denote by Σ̃ =

⋃
ω σ(Bω) the closure of all spectra, and by
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Σ̃c its complement. To establish the measurability of the family {Bω}ω one can use
one of the following classes of test functions:

• F1 = {χ]−∞,λ[|λ ≥ 0},
• F2 = {x 7→ eitx| t ∈ R},
• F3 = {x 7→ e−tx| t ≥ 0},
• F4 = {x 7→ (z − x)−1| z ∈ C \ Σ̃},
• F5 = F4(z0) = {x 7→ (z0 − x)−1} for a fixed z0 ∈ C \ Σ̃,
• F6 = Cb = {f : R → C| f bounded, continuous},
• F7 = {f : R → C| f bounded, measurable}.

The following proposition says, that it does not matter which of the above sets
of functions one chooses for testing the measurability of {Bω}ω.

Proposition 2.4.5. For i = 1, . . . , 7 the following statements are equivalent:

(Fi) ω 7→ 〈f, F (Bω)h〉H is measurable for all f, h ∈ H and F ∈ Fi,

Proof. It is obvious that (F4) ⇒ (F5), (F7) ⇒ (F6), and (F6) ⇒ (F3). The
equivalence of (F1), (F2) and (F4) can be found in [162].

To show (F5) ⇒ (F4), consider the set

Z := {z ∈ Σ̃c|ω 7→ (z −Hω)−1 is weakly measurable }

in the topological space Σ̃c. It is closed, since zn → z implies the convergence of
the resolvents, see e.g. [258, Theorem VI.5]. A similar argument using the resolvent
equation and a Neumann series expansion shows that z ∈ Z implies Bδ(z) ⊂ Z

where δ := d(z, Σ̃). Since Σ̃c is connected, Z = Σ̃c follows.
(F3) ⇒ (F1): By the Stone-Weierstrass Theorem, see e.g. [258, Thm. IV.9],

applied to C([0,∞]) it follows that F3 is dense in the set of Functions {f ∈
C([0,∞]) | f(∞) = 0} = C∞([0,∞[ ). We may approximate any χ]−∞,λ[ point-
wise by a monotone increasing sequence 0 ≤ fn, n ∈ N in C∞(R). Polarisation, the
spectral theorem, and the monotone convergence theorem for integrals imply that
χ]−∞,λ[(Hω) is weakly measurable. An analogous argument shows (F1) ⇒ (F7),
since any non-negative f ∈ F7 can be approximated monotonously pointwise by
non-negative step functions fn, n ∈ N. �

We use the following proposition taken from [295] (Prop. 1.2.6.) to show that
{Aω}ω is a measurable family of operators.

Proposition 2.4.6. Let Bω, ω ∈ Ω and B0 be nonnegative operators on a Hilbert
space H. Let Qω, ω ∈ Ω and Q0 be the associated closed quadratic forms with the
following properties:
(2.26) Qω, ω ∈ Ω and Q0 are defined on the same dense subset D ⊂ H.
(2.27) There is a constant C > 0 such that

C−1
(
Q0(f, f) + ‖f‖20

)
≤ Qω(f, f) + ‖f‖20 ≤ C

(
Q0(f, f) + ‖f‖20

)
for all ω ∈ Ω and f ∈ D.

(2.28) For every f ∈ D the map ω 7→ Qω(f, f) is measurable.
Then the family {Bω}ω of operators satisfies the equivalent properties of Proposition
2.4.5.

By property (F7), this implies that {Bω}ω is a measurable family of operators.
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We apply the proposition to Bω = Aω, where {Aω}ω is defined in Proposition
2.4.4. To do so we check that the properties (2.26)–(2.28) are satisfied: Since
C∞c (Λ) is dense in D(Qω) for all ω, the closures of C∞c (Λ) with respect to any of
the equivalent norms in (2.24) coincide, which shows assumption (2.26). Property
(2.27) is just (2.24), property (2.28) is obvious for f ∈ C∞c (Λ) and follows by
approximation for all f ∈ D.

Proof of Theorem 2.4.2. We already know that the transformed ’kinetic’ part Aω,
ω ∈ Ω of the Hamiltonian is measurable. To deal with the singular potential we
introduce the cut off

V n
ω (x) := min{n, Vω(x)} for n ∈ N and ω ∈ Ω

The auxiliary potential V n
ω is bounded and in particular its domain of definition is

the whole Hilbert space L2(Λ, vol0). Thus the operator sum

An
ω := Aω + V n

ω , ω ∈ Ω

is well defined and [162, Prop. 4] implies that it forms a measurable family of
operators. To recover the unbounded potential Vω, we consider the semigroups
ω 7→ exp(−tAn

ω), t > 0 which are weakly measurable.
The quadratic forms of An

ω converge monotonously to the form of A∞ω := Aω+Vω.
Now Theorems VIII.3.13a and IX.2.16 in [152] imply that the semigroups of An

ω

converge weakly towards the one of A∞ω for n → ∞. Thus exp(−tA∞ω ) is weakly
measurable, which implies the measurability of the family A∞ω .

Finally, since Sω is multiplication with the measurable function (x, ω) 7→ ρω(x),
this implies the measurability of the family Hω = SωA

∞
ω S

−1
ω , ω ∈ Ω. �

For later use let us note that the trace of measurable operators is measurable.
More precisely we will need the fact that the mappings

(2.29) ω 7→ Tr(χΛe
−tHω ) and ω 7→ Tr(e−tHΛ

ω )

are measurable. Note that one can chose an orthonormal basis for L2(Λ, volω)
which depends in a measurable way on ω, cf. for instance Lemma II.2.1 in [75].
Thus (2.29) follows immediately from the Definition 2.4.1 of measurable operators.

2.5. Bounds on the heat kernels uniform in ω. This paragraph is devoted to
heat kernel estimates of the Schrödinger operators Hω. It consists of four parts.
Firstly we discuss existence of L2-kernels of e−tHω , t > 0 and derive rough upper
bounds relying on results in [68]. Secondly, we infer Gaußian off-diagonal decay
estimates of the kernels using estimates derived in [204]. We then present an idea
of H. Weyl to derive the principle of not feeling the boundary, and finally we state
a proposition which summarises the information on the heat kernel needed in the
next section.

We have to control the dependence on the metric and potential of all these
estimates since those quantities vary with the random parameter ω ∈ Ω.

AsHω is non-negative the semigroup e−tHω , t > 0 consists of contractions. More-
over, the semigroup satisfies some nice properties formulated in the following defi-
nition which enable us to derive estimates on the corresponding heat kernel.
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Definition 2.5.1. Let Λ ⊂ X be open and µ a σ-finite Borel measure on Λ.
Let A be a real, non-negative, selfadjoint operator on the Hilbert space L2(Λ, µ).
The semigroup e−tA, t > 0 is called positivity preserving if e−tAf ≥ 0 for any
0 ≤ f ∈ L2(Λ, µ) and t > 0. Furthermore, e−tA, t > 0 is called a Markov semigroup,
if it is well defined on L∞(Λ, µ) and the two following properties hold

e−tA : L2(Λ, µ) −→ L2(Λ, µ) is positivity preserving for every t > 0(2.30)

e−tA : L∞(Λ, µ) → L∞(Λ, µ) is a contraction for every t > 0(2.31)

In this case A is called a Dirichlet form.
A Markov semigroup e−tA is called ultracontractive if

(2.32) e−tA : L2(Λ, µ) → L∞(Λ, µ) is bounded for all t > 0

The above (2.30) and (2.31) are called Beurling-Deny conditions [28, 29].

We infer from [68] the following facts: A Markov semigroup is a contraction on
Lp(Λ, µ) for all 1 ≤ p ≤ ∞ (and all t > 0). For all ω ∈ Ω the Schrödinger operator
HΛ

ω on L2(Λ, volω) is a Dirichlet form, [68, Thm. 1.3.5]. There the proof is given
for X = Rd, but it applies to manifolds, too. By Sobolev embedding estimates and
the spectral theorem et∆Λ

ω is ultracontractive. Thus by Lemma 2.1.2 in [68] each
et∆Λ

ω has a kernel, which we denote by kΛ
ω , such that for almost all x, y ∈ Λ

(2.33) 0 ≤ kΛ
ω (t, x, y) ≤ ‖et∆Λ

ω‖1,∞ =: CΛ
ω (t)

Here ‖B‖1,∞ denotes the norm of B : L1 → L∞. For Λ = X we use the abbreviation
kX

ω = kω.
To derive an analogous estimate to (2.33) for the full Schrödinger operator with

potential we make use of the Feynman-Kac formula. Using the symbol Ex for the
expectation with respect to the Brownian motion bt starting in x ∈ X the formula
reads

(e−tHωf)(x) = Ex

(
e−

∫ t
0 Vω(bs) ds f(bt)

)
For a stochastically complete manifold X and bounded, continuous Vω the for-
mula is proven, for instance, in Theorem IX.7A in [93]. It extends to general
non-negative potentials which are in L1

loc using semigroup and integral convergence
theorems similarly as in the proof of Theorem X.68 in [255]. Since we consider
(geodesically) complete manifolds whose Ricci curvature is bounded below, they
are all stochastically complete, cf. for instance [131] or Theorem 4.2.4 in [136].

Since the potential is non-negative, the Feynman-Kac formula implies for non-
negative f ∈ L1(Λ, volω)

0 ≤
(
e−tHΛ

ω f
)
(x) ≤

(
et∆Λ

ωf
)
(x) ≤ CΛ

ω (t) ‖f‖L1

for almost every x ∈ Λ. Thus e−tHΛ
ω : L1(Λ, volω) → L∞(Λ, volω) has the same

bound CΛ
ω (t) as the semigroup where the potential is absent. This yields the point-

wise estimate on the kernel kΛ
Hω

of e−tHΛ
ω :

(2.34) 0 ≤ kΛ
Hω

(t, x, y) ≤ CΛ
ω (t) for almost every x, y ∈ X.

In the following we derive sharper upper bounds on the kernels which imply their
decay in the distance between the two space arguments x and y. Such estimates have
been proven by Li and Yau [204] for fundamental solutions of the heat equation.
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One would naturally expect that the fundamental solution and the L2-heat kernel of
the semigroup coincide under some regularity assumptions. This is actually the case
as has been proven for instance in [77] for vanishing, and in [199] for smooth, non-
negative potentials. The proof in the last cited source uses that Hω is a Dirichlet
form.

To formulate the results of Li and Yau [204] which we will be using, we denote
by dω : X×X → [0,∞[ the Riemannian distance function on X with respect to gω.
Note that the following proposition concerns the heat kernel of the pure Laplacian.

Proposition 2.5.2. For every t > 0 there exist constants C(t) > 0, αt > 0 such
that

(2.35) kω(t, x, y) ≤ C(t) exp
(
− αt d

2
0(x, y)

)
for all ω ∈ Ω and x, y ∈ X.

Proof. For a fixed Schrödinger operator the estimate (with d0 replaced by dω) is
contained in Corollary 3.1 in [204]. The properties (2.5), (2.9) and

C−1
g d0(x, y) ≤ dω(x, y) ≤ Cgd0(x, y)

ensure that the constants C(t) and αt in (2.35) may be chosen uniformly in ω.
Moreover, for measuring the distance between the points x and y we may always
replace dω by d0 by increasing αt. �

Let us collect various consequences of Proposition 2.5.2 which will be useful later
on.

(i) The pointwise kernel bound on the left hand side of (2.34) can be chosen
uniformly in ω ∈ Ω.

(ii) We stated Proposition 2.5.2 for the pure Laplacian, although Li and Yau treat
the case of a Schrödinger operator with potential. The reason for this is that
we want to avoid the regularity assumptions on the potential imposed in [204].

To recover from (2.35) the case where a (non-negative) potential is present
we use again the Feynman-Kac formula. We need now a local version of the
argument leading to (2.34), more precisely we consider e−tHω as an operator
form L1(Bε(y)) to L∞(Bε(x)) for small ε > 0. Thus we obtain

0 ≤ kHω
(t, x, y) ≤ C(t) exp

(
− αt d

2
0(x, y)

)
(iii) The estimates derived so far immediately carry over to the case where the

entire manifold is replaced by an open subset Λ ⊂ X.

0 ≤ kΛ
Hω

(t, x, y) ≤ kHω (t, x, y)

This is due to domain monotonicity, see for example [68, Thm. 2.1.6].
(iv) The Bishop volume comparison theorem controls the growth of the volume

of balls with radius r, see for instance [34], [50, Thm. III.6] or [42]. It tells
us that the lower bound (2.7) on the Ricci curvature is sufficient to bound
the growth of the volume of balls as r increases. The volume of the ball can
be estimated by the volume of a ball with the same radius in a space with
constant curvature K. The latter volume grows at most exponentially in the
radius. For our purposes it is necessary to have an ω-uniform version of the
volume growth estimate. Using Properties (2.5), (2.7) and (2.9) we obtain the
uniform bound

volω
(
{y| dω(x, y) < r}

)
≤ C1 e

C2r for all x ∈ X
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where C1, C2 do not depend on x and ω. This implies that for all exponents
p > 0, there exists a Mp(t) <∞ such that the moment estimate∫

Λ

[kΛ
Hω

(t, x, y)]p dvolω(y) ≤Mp(t)

holds uniformly in Λ ⊂ X open, in x ∈ Λ and ω ∈ Ω. We set M(t) := M1(t).
(v) The heat kernel estimates imply a uniform bound on the traces of the semi-

group localised in space. Let Λ ⊂ X be a (fixed) open set of finite volume.
There exists a constant CTr = CTr(Λ, t) > 0 such that for all ω ∈ Ω

Tr
(
χΛ e

−tHω
)
≤ CTr

Intuitively this is the same as saying that
∫
Λ
kHω

(t, x, x) dvolω(x) is uniformly
bounded. However, since the diagonal {(x, x)|x ∈ Λ} is a set of measure
zero, the integral does not make sense as long as we consider kHω

as an L2-
function. We do not want here to address the question of continuity of the
kernel. Instead we use the semigroup property e−2tHω = e−tHωe−tHω , t > 0
and selfadjointness to express the trace as

(2.36)

Tr
(
χΛ e

−tHω
)

=
∫

Λ

∫
Λ

[kHω
(t/2, x, y)]2 dvolω(x) dvolω(y) ≤M2(t/2) volω(Λ)

By (2.11) this is bounded uniformly in ω ∈ Ω. Applying domain monotonicity
once more, we obtain

(2.37) Tr
(
e−tHΛ

ω
)
≤M2(t/2) volω(Λ)

The following lemma is a maximum principle for Schrödinger operators with non-
negative potentials. Combined with the off-diagonal decay estimates in Proposition
2.5.2 it will give us a proof of the principle of not feeling the boundary.

Lemma 2.5.3 (Maximum principle for heat equation with nonnegative potential).
Let Λ ⊂ X be open with compact closure, V be a non-negative function, and u ∈
C([0, T [×Λ) ∩ C2(]0, T [×Λ) be a solution of the heat equation ∂

∂tu+(−∆+V )u = 0
on ]0, T [×Λ with nonnegative supremum s = sup{u(t, x) | (t, x) ∈ [0, T [×Λ}. Then,

s = max

{
max
x∈Λ

u(0, x), sup
[0,T [×∂Λ

u(t, x)

}
Note that regularity of V is not assumed explicitly, but implicitly by the require-

ments on u. They are e.g. satisfied if V is smooth. Indeed, in that case the heat
kernel is smooth, as can be seen following the proof of [68, Thm. 5.2.1].

Now we are in the position to state the second refined estimate on the heat
kernels, the principle of not feeling the boundary. It is a formulation of the fact
that the heat kernel of the Laplacian restricted to a large open set Λ should not
differ much from the heat kernel associated to the Laplacian on the whole manifold,
as long as one stays away from the boundary of Λ. As before, we derive this
estimate first for the pure Laplacian and then show that it carries over to Schrö-
dinger operators with non-negative potential.

Proposition 2.5.4. For any fixed t, ε > 0, there exists an h = h(t, ε) > 0 such that
for every open set Λ ⊂ X and all ω ∈ Ω

0 ≤ kω(t, x, y)− kΛ
ω (t, x, y) ≤ ε,
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for all x ∈ Λ, y ∈ Λh.

Proof. The first inequality is a consequence of domain monotonicity. So we just
have to prove the second one.

Fix ω ∈ Ω and t, ε > 0. Choose h > 0 such that

C(t) exp
(
− αt

(
h/2
)2) ≤ ε

Note that the choice is independent of ω. For any y ∈ Λh and 0 < δ < h/2
denote by Bδ(y) the open d0-ball around y with radius δ. Let fδ ∈ C∞0 (Bδ(y)) be
a non-negative approximation of the δ-distribution at y.

We consider now the time evolution of the initial value f under the two semi-
groups generated by ∆ω and ∆Λ

ω , respectively.

u1(t, x) :=
∫

X

kω(t, x, z)fδ(z)dvolω(z) =
∫

Λ

kω(t, x, z)fδ(z)dvolω(z).

u2(t, x) :=
∫

Λ

kΛ
ω (t, x, z)fδ(z)dvolω(z).

The difference u1(t, x)− u2(t, x) solves the heat equation ∂
∂tu = ∆ωu and satisfies

the initial condition u1(0, x)− u2(0, x) = fδ(x)− fδ(x) = 0 for all x ∈ Λ. Now, by
domain monotonicity we know kω(t, x, z)− kΛ

ω (t, x, z) ≥ 0, thus

u1(t, x)− u2(t, x) =
∫

Λ

[
kω(t, x, z)− kΛ

ω (t, x, z)
]
fδ(z) dvolω(z) ≥ 0

for all t > 0 and x ∈ Λ. The application of the maximum principle yields

(2.38) u1(t, x)− u2(t, x) ≤ max
]0,t]×∂Λ

{u1(s, w)− u2(s, w)} .

The right hand side can be further estimated by:

u1(s, w)− u2(s, w) ≤
∫

Λ

kω(s, w, z)fδ(z) dvolω(z) =
∫

Λh/2

kω(s, w, z)fδ(z) dvolω(z).

Since w ∈ ∂Λ and z ∈ Λh/2, we conclude using Proposition 2.5.2:∫
Λh/2

kω(s, w, z)fδ(z)dvolω(z) ≤ C(t) exp
(
− αt(h/2)2

)
≤ ε

Since the bound is independent of δ we may take the limit δ → 0 which concludes
the proof. �

One can prove the principle of not feeling the boundary by other means too, see
for instance [215, 79, 243]. This alternative approach uses information on the be-
haviour of solutions of the wave equation. Unlike the solutions of the heat equation,
they do not have the unphysical property that their support spreads instantaneously
to infinity. Actually, the solutions of the wave equation have finite propagation
speed [307]. Fourier transforms and the spectral theorem turn this information
into estimates on the difference of the solutions of the free and restricted heat
equation. Sobolev estimates lead then to the principle of not feeling the boundary.

See also Section 7 in [254].

Remark 2.5.5. Similarly as in Lemma 2.5.3, one can prove the proposition if a
potential is present. More precisely, Proposition 2.5.4 is valid for Schrödinger op-
erators with potentials V such that for continuous initial and boundary values the
solution of the heat equation ∂

∂tu = −(−∆ω+V )u is in C([0, T [×Λ) ∩C2(]0, T [×Λ).
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However, Proposition 2.5.4 implies an analogous estimate for the case where a non-
negative potential is present, similarly as in (ii) on page 25.

Consider e−tHω−e−tHΛ
ω as an operator from L1(Λh) to L∞(Λ), and denote by τΛ

x

the first exit time from Λ for a Brownian motion starting in x. By the Feynman-Kac
formula, we have for 0 ≤ f ∈ L1(Λh)

[(e−tHω − e−tHΛ
ω )f ](x) = Ex

(
e−

∫ t
0 dsV (bs)f(bt)χ{b| τΛ

x ≤t}

)
≤ Ex

(
f(bs)χ{b| τΛ

x ≤t}

)
=
∫

[kω(t, x, y)− kΛ
ω (t, x, y)]f(y) dvolω ≤ ε

∫
f(y) dvolω

if we chose h as in Proposition 2.5.4. Thus for almost all x ∈ Λ, y ∈ Λh

(2.39) kHω
(t, x, y)− kΛ

Hω
(t, x, y) ≤ ‖e−tHω − e−tHω‖L1(Λh)→L∞(Λ) ≤ ε

The upper bounds on the heat kernel and the principle of not feeling the bound-
ary enable us to prove a result on the traces of localised heat-semigroups.

In the macroscopic limit, as Λ tends (in a nice way) to the whole of X, the two
quantities

Tr(χΛe
−tHω ) and Tr(e−tHΛ

ω )
are approximately the same. The precise statement is contained in the following

Proposition 2.5.6. Let {Λl}l∈N, be an sequence of subsets of X which satisfies the
van Hove property 2.18 and let {Hω}ω be a random Schrödinger operator. Then

lim
l→∞

sup
ω∈Ω

1
volω(Λl)

∣∣∣Tr(χΛl
e−tHω )− Tr(e−tHl

ω )
∣∣∣ = 0

Proof. We consider first a fixed l ∈ N and abbreviate Λ = Λl. For the operator
e−tHΛ

ω we may write the trace in the same way as in (2.36) to obtain

(2.40) Tr(e−tHΛ
ω ) =

∫
Λ

∫
Λ

[kΛ
Hω

(t/2, x, y)]2dvolω(x)dvolω(y)

We express the difference of (2.36) and (2.40) using

(kHω )2 − (kΛ
Hω

)2 = (kHω − kΛ
Hω

)(kHω + kΛ
Hω

)

Next we chose h = h(t/2, ε) > 0 as in Proposition 2.5.4 and decompose the inte-
gration domain according to

Λ× Λ = (Λ× Λh) ∪ (Λ× ∂hΛ)

The difference of the traces can be now estimated as

(2.41) Tr(χΛ e
−tHω )− Tr(e−tHΛ

ω )

=
∫

Λ

∫
Λh

[
kHω

( t
2
, x, y

)
− kΛ

Hω

( t
2
, x, y

)] [
kHω

( t
2
, x, y

)
+ kΛ

Hω

( t
2
, x, y

)]
dvolω(x, y)

+
∫

Λ

∫
∂hΛ

[
kHω

( t
2
, x, y

)
−kΛ

Hω

( t
2
, x, y

)] [
kHω

( t
2
, x, y

)
+kΛ

Hω

( t
2
, x, y

)]
dvolω(x, y)

The first term is bounded by 2M(t/2) ε volω(Λ) and the second by

2M(t/2)C(t/2) volω(∂hΛ)
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It follows that

0 ≤ 1
volω(Λ)

(
Tr(χΛ e

−tHω )−Tr(e−tHΛ
ω )
)
≤ 2M(t/2)ε+ 2M(t/2)C(t/2)

volω(∂hΛ)
volω(Λ)

Now, we let l go to infinity. Since the sequence Λl satisfies the van Hove property
(2.18) and since our bounds are uniform in ω, the proposition is proven. �

2.6. Laplace transforms and Ergodic Theorem. This paragraph completes
the proof of Theorem 2.3.8. It relies, apart from the results results established in
the previous paragraphs 2.4–2.5, on a general ergodic theorem and a criterion for
the convergence of distribution functions.

Lindenstrauss proved in [210, 209] an ergodic theorem which applies to locally
compact, second countable amenable groups. It includes as a special case the
following statement for discrete groups.

Theorem 2.6.1. Let Γ be an amenable discrete group and (Ω,BΩ,P) be a proba-
bility space. Assume that Γ acts ergodically on Ω by measure preserving transfor-
mations. Let {Il}l be a tempered Fœlner sequence in Γ. Then for every f ∈ L1(Ω)

(2.42) lim
j→∞

1
|Il|

∑
γ∈Il

f(γω) = E (f)

for almost all ω ∈ Ω.

In the application we have in mind f ∈ L∞, so the convergence holds in the
L1-topology, too.

Remark 2.6.2. Some background on previous results can be found for instance in
Section 6.6 of Krengel’ s book [194], in Tempelman’s works [308, 309, 310] or some
other sources [95, 15, 94, 236]. The book [310] gives in § 5.6 a survey of Shulman’s
results [276]. Mean ergodic theorems hold in more general circumstances, see for
instance [194, § 6.4] or [310, Ch. 6].

We will apply the ergodic theorem above not to the normalised eigenvalue count-
ing functions N l

ω, but to their Laplace transforms Ll
ω. The reason is, that the Ll

ω

are bounded, while the original N l
ω are not. The following criterion of Pastur and

Šubin [237, 298] says that it is actually sufficient to test the convergence of the
Laplace transforms.

Lemma 2.6.3 (Pastur-Šubin convergence criterion). Let Nn be a sequence of dis-
tribution functions such that

(i) there exists a λ0 ∈ R such that Nl(λ) = 0 for all λ ≤ λ0 and l ∈ N,
(ii) there exists a function C : R+ → R such that Ll(t) :=

∫
e−λtdNl(λ) ≤ C(t)

for all l ∈ N and t > 0,
(iii) liml→∞ Ll(t) =: L(t) exists for all t > 0.
Then L is the Laplace transform of a distribution function N and for all continuity
points λ of N we have

N(λ) := lim
l→∞

Nl(λ)

Finally, we present the proof of Theorem 2.3.8 on the existence of a self-averaging
IDS:
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Proof of Theorem 2.3.8. We have to check the conditions in the previous lemma for
the normalised eigenvalue counting functions N l

ω. The first one is clearly satisfied
for λ0 = 0, since all operators we are dealing with are non-negative. To see (ii),
express the Laplace transform by the trace of the heat semigroup

Ll
ω(t) =

1
volω(Λ)

∑
n, λn∈σ

e−tλn =
1

volω(Λ)
Tr(e−tHl

ω )

The sum extends over all eigenvalues λn of H l
ω, counting multiplicities. Now, (2.37)

implies condition (ii) of the Pastur-Šubin criterion.
To prove (iii) we will show for all t > 0 the convergence

lim
j→∞

Ll
ω(t) =

∫
R
e−tλdNH(λ)

in (L1 and) P almost sure-sense.
Introduce for two sequences of random variables al(ω), bl(ω), l ∈ N the equiva-

lence relation al
j→∞∼ bl if they satisfy al − bl → 0, as l → ∞, in L1 and P-almost

surely.
For technical reasons we will deal separately with the convergence of the enu-

merator and denominator in

Ll
ω(t) = volω(Λl)−1 Tr(e−tHl

ω )

However, we need some normalisation, to avoid divergences. Consider first the
enumerator with an auxiliary normalisation

(2.43) |Il|−1 Tr(e−tHl
ω )

By Proposition 2.5.6, the equivariance, and Lindenstrauss’ ergodic theorem 2.6.1

|Il|−1 Tr(e−tHl
ω )

j→∞∼ |Il|−1 Tr(χΛl
e−tHω ) = |Il|−1

∑
γ∈I−1

l

Tr(χγF e
−tHω )

= |Il|−1
∑
γ∈Il

Tr(χF e−tHγω )
j→∞∼ E

{
Tr(χF e−tH•)

}
Similarly we infer for the normalised denominator

|Il|−1volω(Λl) = |Il|−1
∑

γ∈I−1
l

volω(γF) = |Il|−1
∑
γ∈Il

volγω(F)
j→∞∼ E {vol•(F)}

Note that by (2.11) all terms in the above line are bounded form above and below
uniformly in ω. By taking quotients we obtain

Ll
ω(t) =

|Il|−1 Tr(e−tHl
ω )

|Il|−1 volω(Λl)
j→∞∼

E
{
Tr(χFe−tH•)

}
E {vol•(F)}

The right hand side is the Laplace transform of NH , see the proof of Theorem 6.1
of [201] for a detailed calculation. �
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2.7. Approach using Dirichlet-Neumann bracketing. We sketch briefly an
alternative proof of the existence of the IDS due to Kirsch and Martinelli [161]. It
applies to random Schrödinger operators on Rd.

It relies on a ergodic theorem for superadditive processes by Akcoglu and Krengel
[12] and estimates on the number of bound states essentially implied by the Weyl
asymptotics.

Let us explain the notion of an superadditive process in our context. Denote by
Z the set of all multi-dimensional intervals or boxes Λ in Rd such that Λ = {x| aj <
xj < bj , for j = 1, . . . , d} for some a, b ∈ Zd with aj < bj for all j = 1, . . . , d. The
restriction of Hω to an Λ ∈ Z with Dirichlet boundary conditions is denoted by
HΛ

ω and with Neumann boundary conditions by HΛ,N
ω . Consider a group {Tk}k∈Zd

(or semigroup {Tk}k∈Nd
0
) of measure preserving transformations on the probability

space (Ω,BΩ,P).

Definition 2.7.1. A set function F : Z → L1(Ω) is called a (discrete) superadditive
process (with respect to {Tk}k) if the following conditions are satisfied

FΛ ◦ Tk = FΛ+k for all k ∈ Zd (or Nd
0) ,Λ ∈ Z(2.44)

if Λ1, . . . ,Λn ∈ Z such that Λ := int
( n⋃

k=1

Λk

)
∈ Z then FΛ ≥

n∑
k=1

FΛk
(2.45)

γ := γ(F ) := sup
Λ∈Z

|Λ|−1 E {FΛ} <∞(2.46)

F is called subadditive if −F is superadditive.

Similarly one can define continuous superadditive processes with respect to an
action of Rd on Ω.

We formulate the main result of [12] in the way it suits our needs.

Theorem 2.7.2. Let F be a discrete superadditive process and Λl := [−l/2, l/2]d,
l ∈ N. Then the limit liml→∞ l−d FΛl

exists for almost all ω ∈ Ω.

More generally, one can replace the Λl, l ∈ N by a so called regular sequence,
cf. [309, 12, 161] or § 6.2 in [194].

To apply the superadditive ergodic theorem we consider for arbitrary, fixed λ ∈
R the processes given by the eigenvalue counting functions of the Dirichlet and
Neumann Laplacian

FD
Λ := FD

Λ (λ, ω) := #{n|λn(HΛ
ω ) < λ}, Λ ∈ Z

FN
Λ := FN

Λ (λ, ω) := #{n|λn(HΛ,N
ω ) < λ}, Λ ∈ Z

where Hω is a random operator as in Definition 1.2.3. Obviously for Λ = Λl =
[−l/2, l/2]d we have FD

Λ (λ) = ldN l
ω(λ). We will show that FD

Λ ,Λ ∈ Z is a super-
additive process, which is also true for −FN

Λ ,Λ ∈ Z. Property (2.44) follows from
the equivariance of {Hω}ω, while (2.45) and (2.46) are implied by the following

Lemma 2.7.3. Let Hω be a random operator as in Definition 1.2.3 and λ a fixed
energy value.

(i) For two cubes Λ1 ⊂ Λ2 we have FD
Λ2
≥ FD

Λ1
and FN

Λ1
≥ FD

Λ1
.
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(ii) If Λ1,Λ2 ∈ Z are disjoint such that Λ = Λ1 ∪ Λ2 ∪M ∈ Z where M ⊂ Rd is
a set of measure zero, then

FD
Λ ≥ FD

Λ1
+ FD

Λ2

FN
Λ ≤ FN

Λ1
+ FN

Λ2

(iii) There exists an Cλ ∈ R such that for all Λ ∈ Z and ω ∈ Ω we have FD
Λ (ω) ≤

Cλ |Λ|.

Proof. The first two statements are known as Dirichlet-Neumann bracketing and
are stated e.g. in Proposition XIII.15.4 in [256]. See also Section I.5 in [50] for
analogous results on manifolds.

To prove (iii) we consider first the case where the potential is identically equal
to zero and infer from the Weyl asymptotics that there is a constant C(λ) ∈ R such
that

#{n|λn(−∆Λ) < λ} ≤ C(λ) |Λ|
Here ∆Λ denotes the Laplace operator on Λ with Dirichlet boundary conditions.
Since the potentials we consider are infinitesimally bounded with respect to the
Laplacian, uniformly in ω, the Min-Max principle for eigenvalues implies the same
estimate for the full Schrödinger operator, with an suitably changed constant. See
Sections XIII.3, 15 and 16 in [256] for more details and, for explicit estimates, the
works [264, 206, 205, 64] deriving the Lieb-Thirring and Cwikel-Lieb-Rozenblum
bounds on the number of bound states. �

Now we can state the main result of [161].

Theorem 2.7.4. There exists a set Ω′ ⊂ Ω of full measure such that

(2.47) N(λ) := lim
l→∞

N l
ω(λ)

exists for every ω ∈ Ω′ and every continuity point λ ∈ R of N .

Proof. For a fixed λ ∈ R one applies the ergodic theorem of [12] to the superadditive
process FD = FD(λ, ω). Since in our case the transformation group is ergodic, the
limit N(λ) equals γ(FD(λ)), in particular it is independent of ω. Almost sure
convergence means that there is a set Ωλ of measure one for which the convergence
holds. Let S ⊂ R be dense countable set. Then Ω′ = ∩λ∈SΩλ still has full measure
and (2.47) holds for all λ ∈ S and ω ∈ Ω′. Since S was dense, this shows the
convergence (2.47) at all continuity points of the limit function. Afterwards one
modifies the limit function N to be left continuous. See [161, 157] for details. �

For models which satisfy both the conditions of the previous theorem and of
2.3.8 the two IDS’s coincide.

Under certain regularity conditions the theorem remains true if Neumann bound-
ary conditions are used to define the IDS, and also for Rd-ergodic potentials, cf. for
instance [161, 142].

2.8. Independence of the choice of boundary conditions. Consider again the
more general setting of Schrödinger operators on a Riemannian covering manifold
X. If the open subset Λ ⊂ X of finite volume is sufficiently regular, the Neumann
Laplacian HΛ,N

ω on Λ has discrete spectrum. One condition which ensures this is
the extension property of the domain Λ, see e.g. [68], which is in turn satisfied if the
boundary ∂Λ is piecewise smooth. Minimal conditions which ensure the extension
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property are discussed in § VI.3 of [292]. Thus it is possible to define the normalised
eigenvalue counting function

NΛ,N
ω (λ) :=

1
|Λ|

#{n ∈ N|λn(HΛ,N
ω ) < λ}

Let Λl be an admissible exhaustion Λl ⊂ X, l ∈ N of sets which all have the
extension property. Consider the sequence of distribution functions N l,N

ω := NΛl,N
ω .

It is natural to ask whether it converges almost surely, and, moreover, whether its
limit coincides with N as defined in (2.47). If this is true, the IDS is independent of
the choice of Dirichlet or Neumann boundary conditions used for its construction.
This indicates that boundary effects are negligible in the macroscopic limit.

However, this turns out not to be true for all geometric situations. Sznitman
studied in [304, 306] the IDS of a random Schrödinger operator on hyperbolic space
with potential generated by a Poissonian field. He showed that the IDS does depend
on the choice of boundary condition used for its construction. Actually, he computes
the Lifshitz asymptotics of the IDS at energies near the bottom of the spectrum
and shows that it is different for Dirichlet and Neumann boundary conditions.

In contrast, in the case of Euclidean geometry X = Rd, the question of boundary
condition independence has been answered positively already some decades ago
[27, 161, 299, 88] for a large class of Zd or Rd-ergodic random potentials. Recently,
there has been interest in the same question if a magnetic field is included in the
Hamiltonian, see also § 5.6. In this case the coincidence of the IDS defined by the
use of Dirichlet and Neumann boundary conditions was established for bounded
potentials in [232], for non-negative potentials in [82], and for certain potentials
assuming both arbitrarily large positive and negative values in [142] and [139]. The
last mentioned approach seems to be extensible to non-Euclidean geometries which
is matter of current research.

3. Wegner estimate

In 1981 Wegner [325] proved on a physical level of rigour a lower and upper bound
on the density of states (DOS) of the (discrete) Anderson model and similar lattice
Hamiltonians. The density of states — if it exists — is the density function of the
IDS. Wegner’s argument did in particular not rely on any information about the
type of the spectrum in the considered energy interval. This was important since
before Wegner’s result there where various conjectures in the physics community
how the DOS should behave at the mobility edge, if it exists. This is the name for
the critical energy which is supposed to form the boundary between an interval with
pure point spectrum and another one with continuous spectrum. Note however that
there is so far no rigorous proof of the existence of continuous spectrum for ergodic
random Schrödinger operators.

There were arguments suggesting that the DOS should diverge to infinity at the
mobility edge, others that it should vanish. Wegner’s estimate discarded this mis-
conceptions. In a sense it is a negative result: you cannot recognize the borderline
of different spectral types by looking at the IDS.

In the sequel we concentrate on alloy type models as defined in 1.2.1 (and Remark
1.2.2). We will be concerned here with upper bounds on the DOS only. It is derived
by considering its analoga on finite boxes. So what we are speaking about in this
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section is an estimate on

E
{
TrP l

ω(I)
}

= |Λl|E
{
N l

ω(E2)−N l
ω(E1)

}
where for the moment for notational convenience we only consider half open energy
intervals I = [E1, E2[. By the Čebyšev-inequality one sees

(3.1) P
{
σ(H l

ω) ∩ I 6= ∅
}

= P
{
TrP l

ω(I) 6= 0
}
≤ E

{
TrP l

ω(I)
}

This means that a bound on the averaged trace of the projection gives immediately
a bound on the probability to find an eigenvalue in the considered energy interval.
Actually, in the literature on Anderson localisation often the (weaker) bound on
P
{
TrP l

ω(I) 6= 0
}

is called Wegner estimate, since it is sufficient for the purposes of
multiscale analysis, see § 3.2.

In the following we will adopt the following notation: Λl :=] − l/2, l/2[d⊂ Rd

denotes the cube of side length l centred at zero. Occasionally we suppress the
dependence on the size and just write Λ. A cube centred at x ∈ Rd is denoted by
Λl + x = {y + x| y ∈ Λl} or Λl(x). The characteristic function of the unit cube
Λ1 + j is abbreviated by χj . For l ∈ N the symbol Λ̃l denotes the lattice points in
Zd such that

int
( ⋃

j∈Λ̃l

Λ1(j)
)

= Λl

More explicitly: Λ̃l = Λl ∩ Zd.

3.1. Continuity of the IDS. The estimates on the expected number of energy
levels in I, which most authors derive or use (for localisation proofs) are ’polyno-
mial’, more precisely

(3.2) E
{
TrP l

ω(I)
}
≤ CW |I|a |Λl|b

Here |I| and |Λl| denote the (1-dimensional, respectively d-dimensional) Lebesgue
measure of the energy interval I, or the set Λl, respectively. The Wegner constant
CW depends on the various parameters of the model and for continuum Hamil-
tonians on the supremum of I. Actually, CW can be assumed to be a monotone
non-decreasing function of | sup I|. However, once sup I is fixed, CW is independent
both of the energy interval length and the volume. It is obvious that the energy
and volume exponents must satisfy a ∈]0, 1], b ∈ [1,∞[. As far as the exponents are
concerned, the Wegner estimate is optimal if the dependence on the volume and
energy length is linear, i.e. a = b = 1.

For, if b = 1, the bound (3.2) carries over to the infinite volume IDS:

(3.3) lim
l→∞

E
{
N l

ω(E2)−N l
ω(E2)

}
= lim

l→∞

E
{
TrP l

ω([E1, E2[)
}

|Λl|
≤ CW |E2 − E1|a

Since we know from Theorem 2.3.8 and dominated convergence that for E1, E2 in
a dense set of energies

lim
l→∞

E
{
N l

ω(E2)−N l
ω(E1)

}
= N(E2)−N(E1)

it follows
N(E2)−N(E1) ≤ CW |E2 − E1|a
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where CW = CW (E2). Now the monotonicity of the IDS implies its Hölder conti-
nuity. Moreover, if the estimate (3.2) is linear in the energy, i.e. a = 1, the IDS is
even Lipschitz continuous. Thus its derivative, the density of states,

(3.4) n(E) :=
dN(E)
dE

exists for almost every energy E ∈ R and is locally bounded

n(E) ≤ CW (E2) for all E ≤ E2

So the Wegner constant turns out to be a locally uniform bound on the DOS.

Remark 3.1.1. For certain models the bounds derived on P
{
σ(H l

ω) ∩ I 6= ∅
}

are
not polynomial in the volume. This is the case for one-dimensional Anderson or
alloy type models where the coupling constants ωj , j ∈ Z are distributed according
to the Bernoulli distribution: for some p ∈]0, 1[ the random variable ω0 takes on
the value 1 with probability equal to p and the value 0 with probability 1−p. Since
this disorder regime is highly singular, the ’usual’ proofs of the Wegner estimate,
see Sections 4 and 5, fail. The ones that do work, yield somewhat weaker results.
Namely, it is proven in [46] (cf. also [275]) for the discrete Anderson model and in
[66] for the continuum alloy type model, that for a fixed compact energy interval I
and all β ∈]0, 1[, γ > 0 there exist l0 ∈ N and α > 0 such that

(3.5) P{d(σ(H l
ω), E) ≤ e−γlβ} ≤ e−αlβ

for all E ∈ I and all l ≥ l0. Here in the case of the continuum model it has to be
assumed that I is disjoint from a discrete set of exceptional energies.

This estimate obviously does not imply a continuity estimate for the infinite
volume IDS. Interestingly, for these models, the Hölder continuity of the IDS is
established using other techniques which are specifically tailored for the one di-
mensional case, see [197], [46, App. to § 5] and [66, Thm. 4.1]. Subsequently, this
regularity result is used to derive the finite volume estimate (3.5). In higher di-
mensions, as we have discussed above, one proceeds in the other direction, carrying
over finite volume estimates to the macroscopic limit.

The bound (3.5) is still sufficient as an input for the multiscale analysis which
proves localisation, cf. e.g. [320] or our discussion in § 3.2. In the discussion of
Spencer’s example in § 3.2 we will obtain an insight why subexponentially small
eigenvalue splittings are effective enough to prevent resonances.

Remark 3.1.2 (Continuity of the IDS on the lattice and in one dimension). In
[74] Delyon and Souillard showed by a very simple argument that the IDS of the
Anderson model on the lattice Zd is continuous, regardless of the continuity of the
distribution of the potential values. The potential may even be correlated over long
distances, as long as it is an ergodic stochastic field. Delyon and Souillard use the
unique continuation property of the discrete Schrödinger equation, to prove that no
eigenvalue can be sufficiently degenerated to produce a jump of the IDS. At the end
of Remark 3.1.3 we contrast their theorem with the situation in graphs other than
the lattice. In [62] a quantitative version of the continuity is proven: for random,
ergodic lattice Hamiltonians the IDS is actually log-Hölder continuous. See also
[212] and [101, 80, 53, 220, 81] for a related result for graph Hamiltonians.

Similarly, the IDS is continuous for one dimensional Hamiltonians, both on Z
and on R, [240, 149, 21]. Again, this result can be strengthened to log-Hölder
continuity, cf. [63].
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Remark 3.1.3 (Continuity of the IDS and geometry). So far we have only mentioned
proven or expected assertions on the continuity of the IDS. One might ask whether
there are interesting models which exhibit a discontinuous IDS. It turns out that this
phenomenon may occur, if the configuration space has a more complicated geometry
than Zd or Rd. Another example would be the IDS of the Landau Hamiltonian,
cf. e.g. the references in § 5.6, in particular [232].

Maybe the simplest example to illustrate the difference between Euclidean and
more general geometry is provided by periodic Schrödinger operators. Under mild
assumptions on the Zd-periodic potential Vper the IDS of the Schrödinger operator
H0 = −∆ + Vper on Rd is absolutely continuous, cf. e.g. [256, Problem 145],[311].
In particular the IDS cannot have jumps. However, precisely this can occur for
Laplace-Beltrami operators (even without potential) on a Riemannian covering
manifold X, as it was mentioned in [301, App. 2] and is a subject of current research
[198, 200]. This phenomenon can be deduced from the fact that Laplacians on cov-
ering manifolds may have eigenvalues, as has been shown in [186]. Furthermore, the
size of the jumps of the IDS is related to certain geometric invariants. Examples
of such invariants are the order of the torsion subgroup of the deck transformation
group Γ of X and the L2-Betti numbers of X, which can be expressed in terms
of the Γ-trace on a certain von Neumann algebra, establishing the connection to
the representation of the IDS discussed before Theorem 2.3.3. [76, 79, 80, 269, 81].
Related material can be found in [19, 302, 212, 300, 268, 130, 270, 220, 78, 213, 214].

Some of the Wegner estimates we present in Sections 4 and 5 extend to alloy type
models on manifolds. A particularly interesting phenomenon occurs if one consid-
ers a periodic Laplace-Beltrami operator with discontinuous IDS, and perturbs it
randomly such that the IDS of the perturbed operator is continuous. This happens
if either an appropriate alloy type potential is added to the Hamiltonian or if the
metric is multiplied by an appropriate alloy type perturbation, see [198, 200].

A discontinuous IDS may also occur for models with a random geometry. This
is the case for the tight-binding Hamiltonian defined on Delone sets studied in
[202, 173]. Ideas related to the ones in [173] have been used in [267] and in § 2 of
[220]. The paper [267] is devoted to the proof of the existence of spectral gaps for
certain graph Hamiltonians.

We will discuss a different example, the quantum percolation model, in some
more detail, since it fits readily in the class of models which we have described so
far. This model has been studied amongst others in [72, 71, 155, 272, 52, 314]. We
sketch the site percolation problem on Zd with probability parameter p above the
percolation threshold: let vk : Ω → {0,∞}, k ∈ Zd be a sequence of independent,
identically distributed random variables which take on the value 0 with probability
p and the value ∞ with probability 1− p. Define Xω to be the infinite component
of the set of active sites {k ∈ Zd| vk(ω) = 0}. The graph Xω is called the (active)
infinite cluster. For p above a certain critical value pc it is known that almost surely
an infinite cluster exists [154, 132] and is unique [8, 116].

One defines the Laplacian hω on Xω as the restriction of the finite difference
operator onto l2(Xω). For a cube Λl one defines X l

ω to be those active sites in
Λl∩Zd which are connected to the boundary ∂Λl by a chain of active sites. The finite
volume Laplacian hl

ω is the usual finite difference operator restricted to l2(X l
ω).

Although the finite active clusters, which would obviously give rise to bound
states, are not taken into consideration, it turns out that hω has bound states. This
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was as first observed in [155]. Eigenstates with finite support in the infinite cluster
are called molecular states. The existence of such states affects the properties of
the IDS of hω, which is defined in the following way. For each l ∈ N the normalised
eigenvalue counting function of the Hamiltonian hl

ω is defined as

N l
ω(E) :=

1
#(Λl ∩ Zd)

#{n|λn(hl
ω) < E}

which converges for l → ∞ to an non-random limit almost surely [52, 314]. A
simple construction shows that there are locally supported eigenfunctions, which
depend only on the pattern of Xω in a bounded region. Consequently the patterns
and the associated localised eigenfunctions occur with a non-zero density along the
infinite cluster and thus produce jumps of the IDS at the corresponding energy. In
[52] it is shown by physical arguments that the discontinuities of N constitute a
dense set of energies.

Actually, uniqueness of the infinite cluster is not used in the arguments of [52]
and a similar argument for constructing finitely supported eigenfunctions does work
on the Bethe lattice as well, although there the infinite cluster is not unique. For the
quantum percolation model on the Bethe lattice locally supported eigenfunctions
have been constructed in [46, § 7].

A mathematically rigorous study of the quantum percolation model on amenable
graphs is undertaken in [314]. There the discontinuities of the IDS are explained
in terms of the breakdown of the unique continuation property of eigenfunctions of
the adjacency operator, see also Remark 3.1.2. Moreover, the set of these energies
is characterised in the case X = Zd. From a wider perspective, the properties of
this set are related to the Atiyah conjecture, cf. [78].

Remark 3.1.4. While the continuity of the IDS has clearly to do with the distri-
bution of eigenvalues of the random Hamiltonian, it only captures a part of the
properties of this distribution. The theory of level statistics is concerned with the
finer structure of the fluctuations of eigenvalues. It can be studied by an appropri-
ate scaling procedure. This has been carried out for certain one-dimensional and
discrete models in [228, 227, 261, 260, 225, 123].

3.2. Application to Anderson localisation. In the last paragraph the implica-
tions of Wegner estimates for the IDS were presented. Now we focus on the second
main application of those bounds, namely Anderson localisation.

As we discussed earlier in § 1.3, this phenomenon tells us that a random family
of Schrödinger operators exhibits in a certain energy interval dense pure point
spectrum, almost surely. Moreover, the eigenfunctions of the eigenvalues lying
in this interval decay exponentially. Even a stronger property, namely dynamical
localisation, holds. See § 1.3 for more details and references.

For multi-dimensional configuration space there are two techniques at disposal
to prove localisation: the fractional moment method and the multiscale analysis
(MSA). The first one is also called Aizenman-Molchanov technique and was intro-
duced in [9, 4, 5, 129, 7]. It was so far applicable only to lattice Hamiltonians, up
to the recent extension to continuum configuration space [6]. For discrete models it
has in fact been proven [10, 11] that in the energy regime where the MSA applies,
the Aizenman-Molchanov method works, too.

However, we will discuss in a little more detail only the MSA, since it has found
applications to a variety of models and since the Wegner estimate is a key ingredient
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in the MSA. We first sketch the basic ideas of the MSA, and then discuss shortly
its history.

To carry through the MSA one needs two a priori estimates: the initial scale
estimate and the Wegner estimate. These two conditions essentially determine for
which single site potentials u, single site distribution measures µ and which energy
intervals localisation can be derived. Note that u and µ are parameters which
determine our alloy type potential, see Definition 1.2.1.

In the literature one can find multiscale analyses which are adapted to operators
describing the propagation of classical waves or to abstract families of differential
operators, see among others [104, 105, 61, 67, 295, 120, 177]. In this context one
has also to make sure that certain other conditions are satisfied, like the geometric
resolvent inequality, the generalised eigenfunction expansion, a rough upper esti-
mate on the trace of spectral projections of finite box operators (obtained e.g. by
the Weyl asymptotics), etc. However, since we discuss here only (random) Schrö-
dinger operators, these conditions are automatically satisfied, cf. [295, § 3.2] or
[119, App. A].

The multiscale analysis is an induction argument over a sequence of increasing
length scales lk, k ∈ N. Each scale lk+1 is a power lαk of the preceding one, where
α ∈]1, 2[. Actually, for technical reasons one truncates the scales so that all lk lie
in 6N.

One considers the restriction of the alloy type model Hω to the open cube
Λ(k) := Λlk(0) of side length lk. The corresponding restricted operator is denoted
by H(k)

ω , where Dirichlet, Neumann or periodic boundary conditions ensure its self-
adjointness. One wants to study decay properties of the Green’s function of H(k)

ω ,
i.e. the integral kernel of the resolvent operator R(k)

ω (z) = (H(k)
ω − z)−1, where z is

taken from the resolvent set C \ σ(H(k)
ω ). Since we are not interested in pointwise

properties of the kernel of R(k)
ω (z), and since they tend to be unpleasant near the

diagonal, we may consider instead the sandwiched resolvent

χout(H l
ω − E)−1χin

Here χout denotes the characteristic function of the boundary belt Λl−1 \ Λl−3, and
χin the characteristic function of the interior box Λl/3.

The initial scale estimate is stated in terms of the notion of regular cubes. A box
Λl = Λl(0) is called (E, γ)-regular if l ∈ 6N, E 6∈ σ(H l

ω), and

(3.6) ‖χout(H l
ω − E)−1χin‖ ≤ e−γl

The exponent has to satisfy γ ≥ lβ for some β > −1. So regularity describes
quantitatively how fast the Green’s function on a finite box decays. The exponent
β must be greater than −1 otherwise the rhs of (3.6) could be just one.

The initial scale estimate is satisfied if there exist a scale l1 < ∞ such that for
some ξ > 0

P{ω| ∀E ∈ I : Λl is (E, γ)-regular for ω} ≥ 1− l−ξ(3.7)

for any l ≥ l1.
The weak form of the Wegner estimate as it is needed for the MSA is:

(3.8) P{d(σ(H l
ω), E) ≤ e−lθ} ≤ l−q for all l ∈ 6N

where θ < 1/2 and q > d.
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The initials scale estimate (3.7) serves as the induction anchor of the MSA.
The induction step uses the Wegner estimate and proves that the exponential de-
cay property holds on the subsequent scale l2 with even higher probability, and
that the decay exponent γ essentially does not change. As one repeats the pro-
cedure on the scales l1, l2, . . . one proves that the decay of the Green’s functions
χout(H(k)

ω −E)−1χin holds with probability which tends to one, with error bounded
polynomially in l−1

k .
Thus one establishes the exponential decay of the sandwiched resolvent on arbi-

trary large cubes, where the decay exponent γ is bounded away from zero uniformly
in the scales. Now one uses polynomial bounds on the growth of eigenfunctions
and subsolution estimates to prove spectral localisation, cf. for instance [295, § 3.3].
To prove dynamical localisation one has to do more work, see e.g. [295, § 3.4] or
[118, 67, 120].

The assumptions for the MSA depend on several parameters, and so do the
various versions of localisation which may be obtained by it. Recently Germinet
and Klein showed in [120] how to optimize the dependence of the MSA on the
various parameters, i.e. how to obtain with the weakest assumptions in the input
the strongest conclusions.

The MSA was introduced by Fröhlich and Spencer in [113]. The method applied
to the Anderson model on the lattice and experienced various improvements and
applications [218, 219, 112, 283, 73].

Based on results from [319] and [291] von Dreifus and Klein presented in [320]
a streamlined version of the MSA. Although results on localisation for continuum
Hamiltonians existed earlier [217, 193], it was this simplification of the MSA, which
made alloy type Schrödinger operators more accessible to systematic research.

There was a series of articles which proved various variants of the MSA for
continuum models [178, 54, 180, 170, 118, 109, 67, 295, 120]. Other works concen-
trated onto identifying energy/disorder regimes where one can prove the assump-
tions needed for the MSA to work [178, 179, 180, 23, 170, 169, 120, 294, 316, 317,
134, 329, 183].

Remark 3.2.1. One dimensional models play a special role in the game of locali-
sation. Namely, for d = 1 there are some specific techniques available which do
not exist in higher dimensions, or are not as effective. Some examples are: the
transfer-matrix method, study of the Ljapunov exponent, ODE techniques, Prüfer
transformation.

Consequently, in one space dimension localisation has been proven for some
models even before the MSA technique was available. See [128, 228, 127, 44, 263,
193] for various models on Z or R. Furthermore there are certain models which even
now can be treated only in one dimension. This applies to the following random
Schrödinger operators: random displacement model [43, 284], potentials generated
by a Poissonian field [43], alloy type potentials with changing sign (at all energies)
[296], discrete and continuous models with Bernoulli disorder [46, 275, 66]. This
restriction to d = 1 is partially due to the fact, that there is no Wegner estimate at
disposal in these cases.

The following paragraph gives an idea where the Wegner estimate is used in the
MSA.
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3.3. Resonances of Hamiltonians on disjoint regions. Rather than describing
precisely how the Wegner estimate enters in the induction step of the MSA we will
confine ourselves to present an illuminative example due to Spencer [290]. It was
originally formulated for lattice Hamiltonians, but can also be considered in the
continuum case, as we have learned from P. Müller.

As we mentioned earlier (3.2) implies for 0 ≤ δ < 1

(3.9) P{ω| d(σ(H l
ω), E) ≤ δ} ≤ CW (E) δa |Λl|b

This inequality implies that with respect to the parameter ω the eigenvalues of
H l

ω do not cluster on the energy axis. To give a more precise meaning to this
statement, consider two box Hamiltonians H1 = H

Λl(x)
ω and H2 = H

Λl(y)
ω . Assume

that the boxes Λl(x) and Λl(x) are sufficiently far apart such that H1 and H2 are
independent. Let I be a bounded interval and consider the event

Ω(σ1, σ2) := {ω|Bδ(σ1) ∩ Bδ(σ2) 6= ∅}

where σi stands for σ(Hi) ∩ I. Let λ1, . . . , λN be the eigenvalues of H1 in I. By
Weyl’s law we know that N ≤ CI |Λl|, where CI is independent of ω. Since

Ω(σ1, σ2) ⊂
N⋃

n=1

Ω(n, σ2) where Ω(n, σ2) := {ω|B2δ(λn(ω)) ∩ σ2 6= ∅}

we may use (3.9) to conclude

(3.10) P{Ω(σ1, σ1)} ≤ Cδa |Λl|b+1

This means that resonances of H1 and H2, i.e. the occurrence of approximately the
same eigenvalues for both operators are very unlikely.

The feature which is common to Spencers example and the MSA is the effect
of resonances between Hamiltonians which are localised to disjoint cubes. As we
mentioned earlier, in the induction step of the MSA one puts together boxes Λl of
side length l to form a larger cube ΛL of side length L. Assume that one knows
already that the Green’s functions of the operators H l

ω living on any one of the
small cubes Λl decays exponentially.

The Schrödinger operator HL
ω on ΛL is obtained when we remove the boundary

conditions which separate the smaller boxes Λl. The question is whether the Green’s
function on ΛL will still decay (with approximately the same rate). To answer
this question affirmatively it is not enough to know the exponential decay of the
individual Green’s functions on the small boxes Λl, but it has to be ensured that
they are not in resonance with each other.

Resonance means in this context that the spectra of two restriction H1,H2 of Hω

to disjoint cubes are very close to each other, and can be formulated quantitatively
in terms of

(3.11) d(σ1, σ2) := inf{d(λ1, λ2)|λ1 ∈ σ1, λ2 ∈ σ2}

as we will see below.
The model situation we are about to consider is easier than the one occurring in

the MSA because we do not introduce boundary conditions but confine ourselves
to the analysis of the discrete spectrum below zero.
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Example 3.3.1 (Spencer’s example [290, p. 903–904]). Consider two smooth poten-
tials V1, V2 ≤ 0 with compact support and set

(3.12) Vi := suppVi ⊂ Br(ai), r > 0, ai ∈ Rd, i = 1, 2

It follows d(V1,V2) ≥ |a1 − a2| − 2r =: %. Consider furthermore the operators

H := H0 + V1 + V2, H0 := −∆(3.13)

Hi := −∆ + Vi, i = 1, 2(3.14)

Denote by σi := σ(Hi)∩ ] − ∞, 0[, i = 1, 2 the negative spectra, which are
purely discrete. We are interested in the localisation and decay properties of the
corresponding eigenfunctions.

We look at two cases, where the first has a special symmetry and the second
corresponds to the situation one expects to occur in a random medium.

Case (A):
Consider first the exceptional case in which V2 is obtained from V1 by a reflection
along an axis of symmetry. Without loss of generality

(3.15) V2(x1, x2, . . . , xd) = V1(−x1, x2, . . . , xd)

Thus H commutes with the reflection operator

(3.16) Π: L2(R2) → L2(R2), (Πf)(x1, x2, . . . , xd) = f(−x1, x2, . . . , xd)

In particular, for every eigenfunction ψ

Hψ = λψ, λ < 0

the reflected function Πψ is an eigenvector of H as well. If ψ is localised around a1

Πψ will be localised around a2. Thus a typical vector form span{ψ,Πψ} will have
non negligible amplitudes both at a1 and a2, even for large distances %. For short,
eigenfunctions of H do not need to have just one centre of localisation.

We are dealing with a resonance between the two disjoint regions V1,V2, or more
precisely between the spectra of H1 and H2. Actually, we encountered the extreme
case where the the spectra σ1 and σ2 are not only close to each other but identical.

The example we just considered exhibited a special symmetry, namely [H,Π] = 0.
For random potentials we expect generically that such symmetries are absent and
that the spectra σ1 and σ2 have positive distance. This situation is considered in

Case (B):
We give a condition on d(σ1, σ2) which ensures that the eigenfunctions ofH (defined
in (3.13)) are localised at only one of the potential wells V1, V2. Namely, assume
that

(3.17) d(σ1, σ2) ≥ e−
√

% =: ε

For an eigenvalue λ ≤ −%−1, with corresponding equation Hψ = λψ, we have either

|λj
1 − λ| ≥ ε/2, ∀λj

1 ∈ σ1 or |λj
2 − λ| ≥ ε/2, ∀λj

2 ∈ σ2(3.18)

Assume without loss of generality the first case. The eigenfunction equation implies

−ψ = (H1 − λ)−1V2ψ
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Applying twice the resolvent equation we obtain

(3.19) − ψ = [R0 −R0V1R0 +R0V1R1V1R0] V2ψ,

where Ri := (Hi − λ)−1, i = 0, 1 denotes the resolvents. We show that the am-
plitude of ψ on V1 is exponentially small in the parameter %. Denote with χi the
characteristic function of Vi for i = 1, 2 and multiply (3.19) with χ1

(3.20) − χ1ψ = χ1R0χ
2V2ψ − χ1R0V1χ

1R0χ
2V2ψ + χ1R0V1R1V1χ

1R0χ
2V2ψ.

The free resolvent decays exponentially, see e.g. [3] or [255, IX.30],

R1,2 := ‖χ1R0χ
2‖ . e−%

√
−λ,

the terms ‖V2ψ‖, ‖χ1R0V1‖ are bounded uniformly in %, and (3.18) implies

‖R1‖ ≤
2
ε

= 2e
√

%

Consequently

‖χ1ψ‖ ≤ R1,2 ‖V2ψ‖+ ‖χ1R0V1‖ R1,2 ‖V2ψ‖+ ‖χ1R0V1‖ ‖R1V1‖ R1,2 ‖V2ψ‖

is bounded by a constant times exp(−√%) ‖ψ‖, since %−1 ≤ −λ.

Let us finish this section by discussing some aspects and contrasts of the two
cases considered in the example.

(i) In general, the spectrum alone describes only general properties of the solution
of the eigenvalue equation. In our example it is the additional information
contained in (3.15) and (3.17), respectively, which allows us to analyse the
eigenfunctions more precisely.

(ii) Obviously, in Case (A), the Green’s function decays in space, too. However,
this decay is not yet felt at the scale %, since |ψ(a1)ψ(a2)| converges to a
positive constant for %→∞. On the contrary, in Case (B), the amplitude is
small either at a1 or a2, so

|ψ(a1)ψ(a2)| . e−
√

%.

(iii) A semiclassical analysis of double well potentials is carried out, for instance,
in [135].

4. Wegner’s original idea. Rigorous implementation

In this section we present a proof of Wegner’s estimate following his original ideas
in [325]. His proof was originally formulated for the discrete Anderson model. In
the meantime, it has been cast into mathematically rigorous form and adapted for
continuum Hamiltonians. We follow mostly the arguments of Kirsch [159]. There
are proofs of Wegner’s estimate by other authors, which make use of the ideas in
[325]. Let us mention [217, 216, 178, 179, 108, 57, 56].

The theorem to be proven is

Theorem 4.0.1. Let Hω be as in Definition 1.2.1 and assume additionally that
there exists an κ > 0 such that

(4.1) u ≥ κχ[−1/2,1/2]d
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Then for all E0 ∈ R there exists a constant CW = CW (E0) such that for all l ∈ N,
E ≤ E0 and all ε ∈ [0, 1]

(4.2) E
{
Tr
[
P l

ω([E − ε, E + ε])
]}
≤ CW ε l2d

This theorem is proven in the next section. Its bound with respect to the vol-
ume term ld is quadratic and does not yield a continuity statement for the IDS.
Subsequently we show how this estimate was improved in [60]. Denote by ω+ and
ω− the largest, respectively the smallest value a coupling constant may take.

4.1. Spectral averaging of the trace of the spectral projection. We show
that the expectation over the randomness smears out the eigenvalues of H l

ω and
thus regularises the trace P l

ω(I).

By definition the spectral projection P l
ω(I) = χI(H l

ω) is the characteristic func-
tion of H l

ω. For certain purposes it will be necessary to differentiate this function
with respect to the energy parameter, which motivates the introduction of the fol-
lowing smooth ’switch function’.

Let ρ be a smooth, non-decreasing function such that on ]−∞,−ε] it is identically
equal to −1, on [ε,∞[ it is identically equal to zero and ‖ρ′‖∞ ≤ 1/ε. Then

χ]E−ε,E+ε[(x) ≤ ρ(x− E + 2ε)− ρ(x− E − 2ε) =
∫ 2ε

−2ε

dt ρ′(x− E + t)

Thus by the spectral theorem

P l
ω(]E − ε, E + ε[) ≤

∫ 2ε

−2ε

dt ρ′(H l
ω − E + t)

in the sense of quadratic forms. Since Bε(E) =]E− ε, E+ ε[ is bounded and σ(H l
ω)

discrete, the above operators are trace class and we may estimate:

Tr
[
P l

ω(Bε(E))
]
≤ Tr

[ ∫ 2ε

−2ε

dt ρ′(H l
ω − E + t)

]
=
∑
n∈N

∫ 2ε

−2ε

dt ρ′(λl
n(ω)− E + t)

where λl
n(ω) denotes the eigenvalues of H l

ω enumerated in non-decreasing order
and counting multiplicities. Only a finite number of terms in the sum are non-zero.
More generally the above arguments prove the following

Lemma 4.1.1. Let H be an operator with purely discrete spectrum. Denote by
λ1 ≤ λ2 ≤ . . . the eigenvalues of H. Then for E ∈ R and ε > 0

Tr
[
χBε(E)(H)

]
≤
∑
n∈N

∫ 2ε

−2ε

dt ρ′(λn − E + t)

In the following we analyse the behaviour of the spectrum of the Schrödinger
operator under the perturbation ωj u(·−j). Fix a box-size l ∈ N, a lattice site j ∈ Λ̃
and a configuration of coupling constants ω ∈ Ω and consider the one-parameter
family of operators

t 7→ Ht := H + tU, where H = H l
ω and U = u(· − j)

By the arguments in §1.2 the single site potential is infinitesimally bounded with
respect to H, thus Ht forms a holomorphic family of type (A) in the sense of Kato
[152] for t in a neighbourhood of the real line, cf. e.g. XII.§ 2 in [256]. Moreover,
Ht has compact resolvent by XII.§ 14 in [256]. Hence one may apply a theorem of



44 I. VESELIĆ

Rellich [259], see also Theorem VII.§3.9 in [152]. It says that the eigenvalues and
eigenvectors of Ht can be chosen to be real analytic on R. Actually, each eigenvalue
is holomorphic on a neighbourhood of R in the complex plane, but their intersection
may contain only R.

If λn(t) is a non-degenerate eigenvalue of Ht, first order perturbation theory tells
us that there exists a normalised eigenfunction ψn(t) such that

(4.3)
dλn

dt
(t0) = 〈ψn(t0), Uψn(t0)〉

Remark 4.1.2. This is sometimes called Hellmann-Feynman formula, and it holds
true also if the eigenvalue λn happens to be degenerate at t = t0, cf. for instance
[146]. One has however to chose the enumeration of the eigenvalues λn and eigen-
vectors ψn in such a way that the pair λn(t), ψn(t), t < t0 continues holomorphically
into λn(t), ψn(t), t > t0. Note that this is actually not the case with the enumer-
ation we chose earlier, where λn(t) denotes the n-th eigenvalue of Ht. There are
two possibilities to solve the problem: either one chooses a somewhat unintuitive
enumeration of eigenvalues which makes them — together with the eigenvectors —
holomorphic functions of t. Or one sums over the eigenvalues. Namely, formula (4.3)
remains true if we sum over all eigenvalues which correspond to a degeneracy. More
precisely, for a degenerate eigenvalue λn(t0) denote by l, k ∈ N the largest numbers
such that λn−l(t0) = · · · = λn(t0) = · · · = λn+k(t0) and set S(t) =

∑n+k
m=n−l λm(t).

Then we have

dS

dt
(t0) =

n+k∑
m=n−l

〈ψm(t0), Uψm(t0)〉

In the application of (4.3) in the next proposition we will be considering all eigen-
values below a certain energy. Thus if we consider one eigenvalue participating in
a degeneracy we will actually take into account all participating eigenvalues.

The results for one parameter families of operators carry over to the multi-
parameter family ω 7→ H l

ω. Thus we have∑
j∈Λ̃

∂λn(H l
ω)

∂ωj
=
∑
j∈Λ̃

〈ψn, u(· − j)ψn〉

where ψn are normalised eigenvectors corresponding to λn(H l
ω). By assumption

(4.1) we have

(4.4)
∑
j∈Λ̃

〈ψn, u(· − j)ψn〉 ≥ κ > 0

Now the chain rule∑
j∈Λ̃

∂ρ(λn(H l
ω)− E + t)
∂ωk

= ρ′(λn(H l
ω)− E + t)

∑
j∈Λ̃

∂λn(H l
ω)

∂ωk

implies

ρ′(λn(H l
ω)− E + t) ≤ κ−1

∑
j∈Λ̃

∂ρ(λn(H l
ω)− E + t)
∂ωj

.(4.5)
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Due to monotonicity, integrating over one coupling constant we obtain∫
dωj f(ωj)

∂ρ(λn(H l
ω)− E + t)
∂ωj

≤ ‖f‖∞
∫
dωj

∂ρ(λn(H l
ω)− E + t)
∂ωj

= ‖f‖∞
[
ρ(λn(ω, j = max)− E + t)− ρ(λn(ω, j = min)− E + t)

]
where λn(ω, j = max) denotes the n-th eigenvalue of the operator

H l
ω(j = max) := H l

ω + (ω+ − ωj)u(x− j)

where ωj takes its maximal value. Analogously we use the notation λn(ω, j = min).
This proves

Proposition 4.1.3.

E
{
Tr
[
P l

ω([E − ε, E])
]}

≤ ‖f‖∞
κ

∑
n∈N

∫ 2ε

−2ε

dt
∑
j∈Λ̃

E
{
ρ[λn(ω, j = max)−E+t]−ρ[λn(ω, j = min)−E+t]

}
The upper bound can be also written as

‖f‖∞
κ

∫ 2ε

−2ε

dt
∑
j∈Λ̃

E
{

Tr
[
ρ[H l

ω(j = max)−E + t]− ρ[H l
ω(j = min)−E + t]

]}
Since ρ ≤ 0

∑
n∈N

ρ[λn(ω, j = max)− E + t]− ρ[λn(ω, j = min)− E + t]

≤ −
∑
n∈N

ρ[λn(ω, j = min)− E + t] ≤ CE+3ε l
d ≤ CE0+3 l

d(4.6)

by bound (iii) in Lemma 2.7.3. This proves Theorem 4.0.1.

Remark 4.1.4. The suboptimality of the volume bound in Theorem 4.0.1 is due to
the rough estimate (4.6). The right hand side of the inequality is the net increase
of the number of eigenvalues in the energy interval ]E − t− ε, E − t+ ε[ due to the
decrease of the j-th coupling constant from its maximal to its minimal value. This
quantity is expected to be independent of Λ. However, in (4.6) we estimated it by
the total number of eigenvalues below the energy E + 3ε, which is by Weyl’s law
proportional to the volume of Λ. Thus we get an extra volume factor in the upper
bound of the Wegner estimate.

4.2. Improved volume estimate. In [60] Combes, Hislop and Nakamura ob-
tained a Wegner estimate analogous to the one in the last section, but with upper
bound linear in the volume. The Wegner estimate they proof is somewhat weaker
in the energy parameter.

More precisely the main result in [60] may be formulated as follows. Let IG :=
]E−, E+[, IG ∩ σ(H0) = ∅ be a spectral gap of H0. Denote by H̃ l

ω the operator
H0 +

∑
k∈Λ̃l

ωku(· − k) and by P̃ l
ω the corresponding spectral projector.

Theorem 4.2.1. Let Hω be as in Definition 1.2.1 and assume additionally that the
periodic potential Vper is bounded below, 0 ≤ u ∈ Cc(Rd) and u is not identically
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equal to zero. Let E ∈ IG, 0 < ε0 := 1
2d(E, I

c
G) and α < 1 then there exists a finite

constant C such that

(4.7) E
{
Tr
[
P̃ l

ω(Bε(E))
]}
≤ C εα ld for all 0 ≤ ε < ε0 and l ∈ N

Note that H̃ l
ω is not an operator restricted to a bounded domain. This is the

reason, why the theorem does not apply to energies inside the unperturbed spectrum
σ(H0). Estimate (4.7) implies the Hölder continuity of the IDS outside the spectrum
of the unperturbed operator H0. A sharper bound, linear in ε, was obtained in [23].
However, its proof is based on a different technique, cf. Section 5. We will prove
here a slightly simpler fact than the above, namely

Theorem 4.2.2. Let Hω be as in Definition 1.2.1 and assume additionally that the
periodic potential Vper is bounded below, u ∈ Lp

c(Rd), p = p(d) and for some κ > 0

u ≥ κχ[0,1]d

Then, there exists for any E0 ∈ R and α < 1 a finite constant C such that

E
{
Tr
[
P l

ω(Bε(E)
]}
≤ C εα ld

for all ε ∈ [0, 1], E ≤ E0 and l ∈ N.

This result is proven in Section 3 of [189] using partially different methods. Note
that the earlier papers [193, 54] contain sharper estimates, cf. Section 5.

The fundamental contribution of [60] was that it replaced the Weyl-type volume
estimate (4.6), whose drawback we explained in Remark 4.1.4. We present now the
improved volume estimate of [60]. Together with the argument from the previous
§ 4.1 it proves Theorem 4.2.2.

The trace

(4.8) Tr
[
ρ[H l

ω(ω, j = max)− E + t]− ρ[H l
ω(ω, j = min)− E + t]

]
can be expressed using the spectral shift function ξ = ξ(·,H + U,H), abbreviated
SSF, of the pair of operators

H := H l
ω(ω, j = min) and H + U, where U = (ω+ − ω−)u(x− j)

The necessary estimates on the SSF are collected in Appendix A. Since the differ-
ence of our operators is not trace class, we have to use the indirect definition of the
SSF by the invariance principle, cf. (A.9). Let C0 ∈ R be such that Hω,H0 ≥ C0

for all ω and g(x) = (x− C0 + 1)−k for some k ∈ N.
For k > d+4

2 , k ∈ N the operator g(H+U)−g(H) is trace class and the invariance
principle implies

Tr
(
ρ(H + U − E − t)− ρ(H − E − t)

)
= −

∫
ρ′(λ)ξ

(
g(λ), g(H + U), g(H)

)
dλ

≤ −
(∫
ρ′(λ)qdλ

)1/q
(∫

suppρ′
ξ
(
g(λ), g(H + U), g(H)

)p
dλ

)1/p

(4.9)

In the last line we used the Hölder inequality and p, q ≥ 1 are conjugate exponents
1
p + 1

q = 1. Remember that we choose ρ depending on ε. Thus, its derivative is
bounded by ε−1 times a constant and(∫

ρ′(λ)qdλ
)1/q ≤ C

(
1/ε
) q−1

q
(∫
ρ′(λ)dλ

)1/q = C ε
1
q−1 = C ε

1
p
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Since on the support of ρ′ the function g is uniformly bounded away from zero a
transformation of variables gives

−
(∫

suppρ′
ξ(g(λ), g(H + U), g(H))p dλ

)1/p

≤ C

(∫
R
ξ(λ, g(H + U), g(H))p dλ

)1/p

= C ‖g(H + U)− g(H)‖1/p
J1/p

≤ C̃

where we used in the last line Theorems A.1 and A.6 from the Appendix. There
one can find the definition of the super-trace class ideal J1/p and its norm. The
constant C̃ is independent of the box Λl, the lattice site j, the configuration of the
coupling constants ωk, k 6= j, and of ε.

Hence we have a volume independent bound for (4.8), in contrast to the esti-
mate discussed in Remark 4.1.4. The bound is Hölder continuous in the energy
parameter. In view of Proposition 4.1.3 the proof of Theorem 4.2.1 is finished.

Remark 4.2.3. Recently Hundertmark, Killip and the author [137] found a different,
shorter way to prove the super-trace class estimates and to apply them to bound
the SSF. The basic observation is, that one can control the singular values of the
difference of two Schrödinger semigroups. In fact the singular values decay almost
exponentially, and the semigroup difference is therefore in any super-trace class
ideal.

We state without proofs their result on the decay of the singular values and the
estimate on the SSF it implies. For simplicity we consider here the case where the
magnetic vector potential is absent.

Theorem 4.2.4. Let H1 = −∆+V and H2 = H1 +u, with V, u ∈ L1
loc(Rd), V, u ≥

− 1
2C0. Denote by H l

1,H
l
2 the corresponding Dirichlet restrictions to the cube Λl =

[−l/2, l/2]d. Set V l
eff := e−Hl

1 −e−Hl
2 . There are finite positive constants c1, c2 such

that the singular values µn of the operator V l
eff obey

(4.10) µn ≤ c1 e
−c2 n1/d

The constants depend only on d, C0 and the diameter of the support of u.

Let ρ be a switch function as above.

Theorem 4.2.5. There is a constant depending only on d, C0, diam suppu and
E + ε such that

Tr
[
ρ(H l

2 − E)− ρ(H l
1 − E)

]
≤ const log(1 + 1/ε)d

for all ε > 0 and l ∈ N.

4.3. Sparse potentials. Form the physical point of view there are some inter-
esting models which have a potential

(4.11) Vω(x) =
∑
k∈Γ

ωku(x− k)

resembling the alloy type model. However, the set Γ may be much more general than
the lattice Zd. A class of particular interest are surface models where Γ = {0}×Zν

and ν < d is the dimension of a hyperplane in whose neighbourhood the potential
is concentrated. The literature on such models includes [48, 188, 189, 36], see also
[96, 97]. The results in this paragraph are taken from [172].
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Here we will consider arbitrary sets Γ, which are uniformly discrete in the fol-
lowing sense

sup
x∈Rd

#{Γ ∩ B1(x)} <∞

For uniformly discrete Γ the number of points of Γ contained in the cube Λl(x) can
be bounded linearly in the volume of the cube and independently of its centre x.

Consider a background Schrödinger operator H0 = −∆ + Vper with a periodic
potential Vper ∈ Lp

unif,loc(Rd) where p = p(d) is as in (1.1). By adding a constant
we may assume that inf σ(H0) = 0. Let Hω = H0 + Vω be an random operator
with an generalised alloy type potential Vω as in (4.11).

As before H l
ω stands for the restriction of Hω to the cube Λl with Dirichlet

boundary conditions (we may as well use Neumann or periodic ones), and P l
ω de-

notes the corresponding spectral projection.

Theorem 4.3.1. Assume that the single site potential u ∈ L∞c (Rd) is non positive,
and that the single site distribution µ has a density f ∈ L∞c ([0,∞[).

Then, for any α < 1 and −E′ < 0 there exists a finite C such that for any
E ∈ R, ε ≥ 0 satisfying E + 3ε ≤ −E′:

E
[
TrP l

ω(Bε(E))
]
≤ C εα ld

The proof of the theorem follows from the arguments of § 4.1 and § 4.2, once a
replacement for the estimate (4.5) has been established. This is provided by the
following lemma. Denote by Λ+

l = {k ∈ Γ| suppu(·−x)∩Λl 6= ∅} the set of indices
whose coupling constants influence the value of the potential in the cube Λl. Recall
that the supremum of the support of f is denoted by ω+.

Lemma 4.3.2. Assume that the n-th eigenvalue of the operator H l
ω satisfies

λl
n(ω) ≤ −E′ < 0. Then

ρ′(λl
n(ω)− E + t) ≤ ω+

E′

[
−
∑

k∈Λ+

∂ρ(λl
n(ω)− E + t)
∂ωk

]

Proof. Let ψn be the normalised eigenfunction corresponding to λl
n(ω). Then ψn

satisfies by definition 〈ψn, (H l
0 − λl

n(ω))ψn〉 = −〈ψn, Vωψn〉. We have∑
k∈Λ+

ωk 〈ψn,−uk(· − k)ψn〉 = −〈ψn, Vωψn〉 = 〈ψn, (H l
0 − λl

n(ω))ψn〉 ≥ E′

Now we have by the Hellmann-Feynman theorem

−
∑

k∈Λ+

∂λl
n(ω)
∂ωk

=
∑

k∈Λ+

〈ψn,−uk(·−k)ψn〉 ≥ ω−1
+

∑
k∈Λ+

ωk 〈ψn,−uk(·−k)ψn〉 ≥
E′

ω+

This gives

ρ′(λl
n(ω)− E + t) = −

[
−
∑

k∈Λ+

∂λl
n(ω)
∂ωk

]−1 ∑
k∈Λ+

∂ρ(λl
n(ω)− E + t)
∂ωk

≤ ω+

E′

[
−
∑

k∈Λ+

∂ρ(λl
n(ω)− E + t)
∂ωk

]
(4.12)

�
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Note that since ρ is monotone increasing and u is non-positive, (4.12) is a non-
negative real.

Related models and results as presented in this paragraph are discussed in Sec-
tion 3.1 of [57]. In [172] two more classes of generalised alloy type models are
analysed. Firstly, the case where the number of points in Γ ∩ B1(x) is not uni-
formly bounded, but grows at a controlled rate as x goes to infinity. Secondly,
the case where Γ is itself a random point process, for example of Poissonian type,
cf. also [54].

4.4. Locally continuous coupling constants. In this paragraph we present a
Wegner estimate which requires the coupling constants ωk to have a continuous
distribution merely in a neighbourhood of their extremal value ω+ = sup supp f .
Both the result and its proof are taken from [172].

Consider a background Schrödinger operator H0 = −∆ + Vper with a periodic
potential Vper ∈ Lp

unif,loc(Rd). Let Hω = H0 + Vω be an random operator with an
alloy type potential Vω. Assume that the coupling constants ωk, k ∈ Zd take values
in the bounded interval [ω−, ω+]. By modifying the periodic background potential
we may consider only the case that the coupling constants are non-negative. For a
value ωc ∈ [0, ω+] introduce the auxiliary periodic potential Vc = ωc

∑
k∈Zd u(x−k)

and the threshold energy Ec = inf σ(H0 + Vc).

Theorem 4.4.1. Assume that the single site potential u ∈ L∞c (Rd) is non positive,
and that the restriction of the single site distribution µc := µ|]ωc,ω+] has a density
f ∈ L∞.

Then, for any α < 1 and E′ < Ec there exists a C such that for any E ∈ R, ε ≥ 0
satisfying E + 3ε ≤ E′:

E
[
TrP l

ω(Bε(E))
]
≤ C εα ld

Proof. The value ωc is a critical one for the random variable ωk in the sense that
for ωk > ωc we know that it is continuously distributed, while for smaller values
we do not know anything. We introduce a corresponding decomposition of the
’probability’ space Ωl := ×k∈Λ+R ∼= RL. This is the part of the randomness on
which the restricted Hamiltonian H l

ω depends. For a given configuration of coupling
constants {ωk}k∈Λ+ set

Λac(ω) = {k ∈ Λ+|ωk > ωc}

This defines an equivalence relation on Ωl by setting for any A ⊂ Λ+

Ω(A) := {ω|Λac(ω) = A}

Consequently

(4.13)
∑

A⊂Λ+

∫
RL

∏
k∈Λ+

dµk(ωk)χΩ(A)(ω) = 1.

Split the potential now into two parts, a singular and an absolutely continuous one.
The singular one

V s
ω (x) :=

∑
k∈Λ+,ωk≤ωc

ωkuk(x− k) +
∑

k∈Λ+,ωk>ωc

ωcuk(x− k) ≥ Vc(x)
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will be considered as part of the background operator, while the absolutely contin-
uous one

V ac
ω (x) :=

∑
k∈Λ+,ωk>ωc

rkuk(x− k) =
∑

k∈Λac

rkuk(x− k), with rk = ωk − ωc > 0

will be used for spectral averaging.
Consider an eigenvalue λl

n ≤ E′ < Ec and an eigenfunction H l
ωψn = λl

nψn and
set δ = Ec − E′. We have

−〈ψn, V
ac
ω ψn〉 = 〈ψn, (H l

0 + V s
ω − λl

n)ψn〉 ≥ 〈ψn, (H l
0 + Vc − λl

n)ψn〉 ≥ δ

which implies similarly as in Lemma 4.3.2

−
∑

j∈Λac

∂λn(ω)
∂ωj

≥ 1
ω+ − ωc

∑
j∈Λac

rj 〈ψn,−uj(·−j)ψn〉 = −〈ψn, V
ac
ω ψn〉

ω+ − ωc
≥ δ

ω+ − ωc

Consider first the case ∅ 6= A ⊂ Λ+ and estimate∫
RL

∏
k∈Λ+

dµ(ωk)χΩ(A)(ω)
∑
n∈N

∫ 2t

−2t

ρ′(λn(ω)− E + t)

≤ ω+ − ωc

δ

∫
RL

∏
k∈Λ+

dµ(ωk)χΩ(A)(ω)
∑
n∈N

∫ 2t

−2t

dt

− ∑
j∈Λac

∂ρ(λn(ω)− E + t)
∂ωj


As we know that all sites j ∈ Λac correspond to coupling constants ωj with values
in the absolutely continuous region of the conditional density f we may estimate
as in § 4.1:

−
∑
n∈N

∫
R
dµ(ωj)χΩ(A)(ω)

∂ρ(λn(ω)− E + t)
∂ωj

= −
∑
n∈N

∫ ω+

ωc

f(ωj)dωj
∂ρ(λn(ω)− E + t)

∂ωj

≤ ‖f‖∞
∑
n∈N

[ρ(λn(ω, ωj = ωc)− E + t)− ρ((λn(ω, ωj = ω+)− E + t)]

which can be estimated as in § 4.2. We have to say something how we deal with the
special case A = ∅. In this situation V ac

ω ≡ 0 and Hω = H0 + V s
ω ≥ H0 + Vc ≥ Ec.

Thus there are no eigenvalues in the considered energy interval for this potential
configuration.

Finally we use the decomposition (4.13) to finish the proof:

E
(
TrP l

ω([E − ε, E + ε])
)

≤
∑

A⊂Λ+

∫
RL

∏
k∈Λ+

dµ(ωk)χΩ(A)(ω)
∑
j∈A

(ω+ − ωc)
δ

4ε‖f‖∞C(α)εα−1

≤ 4C(α)
(ω+ − ωc)

δ
‖f‖∞εαld

�
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4.5. Potentials with small support. In § 4.1 we used in a crucial step in the
derivation of the Wegner estimate that the single site potentials were lower bounded
by a partition of unity ∑

k∈Zd

u(x− k) ≥ κ on Rd

It is of natural interest, whether a Wegner estimate holds if this condition is relaxed.
In this paragraph we consider the case that u is of fixed sign, but has small support.
More precisely, we assume throughout this paragraph merely that there is an open
set O ⊂ Rd and a positive κ such that

(4.14) u(x) ≥ κχO

The first Wegner estimates under this relaxed condition on the single site potential
were derived for spectral boundaries, i.e. for energies either near the bottom of the
spectrum, or near an internal spectral boundary. The case of the infimum of the
spectrum was treated e.g. in [180, 159], and internal spectral boundaries in [170].
These works derived a Wegner estimate where the volume dependence of the bound
was growing faster than linearly. Thus they were not sufficient to derive a result on
the regularity of the IDS, cf. our discussion in § 3.1. A linear bound for the same
energy regimes was found in [23, 60].

By now there are Wegner estimates which under the relaxed condition (4.14)
derive Wegner estimates valid for any bounded interval on the energy axis. We
consider first the one-dimensional case where the result is particularly clear and
the proof simple. We follow [171] in the presentation, see [122, 56] for other proofs.

Assume that the single site potential u and the periodic potential Vper are
bounded.

Theorem 4.5.1. Assume that u is compactly supported and obeys (4.14). For any
E0 ∈ R there exist a constant C such that

(4.15) E
[
TrP l

ω(Bε(E))
]
≤ C ε l, ∀ ε ∈ [0, 1], E ≤ E0, l ∈ N

Thus the IDS is Lipschitz-continuous.

Proof. First we show how to replace (4.4) in the case of small support. By shifting
the origin of Rd we may assume without loss of generality that there is a s > 0
such that Λs(0) ⊂ O. Likewise, we may assume κ = 1 by rescaling the single site
potential and the coupling constants.

We set S =
⋃

k∈Λ̃ Λs(k). The Hellmann-Feynman theorem gives us∑
k∈Λ̃

∂λl
n(ω)
∂ωk

=
∑
k∈Λ̃

〈ψn, u(· − k)ψn〉 ≥
∫

S

|ψn|2.

where ψn is a normalised eigenfunction corresponding to λl
n(ω).

If the integral on the right hand side would extend over the whole of Λl it would
be equal to 1 due to the normalisation of ψn. A priori the integral over S could be
arbitrary close to zero, but the following Lemma shows that this is not the case.

Lemma 4.5.2. Let I be a bounded interval and s > 0. There exists a constant
c > 0 such that ∫

Λs(k)

|ψ|2 ≥ c

∫
Λ1(k)

|ψ|2
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for all l ∈ N, all k ∈ Λ̃l and for any eigenfunction ψ corresponding to an eigenvalue
E ∈ I of H l

ω.

Proof of the Lemma. For

φ(y) :=
∫

Λs(k+y)

dx |ψ(x)|2 =
∫

Λs(k)

dx |ψ(x− y)|2

one has∣∣∣∣ ∂∂yφ(y)
∣∣∣∣ =

∣∣∣∣∣
∫

Λs(k)

dx

[
∂

∂y
ψ(x− y)

]
ψ(x− y) +

∫
Λs(k)

dxψ(x− y)
∂

∂y
ψ(x− y)

∣∣∣∣∣
≤ 2 ‖ψ‖L2(Λs(k+y)) ‖ψ

′‖L2(Λs(k+y)) .

Sobolev norm estimates (e.g. Theorems 7.25 and 7.27 in [124]) imply

‖ψ′‖L2(Λs(k+y)) ≤ C5 ‖ψ‖L2(Λs(k+y)) + ‖ψ′′‖L2(Λs(k+y))

By the eigenvalue equation we have

(4.16)
∣∣∣∣ ∂∂yφ(y)

∣∣∣∣ ≤ C6 ‖ψ‖2L2(Λs(k+y)) = C6 φ(y), C6 = C6(‖Vper +Vω −E‖∞)

Gronwall’s Lemma implies φ(y) ≤ exp(C6|y|)φ(0) and thus∫
Λ1(k)

|ψ|2 ≤ eC6 s−1

∫
Λs(k)

|ψ|2

�

Thus
∫

S
|ψ|2 ≥ c

∫
Λl
|ψ|2 with the same constant as in Lemma 4.5.2.

It remains to estimate the spectral shift

(4.17)
∑
n∈N

[
ρ(λl

n(ω, j = max)− E + t)− ρ(λl
n(ω, j = min)− E + t)

]
We may assume without loss of generality that the single site potential u is sup-
ported in the interval [−R,R]. Introduce now the operator H l,D

ω (j = max) which
coincides with H l

ω(j = max) up to additional Dirichlet boundary conditions at the
points j − R and j + R. Likewise, H l,N

ω (j = min) coincides with H l
ω(j = min) up

to additional Neumann boundary conditions at the same points. Their eigenvalues
are λl,D

n (ω, j = max) and λl,N
n (ω, j = min), respectively. By Dirichlet-Neumann

bracketing, the square brackets in (4.17) are bounded by

ρ(λl,D
n (ω, j = max)− E + t)− ρ(λl,N

n (ω, j = min)− E + t)(4.18)

Since for both ∗=D,N the Hamiltonian H l,∗
ω is a direct sum of an operator Hj,∗

ω

acting on L2(j−R, j+R) and another one Hc,∗
ω acting on L2(Λl \ [j−R, j+R]) the

sum over the terms in (4.18) can be separated:∑
n

ρ(λc,D
n (ω)− E + t)− ρ(λc,N

n (ω)− E + t)(4.19)

+
∑

n

ρ(λj,D
n (ω, j = max)− E + t)− ρ(λj,N

n (ω, j = min)− E + t)(4.20)
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Note that the eigenvalues in (4.19) are independent of ωju(· − j). Since the differ-
ence in the boundary conditions is a rank two perturbation in resolvent sense (see
e.g. [282]), the interlacing theorem says that

ρ(λc,D
n (ω, j = max)− E + t) ≤ ρ(Ec,N

n+2(ω, j = max)− E + t)

A telescoping argument bounds the whole sum in (4.19) by twice the total variation
of ρ, which is equal to one. The sum in (4.20) we estimate by

Tr
[
χ[E−3ε,∞[(Hj,D

ω (j = max))− χ]E+3ε,∞[(Hj,N
ω (j = min))

]
≤ 2 + Tr

[
χ[E−3ε,∞[(Hj,D

ω (j = min) + ‖uj‖∞)− χ]E+3ε,∞[(Hj,D
ω (j = min))

]
which is bounded by a constant, that is independent of Λl, j ∈ Λ̃l and ε > 0 (on
which ρ depends). �

In the remainder of this section we give an overview of various Wegner estimates
which are based or related to techniques presented at the beginning of Section 4.
However, we refrain from giving the proofs of this results but refer to the original
articles.

In [56] Combes, Hislop and Klopp study multi-dimensional alloy type models
with single site potentials of small support, and establish the Hölder continuity of
the IDS at all energies. They consider the case where the single site potential u ∈
L∞c (Rd) is non-negative and not identically equal to zero, and treat three different
situations. In all of them the unperturbed background operator H0 = (−i∇−A)2+
V0 may include a magnetic vector potential A and a (scalar) electric potential V0.
They have to satisfy some regularity conditions such that H0 is selfadjoint and has
C∞0 (Rd) as an operator core. The coupling constants are distributed according to
a bounded, compactly supported density.

(i) The background operator H0 has an IDS N0, which is Hölder continuous

|N0(E2)−N0(E1)| ≤ C0|E2 − E1|α̃

with Hölder exponent α̃ ∈]0, 1]. The constant C0 = C0(I) can be chosen
uniformly for E2, E1 in a given compact interval I.

(ii) The background operator H0 is periodic with respect to the lattice Zd and has
the unique continuation property, cf. for instance [327]. The set {x|u(x) > 0}
contains an open subset of Rd.

(iii) Let the space dimension be d = 2. Let H0 = (−i∇−A)2 + Vper be a Landau
Hamiltonian with vector potential A(x1, x2) = B

2 (−x2, x1) where B > 0 is
the (constant) magnetic field strength. The magnetic flux trough a unit cell
satisfies the rationality condition

(4.21) B ∈ 2πQ
The scalar potential Vper is a Zd-periodic function in L2

loc(Rd).
In case (i) set αc = α̃

α̃+2 , otherwise αc = 1.
In a follow up work [58] on the Landau Hamiltonian in collaboration with Raikov

condition (4.21) has been removed.

Theorem 4.5.3. Let Hω be an alloy type model satisfying either one of the above
conditions (i)–(iii). Then, for each α ∈]0, αc[, the IDS of Hω is Hölder continuous
at all energies, with Hölder exponent α.
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4.6. Hölder continuous coupling constants. There is special interest to ex-
tend the known Wegner estimates to coupling constants with singular distribution.
The reason is the intuitive interpretation of the coupling consonants as nuclear
charge numbers modulating the strength of atomic potentials. In this case their
distribution would correspond to a pure point measure.

So far the best result in this direction for multi-dimensional alloy type models
was obtained by Stollmann in [294]. In Remarks 3.1.1 and 3.2.1 we mentioned
already results for one-dimensional models with singular randomness.

Stollmann’s result applies to a single site measure µ which has compact support
[ω−, ω+] and which is merely Hölder continuous. For ε ≥ 0 denote

s(ε) := s(µ, ε) := sup{µ([a, b])| b− a ≤ ε}

Theorem 4.6.1. Let Hω be an alloy type model as in Definition 1.2.1, but let
the single site measure be merely Hölder continuous. Assume additionally that the
single site potential obeys u ≥ χ[0,1]d . Then for any E ∈ R there exists a constant
C such that for any open interval I ⊂]−∞, E[ and any l ∈ 2N

P{ω|σ(H l
ω) ∩ I 6= ∅} ≤ C s(|I|) l2d

holds.

4.7. Single site potentials with changing sign. First Wegner estimates for
indefinite alloy type potentials were derived in [180]. In [134] Hislop and Klopp
combine the techniques from [180] and [60] to prove a Wegner estimate valid for
general indefinite single site potentials and for energy intervals at edges of σ(Hω).
They assume the single site potential u ∈ Cc(Rd) satisfies u(0) 6= 0. The density
f ∈ L∞c of the random variable ω0 (which may be in fact the conditional density
with respect to ω⊥0 := (ωk)k 6=0) is assumed to be piecewise absolutely continuous.
For any α < 1 and any compact energy interval I strictly below the spectrum of
the unperturbed operator H0 they prove

P{σ(H l
ω) ∩ I 6= ∅} ≤ C |I|α ld

where the constant C depends only on α, d and the distance between the interval
I and σ(H0). With a sufficiently small global coupling constant λ the same result
holds for the operator H0 +λVω for I in an internal spectral gap of H0. The results
of [134] extend to more general models including certain operators with random
magnetic field.

In § 5.5 we discuss in more detail an alternative technique to obtain a Wegner
estimate valid for single site potentials which change sign. It applies to a more
restricted class of potentials but yields stronger results. In particular, it proves the
Lipschitz continuity of the IDS at all energies.

4.8. Uniform Wegner estimates for long range potentials. Kirsch, Stoll-
mann and Stolz proved in [169] a Wegner estimate for single site potentials which
do not need to have compact support, but merely need to decay sufficiently fast.
They consider u of polynomial decay

(4.22) |u(x)| ≤ C(1 + |x|2)−m/2

where m > 0 is required to be larger than 3d. For certain applications they can
also deal with the case where m is only larger than 2d, cf. [168, 329].
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For such single site potentials the restrictions of the alloy type potential to
two finite cubes may be correlated, even if the cubes are far apart. This makes
it necessary to use a enhanced version of the multiscale analysis for the proof of
localisation. Among others, this requires a uniform Wegner estimate. By this we
mean a Wegner estimate for the Hamiltonian H l

ω restricted to the cube Λl which
is uniform in the coupling constants ωk with index ‖k‖∞ > r where r is a function
of l.

To formulate the Wegner estimate from [169] let us first introduce some notation.
For any cube Λ ⊂ Rd and Λ̃ = Λ ∩ Zd we denote by ΠΛ the projection

ΠΛ : Ω 7→ ×̃
Λ

suppµ ΠΛ(ω) := {ωk}k∈Λ̃

For a measurable set A ⊂ Ω we denote by A∗Λ the cylinder set

A∗Λ := Π−1
Λ (ΠΛA) = {ω ∈ Ω| ∃ω′ ∈ A such that ΠΛ(ω′) = ΠΛ(ω)}

The following observation plays a crucial role in the enhanced multiscale analysis.

Lemma 4.8.1. For two disjoint cubes Λ,Λ′ and two events A,B ∈ Ω, the induced
events A∗Λ and B∗Λ′ are independent.

The following lemma allows one to turn a ’usual’ Wegner estimate, as we have it
discussed before, into a uniform Wegner estimate. It relies on the polynomial decay
of the single site potential (4.22). Let I be a compact interval, E ∈ I and ε ∈]0, 1].
We denote by A(E, ε, l) the event {ω| d(E, σ(H l

ω)) < ε} and use the abbreviations
Πl := ΠΛl

, A∗l := A∗Λl
.

Lemma 4.8.2. Under the above assumptions there exists a finite constant c, inde-
pendent of ω ∈ Ω, l, r ∈ N and ε ≤ 1 such that

P{A(E, ε, l)∗l+r} ≤ P{A(E, ε+ cr−(m−d), l)}

Proof. By definition, for an ω ∈ A∗l+r there exists an ω′ ∈ A such that

Πl+rω
′ = Πl+rω

Thus, the coupling constants of ω and ω′ with index k within the cube of size l+ r
coincide and we have for x ∈ Λl

|Vω(x)− Vω′(x)| ≤
∑

|k|∞>l+r

|ωk − ω′k|u(x− k) ≤ c′
∑

|k|∞>l+r

|x− k|−m ≤ cr−(m−d)

Therefore d(E, σ(H l
ω′)) < ε implies d(E, σ(H l

ω)) < ε+ cr−(m−d), which proves the
lemma. �

Let us have a look on the implications of the preceding lemma for a concrete
example. Assume that the single site potential is bounded below on the unit cube
around zero by κ > 0. Then we have by Theorem 5.0.3

P
{
ω|σ(H l

ω) ∩ [E − ε, E + ε] 6= ∅
}
≤ CW (I) ε ld

for all E, ε such that [E− ε, E+ ε] is contained in the open interval I. This Wegner
estimate implies its uniform analog

(4.23) P
({
ω|σ(H l

ω) ∩ [E − ε, E] 6= ∅
}∗

l+r

)
≤ CW (I) (ε+ cr−(m−d)) ld

for sufficiently large r > 0. In the application in the multiscale analysis, both ε
and r are chosen as functions of l. From the estimate in (4.23) it might seem to be



56 I. VESELIĆ

sufficient to choose m > d. This is also the minimal requirement to make the alloy
type model with long range single site potentials well defined as a densely defined
operator. However, for technical reasons, for the multiscale analysis to work one
has to assume at least m > 2d. Under this assumption one can prove that the
spectrum of Hω is almost surely pure point near its bottom, and the corresponding
eigenfunctions decay faster than any polynomial, [168, 329]. To obtain exponential
decay of the eigenfunctions, one has to require m > 3d [169].

In the paper [329] by Zenk the above results have been extended to a model
which incorporates random displacements of the single site potentials.

5. Lipschitz continuity of the IDS

In [193] Kotani and Simon extended to continuum alloy type models certain
arguments previously used for the derivation of Wegner’s estimate for the discrete
Anderson model. They treated only the case where the single site potential is the
characteristic function of the unit cube, but Combes and Hislop showed in [54] that
the same argument extends to non-negative single site potentials with uniform lower
bound on the unit cube. There also some steps of the proof have been streamlined.

One of the ideas in [193] is that in the same way as rank one perturbations are
used for discrete Laplacians, positive perturbations may be used in the continuum
case. This is related to the Aronszajn-Donoghue Theory [16, 17, 18, 83]. See
[45, 192, 283, 282] for more background and references. This was essential, since
a finite rank potential in the continuum may be a Dirac distribution, but not a
function.

Theorem 5.0.3. Let Hω as in Definition 1.2.1 and assume additionally that there
exists an κ > 0 such that

u ≥ κχ[−1/2,1/2]d

Then for all E ∈ R there exists a constant CW = CW (E) such that for all l ∈ N
and all intervals I ⊂]−∞, E]

(5.1) E
{
Tr
[
P l

ω(I)
]}
≤ CW |I| ld

Remark 5.0.4. (a) It is sufficient to prove the theorem for the case κ = 1. Since
ω0u = κω0 κ

−1u, the general case follows by rescaling the coupling constants and
single site potentials.

(b) The statement of the theorem remains true if one uses Neumann or periodic
boundary conditions for H l

ω.
(c) An explicit formula for the Wegner constant CW is given in (5.17). Since

(5.1) is linear in the volume it follows |N(E2) − N(E1)| ≤ CW |E2 − E1|. Thus,
as we discussed already in § 3.1, the density of states n(E) := dN(E)/dE exists
almost everywhere and is bounded by n(E) ≤ CW (E2) for all E ≤ E2.

The next four paragraphs are devoted to the proof of Theorem 5.0.3. Up to some
modifications we follow the line of argument in Section 4 of [54].

5.1. Partition of the trace into local contributions. In the present paragraph
we derive preparatory estimates on

(5.2) E
{
TrP l

ω(I)
}

where we do not yet use the specific alloy-type structure of the potential. They
have two aims. Firstly, to decompose the trace to contributions of unit cubes
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in Λl. This will later facilitate the averaging procedure with respect to random
parameters, whose effect on the potential is felt only locally. Secondly, it allows us
to reduce the averaging of the trace of the spectral projection to the averaging of
the quadratic form of the resolvent. The latter is technically easier to perform.

Denote by ∆l and ∆l
N the Laplace operator on Λl with Dirichlet, respectively

Neumann boundary conditions. In § 1.2 we saw that the potential V = Vper +Vω is
infinitesimally bounded with respect to −∆ and that the constants in the bound can
be chosen uniformly in ω ∈ Ω. This implies that V is infinitesimally form bounded
with respect to any of the operators −∆, −∆l and −∆l

N with bounds uniform
in ω ∈ Ω, l ∈ N and the choice of Dirichlet or Neumann boundary conditions.
Consequently, there is a C0 <∞ such that for all ω ∈ Ω and l ∈ N

|〈φ, V φ〉| ≤ 1
2
〈φ,−∆l

Nφ〉+ C0‖φ‖2

which implies

(5.3) 〈φ,H l
ωφ〉 ≥ 〈φ,−1

2
∆l

Nφ〉 − C0‖φ‖2 ≥ −C0‖φ‖2

Thus H l
ω + C0 is a non-negative operator.

Definition 5.1.1. A monotone decreasing, convex function r : [0,∞[→]0,∞[ such
that

(5.4) CTr := CTr(r) :=
∑

n∈Zd,nj≥0

r

(
π2

2

d∑
j=1

n2
j

)
<∞

will be called trace regularising.

Throughout the rest of this section we denote by Λ the unit cube centred at zero.

Remark 5.1.2. The bound (5.4) means that the operator r(− 1
2∆N

Λ ) has finite trace.
Namely, the eigenvalues of the Neumann Laplacian on the unit cube are given by

π2
d∑

j=1

n2
j for all n ∈ Zd such that nj ≥ 0, j = 1, . . . , d

cf. for instance [256], page 266. By the spectral mapping theorem the eigenvalues
of r(− 1

2∆N
Λ ) are just r

(
1
2π

2
∑d

j=1 n
2
j

)
.

Examples of functions r which are trace-regularising are the exponential func-
tions r : x 7→ e−tx for t > 0. They have been used in [54] to implement the procedure
outlined in this section. Another choice for r is a sufficiently high power of the re-
solvent x 7→ (x + 1)−k for k > d/2, which was used in [193]. That the operator
x 7→ (− 1

2∆N
Λ + 1)−k is actually trace class can be inferred from [279].

The possibility to choose r from a large class of functions is of interest if one
wants to give explicit upper bounds on the density of states. For instance, Section
3.2 of [141] is devoted to deriving such explicit upper estimates. However, there,
following [54], the function r(x) = e−tx is used. Due to this choice, the upper
bound on the density of states is exponentially growing in the energy. This can
be improved to a merely polynomial growing bound. Furthermore, if one studies
coupling constants which may take on arbitrarily negative values, the choice of r
will determine which moment conditions one has to impose on the negative part of
ω0, see also § 5.6.
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Proposition 5.1.3. With C0 as in (5.3)

E
{
TrP l

ω(I)
}
≤ r(E2 + C0)−1 CTr(r)

∑
j∈Λ̃l

∥∥E {χjP
l
ω(I)χj}

∥∥
Proof. Since 1

r is well-defined and bounded on the compact interval I := [E1, E2],
we have

Tr
[
P l

ω(I)
]

= Tr
[
r(H l

ω + C0)−1 P l
ω(I) r(H l

ω + C0)
]

Furthermore, by spectral calculus and since for positive operators A,B we have
Tr(AB) ≤ ‖A‖ Tr(B), the above line is bounded by

r(E2 + C0)−1Tr
[
P l

ω(I) r(H l
ω + C0)

]
According to the direct sum decomposition

L2(Λl) =
⊕
j∈Λ̃l

L2(Λ + j)

we consider the Laplace operators −∆j,N on L2(Λ + j) with Neumann boundary
conditions. Dirichlet-Neumann bracketing implies

(5.5) H l
ω + C0 ≥ −1

2
∆l

N ≥ −1
2

⊕
j∈Λ̃l

∆j,N =: ⊕H

For a normalised eigenfunction φ of H l
ω corresponding to the eigenvalue λ we have

by the spectral mapping theorem

〈φ, r(H l
ω + C0)φ〉 = r(λ+ C0) = r(〈φ, (H l

ω + C0)φ〉) ≤ r(〈φ,⊕Hφ〉)(5.6)

Applying Jensen’s inequality to the spectral measure of ⊕H we estimate (5.6) from
above by 〈φ, r(⊕H)φ〉. Let φn, n ∈ N be an orthonormal basis of eigenvectors of
H l

ω with corresponding eigenvalues λn, n ∈ N. We apply the above estimates to the
trace

Tr
[
P l

ω(I)r(H l
ω + C0)

]
≤

∑
n∈N,λn∈I

〈φn, r(H l
ω + C0)φn〉

≤
∑

n∈N,λn∈I

〈φn, r(⊕H)φn〉 ≤ Tr
[
P l

ω(I)r(⊕H)
]

For the next step we write down the trace with respect to different basis. For each
j ∈ Λ̃ let {ψj

n|n ∈ N} be an orthonormal basis of L2(Λ+j), then {ψj
n|n ∈ N, j ∈ Λ̃}

is an orthonormal basis of L2(Λl). Since r(⊕H)ψj
n = χjr(− 1

2∆j,N )χjψ
j
n it follows

for the trace

Tr
[
P l

ω(I)r(⊕H)
]

=
∑
j∈Λ̃l

∑
n∈N

〈ψj,n, P
l
ω(I)r(⊕H)ψj,n〉

=
∑
j∈Λ̃l

∑
n∈N

〈ψj,n, χjP
l
ω(I)χjr(− 1

2∆j,N )χjψj,n〉

=
∑
j∈Λ̃l

Tr
[
χjP

l
ω(I)χjr(− 1

2∆j,N )χj

]
.
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Thus we have decomposed the trace to contributions from each unit cube. We
summarize the estimates so far:

TrP l
ω(I) ≤ r(E2 + C0)−1

∑
j∈Λ̃l

Tr
[
χjP

l
ω(I)χjr(− 1

2∆j,N )χj

]
Since I is a bounded interval and Vper +Vω is an infinitesimally small perturbation
of −∆l independently of ω, it follows that the dimension of P l

ω(I)L2(Λl) is bounded
by a constant C3 uniformly in ω. Thus

Tr
[
χjP

l
ω(I)χjr(− 1

2∆j,N )χj

]
≤ C3 r(0) for all ω ∈ Ω

is an upper bound by an integrable majorant and we are able to interchange the
trace and the expectation by Lebesgue’s theorem on dominated convergence

E
{
Tr
[
χjP

l
ω(I)χjr(− 1

2∆j,N )χj

]}
= Tr

[
E
{
χjP

l
ω(I)χjr(− 1

2∆j,N )χj

}]
= Tr

[
E
{
χjP

l
ω(I)χj

}
χjr(− 1

2∆j,N )χj

]
≤
∥∥E

{
χjP

l
ω(I)χj

}∥∥ Tr
[
r(− 1

2∆0,N )
]

By assumption, r is trace regularising, so the trace in the last line is finite. �

5.2. Spectral averaging of resolvents. Now we consider how resolvents are av-
eraged when integrated over a random parameter. Together with the partition
result in the previous paragraph § 5.1 this will enable us to complete in § 5.4 the
proof of Theorem 5.0.3.

Apart from this, the spectral averaging result bears in itself a meaning. Consider
a nonnegative operator H with discrete spectrum. Its resolvent R(E) = (H−E)−1

has singularities at the eigenvalues ofH which are of the form (λn−E)−1, λn ∈ σ(H)
and thus are not integrable over the energy axis. In other words, for a general
vector φ the function E 7→ 〈φ,R(E)φ〉 will not have a convergent integral. Now,
if H = Hλ depends on a random parameter λ, we might hope that the averaged
resolvent E 7→

∫
dP(λ)〈φ,Rλ(E)φ〉 will be integrable. This would mean that the

singularities of the resolvent have been smeared out sufficiently by the integral over
λ. The lemma in this paragraph shows that this is actually the case for operators
which depend in a specific way on the random parameter.

Consider the following operators on a Hilbert space H. Let H be a selfadjoint
operator, W symmetric and infinitesimally bounded with respect to H, and J non-
negative with J2 ≤W . Choose two parameters

z ∈ C− := {z ∈ C| Im z < 0}
ζ ∈ C+ := {ζ ∈ C| Im ζ ≥ 0}

and set

(5.7) H(ζ) := H + ζ W, K(ζ, z) := J(H(ζ)− z)−1J

The following lemma is a slight generalisation of Lemma 4.1 in [54].

Lemma 5.2.1. For all z ∈ C−, all t > 0 and any normalised φ ∈ H we have

(5.8)
∣∣∣∣∫

R
〈φ,K(ζ, z)φ〉 dζ

1 + tζ2

∣∣∣∣ ≤ π

Proof. By Pythagoras we have |〈φ, (A+iB)φ〉|2 = |〈φ,Aφ〉|2+|〈φ,Bφ〉|2 for any two
selfadjoint operators A,B. Thus the norm of K(ζ, z) is bounded by | Im z|−1 ‖J‖2.
On the other hand, the equation

− ImK(ζ, z) = B[(H(ζ̄)− z̄)−1[(Im ζ)W − Im z](H(ζ)− z)−1]B
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implies

(5.9) ‖K(ζ, z)‖ ≤ | Im ζ|−1

Here we used that W (H(ζ)− z)−1 is a bounded operator. Now observe that for all
z ∈ C− the function ζ 7→ K(ζ, z) is holomorphic and bounded on C+. The residue
theorem, integration over a closed curve in C and the bounds on K imply

(5.10)
∣∣∣∣∫

R
〈φ,K(ζ, z)φ〉 dζ

1 + tζ2

∣∣∣∣ = π√
t
‖K
(
i/
√
t, z
)
‖

Together with (5.9), this completes the proof. �

Remark 5.2.2. The lemma shows that for the particular family of operators H(ζ) in
(5.7), where ζ is a random variable with measure dζ

1+tζ2 , the ζ-averaged resolvents
are indeed integrable with respect to the energy. Thus the singularities of the
resolvent have been smeared out.

5.3. Stone’s formula and spectral averaging of projections. Stone’s formula
allows one to express the spectral projection in terms of the resolvent. This is handy
because the resolvent has some nice analytic properties. In our case we use Stone’s
formula to derive the analog of (5.8) for spectral projections.

A sequence of bounded operators An, n ∈ N on the Hilbert space H converges
strongly (or in strong topology) to A if for every φ ∈ H

lim
n→∞

‖Aφ−Anφ‖ = 0

Lemma 5.3.1 (Stone’s formula). Let H be a selfadjoint operator with spectral
family denoted by P (·). Then the following limit holds in the strong topology

lim
δ↘0

1
2πi

∫ E2

E1

[
(H − E − iδ)−1 − (H − E + iδ)−1

]
dE

=
1
2

[
P
(
[E1, E2]

)
+ P

(
]E1, E2[

)]
Proof. The function

fδ(x) :=
1
π

(
arctan

x− E1

δ
− arctan

x− E2

δ

)
(5.11)

=
1

2πi

∫ E2

E1

[
(x− E − iδ)−1 − (x− E + iδ)−1

]
dE

= − 1
π

Im
∫ E2

E1

(x− E + iδ)−1dE

converges for δ ↘ 0 to
1
2
(
χ[E1,E2] + χ]E1,E2[

)
.

Now one applies the spectral theorem to fδ(H). �

More details on Stone’s formula can be found in [258], or [326] where the spectral
calculus is actually introduced in this way in Section 7.3.

Now let H(ζ) be as in the last paragraph and P (ζ, I) the corresponding spectral
projection onto an interval I. For a normalised vector ψ in H denote P (ζ) :=
〈ψ, JP (ζ, I)Jψ〉. The next lemma contains a spectral averaging estimate for P.
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Lemma 5.3.2. Let ρ ∈ L∞(R) ∩ L1(R). Then

(5.12)
∫

R
ρ(ζ)P (ζ) dζ ≤ ‖ρ‖∞|I|

While Combes and Hislop [54] considered only compactly supported ρ, it was first
observed in [107] that densities with non-compact support can be treated. There
this extension was necessary to derive estimates for Gaussian random potentials.

Proof. We first consider the special density dζ
1+tζ2 and an open interval I. By Stone’s

formula

(5.13)
∫

R

dζ

1 + tζ2
P (ζ) ≤ −

∫
R

dζ

1 + tζ2
lim
δ→0

1
π

Im
∫

I

dE〈ψ,K(ζ, E − iδ)ψ〉

Note that dζ
1+tζ2 is a finite Borel measure on R and that (5.11) implies that |fδ(·)|,

and hence ‖fδ(H(ζ))‖, is bounded by one. Thus we may apply the dominated
convergence theorem to interchange the limit and the integration, and bound (5.13)
by

(5.14)
1
π

lim
δ→0

∣∣∣∣∫
I

dE

∫
R

dζ

1 + tζ2
〈ψ,K(ζ, E − iδ)ψ〉

∣∣∣∣ ≤ |I|

The last inequality follows from Lemma 5.2.1. This implies for all ρ ∈ L∞ with
compact support:∫

R
ρ(ζ)P (ζ) dζ ≤ sup

suppρ

[
ρ(ζ)(1 + tζ2)

] ∫
R

P (ζ)
1 + tζ2

dζ

≤ sup
suppρ

[
ρ(ζ)(1 + tζ2)

]
|I|

→ ‖ρ‖∞ |I| for t→ 0

Finally, assume only that ρ ∈ L∞ ∩ L1. Set ρy = ρχ{x| |x|<y} and decompose
ρ = ρy + ρy. For y → ∞, ρy tends to zero pointwise. Since P is bounded by one,
ρ ∈ L1(R, dζ) is a y-uniform majorant for ρyP and we may apply the dominated
convergence theorem to conclude

(5.15)
∫

R
ρ(ζ)P (ζ) dζ = lim

y→∞

∫
R
ρy(ζ)P (ζ) dζ ≤ ‖ρ‖∞ |I|

If I is not open, we write it as an intersection of open, decreasing sets and use
monotone convergence to conclude (5.12). �

5.4. Completion of the proof of Theorem 5.0.3. The results on the localisa-
tion of the trace to unit cubes and spectral averaging of projections allow us to
assemble the proof of Theorem 5.0.3.

To estimate the operator norm appearing in Proposition 5.1.3 we may as well
bound the corresponding quadratic form since

(5.16)
∥∥E

{
χjP

l
ω(I)χj

}∥∥ = sup
‖φ‖=1

〈φ, E
{
χjP

l
ω(I)χj

}
φ〉

Now one can apply Fubini’s Theorem and Lemma 5.3.2 with the choice ρ = f ,
H = L2(Λl), J = χj , H = H0 +

∑
k∈Λ̃\j ωk u(· − k), ζ = ωj and W = u(x− j):

〈φ, E
{
χjP

l
ω(I)χj

}
φ〉 ≤ ‖f‖∞ |I|
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This bound is j-independent and thus yields

(5.17) E
{
TrP l

ω(I)
}
≤ r(E2 + C0)−1 CTr(r) ‖f‖∞ |I| |Λ̃l|

�
Now it becomes clear why we introduced the operator r(H l

ω+C0)−1r(H l
ω+C0) =

Id in Proposition 5.1.3: without this regularisation of the trace we could have
estimated

E {TrχjP
l
ω(I)χj} ≤ const. |I| |Λ̃l|

However, this would lead to a Wegner estimate with quadratic volume bound.
The role played by r resembles the one of the function g in paragraph 4.2 and

Appendix A.

5.5. Single site potentials with changing sign. In § 4.7 we saw an extension of
the Wegner-Kirsch approach to single site potentials of changing sign. The Kotani-
Simon-Combes-Hislop proof of Wegner’s estimate also allows such a generalisation
[315, 317], which we present in this section. Its main shortcoming in comparison
to the results in § 4.7 is that it is restricted to single site potentials which have a
(generalised) step function form. On the other hand, it is valid not only at spectral
boundaries, but on the whole energy axis. Furthermore, it yields the existence of
the density of states as a function and upper bounds on it.

Theorem 5.5.1. Let Lp
c(Rd) 3 w ≥ κχ[0,1]d with κ > 0 and p(d) be as in (1.1).

Let Γ ⊂ Zd be finite, the convolution vector α = (αk)k∈Γ ∈ RΓ satisfy α∗ :=∑
k 6=0 |αk| < |α0|, and the single site potential be of generalised step function form:

(5.18) u(x) =
∑
k∈Γ

αk w(x− k).

Assume that the density satisfies f ∈ W 1,1
c (R). Then for all E ∈ R there exists a

constant CW = CW (E) such that

(5.19) E
{
TrP l

ω(I)
}
≤ CW |I| ld, for all l ∈ N and I ⊂]−∞, E]

The theorem implies that the DOS, the derivative of the IDS, exists for a.e. E
and is locally uniformly bounded: dN(E)/dE ≤ C(E1) for all E ≤ E1.

Proof. For simplicity we assume w = χ[0,1]d . To estimate E {〈φ, χjP
l
ω(I)χjφ〉} for

any normalised φ ∈ L2(Λl) we introduce a transformation of coordinates on the
probability space Ω.

For each cube Λ = Λl denote Λ+ := {λ − γ| λ ∈ Λ̃, γ ∈ Γ} and L = #Λ+. The
operator H l

ω depends only on the truncated random vector (ωk)k∈Λ+ ∈ RL. On
such vectors acts a multi-level Toeplitz matrix AΛ := {αj−k}j,k∈Λ+ induced by the
convolution vector α. The transformation has an inverse BΛ = {bk,j}k,j∈Λ+ = A−1

Λ

which is bounded in the row-sum norm ‖BΛ‖ ≤ 1
1−α∗ . Note that the bound is

uniform in Λl. We drop now the subscript Λ and denote with η := Aω the vector
of the transformed random coordinates. They have the common density

(5.20) k(η) = |detB|F (A−1η)

where F (ω) =
∏

k∈Λ+ f (ωk) is the original density of the ωk. We calculate the
potential Vω written as a function of η (and x ∈ Λ):

Vω(x) = VBη(x) =
∑
j∈Λ̃

ηjχj(x)
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In the new representation of the potential the single site potentials are non-negative,
so we can make use of the spectral averaging formula in Lemma 5.3.2

(5.21)
∫

R
dηj k(η) s(η) ≤ |I| sup

ηj

|k(η)|, where s(η) := 〈φ, χjP
l
Bη(I)χjφ〉

Fubini, (5.21), and the fundamental theorem of calculus give

(5.22)
∫

RL

dη k(η) s(η) ≤ |I|
∫

RL−1
dη⊥j sup

ηj

|k(η)| ≤ |I|
∫

RL

dη |(∂jk)(η)|

Here η⊥j is an abbreviation for {ηk| k ∈ Λ+ \ j}. The last integral equals

|detA|
∫

RL

dω |(∂jk)(Aω)|

which is bounded by ‖f ′‖L1
∑

k∈Λ+ |bk,j |. The proof of the theorem is finished by
the estimate

(5.23) E
{
〈φ, χjP

l
ω(I)χjφ〉

}
≤ |I| ‖f ′‖L1‖B‖

and Proposition 5.1.3. �

One drawback of Theorem 5.5.1 is the requirement of the weak differentiability
of f . This excludes in particular the uniform distribution on an interval. However,
in a joint work [191] with Kostrykin we have proven:

Proposition 5.5.2. Let the assumptions of Theorem 5.5.1 be satisfied with the
only difference that f is the uniform density on an interval. Let Γ ⊂ {k ∈ Zd| ki ≥
0 ∀ i = 1, . . . , d}. Then (5.19) holds true.

In fact, it turns out that the proof of Theorem 5.5.1 can be extended to density
functions of finite total variation. This covers in particular linear combinations of
functions in W 1,1

c and (finite) step functions. More precisely:

Proposition 5.5.3. Let the assumptions of Theorem 5.5.1 be satisfied, but require
f merely to have finite total variation ‖f‖Var < ∞. Then the Wegner estimate
(5.19) holds.

The difference to Theorem 5.5.1 is that the constant CW now depends on ‖f‖Var

instead of ‖f ′‖L1 , cf. (5.23). The result in the Proposition 5.5.3 is proven in [190].
Moreover, there we discuss how the condition

∑
k 6=0 |αk| < |α0| can be relaxed using

the theory of Toeplitz matrices. Let us give an example in the one dimensional case.
The symbol of the Toeplitz matrix A is the function

sA : T → C, sA(eiθ) =
∑
j∈Z

αj e
i jθ, θ ∈]−π, π]

Since we assume that only finitely many components of α are different from zero, sA

is actually a trigonometric polynomial, and thus uniformly continuous and bounded.
Invertibility criteria for AΛ as well as bounds on BΛ = A−1

Λ and B = A−1 may be
established by studying the symbol sA. Consider the case that the symbol sA has
no zeros and the winding number of sA with respect to 0 ∈ C vanishes. A theorem
of Baxter [24], see also [125, Thm. III.2.1], states that

sup
l∈N

(‖B‖, ‖BΛl
‖) ≤ const. <∞(5.24)

In this case we have again:
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Proposition 5.5.4. Let d = 1 and the assumptions of Theorem 5.5.1 be satisfied,
but require for the convolution vector α = (αk)k∈Γ merely that the symbol sA of the
associated Toeplitz matrix has no zeros. Then the Wegner estimate (5.19) holds.

Remark 5.5.5 (Anderson model). For the discrete Anderson model hω = h0 +
Vω there is a result analogous to Theorem 5.5.1. Here h0 is the finite difference
Laplacian on l2(Zd) and (Vωψ)(n) = Vω(n)ψ(n), ∀n ∈ Zd, a multiplication operator
as in the continuum case. This is not surprising, since the arguments in § 5.2 and
§5.3 rely only on abstract functional analysis. If fact, as we mentioned earlier,
Kotani and Simon were motivated in their treatment [193] of the alloy type model
by its discrete counterpart. Moreover, since on l2(Zd) the trace can be expressed
using the canonical basis as

Tr[P l
ω(I)] =

∑
j∈Λ̃l

〈δj , P l
ω(I)δj〉

the use of a trace regularising function is not necessary. Here P l
ω denotes the

spectral projection of the truncation hl
ω of the Anderson model hω. More precisely,

hl
ω is the finite matrix {〈δj , hωδk〉}j,k∈Λ̃l

.
Note that in the discrete case χj is just δj . Under the assumptions of Theorem

5.5.1 on the coupling constants {ωj}j and the single site potential u we have the
following Wegner estimate for the Anderson model:

(5.25) E
{
Tr[P l

ω(I)
}
≤ ‖f ′‖L1

1− α∗
|I| |Λ̃l|

Remark 5.5.6. Theorem 5.5.1 can also be understood as a Wegner estimate for the
alloy type potential

Vη(x) =
∑
k∈Zd

ηk χk

where the coupling constants {ηj}j are not any more independent, but correlated
satisfying certain conditions. See § 4.2 in [318] for a precise formulation. Wegner
estimates for correlated coupling constants can also be found in [59] (cf. [141], too).

The use of the common density F , respectively k, in the proof of Theorem 5.5.1 is
conceptually new. One could try to use conditional densities instead by considering
the indefinite potential Vω in its representation VBη as an alloy type potential with
dependent coupling constants. However, this would require to have uniform upper
bounds on the conditional densities, cf. [59, 141]. They do not seem to be easy to
establish for the model considered in this paragraph, and in fact sometimes fail to
hold as can be seen in the following example.

Example 5.5.7. It is sufficient to consider only one space dimension d = 1. Let the
density function be f = χ[0,1] and the single site potential u = χ[0,1] − αχ[1,2] with
−α ∈]− 1, 0[. To this model the results of Propositions 5.5.2 and 5.5.3 apply.

The restriction ofHω to the interval ]−1/2, l−1/2[ of length l depends only on the
coupling constants ωj with indices j ∈ {−1, . . . , l−1} =: Λ+. They are transformed
by the Toeplitz matrix A into new random variables ηj , j ∈ {−1, . . . , l−1}, as in the
proof of Theorem 5.5.1. Here the convolution vector is given by α0 = 1, α1 = −α.

The conditional density ρj(η) = ρl
j(η) of the variable ηj with respect to the

remaining coupling constants η⊥j = (ηk)k∈Λ+\j in Λ+ is given by ρj(η) = k(η)
gj(η) .
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Here gj(η) =
∫
k(η)dηj denotes the marginal density. The question is whether

supj ρ(η) is finite.
One calculates the common density to be k(η) =

∏l−1
k=−1 χ[0,1](

∑k
ν=−1 α

k−νην).
For ηj+1 ∈ [0, 1], ηk = 0,∀k 6= j + 1 we have

k(η) =
l−1∏

k=j+1

χ[0,1](αk−j−1ην) = 1.

The marginal density

gj(η) =
j−1∏

k=−1

χ[0,1]

(
k∑

ν=−1

αk−νην

) ∫ l−1∏
k=j

χ[0,1]

(
k∑

ν=−1

αk−νην

)
dηj

≤
∫
dηj

j+1∏
k=j

χ[0,1]

(
k∑

ν=−1

αk−νην

)
has for ηj+1 ∈ [0, 1], ηk = 0,∀k 6∈ {j, j + 1} the upper bound∫ 1

0

χ[0,1](αηj + ηj+1)dηj ≤ α−1(1− ηj+1)

Particularly, gj(η) ↘ 0 for ηj+1 ↗ 1 and thus

sup
η
ρj(η) = ∞

Therefore, proofs of a Wegner estimate which require the conditional density to be
bounded cannot be applied to this alloy type potential. See also § 4.3 of [318] for
another example.

5.6. Unbounded coupling constants and magnetic fields. Motivated by cer-
tain physical applications, e.g. the study of the quantum hall effect (see for instance
[26, 234, 111, 271, 153, 92]), it is desirable to extend the results on the continuity
of the IDS to include Hamiltonians with magnetic fields. This is, for instance, done
in the papers [60, 134, 141].

We discuss here the results on alloy type potentials obtained in [141] by Hupfer,
Leschke, Müller, and Warzel, since they are build on the method presented in the
preceding §§ 5.1–5.4. Moreover, their result allows the coupling constants to be
unbounded, as long as very negative fluctuations are exponentially rare. Actually,
the primary interest of their research are Hamiltonians with Gaussian random po-
tentials, so they need to cope with unbounded fluctuations of the potential. The
proof is based on earlier techniques from [107] — which in turn use [54] — and
Dirichlet-Neumann bracketing for magnetic Schrödinger operators, as discussed in
Appendix A of [141]. The results concerning alloy type potentials are summarised
in § 4.1 of their paper, which we review shortly.

Let A : Rd → Rd be a measurable vector potential with the property |A|2 ∈
L1

loc(Rd). Denote with H0 the selfadjoint closure of
∑d

i=j(i∂j + Aj)2 defined on
smooth functions with compact support. The alloy type Schrödinger operatorHω =
H0 +Vω now incorporates a magnetic field. In [141] it is proven that Theorem 5.0.3
essentially remains true if the magnetic field is included. (Their conditions on the
single site potential are slightly different.)
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Moreover, two cases are discussed, where the coupling constants are unbounded
random variables, and the theorem still remains true. In the first one, it is as-
sumed that ω0 is non-negative and a certain moment condition is satisfied, roughly
E {ω2d+2

0 } <∞.
The second one concerns the case where ω0 is distributed according to the Laplace

distribution: P{ω0 ∈ I} = 1
a

∫
I
dx e|x|/a. Note that the probability that ω0 assumes

very negative values is exponentially small. In fact, in [141] it is noted, that this is a
necessary requirement for their techniques to work. The reason for this is that they
use r(x) = e−tx as the trace regularising function, cf. Definition 5.1.1. A different
choice of r would allow for more general distributions unbounded from below.

We conclude this section by listing further literature on random Hamiltonians
with magnetic fields. Works treating the regularity of the IDS of random Schrö-
dinger operators with magnetic field include [321, 22, 323, 145, 134], while the
question of the (in)dependence of the IDS on boundary conditions for these models
has been treated in [232, 82, 141, 139]. A related problem is the analysis of the
semigroup kernels of magnetic operators [38, 39]. In [166, 253] the behaviour of the
IDS in a strong magnetic field is identified.

The asymptotic behaviour of the IDS near the boundaries of the spectrum in
the presence of random magnetic fields was the object of study of the articles
[230, 231, 233] which prove high energy and Lifshitz asymptotics for certain models.
The high energy asymptotics has been analysed already in [221, 312].

For Schrödinger operators with constant magnetic field and random potential
generated by a Poissonian process the different possible behaviours of the IDS at
the bottom of the spectrum are analysed in [37, 98, 143, 144, 99, 324, 138].

The analysis of Landau Hamiltonians in the single band approximation is done
in [84, 85, 246, 247, 145]. Examples of localisation proofs which allow for magnetic
fields can be found in [84, 55, 85, 86, 322, 22, 118, 87, 109, 247, 6].

Appendix A. Properties of the spectral shift function

For a exposition of the theory of the spectral shift function (SSF) see [33, 282]
or the last chapter of [328]. We review here the relevant facts in our context.

For two trace class operators A,B the SSF ξ(·, A,B) may be defined by the
formula

(A.1) Tr(f(A)− f(B)) =
∫
f ′(λ) ξ(λ,A,B) dλ

for functions f ∈ C∞c . Actually, it holds for more general functions, too. By
Theorem 8.3.3 in [328], it is sufficient to assume f ∈ C1(R) and that f ′ is the
Fourier transform of a finite complex measure. One can define the SSF also via the
perturbation determinant from scattering theory

ξ(λ,A,B) :=
1
π

lim
ε↘0

arg det[1 + (A−B)(B − λ− iε)−1)]

In this case the equality (A.1) is called Krein trace formula. The SSF can be
bounded in terms of the properties of A−B, namely

(A.2) ‖ξ(λ,A,B)‖1 ≤ ‖A−B‖J1
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Here J1 denotes the ideal of trace class operators and ‖ · ‖J1 the trace norm. On
the other hand, if A−B is finite rank

(A.3) ‖ξ(λ,A,B)‖∞ ≤ rank(A−B)

Since we have an estimate on ξ in the L1 and L∞-norms, it is natural to ask whether
an estimate for the Lp-norm, p ∈]1,∞[, may be derived. This indeed turns out to
be true and can be understood as an interpolation result, cf. the proof of Theorem
2.1 in [60].

To formulate this bound we have to introduce ideals of ’better than trace class’
operators. For a compact operator C denote by µn(C), n ∈ N its singular values,
in non-increasing order. If C is trace class, the sum of the singular values is finite
and equals ‖C‖J1 . We denote by Jβ the class of compact operators such that

(A.4) ‖C‖Jβ
:=
(∑

n∈N
µn(C)β

)1/β

<∞

The theory of such operators is classical for β ≥ 1. However, since we want to
interpolate between (A.2) and (A.3), we need to consider operators whose singular
values converge not slower, but faster than a l1-sequence to zero. This leads us to
consider operators such that ‖C‖Jβ

is finite, for β smaller than one. In particular,
all such operators are trace class, which explains why they are sometimes called
super-trace class. It follows that the SSF may be defined for such operators. They
have been studied in [126, 30, 31], while their relevance in the present context was
recognised in [60].

Form these sources we infer the following properties of Jβ . Since for any compact
operator A and bounded B the singular values of the products obey

(A.5) µn(AB) ≤ ‖B‖µn(A) and µn(BA) ≤ ‖B‖µn(A)

the set Jβ is an two-sided ideal in the algebra of bounded operators for all β > 0.
For β ≥ 1 the functional A 7→ ‖A‖Jβ

is a norm, which is not true for β < 1. More
precisely, in this case we have only

‖A+B‖β
Jβ
≤ ‖A‖β

Jβ
+ ‖B‖β

Jβ

This property implies that ‖ · ‖Jβ
is a quasi-norm and that

distβ(A,B) = ‖A−B‖β
Jβ

is a well defined metric on Jβ . The pair (Jβ ,distβ) forms a complete, separable
linear metric space, in which the finite rank operators form a dense subset.

In [60] the following Lp-bound on the SSF was proven.

Theorem A.1. Let p ≥ 1 and A,B be selfadjoint operators whose difference is in
Jβ where β = 1/p. Then the spectral shift function ξ(·, A,B) is in Lp(R) and

(A.6) ‖ξ(·, A,B)‖Lp ≤
∥∥A−B

∥∥β

Jβ

This estimate is sufficient for our purposes. There exists a sharp version proven
by Hundertmark and Simon in [140]. It is used in the result described in Remark
4.2.3.
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Theorem A.2. Let F : [0,∞[→ [0,∞[ be a convex function such that F (0) = 0.
Let A,B be bounded and C a non-negative compact operator such that for all N ∈ N

(A.7)
∞∑

n=N

µn(|A−B|) ≤
∞∑

n=N

µn(C)

Then∫
F
(
|ξ(λ,A,B)|

)
dλ ≤

∫
F
(
|ξ(λ,C, 0)|

)
dλ =

∑
n∈N

[
F (n) − F (n − 1)

]
µn(C)

Condition (A.7) is in particular satisfied if |A − B| ≤ C. Of course, to apply
Theorem A.1, we need a criterion for the operators which arise in our situation to
be in Jβ for β = 1/p ≤ 1. So, let’s have a closer look at the application of the
theory of the SSF to Schrödinger operators.

Since we are studying Schrödinger operators, we cannot expect to deal with
trace class perturbations. However, the theory extends to operator pairs such that
the difference of a sufficiently high power of their resolvents is trace class. More
precisely, assume that H + u,H is a pair of lower bounded operators such that

(A.8) H + u ≥ C0,H ≥ C0 and g(H + u)− g(H) ∈ J1

where g(x) = (x − C0 + 1)−k for some sufficiently large k > 0. Following [60], we
denote g(H + u)− g(H) by Veff . This is the ’effective’ perturbation, although it is
obviously not a multiplication operator. One defines the SSF of the pair H + u,H
as

(A.9) ξ(λ,H + u,H) := −ξ
(
g(λ), g(H + u), g(H)

)
for λ ≥ 0

and ξ = 0 otherwise. This definition of ξ is independent of the choice of the
exponent k > 0 in g. By Theorem 8.9.1 in [328] the trace formula (A.1) holds if
f ∈ C2(R) and f ′ has compact support. This conditions are clearly satisfied by the
switch function ρ we use in § 4.1 and § 4.2.

The purpose of the theorem we are heading to now is twofold: firstly, to establish
that Veff is in Jβ for suitable β < 1. Thus, we will be able to apply Theorem A.1.
Secondly, to control the upper bound ‖Veff‖β

Jβ
appearing in (A.6).

It is well known that operators which may be formally written as f(x)g(−i∇) are
in the Hilbert-Schmidt class if f, g ∈ L2(Rd). The product of such two operators is
trace class. Extending this idea, we want to show for certain operators that they are
in some (super-trace) ideal Jβ , β < 1 by writing them as a product of sufficiently
many operators of the type f(x)g(−i∇). For this purpose it is useful to note that
the Hölder inequality extends also to the case of exponents smaller than one: let
ai : N → C, i = 1, . . . , N be such that |ai(n)|pi is summable, where pi > 0 for all
i = 1, . . . , N , and set 1

r :=
∑N

i=1
1
pi

. Then the pointwise product
∏N

i=1 ai is in lr(N)
and ∥∥∥ N∏

i=1

ai

∥∥∥
r
≤

N∏
i=1

‖ai‖pi

By applying this to the sequence of singular values of compact operators, we obtain
the following
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Lemma A.3. Let Ai ∈ Jpi
for i = 1, . . . , N , then

∏N
i=1Ai is in Jr where 1

r :=∑N
i=1

1
pi

and

(A.10)
∥∥∥ N∏

i=1

Ai

∥∥∥
Jr

≤
N∏

i=1

‖Ai‖Jpi

See also [31] Corollary 11.11. The following result is taken from [232], cf. Lemma
11 and its proof. For l ∈ N we abbreviate Λ = Λl.

Lemma A.4. Let q > d/2, q ∈ 2N, f ∈ L∞c (Rd) and C0 ∈ R be such that Vper +
Vω ≥ C0 for all ω. Then the operator product f (H l

ω − C0 + 1)−1 is in the ideal Jq

and
‖fχΛ (H l

ω − C0 + 1)−1‖Jq ≤ ‖f (−∆ + 1)−1‖Jq ≤ C(q) ‖f‖q

Proof. There exist a bounded extension operator E : W 2,2(Λl) →W 2,2(Rd) and its
norm is independent of l ∈ N, cf. Section IV.3.2 in [292]. Thus we have

fχΛ(H l
ω − C0 + 1)−1 = fχΛ(Hω − C0 + 1)−1(Hω − C0 + 1)E(H l

ω − C0 + 1)−1

Since E is an extension operator, χΛ E is the identity on W 2,2(Λl). By the ideal
property of Jq and the boundedness of E we have

‖fχΛ (H l
ω − C0 + 1)−1‖Jq

≤ ‖f(Hω − C0 + 1)−1‖Jq ‖(Hω − C0 + 1)E(H l
ω − C0 + 1)−1‖

≤ const. ‖f(Hω − C0 + 1)−1‖Jq

By the Kato-Simon [151, 277] or diamagnetic inequality we have

(A.11) |f(Hω − C0 + 1)−1ψ| ≤ f(−∆ + 1)−1|ψ|
for ψ ∈ L2(Rd), cf. proof of Theorem 3.3 in [139]. For the ’free’ case we know by
Theorem 4.1 in [278] f (−∆ + 1)−1 ∈ Jq and

‖f (−∆ + 1)−1‖Jq ≤ ‖f‖q‖h‖q

where h(x) = (x2 +1)−1. The pointwise inequality (A.11) implies by Theorem 2.13
in [278] f (Hω − C0 + 1)−1 ∈ Jq and

‖f (Hω − C0 + 1)−1‖Jq ≤ ‖f (−∆ + 1)−1‖Jq

�

Remark A.5. The result remains true if we consider Neumann boundary conditions
instead of Dirichlet ones, and if we include a bounded magnetic vector potential in
the background operatorH0, see Lemma 10 in [232]. This fact relies on the existence
of an appropriate extension operator which takes (magnetic) Sobolev functions on
Λ to (magnetic) Sobolev functions on Rd.

The following result establishes that Veff = g(H l
ω +ω+u)−g(H l

ω +ω−u) is indeed
super-trace class and that its quasi-norm ‖Veff‖Jp

can be bounded independently
of the cube Λ.

Theorem A.6. Let H1 = −∆ + V and H2 = H1 + u, with 1
2C0 ≤ V, u ∈

Lp
loc,unif(Rd), where p is as in (1.1). Denote by H l

1,H
l
2 the corresponding Dirichlet

restrictions to the cube Λl. Assume

‖V ‖p, unif,loc ≤ C1, and ‖u‖p, unif,loc ≤ C2
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and that the support of u is contained in the ball BR(x). For any β > 0 choose
k ∈ N with k > d+4

2β . For g(x) = (x− C0 + 1)−k set Veff := g(H2)− g(H1).
Then Veff ∈ Jβ and ‖Veff‖Jβ

is bounded by a constant which is independent of Λl

and x and depends on V and u only trough C0, C1, C2 and R.

Proof. Choose a function f ∈ C∞c (B2R(x)) such that f ≡ 1 on BR(x). An iteration
of the resolvent formula yields

Veff = −
k−1∑
m=0

(H2 − C0 + 1)−(k−m) u (H1 − C0 + 1)−(m+1)

= −
k−1∑
m=0

[
fk−m (H2 − C0 + 1)−(k−m)

]∗
u
[
fm+1 (H1 − C0 + 1)−(m+1)

]
(A.12)

By Lemma 9 and Appendix A in [232] we have the following representation

fν (H1 − C0 + 1)−ν =
N∑

i=1

ν∏
j=1

fij (H1 − C0 + 1)−1Bij

and analogously for H2. Here N = N(ν) is an integer which depends only on ν,
the functions fij ∈ C∞c (B2R(x)) are linear combinations of derivatives of f , and
Bij are bounded operators with norms independent of l. Set

Cq,f,B = C(q) max{‖Bij‖ ‖fij‖Lq | i = 1, . . . , N, j = 1, . . . , ν}

where q ∈]d
2 ,

d
2 + 2] and C(q) are as in Lemma A.4. By the same lemma, the ideal

property of Jβ and the Hölder inequality (A.10) we have

‖fν (H1 − C0 + 1)−ν‖t
Jt
≤

N∑
i=1

ν∏
j=1

‖fij (H1 − C0 + 1)−1‖t
Jq
‖Bij‖t ≤ N Cq

q,f,B

(A.13)

if t = q/ν < 1. For t ≥ 1, ‖ · ‖Jt
is even a norm and a similar estimate holds. Since

u is infinitesimally bounded with respect to the Laplacian

Cu := max
i,j

{
‖ufij (H1 − C0 + 1)−1Bij‖

}
is finite. Thus, in analogy to (A.13)

‖ufν+1 (H1 − C0 + 1)−ν+1‖t
Jt
≤ N Ct

u C
q
q,f,B

From the preceding we see that (A.12) factorises Veff as a product of bounded
operators and k operators which are in Jq. All the involved operator and super-trace
class norms can be bounded independently of Λl and x. Using the ideal property
and Hölder’s inequality we see that Veff is in Jr for all r ≥ q/k and ‖Veff‖Jr

is
bounded by a constant which is independent of Λl and x. The way we choose k
and q makes it possible to take r = β. �

Remark A.7 (Properties and relevance of the SSF). An exposition of the role played
by the SSF in scattering theory can be found in [328]. The SSF has proven useful in
the study of random operators, particularly in problems related to surface models,
e.g. the definition of the density of surface states [48, 49, 188, 189].
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Various of its properties are discussed in the literature: monotonicity and con-
cavity [117, 121, 187], the asymptotic behaviour in the large coupling constant
[251, 266, 252] and semiclassical limit [229], and some other bounds [249, 250, 248].
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[182] F. Klopp. Une remarque à propos des asymptotiques de Lifshitz internes. C. R. Math. Acad.

Sci. Paris, 335(1):87–92, 2002. 9
[183] F. Klopp. Weak disorder localization and Lifshitz tails: continuous Hamiltonians. Ann.
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[298] M. A. Šubin. Spectral theory and the index of elliptic operators with almost-periodic co-

efficients. Uspekhi Mat. Nauk, 34(2(206)):95–135, 1979. [English translation: Russ. Math.

Surveys, 34:109-157, 1979 ]. 6, 11, 16, 17, 29
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