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Abstract.

We investigate Birkhoff normal forms for the periodic nonlinear Schrödinger equation

with dispersion management. The normalization we describe is related to averaging ar-

guments considered in the literature, and has the advantage of producing fewer resonant

couplings between high spatial frequency modes. One consequence is that the normal form

equations have invariant subspaces of large but finite dimension, where we can find several

classes of periodic orbits. The formal arguments apply to other related dispersive systems,

and to normal forms of high order. We also present a rigorous version of the normal form

calculation and show that solutions of the quartic normal form equations remain close to

solutions of the full system over a time that is inversely proportional to a small nonlinearity

parameter.
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1. Introduction

The nonlinear Schrödinger equation with dispersion management ut = id(t)uxx−2iγ|u|2u,
where d(t) is a periodic real valued function, and γ is real models the propagation of signals

in an optical transmission line whose dispersive properties vary along the line. The initial

condition u(x, 0) is interpreted as the emitted signal, while u(x, t) is the signal at a distance

t from the origin of the transmission line. Varying (“managing”) the dispersion can lead to

more robust propagation of signals of small amplitude (see e.g. [CMK], [YKT]), and the

idea has attracted considerable experimental attention in recent years. Theoretical studies

have focused on nonlinear effects, modeled to lowest order by the cubic NLS+DM system

above (see e.g. [SKDBB], [GT]).

The equation has been mainly studied on the line (e.g. with decay boundary condi-

tions), and we will here consider the periodic case. Theoretical and numerical studies of the

NLS+DM equation suggest that its dynamics is nontrivial, and the periodic system is an

example of an infinite dimensional Hamiltonian system of independent interest. Also, the

periodic theory can be directly compared to simulations that use periodic boundary condi-

tions and spatial discretizations that preserve the Hamiltonian structure. Such simulations

can be of heuristic value for studying the equation on line, e.g. in finding numerically ap-

proximate solutions that have variational characterizations. We must however emphasize

the possible differences in the dynamics of the periodic and unbounded cases, especially in

questions of persistence of approximate solutions and of stability.

We will concentrate on the practically interesting parameter regime where the average

δ of the “dispersion management function” d(t), and the nonlinearity parameter γ are

comparable and small in absolute value. We also assume that the frequency Ω of the

dispersion management function d(t) is at least of O(1) in absolute value, and we will be

interested in solutions of O(1).

One of the approaches in studying the NLS+DM equation on the line has been to

formally derive an averaged model equation that is autonomous (see [GT], [TM], also

[AB]). The averaged equation has the structure of a Schrödinger equation with a nonlocal

cubic nonlinearity. Numerical studies of the averaged equation have indicated the existence

of localized periodic solutions with a Gaussian-like single pulse profile, referred to as DM

solitons (see e.g. [LYKM], [NDFK]). More recently the existence of periodic solutions for

the averaged equation on the line was also proved by variational methods (for γδ < 0, see

[ZGJT], [MZJT]), and by a bifurcation argument (for γδ 6= 0, see [Kun1]). The variational
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characterization of the DM soliton for γδ < 0 also implies nonlinear stability, and there

are also error estimates for the averaged equations (see [MZJT]).

In this work we investigate an alternative but related asymptotic theory for the peri-

odic problem. Our first goal is to modify the approach of [GT], [MT] and produce a simpler

normal form equation. In particular, to recover the averaging theory of [GT], [TM] we split

the full system into an unperturbed and a perturbation part where the unperturbed part

has only one fast oscillating degree of freedom (with frequency Ω). We therefore have a

very resonant problem, and the resulting normal form equations are not sparse enough.

We here add to the unperturbed part of the system the high frequency oscillations corre-

sponding to the high spatial frequency part of the averaged dispersive term. The resulting

Birkhoff normal forms are more involved, but leave fewer resonant terms coupling high

spatial frequency modes. A main observation is that, under a mild condition on Ω, the

quartic normal form equation has a finite dimensional invariant subspace. The dimension

of this subspace may be large (of O(|δ|− 1
2 )), but some aspects of its dynamics are easier to

analyze. For instance, elementary arguments imply the existence of several classes of peri-

odic orbits, some of which are analogous to the orbits considered in the literature for the

averaged NLS+DM equation on the line. The argument leading to the existence of invari-

ant subspaces applies to higher order normal form equations, and to NLS+DM equations

with higher dispersion (considered recently in [MZJT], [MJG]). A rough interpretation of

the normalization we describe is that averaging over the fast oscillations of the high spatial

frequency modes leads to invariant subspaces for the slower low spatial frequency motions.

In the second part of the paper we show that the solutions of the alternative quartic

normal form we construct remain O(γ) close to solutions of the full system over a time

of O(|γ|−1). The main assumption is that the initial conditions for the normal form sys-

tem are of O(1) in an appropriate Sobolev norm (the precise statement is in Section 4).

Our approach follows the spirit of the formal calculations, where we consider the NLS+DM

equation as an autonomous Hamiltonian system in an extended phase space. The transfor-

mation theory for infinite dimensional Hamiltonian systems has been developed by many

authors (see e.g. [K]). Some points that require attention here is the low regularity of

the dispersion management function (required by the applications), and the fact that the

transformation in the extended phase is not close to the identity in some directions. The

error estimates also use the fact that solutions of the full system can not grow too much

over the O(|γ|−1) time interval of interest. Such control may not available for longer times,

and it is not clear at present whether we can extend the error estimates to the higher order
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normal forms.

The paper is organized as follows. In Section 2 we introduce the Hamiltonian structure

of the NLS+DM system and establish the notation used in the formal calculations. We

also emphasize the parameters of the problem. In Section 3 we formally construct Birkhoff

normal forms and study some properties of the normal form systems. In Section 4 we

give a rigorous version of the first order normal form calculation and estimate the distance

between solutions of the quartic normal form system and the dispersion managed NLS

equation.

2. Hamiltonian structure

We consider the initial value problem for the non-autonomous equation

(2.1) ut = id(t)uxx − 2iγ|u|2u,

with u(x, t) a complex valued function satisfying periodic boundary conditions u(x, t) =

u(x+2π, t). The “dispersion management” function d(t) and the parameter γ are real. As

remarked in the introduction the “time” t in (2.1) is the distance from the point where we

emit the signal, while the “spatial variable” x of (2.1) is physically the time. The “initial

condition” u(x, 0) for (2.1) is the the signal we send, and is assumed to 2π−periodic. Also,

the function d(t) in (2.1) will be T−periodic, and we decompose it as

(2.2) d(t) = δ + d̃(t), with δ =
1

T

∫ T

0

d(s)ds

the average. Letting Ω = 2π
T

we assume that |Ω| ≥ O(1). We will further assume that

|δ| ∼ |γ| << 1. Note that since the system is non-autonomous we should consider initial

conditions u(x, t0), t0 ∈ R. Equivalently, we here fix t0 = 0 and handle the general case

by appropriately shifting d(t).

Remark 2.0.1 The parameters γ, δ, Ω are assumed dimensionless. Some physically

interesting special cases of the parameter regime we consider are: (i) |Ω| ∼ |γ|−1, (ii)

|Ω| ∼ |γ|−1 with |Ω|
h

of O(1), and (iii) |Ω| ∼ |γ|−1 with |Ω|
h
<< 1, where h is the amplitude

of d̃(t). Also of interest is the case where (iv) h << |γ|.

It is easy to see that equation (2.1) has the structure of a non-autonomous Hamiltonian

system. To perform normal form calculations it will be convenient to first rewrite (2.1)
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using certain “amplitude” variables, and then make the system autonomous by introducing

an additional angle variable. For the first step, we denote the Fourier transform of u(x, t)

by uk(t), and use the notation of (2.2) to define the variables ak(t), k ∈ Z by

(2.3) ak(t) = uk(t)e
iωkΛ̃(t), with ωk = k2, Λ̃(t) =

∫ t

0

d̃(s)ds.

From (2.1), the variables a(k, t) then evolve according to

(2.4)

ȧk = −iδωkak − 2iγ
∑

k1,k2,k3∈Z

ak1ak2a
∗
k3
δk1+k2−k3−k

e−i(ωk1
+ωk2

−ωk3
−ωk)Λ̃(t), k ∈ Z,

where δr = 1 if r = 0, and 0 otherwise. The initial condition is ak(0) = uk(0), k ∈ Z.

By the definition of Λ̃ the right hand side of (2.4) is T−periodic. The time dependence is

therefore absorbed in the non-linear term. To eliminate the explicit dependence on time

in (2.4) we consider an angle φ ∈ [0, 2π), and add to (2.4) the equation

(2.5) φ̇ = Ω, with φ(0) = φ0 = 0.

We also define the function Λ by Λ(φ) = Λ̃(t(φ)) = Λ̃( φ
Ω

), and note that Λ is 2π−periodic

with zero average. Then, the non-autonomous system (2.4) is equivalent to the autonomous

system consisting of (2.4) with Λ̃(t) replaced by Λ(φ), and (2.5). Adding an “action”

variable J ∈ R, we further define the Poisson bracket [ , ] on pairs of functions F , G of

the variables ak, a
∗
k, k ∈ Z , and φ, J by

(2.6) [F,G] = −i
∑

k∈Z

(

∂F

∂ak

∂G

∂a∗k
− ∂F

∂a∗k

∂G

∂ak

)

+
∂F

∂J

∂G

∂φ
− ∂F

∂φ

∂G

∂J
.

A straightforward calculation then shows that:

Proposition 2.1 The evolution equation for the variables ak, k ∈ Z, and φ, J above

is the Hamiltonian system

(2.7) ȧk = [ak, H], k ∈ Z, φ̇ = [φ,H], J̇ = [J,H],

where the Hamiltonian H is

(2.8) H = δ
∑

k∈Z

ωk|ak|2 − ΩJ + γ
∑

k1,k2,k3,k4,n∈Z

einφak1ak2a
∗
k3
a∗k4I(k1, k2, k3, k4, n),

and the coefficients I(k1, k2, k3, k4, n) are given by

(2.9) I(k1, k2, k3, k4, n) = f̂m(n)δk1+k2−k3−k4 ,
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(2.10) m = ωk1 + ωk2 − ωk3 − ωk4 , f̂m(n) = (2π)
− 1

2

∫ 2π

0

e−imΛ(φ)e−inφdφ.

Note the equation for J̇ gives us the rate of change of the “energy” H + ΩJ (up to a

factor Ω−1).

Remark 2.1.1 The Hamiltonian H in (2.8) shows that the parameter range we are

considering describes a system with small dispersion and small nonlinearity. The “weakly

nonlinear” parameter regime where |δ| ∼ |Ω| ∼ O(1) and |γ| << 1 will be considered

elsewhere. Note that the weakly nonlinear regime poses some interesting problems related

to the works of [B], [P], [KP] on weakly perturbed 1-D NLS equations (with Dirichlet

boundary conditions). As we see in the next section, the special parameter ranges (iii) and

(iv) of Remark 2.0.1 also lead to “near-integrable” systems (see [AB], [YK] respectively

for the two limits).

The above setup can be generalized to other dispersion relations ωk, and to the case

where the parameter γ is replaced by a time dependent real function. Also, we can easily

extend the formalism to quasi-periodic dispersion management functions d(t). A practi-

cally important example where the coefficients f̂m(n) in (2.10) can be evaluated in closed

form is the piecewise constant T−periodic dispersion management function

(2.11) d(t) =

{

δ + Ã, if t ∈ [0, τ);

δ + B̃, if t ∈ [τ, T ),

with Ãτ + B̃(T − τ) = 0, i.e. the average of d(t) over [0, T ] is δ. Another interesting

example is the real analytic dispersion management function

(2.12) d(t) = δ + Ã sin Ωt

whose coefficients f̂m(n) are Bessel functions. For general dispersion management functions

we can also obtain some information about the coefficients f̂m(n) by asymptotic arguments,

e.g. in the large |m| limit. The coefficients are discussed further in the next section.
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3. Quartic Birkhoff normal forms

In this section we split the Hamiltonian into two parts, the “unperturbed part” and the

“perturbation”, and seek to simplify the perturbation part by a near-identity canonical

transformation. Near-identity canonical transformations smoothly connected to the iden-

tity can be constructed by composing time−1 maps of Hamiltonian vector fields, and we

will consider transformations leading to the well-known Birkhoff normal forms. The as-

sumed ranges of parameters Ω, δ, γ suggest two possible splittings of the Hamiltonian.

First, since |Ω| is (at least) of O(1), and |δ| and |γ| are small we can take the “unperturbed

part” of the Hamiltonian H of (2.8) to be −ΩJ . The resulting Birkhoff normal form equa-

tions are (the periodic analogues of) the averaged equations of [TM] and [GT] (see also

[AB]). We briefly rederive this averaging theory using the language of normal forms below.

Our main goal here is to investigate an alternative splitting of the Hamiltonian H where

the unperturbed part consists of −ΩJ plus the quartic terms of H that describe oscillations

with frequencies that are at least of O(1). We will show that the normal form equations

derived using the second splitting can have finite dimensional invariant subspaces.

To recover the averaging theory of [TM] and [GT] we write the Hamiltonian H of (2.8)

as H = −ΩJ +H2 +H4 with H2 and H4 the quadratic and quartic parts respectively. We

seek a function ψ1 such that the canonical transformation obtained by the time−1 map

Φ1
ψ1

of the Hamiltonian flow of ψ1 simplifies the “perturbation part” H2 +H4. Specifically,

we formally write

(3.1) H ◦ Φ1
ψ1

= expAdψ1
H = −ΩJ +H2 +H4 + [ψ1,−ΩJ ] + Y1,

with Y1 representing the remaining terms. By the definition of the Poisson bracket we see

that each monomial

(3.2) γI(k1, k2, k3, k4, n)ak1ak2a
∗
k3
a∗k4e

inφ

in H4 is eliminated by a monomial

(3.3) iγ(nΩ)−1I(k1, k2, k3, k4, n)ak1ak2a
∗
k3
a∗k4e

inφ

in ψ1. Consequently, the resonance condition for the part H4 is

(3.4) nΩ = 0, k1 + k2 − k3 − k4 = 0, f̂m(n) 6= 0, k1, . . . , k4, n ∈ Z.

with m = ωk1 + ωk2 − ωk3 − ωk4 . We immediately see that the resonant part H4 of H4 is

(3.5) H4 = γ
∑

k1,k2,k3,k4∈Z

ak1ak2a
∗
k3
a∗k4 f̂m(0)δk1+k2−k3−k4 .
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We also easily see that the quadratic part H2 is resonant. Choosing

(3.6) ψ1 = iγ
∑

k1,k2,k3,k4∈Z,n∈Z∗

ak1ak2a
∗
k3
a∗k4

I1(k1, k2, k3, k4, n)

nΩ
,

the quartic normal form Hamiltonian is H2 +H4.

Regarding the structure of H2 + H4, let Λm be the set of all integers k1, k2, k3, k4

satisfying k1 + k2 − k3 − k4 = 0, and m = ωk1 + ωk2 − ωk3 − ωk4 . The level sets Λm can

be parameterized explicitly by two integers (we omit this here). The parameterization of

Λ0 becomes especially simple and we can write H4 as H4 = H4,I +H4,NI with

(3.7) H4,I = 2γf̂0(0)
∑

k1,k2∈Z

|ak1 |
2|ak2 |

2,

(3.8) H4,NI = γ
∑

m∈Z∗

f̂m(0)
∑

k1,k2,k3,k4∈Λm

ak1ak2a
∗
k3
a∗k4 .

The part H4,I is integrable (in the sense of Poincare).

To indicate the structure of the coefficients f̂m(0), we first consider the piecewise

constant dispersion management function of (2.11) with τ = T
2 , Ã = h, and B̃ = −h.

Then,

(3.9) f̂m(0) =
2i√
2π

[

e−ihmΩ−1π − 1
] Ω

hm
, m ∈ Z∗,

and f̂0(0) =
√

2π. We can see that N4,NI can only vanish for the discrete values of h where
h
Ω ∈ πZ, and also in the limit h→ +∞. In comparison, the coefficients f̂m(0) for the real

analytic dispersion management function of (2.12) with Ã = h are

(3.10) f̂m(0) =
√

2πJ0(|m|hΩ−1), m ∈ Z∗

with J0 the Bessel function of order 0. For h → +∞, the coefficients f̂m(0), m 6= 0, of

(3.10) decay as |hm|− 1
2 . For more general integrable dispersion management functions, the

definition of the coefficients f̂m(0) in (2.10) implies that f̂0(0) =
√

2π. The decay of the

coefficients in the amplitude h of Λ(φ) and in |m| 6= 0 can be found by a stationary phase

argument. For instance, for Λ(φ) twice differentiable with non-degenerate critical points

we expect a |hm|− 1
2 decay, while for Λ(φ) Lipschitz but not differentiable we have |hm|−1

decay (i.e. as in the two examples above). For hΛ(φ) Hölder continuous with exponent
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less than unity, e.g. for d(t) unbounded but integrable, the coefficients f̂m(0) can decay

even faster as |hm| → ∞. Thus the non-integrable part of H4 decays faster in |m| and

h for the more singular dispersion management functions. In the limit h → 0, H2 + H4

reduces to the Hamiltonian of the cubic NLS. In that limit, it is most natural to view the

NLS+DM system as a small perturbation of the cubic NLS equation (see [YK], [YKT],

[LP]).

A main advantage of the normal form equations above is that they are straightforward

to compute and extend to higher orders. Higher order resonance conditions are also trivial

and do not involve any small divisors. Note that higher order calculations can be further

simplified by assuming that |δ| ∼ |γ| ∼ |Ω|−1; this is consistent with the scales of physical

interest in the problem. Although the quartic and higher order normal form systems

obtained by this theory are autonomous, their dynamics are still difficult to analyze (we

discuss some known results for the line below).

In the alternative normalization below we try to eliminate more terms by better con-

trolling the high spatial frequency nonlinear interactions. In particular, fix N = [|δ|− 1
2 ]

and let

(3.11) H2 = H̃2 + h2

with

(3.12) H̃2 = δ
∑

|k|>N

ωk|ak|2, h2 = δ
∑

|k|≤N

ωk|ak|2.

The “unperturbed part” of the Hamiltonian, denoted by h0, will now be h0 = H̃2 − ΩJ

and will thus contain only the fast oscillators in H2, i.e. the ones with frequencies that are

greater than unity. The “perturbation part” will be h2 +H4, i.e. it will contain “small”

terms of O(δ) and O(γ). As before, we seek to eliminate the lowest order non-resonant

part of h2+H4 by a canonical transformation Φ1
χ1

that is the time-1 map of an appropriate

function χ1. We will have

(3.13) H ◦ Φ1
χ1

= expAdχ1
H = h0 + h2 +H4 + [χ1, h0] +R1,

with R1 the remainder. It is easy to see that h2 is resonant, and that each monomial

(3.14) γI(k1, k2, k3, k4, n)ak1ak2a
∗
k3
a∗k4e

inφ
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in H4 is eliminated by a monomial

(3.15) iγ[nΩ − δ(ω̃k1 + ω̃k2 − ω̃k3 − ω̃k4)]
−1I(k1, k2, k3, k4, n)ak1ak2a

∗
k3
a∗k4e

inφ

in χ1, where

(3.16) ω̃k =

{

0, if |k| ≤ N ;

ωk, if |k| > N .

The resonance conditions for the quartic terms are therefore

(3.17) nΩ − δm̃ = 0, k1 + k2 − k3 − k4 = 0, f̂m(n) 6= 0, k1, . . . , k4, n ∈ Z.

with m̃ = ω̃k1 + ω̃k2 − ω̃k3 − ω̃k4 . We will not give a full analysis of (3.17), although it is

quite remarkable that we can here obtain a complete picture of the resonances. The idea

is to first parameterize the level sets of m̃ in Z4 subject to k1 + k2 − k3 − k4 = 0, and

then examine the level sets of nΩ − δm̃ in Z2. Instead of this we will consider a partial

normalization that eliminates only a subset of the non-resonant mode interactions. The

resulting “partial” normal form, denoted by h0 + h2 +N4, is simple to produce and gives

some interesting insights into the dynamics of the system.

The main observation is that the subspace spanned by the modes ak with |k| ≤ N can

be invariant under the evolution of h0 +h2 +N4. To see this we consider “low” and “high”

frequency mode index sets UL = {k ∈ Z : |k| ≤ N} and UH = Z \ UL, and decompose Z4

into disjoint products of the two sets. We use the notation ULLLH = UL×UL×UL ×UH ,

ULLHL = UL×UL×UH ×UL, etc., and subdivide Z4 into 24 disjoint subregions. Accord-

ingly, we also decompose H4 into 24 parts coupling different combinations of quartets of

low and high index modes. We now seek to eliminate all quartic non-resonant terms involv-

ing only low modes, and quartic non-resonant interactions involving one high frequency

mode and three low frequency modes. The corresponding parts of H4 will be denoted by

H4,LLLL, and H4,LLLH , H4,LLHL, H4,LHLL, H4,HLLL respectively. To eliminate H4,LLLL

we use the function χ1,LLLL given by the expression of (3.6), with summation over k1, . . .,

k4 in UL. The resonant part of H4,LLLL is

(3.18) N4,LLLL = γ
∑

k1,k2,k3,k4∈UL

ak1ak2a
∗
k3
a∗k4 f̂m(0)δk1+k2−k3−k4 ,

and we denote the non-resonant part of H4,LLLL by H̃4,LLLL To eliminate H4,LLLH , . . .

H4,HLLL we examine the resonance condition (3.17) in ULLLH , . . ., UHLLL respectively.

For instance, in ULLLH (3.17) reduces to

(3.19) nΩ + δk2
4 = 0, k1 + k2 − k3 − k4 = 0, k1, k2, k3 ∈ UL, k4 ∈ UH , n ∈ Z,
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with f̂m(n) 6= 0. We see that resonant terms can only involve high modes with indices

k4 ∈ [N , 3N ]. Then,

(3.20) |Ω| > 10|δ|N2

implies |nΩ + δk2
4| > 1, for all n ∈ Z, i.e. (3.20) implies that the part H4,LLLH can be

formally eliminated using an appropriate function χ1,LLLH . The resonance conditions for

the other parts of H4 coupling three low index modes to one high index mode are similar,

and condition (3.20) on |Ω| guarantees the absence of resonances and small divisors. We

denote the functions that eliminate H4,LLHL, . . ., H4,HLLL by χ1,LLHL, . . ., χ1,HLLL

respectively. Then letting

(3.21) χ1 = χ1,LLLL + χ1,LLLH + χ1,LLHL + χ1,LHLL + χ1,HLLL

(note that χ1 is real valued) we consider the transformed Hamiltonian

(3.22) H ◦ Φ1
χ1

= expAdχ1
H = h0 + h2 +N4 +R1,

with

(3.23) N4 = H4 − (H̃4,LLLL +H4,LLLH +H4,LLHL +H4,LHLL +H4,HLLL).

The remainder R1 contains higher order terms, of O(δγ), and O(γ2). (The part h0+h2+N4

in (3.22) will be referred to as the normal form part, although it is more accurately a

“partial normal form”.) Denoting the (complex) span of the modes ak with |k| ≤ N by

ML we have the following observation.

Proposition 3.1 Let |Ω| > 10|δ|N2, and define H ◦Φ1
χ1

as above. Then the subspace

ML is invariant under the flow of Hamilton’s equations for the normal form part Hamilto-

nian h0 + h2 +N4 of (3.22). The restriction of the flow to ML is the Hamiltonian system

corresponding to the Hamiltonian h2 +N4,LLLL.

Proof: It is enough to check that that the equations for ȧk with |k| > N do not

include any monomials of the form al1al2a
∗
l3

with l2, l2, l3 ∈ UL. Such terms can only

come from H4,LLLH and H4,LLHL, which, however have been eliminated. The equations

on ML are clearly Hamilton’s equations for −ΩJ+h2+N4,LLLL, and since h2 and N4,LLLL

are independent of φ, i.e. see (3.5), the term −ΩJ can be omitted form the Hamiltonian

on ML.
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Note that the quartic normal form parts of H ◦ Φ1
ψ1

and H ◦ Φ1
χ1

, restricted to the

subspace ML, are the same, the difference being that ML is an invariant subspace for

the quartic normal form Hamiltonian system obtained by the second procedure. The

dynamics on this subspace can be complicated and interesting. Some special solutions can

be obtained by simple arguments.

Proposition 3.2 Let |Ω| > 10|δ|N2. Then the Hamiltonian flow of the quartic normal

Hamiltonian h0 + h2 + N4 of (3.22) has at least 2N + 2 periodic orbits on each level set
∑

k∈Z
|ak|2 = C, C > 0.

Proof: We examine Hamilton’s equations for h0 + h2 +N4 on the invariant subspace

ML. We have the autonomous system

(3.24) ȧk = −i ∂
∂a∗

(h2 +N4,LLLL), k ∈ UL,

and we look for solutions of the form ak = eiλtAk, k ∈ UL, with λ real. The equation for

the Ak = qk + ipk has the structure of the constrained variational problem

(3.25) λ
∂I
∂qk

=
∂V
∂qk

, λ
∂I
∂pk

=
∂V
∂pk

, k ∈ UL,

with

(3.26) I =
∑

k∈UL

(q2k + p2
k), V = h2 +N4,LLLL.

Critical points of V on (2N + 1)-spheres of radius C > 0 in R2N+2 thus yield solutions of

(3.25), and the statement follows from the fact that a smooth function on the n−sphere

has at least n+ 1 critical points.

Remark 3.2.1 In the argument above we can also look for solutions of (3.24) that

have the more general form ak = eigktAk, k ∈ UL, with gk satisfying gk1 +gk2−gk3−gk4 = 0

for all k1, k2, k3, k4 in UL. The equations for the Ak will then have the form of (3.25)

with I =
∑

k∈UL
gk|Ak|2. For instance, for gk = N + 1 − k the level sets I = C, C > 0

are “asymmetric” ellipsoids and we similarly have at least 2N + 2 periodic orbits. Some

other choices of gk, for instance gk = k, do not lead to compact level sets I = C, and the

existence of solutions of (3.25) is not guaranteed.
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Some of the periodic orbits in Proposition 3.2 can be thought of as approximations

of periodic orbits for the quartic normal form obtained by the first version of the normal

form argument. Of special interest is the DM soliton solutions discussed by many authors.

Proofs of existence of these solutions concern the analogue of the quartic normal form

system with Hamiltonian H2 +H4 in (3.5) for the line (i.e. with summation over the ki
replaced by integration). In the case δγ < 0 the DM soliton is characterized as a minimum

of H2 +H4 over functions with fixed L2 norm (see [TM]). An existence proof based on the

variational characterization of the DM soliton is in [ZGJG]. The functional is minimized in

the Sobolev space H1(R,C) and the DM soliton solution decays at infinity. The analogous

solution here is the minimum of V over the spheres I = C in (3.26). The sign of δγ is

irrelevant in Proposition 5.2, and we thus obtain solutions that may be also related to the

ones shown in [Kun1] for δγ 6= 0 by a bifurcation argument. Note that the assumption

δγ < 0 is crucial in the variational argument of [ZGJT]. (We have also recently seen a

variational argument of [Kun2] for δ = 0, obtained from δγ → 0−, with γ fixed.) Note

that the second normal form construction we presented is inapplicable for δ = 0, while the

first averaging procedure is still meaningful.

Remark 3.2.2 The comparisons with a above works are not strictly appropriate since

we are here considering a different problem, and we do not have an analogue of the second

normalization procedure for the NLS+DM system on the line. The proofs on the line also

involve additional technical questions.

Conservation of the quartic normal form Hamiltonian h2 +N4,LLLL and the L2 norm

on the invariant subspace ML implies that the minima and maxima of V in Proposition 3.2

are nonlinearly stable on the invariant subspace ML. We therefore still have the possibility

of high frequency instabilities for more general initial conditions. In comparison, the

variational characterization of the DM soliton solution for δγ < 0 in [TM] implies nonlinear

stability (see [ZGJG], [MZJG]). Note however that in (3.11), (3.12), we can split H2 into

H̃2 + h2 differently, by making N larger. Assuming |Ω| > 10|δ|N2, i.e. assuming larger

|Ω|, and following the arguments above verbatim we have an invariant subspace ML with

larger dimension. Thus, if the solutions of Proposition 3.2 are inside the domain where we

expect the second normal form procedure to be valid (see Section 4, and the remark at the

end of that section) possible high frequency instabilities will not be detected in spectral

numerical simulations with K ≤ dim(ML) modes.

The splitting of the quadratic Hamiltonian into low and high frequency parts can

be also used for more general dispersion relations ωk (a cubic dispersion is considered

13



in [MZJG], [MGJ]). For instance, let N1, M1 > 0 with δM1 of O(1), and assume that

ωk : R+ → R is strictly increasing for k > N1, diverges as k → +∞, and is bounded by

M1 for k ≤ N1. Also extend ωk to R to be even or odd. For such a dispersion relation the

arguments above apply with minor modifications, and lead to the existence of an invariant

subspace with periodic and quasi-periodic solutions.

It is also straightforward to find conditions under which the subspace ML above

is invariant for higher order partial normal form systems. First, we see that we can

always eliminate the angle dependent part of the Hamiltonian that couples only low modes.

Also, the resonance conditions for 2n−wave interactions coupling one high mode with

2n − 1 low modes have a simple form that is similar to (3.21). Note that higher order

terms always couple an even number of modes, and are sums of monomials of the form

ak1 . . . akn
a∗kn+1

. . . a∗k2n
with k1+. . .+kn−kn+1−. . .−k2n = 0. A resonant monomial with

indices k1, . . . , k2n−1 ∈ UL, k2n ∈ UH must satisfy δΩ−δk2
2n = 0, and by |k2n| ≤ (2n−1)N ,

we can avoid resonances and small divisors by requiring that |Ω| > δ(2n−1)2N2+1. Similar

considerations apply to all terms coupling 2n− 1 low modes with one high mode. We thus

see that the formal argument is the same for higher orders, but |Ω| must be assumed

larger, increasing quadratically in the order of the normal form. Alternatively, resonant

interactions between 2n − 1 low modes and one high mode can be avoided by assuming

that Ω
δ

is irrational. In that case one must however examine possible small divisors.

4. Error estimates for the normal form equations

In this section we estimate the distance between solutions of the full system (2.1), (2.4)

and the quartic normal form equation by making the formal calculations of the previous

section rigorous.

To state the error estimates for the quartic (partial) normal form equation we write

the full system (2.4) as

(4.1) ȧ = La+ F (a, t), a(0) = a0

with L = iδ∂xx, and F (a, t) the nonlinearity. We also write Hamilton’s equation for the

quartic normal form Hamiltonian h0 + h2 +N4 in (3.22) as

(4.2) ḃ = Lb+G(b, t), b(0) = b0.

We are here writing the normal form equation as a non-autonomous system; the action

component is omitted, and t = Ω−1φ. The two equations can be considered in the Sobolev

14



spaces Hs, s > 1
2 , of complex valued 2π−periodic functions. The norm of a function u in

Hs will be

(4.3) ||u||2s =
∑

k∈Z

(1 + |k|2)s|uk|2,

with uk the Fourier coefficients of u. First, we have the following basic local existence

theorem.

Proposition 4.1 Let s > 1
2 , β > 0, with β ∼ O(1), and assume that d(t) is lo-

cally absolutely integrable. Consider the initial value problems of (4.1), (4.2) with initial

conditions satisfying ||a0||s ∼ ||b0||s ∼ O(1). Then for |γ| sufficiently small there exists

a positive constant C = C(||a0||s, ||b0||s, β) ∼ O(1) and a time t1 ≥ C|γ|−1 for which

(4.1), (4.2) have unique solutions a(t), b(t) ∈ Rs(t1, y0, β), where Rs(t1, y0, β) = {y(t) ∈
C0([0, t1], H

s) : ||y(t) − y0||s ≤ β}.

Notation: A quantity Q will be of O(1) if |γ| << |Q| << |γ|−1. Recall that we are

interested in |γ| << 1.

Thus, assuming initial conditions of O(1), solutions exist for a “long” time of O(|γ|−1),

and their size remains of O(1) during that interval. Proposition 4.1 follows from a standard

fixed point argument. The operator relating the Fourier coefficients uk(t) and ak(t) in (2.4)

is an isometry in Hs, and the maps F (u, t) are Lipschitz in u, uniformly in t. In particular,

we have

(4.4) ||F (u, t)− F (v, t)||s ≤ LF (||u||s, ||v||s)||u− v||s, s >
1

2
,

with LF (||u||s, ||v||s) = |γ|C2
s (||u||2s + ||u||s||v||s + ||v||2s), and Cs a constant satisfying

||uv||s ≤ Cs||u||s||v||s for s > 1
2
. The Lipschitz constant LF is precisely the one for the

map u 7→ iγ|u|2u in the cubic nonlinear Schrödinger equation. Similar considerations

apply to the map G (4.2): Lipschitz constants for the part of F that is eliminated by the

canonical transformation Φ1
χ1

are obtained readily following the arguments of Lemma 4.3

below. Since the Lipschitz constants for F and G and the size of the initial conditions of

(4.1), (4.2) are close, we choose for convenience to state the local existence theorem for

the two initial value problems with the same constants C, β. We now state our estimate

for the distance between the solutions of the full system (4.1) and and the quartic normal

form equations (4.2).

Theorem 4.2 Let s ≥ 1, and let 0 < |δ| ≤ cδ|γ| for some cδ ∼ O(1). Also assume that

|Ω| > 10|δ|N2 and that the (dilated) periodic dispersion management function d(tΩ−1) is
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in L2. Consider a solution b(t) of (4.2) with initial condition ||b0||s′ ≤ ρ0, with s′ = s+ 2,

ρ0 ∼ O(1), and a solution a(t) of (4.1) with initial condition a0 = b0. Then there exist

constants C0, C1 of O(1), and γ0 for which |γ| ≤ γ0 implies

(4.5) ||a(t) − b(t)||s < C0|γ|, ∀t ∈ [0, C̃0|γ|−1].

The constants C0, C1, and γ0 depend on s, |Ω|, cδ, and ρ0.

Remark 4.2.1 The constants C0, C̃0, γ0 do not change significantly as |Ω| diverges.

This is seen in Lemma 4.3 below. Also, the constants are independent of the amplitude h of

the dispersion management function d(t). Thus the estimate applies to all the physically

interesting parameter ranges of |Ω| and h discussed in Remark 2.0.1, but there are no

ranges leading to significant improvements of the error estimate.

The main ingredients of the proof of Theorem 4.2 are estimates for the canonical

transformation Φ1
χ1

defined formally in the previous section, and a bound for the Hamil-

tonian vector field of the remainder R1 in (3.22). We start by making the Hamiltonian

structure of (4.1) precise, and proceed with an outline of the argument.

We consider the Sobolev spaces Hs of 2π−periodic complex valued functions, viewed

as real Hilbert spaces with the inner product

(4.6) 〈u, v〉s = Re
∑

k∈Z

(1 + |k|2)sukv∗k,

where uk, vk denote the Fourier coefficients of u, v respectively. The norm in Hs is given

by (4.3), while the ball of radius ρ around the origin is denoted by Bs(ρ). We also let

〈u, v〉 = 〈u, v〉0. Functions on Hs can be extended to the complexification Hs
c of Hs

by letting the real and imaginary parts of the Fourier coefficients uk of u ∈ Hs become

complex.

For f : Bs(ρ) → R Fréchet C1 smooth in Bs(ρ), we define the gradient map ∇f :

Bs(ρ) → H−s by 〈∇f(u), v〉 = Df(u)v, with D the Fréchet derivative, and v ∈ Hs. Also,

J = −i defines a symplectic structure in Hs, and we denote the Hamiltonian vector field

J∇f of a C1 function f by Vf . The time-dependent Hamiltonian for the system of (2.4) is

h(a, t) = H(a,Ωt, J)+ΩJ , with H as in (2.8). If d(t) is integrable, h : Hs×R → R, s ≥ 1,

is C1 in the variable a, for all t ∈ R, and (4.1) can be written as the non-autonomous

Hamiltonian system

(4.7) ȧ = J∇h(a, t) = Vh(a, t).
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The extended phase space will be the set of x = [x1, x2, x3] ∈ Hs × R × R, where

the second and third components correspond to the angle φ and action J respectively (the

angle is defined on the covering space of the circle). The spaces Hs×R2 can be considered

as real Hilbert spaces with the inner product

(4.8) 〈x, y〉(s,2) = 〈x1, y1〉s + x2y2 + x3y3.

The norm in Hs × R2 is denoted by || ||(s,2), and we let Ks(ρ) = Bs(ρ) × R2. As above,

we use the inner product in H0 × R2 to define the gradient ∇̃ for smooth functions on

Hs×R2. The symplectic structure on Hs×R2, denoted by J̃ , will be the tensor product

of J with the standard symplectic structure in R2, i.e. compare with the Poisson bracket

in (2.6). Also, we let Ṽg = J̃ ∇̃g. If the dispersion management function d(t) is C1 then

the HamiltonianH = H(a, φ, J) of (2.8) is C1 in Hs×R2, s ≥ 1, and Hamilton’s equations

(2.7) can be written as

(4.9) ẋ = J̃ ∇̃H(x) = ṼH(x).

Following the previous section, we want to construct a one-parameter family of canon-

ical transformations Φεχ1
= T ε by integrating

(4.10)
d

dε
T ε(y) = Ṽ−χ1

(T ε(y)), T 0(y) = y,

with χ1 as in (3.25). The components of T ε in Hs ×R×R will be denoted by T ε
i , i = 1,

2, 3. Since χ1 does not depend on the action y3, the second component of the equation

is integrated trivially yielding T ε
2 (y) = T ε

2 (y2) = y2, for all ε, i.e. the angle variable does

not change. The existence of solutions to (4.10) for |γ| sufficiently small and appropriate

initial conditions is shown in Lemma 4.3 below, where we also show that T 1
1 (y) and y1 are

O(|γ|) close in Hs. To exhibit the normal form equation and the remainder we write the

Hamiltonian system of (4.9) as

(4.11) ẋ = L̃x+ ṼH4
(x),

with L̃x = Ṽh0+h2
(x). Equation (4.11) is then written in the new variable y, x = T 1(y),

as

(4.12) ẏ = L̃y + ṼN4
(y) + ṼR1

(y),

where we are using the notation of (3.26) for the Hamiltonian H ◦ T 1 = H ◦ Φ1
χ1

, and the

fact that T 1 is symplectic. The remainder R1 of (3.26) is

(4.13) R1 = (h2 ◦ T 1 − h2) + (H4 ◦ T 1 −H4) + (h0 ◦ T 1 − h0 − [χ1, h0]),
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and the quartic normal form system is

(4.14) ż = L̃z + ṼN4
(z).

An elegant way of comparing solutions of the normal form and the full system is to consider

the evolution of the “error” r(t) = x(t) − T 1(z(t)) (see [BCP]). In particular, combining

(4.11), (4.12), and (4.14) we obtain

(4.15) ṙ = L̃r + (ṼH4
(x) − ṼH4

(T 1(z))) + [DT 1(z)]ṼR1
(z).

The existence of DT 1 is shown in Lemma 6.4. We will consider (4.15) with the initial

condition r(0) = z(0) − T 1(z(0)). Note that we are interested in the size of the first

component r1(t) of r(t). We will denote the three components of Ṽf in Hs×R×R by Ṽ if ,

i = 1, 2, 3. Also, we let D1, D2, D3 denote the Fréchet derivatives along each the three

components in Hs × R × R. Observe that R1(z) depends on the first two components of

z only. This is clear for the first two terms of R1 in (4.13) since h0 and H4 depend on the

first two components of Hs × R × R only, and T 1
1 (y) = T 1

1 (y1, y2), T
1
2 (y) = y2. For the

third term in (4.13), the observation follows from the cohomology equation [χ1, h0] = G4,

with G4 = N4 −H4, and

(4.16) (h0 ◦ T 1 − h0)(y) =

∫ 1

0

d

dε
h0(T ε(y))dε =

∫ 1

0

[χ1, h0](T ε(y))dε =

∫ 1

0

G4(T ε(y))dε.

The second component of ṼR1
, and D3T 1

1 (z) therefore vanish, and the first component of

(4.15) becomes

(4.17) ṙ1 = Lr1 + (VH4
(x) − VH4

(T 1(z))) + [D1T 1
1 (z)]VR1

(z),

with Lr1 = Vh0+h2
(r1). The vector field [D1T 1

1 (z)]VR1
(z) is estimated using Lemmas 4.4

and 4.5 below, and we will conclude the proof by estimating the size of r1(t) from (4.17).

We start by solving (4.10) and showing that the first component of T 1 is near-identity.

Lemma 4.3 Let ρ > 0, α1 ∈ (0, 1), and set ρ1 = α1ρ. Assume that s > 1
2 , |Ω| >

10|δ|N2, and that d(tΩ−1) ∈ H0. Then for |γ| ≤ γ1(s, |Ω|, ρ, α0, ), the initial value problem

(4.10) with y ∈ Ks(ρ1) has a unique solution T ε(y), ε ∈ [0, 1], and its flow defines a one-

parameter family of canonical transformations T ε : Ks(ρ1) → Ks(ρ). Moreover, we have

(4.18) sup
y∈Ks(ρ1)

||T ε
1 (y) − y1||s ≤ εC1|γ|, ε ∈ [0, 1],
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with C1 = ρ3C(s, |Ω|) a constant of O(1) for ρ of O(1).

Proof: We first consider the equation for the rate of change of T ε
1 . The right hand

side is V−χ1
= −J∇χ1. Since χ1 is independent of the action y3 and the angle y2 does

not change, we can consider φ = y2 as a parameter. We will show that Vχ1
is real analytic

in in y1, uniformly in y2. Denote the Fourier coefficients of y1 by ak, and let (Vf )k be the

k−th Fourier component of the vector field Vf . The definition of χ1 in the previous section

leads readily to explicit expressions, and we have

(4.19) |(V−χ1,LLLL
)k| ≤ 2|γ|

∑

k1,k2,k3∈UL

|ak1ak2a
∗
k3
|δk1+k2−k3−k

∣

∣

∣

∣

Fm(φ)

Ω

∣

∣

∣

∣

, k ∈ UL,

with

(4.20) Fm(φ) =
∑

n∈Z∗

f̂m(n)

in
einφ.

Note that (V−χ1,LLLL
)k = 0 for k /∈ UL. Also,

(4.21)

|(V−χ1,LLLH
)k| ≤ |γ|

∑

k1,k2∈UL,|k4|∈[N,3N ]

|ak1ak2a
∗
k3
|δk1+k2−k−k4

∣

∣

∣

∣

∣

f̂m(0)

iδk2
4

+
Gm(φ, k4)

Ω

∣

∣

∣

∣

∣

,

if k ∈ UL, and

(4.22) |(V−χ1,LLLH
)k| ≤ |γ|

∑

k1,k2,k3∈UL

|ak1ak2a
∗
k3
|δk1+k2−k3−k

∣

∣

∣

∣

∣

f̂m(0)

iδk2
+
Gm(φ, k)

Ω

∣

∣

∣

∣

∣

,

if |k| ∈ [N, 3N ], where

(4.23) Gm(φ, k) = Ω
∑

n∈Z∗

f̂m(n)

i(nΩ + δk2)
einφ.

All other Fourier components of V−χ1,LLLH
vanish. We also have similar estimates for the

symplectic gradients of χ1,LLHL, χ1,LHLL, and χ1,HLLL. To bound Fm(φ) we note that

(4.24) |Fm(φ1) − Fm(φ2)| ≤
√

2π||F ′
m||0 ≤

√
2π||e−imΛ||0 = 2π,

φ1, φ2 ∈ [0, 2π) (with prime the derivative with respect to φ). By |Ω| ≥ 9δN2 and

|k| ∈ [N, 3N ] we see that |1 + δk2/(nΩ)|−1 ≥ 2, and we similarly obtain |Gm(φ1, k) −
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Gm(φ2, k)| ≤ 4π, for all φ1, φ2 ∈ [0, 2π) and all admissible k, m. Since the functions Fm
and Gm are continuous in φ and have zero average, we therefore have

(4.25) |Fm(φ)| ≤ 4π, |Gm(φ, k)| ≤ 8π, ∀φ ∈ [0, 2π),

and all admissible k, m. In (4.21) we also note that |δ| ≤ 1
2 implies |f̂m(0)||δk2| ≤ 2,

uniformly in m ∈ Z and k ∈ [N, 3N ].

Estimating the discrete convolutions in (4.19), (4.21), (4.22), and in similar expressions

for the symplectic gradients of χ1,LLHL, χ1,LHLL, and χ1,HLLL, and using similar bounds

on the coefficients Fm, Gm above, we therefore have

(4.26) ||V−χ1
||s ≤ C|γ|||y1||3s, s >

1

2
,

with a constant C ofO(1) that depends on s and |Ω| and is decreasing in |Ω|. Complexifying

the real and imaginary parts of Fourier coefficients ak, (and a∗k, with the obvious abuse of

notation), we obtain a similar inequality in Hs
c , s >

1
2
, with a slightly larger constant C

of O(1) that depends on s and |Ω|. It is also immediate from the convolution estimates

that the complexification of V−χ1
is bounded and weakly analytic, and therefore analytic

(see [PT], Appendix A). The estimates are also uniform in the parameter y2. Thus, given

ρ, α1 as in the statement we can choose |γ| sufficiently small so that the integral curves

T ε
1 (y1, y2) exist for all y1 ∈ Bs(ρ1), ε ∈ [0, 1], and y2 ∈ R. Note that T ε

1 (y1, y2) is also real

analytic in y1 and ε, for all y2 ∈ R (see e.g. [K], ch.1).

The distance between T1(y1, y2) and y1 can be estimated using

(4.27) T ε
1 (y1, y2) = y1 +

∫ ε

0

Vχ1
(T σ

1 (y1, y2), y2)dσ, y2 ∈ R.

We easily see from (4.27) and (4.26) that |γ| ≤ (1−α1)
Cρ2

, with C as in (4.26), implies that if

y1 ∈ Bs(ρ1) then T ε
1 (y1, y2) stays in Bs(ρ) for all ε ∈ [0, 1] and y2. Using (4.27) again we

obtain (4.18).

The third component of (4.10) is

(4.28)
d

dε
T ε

3 (y) = −(D2χ1)(T ε(y1, y2), y2), T 0
3 (y) = y3,

and it suffices to integrate the right hand side with respect to ε. We have

(4.29) |D2χ1,LLLL| ≤ |γ|
∑

k1,k2,k3,k4∈UL

|ak1ak2a
∗
k3
a∗k4 |δk1+k2−k3−k4 |F

′
m(φ)|,
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(4.30) |D2χ1,LLLH | ≤ |γ|
∑

k1,k2,k3∈UL,k4∈UH

|ak1ak2a
∗
k3
a∗k4 |δk1+k2−k3−k4 |G

′
m(φ, k4)|,

with prime the derivative with respect to φ. For Λ(φ) ∈ Hs with s > 1
2 , the series F ′

m(φ) is

absolutely convergent and |F ′
m(φ)| is bounded uniformly inm since m takes a finite number

of values in (4.29). Similarly, |Ω| > 10|δ|N2 and |k4| ∈ [N, 3N ] imply that G′
m(φ, k4) is

bounded uniformly in m, k4. Analogous statements hold for the other terms of D2χ1. By

the real analyticity of T ε
1 (y1, y2) in ε, the right hand side of (4.28) is therefore real analytic

in ε, for all y1 ∈ Bs(ρ1), and y2 ∈ R.

We now consider the derivative of the canonical transformations T 1. We are especially

interested in the derivative along the Hs direction. In what follows ||A||s′,s denotes the

operator norm of a linear map A : Hs′ → Hs, and I1 is the identity in Hs.

Lemma 4.4 Let ρ, ρ1, and s as in the Lemma 4.3 and assume that Λ(φ) is in Hq,

q > 5
2 , and that |γ| ≤ γ2(s, |Ω|, ρ) Then, the canonical transformations T ε : Ks(ρ1) → Hs

defined above are Fréchet differentiable and we have

(4.31) sup
y∈Ks(ρ1)

||(D1T ε
1 )(y)||s,s ≤ 1 + εC2|γ|.

Also, the maps D1T ε
1 (y), y ∈ Ks(ρ1) in (4.31) are invertible and satisfy

(4.32) sup
y∈Ks(ρ1)

||(D1T ε
1 )−1(y)||s,s ≤ 1 + εC2|γ|.

(4.33) sup
y∈Ks(ρ1)

||(D1T ε
1 )−1(y) − I1||s,s ≤ εC2|γ|.

The constant C2 = C2(s, |Ω|, ρ) is of O(1) for ρ of O(1).

Proof: By

(4.34) T ε(y) = y +

∫ ε

0

Ṽ−χ1
(T σ(y))dσ

and Lemma 4.3 differentiability of the maps T ε(y) with y ∈ Ks(ρ1) will follow from the

differentiability of the vector field Ṽχ1
(y) for y ∈ Ks(ρ). Note that D2Ṽ

2
−χ1

= 1, and

that the only other nonvanishing partial derivatives, namely D1Ṽ
1
χ1

, D2Ṽ
1
χ1

, D1Ṽ
3
χ1

, and
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D3Ṽ
3
χ1

of Ṽχ1
involve up to two derivatives (in φ) of the functions Fm(φ), Gm(φ, k) in

Lemma 4.3. The condition on Λ(φ) on the other hand implies that the series for the third

derivatives of Fm(φ), Gm(φ, k) are absolutely convergent for all admissible m, k. Thus the

above four partial derivatives of Ṽχ1
are well-defined and continuous in y2. Continuity of

the four partial derivatives in y1 comes from the real analyticity of χ1, and the existence

of DṼ−χ1
(y) follows immediately. Letting |γ| sufficiently small and integrating Ṽχ1

as in

Lemma 4.3 we also obtain differentiable transformations T −ε, ε ∈ [0, 1]. Moreover, we have

T −ε(T ε(y)) = T ε(T −ε(y)) = y, therefore (DT ε)−1(y) = DT −ε(T ε(y)). Viewing (DT ε)(y)

and its inverse as 3 × 3 block matrices applied to vectors in Hs ×R × R, we see that the

1, 1 entry [(DT ε)−1(y)]1,1 must equal (D1T ε
1 )−1(y) = D1T −ε

1 (T ε(y)). Also note that

(4.35) T −ε
1 (y) = y +

∫ ε

0

Vχ1
(T σ

1 (y1, y2), y2)dσ,

and

(4.36) ||D1Vχ1
(y)g||s ≤ C|γ|||y1||2s||g||s, s >

1

2
,

with C = C(s, |Ω|) of O(1). Differentiating (4.35) with respect to the first component,

taking Hs norms, and using Gronwall’s inequality we then obtain

(4.37) sup
y∈Ks(ρ1)

||(D1T ε
1 )−1(y)||s,s ≤ (1 + εGeεG),

(4.38) sup
y∈Ks(ρ1)

||(D1T ε
1 )−1(y) − I1||s,s ≤ εG(1 + εGeεG),

with

(4.39) G ≤ sup
y∈Ks(ρ)

||Vχ1
(y)||s ≤ C(s, |Ω|)ρ3|γ|,

i.e. (4.32) and (4.33). Estimate (4.31) follows from similar arguments.

Remark 4.4.1 Note that the size of the partial derivatives D2Ṽ
1
χ1

, D1Ṽ
3
χ1

, D3Ṽ
3
χ1

may be large.

Next we estimate the Hamiltonian vector field of the remainder R1 in (4.13):
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Lemma 4.5 Let s, ρ, ρ1, γ, and Λ(φ) as in Lemma 4.4. Consider the transformations

T ε above, and the remainder R1 of (4.13). Also, let s′ = s+ 2. Then,

(4.40) sup
y∈Ks′ (ρ1)

||VR1
(y)||s ≤ C3|γ|2,

with C3 = C3(s, |Ω|, ρ, α1, cδ) a constant of O(1).

Proof: The vector field ṼR1
has three parts, each corresponding to the three paren-

theses in (4.13). We first consider the terms involving h2 and H4. Let f be Fréchet C1 in

Ks(ρ), and consider y ∈ Ks(ρ1). By Lemma 4.3 and the fact that the transformations T ε

are symplectic we have

(4.41) Ṽf◦T ε(y) = [(DT ε)−1(y)]Ṽf(T ε(y)) ε ∈ [0, 1].

Observe that D3T −ε
1 (y) vanishes since χ1(y) = χ1(y1, y2). Then, if Ṽ 2

f vanishes, (4.41)

becomes

(4.42) Ṽ 1
f◦T ε(y) = [(D1T ε

1 )−1(y)]Ṽ 1
f (T ε(y)),

using [(DT ε)−1(y)]1,1 = (D1T ε
1 )−1(y) (see the proof of Lemma 4.4). We write (4.42) as

(4.43) (Vf◦T ε − Vf )(y) = [(D1T ε
1 )−1(y)](Vf(T ε(y)) − Vf (y)) + [(D1T ε

1 )−1(y) − I]Vf (y).

Restricting y to Ks′(ρ1) with s′ ≥ s, taking Hs norms, and using (4.32) and (4.33) in

Lemma 4.4, (4.43) yields

(4.44) ||(Vf◦T 1 −Vf )(y)||s ≤ (1+C2|γ|) sup
y∈Ks′(ρ1)

||Vf (T 1(y))−Vf (y)||s+C2|γ|||Vf(y)||s,

for all y ∈ Ks′(ρ1), s
′ ≥ s.

We now consider the cases where f is h2 and H4 respectively. Note that Ṽ 2
h2

and Ṽ 2
H4

vanish. The vector field Vh2
, viewed as a function from Hs′ to Hs, s′ = s+2, is uniformly

Lipschitz, with Lipschitz constant |δ|. The estimate for the distance between T 1
1 (y) and

y1 in Lemma 4.3, (4.44) with f = h2 yield

(4.45) sup
y∈Ks′ (ρ1)

||(Vh2◦T 1 − Vh2
)(y)||s ≤ (1 + C2|γ|)|δ|C1|γ|+ C2|γ||δ|ρ1.

Also, VH4
(y1, y2) : Bs(ρ1)×R → Hs, s > 1

2 , is Lipschitz in y1, uniformly in y2. Moreover, if

ρ1 is of O(1) then the Lipschitz constants are bounded by a quantity of O(|γ|). Combining

(4.44) for f = H4 with Lemma 3.4, we obtain

(4.46) sup
y∈Ks′(ρ1)

||(VH4
◦ T 1 − VH4

)(y)||s ≤ (1 + C2|γ|)C|γ|2 + C|γ|2,
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with C(s, ρ1) of O(1).

To estimate the third term in ṼR1
, let G4 = N4 − H4 and recall that [χ1, h0] = G̃4.

Using (4.16), and (4.41) with f = G4, we have

(4.47) Ṽh0◦T 1−h0−[χ1,h0]
(y) =

∫ 1

0

(

[(DT ε)−1(y)]ṼG4
(T ε(y)) − ṼG4

(y)
)

dε.

Since Ṽ 2
G4

vanishes, we can argue as before that the first component of (4.47) is

(4.48) Vh0◦T 1−h0−[χ1,h0]
(y) =

∫ 1

0

(

[(D1T ε
1 )−1(y)]VG4

(T ε(y))− VG4
(y)

)

dε.

Splitting the integrand as in (4.43), and using the derivative estimates from Lemma 4.4,

(4.48) leads to

(4.49)

||Vh0◦T 1−h0−[χ1,h0]
(y)||s ≤

∫ 1

0

εC2||(VG4
(T ε(y)) − VG4

(y)||sdε+

∫ 1

0

εC2|γ|||VG̃4
(y)||sdε,

for all y ∈ Ks(ρ1). Arguing as for VH4
above, VG4

(y1, y2) : Bs(ρ1)×R → Hs is Lipschitz in

y1, uniformly in y2, with Lipschitz constants bounded by a quantity of O(|γ|). Combining

this with Lemma 4.3, (4.49) implies

(4.50) sup
y∈Ks′(ρ1)

||Vh0◦T 1−h0−[χ1,h0]
(y)||s ≤

∫ 1

0

Cε|γ|2dε,

with C = C(s, ρ1) of O(1). Collecting the estimates (4.45), (4.46), (4.50) for the three

parts of VR1
and using |δ| ≤ cδ|γ| in (4.45), we therefore have the statement.

Proof of Theorem 4.2: Fix s ≥ 1, and assume that d(tΩ−1) ∈ Hq, q > 3
2
. We want to

estimate the size of r1(t) in (4.17). The initial condition will be r1(0) = z1(0) − T 1
1 (z(0)).

Let s′ = s + 2, and consider Proposition 4.1 with ρ0 = β of O(1). Applying Proposition

4.1 to the first component of the quartic normal form equation (4.14), we can choose |γ|
sufficiently small so that z1(0) ∈ Bs

′

(ρ0) implies z(t) ∈ Bs
′

(2ρ0) for a time interval of

O(|γ|−1). We also have existence in Hs′ for the full system (4.1) with the initial condition

x1(0) = z1(0) ∈ Hs′ , also over a time interval of O(|γ|−1). In particular, the Hs norm

of x1(t) remains of O(1) over that time. We set ρ1 = 2ρ0, α1 = 3
2
, and let |γ| ≤ γ0 so

that Lemmas 4.3, 4.4 apply. Thus T 1
1 (z1(t),Ωt) is well defined over the time interval of
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the local existence theory. Define R1(t) by r1(t) = etLR1(t) and note that the operator

Ut = etL is an isometry in Hs and commutes with L (in a dense subset of Hs). By (4.17),

R1(t) then satisfies

(4.51) Ṙ1 = U−t(VH4
(x) − VH4

(T1(z))) + U−t[D1T 1
1 (z)]VR1

(z).

Note that VH4
(y1, y2) : Bs(ρ′) ×R → Hs, s′ > 1

2 , is Lipschitz continuous in y1, uniformly

in y2, and that for ρ′ of O(1) the Lipschitz constants are of O(|γ|), e.g see (4.4). From

(4.51) we then have that for t in the time interval of the local existence theorem we have

(4.52) ||R1(t)||s ≤ ||R1(0)||s+
∫ t

0

C|γ|||R1(t)||sdτ+

∫ t

0

||D1T 1
1 (z(τ))||s,s||VR1

(z(τ))||sdτ,

with C = C(s, ρ1) of O(1). Bounding R1(0), D1T 1
1 and VR1

by Lemmas 4.3, 4.4 and 4.5

respectively, and using Gronwall’s inequality, (4.52) yields

(4.53) ||r1(t)||s = ||R1(t)||s ≤ C0|γ|, t ∈ [0, C̃0|γ|−1],

with C0, C̃0 that depend on s, |Ω|, ρ0, cδ and are of O(1).

To extend the error estimate to d(tΩ−1) ∈ L2, consider two dispersion management

functions d(Ω−1t) in Hq, q > 3
2
, d1(Ω

−1t) in L2 with the same average δ (and period

T = 2π
Ω

). Also let Λ̃1(t) =
∫ t

0
d1(σ)dσ (following the notation of (2.4)). The nonlinearities

of (4.1), (4.2) with Λ̃(t) replaced by Λ̃1(t) are denoted by F1, G1 respectively, and we

compare the solutions of ȧ1 = La1 + F1(a1, t) and ḃ1 = Lb1 + G1(b1, t), with the initial

conditions a1(0) = b1(0) = a(0) (= b(0) ∈ Hs′ , s′ = s+ 2, as above) to solutions of (4.1),

(4.2). Define ∆ by

(4.54) ∆ =
√
T ||d̃(t) − d̃1(t)||0 ≥ |Λ̃(t) − Λ̃1(t)|.

Choosing d(tΩ−1) that is close to d1(tΩ
−1), i.e. letting ∆ > 0 small, we observe that (4.53)

is uniform in ∆. This is because the estimates for T ε
1 and D1T ε

1 only require d(Ω−1t) ∈ L2,

and the extra derivatives were used to make DT ε well-defined, but do not appear in the

quantities involved in (4.53). From

(4.55) ||a1(t) − b1(t)||s ≤ ||a1(t) − a(t)||s + ||a(t) − b(t)||s + ||b(t) − b1(t)||s

it then suffices to check that by choosing ∆ > 0 sufficiently small the first and third

terms of (4.55) can be made of O(|γ|) over a time interval of O(|γ|−1). To see this, we let

Ut = etL, A(t) = U−ta(t), A1(t) = U−ta1(t), and use (4.54) to obtain

(4.56) ||F (UτA(τ), τ)− F1(UτA1(τ), τ)||s ≤ CF (||A(τ) −A1(τ)||s + C∆||A(τ)||s′),
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with LF a constant that is quadratic in ||A||s, ||A1||s, and C of O(1). The Hs′ norms of

A and A1 remain of O(1) over a time of O(|γ|−1), and by (4.56) we see that

(4.57) ||a(t) − a1(t)||s ≤ O(∆)

for a time of O(|γ|−1). Similar arguments apply to the third term in (4.55).

As noted in [BCP], (4.15) allows us to estimate the remainder on the solutions of the

normal form equation for which we have more information. On the other hand, in (4.52)

we had to use the fact that the solution of the full system remains of O(1) in Hs over the

time interval of interest. This control of the solutions of the full system for all s > 1
2 comes

from the local existence theory, and may not be available for longer times. It appears that

that the possible growth of the norms is one of the main problems in extending the formal

theory to higher orders.

The extension of Theorem 4.2 to more general dispersion relations is straightforward,

with the index s′ determined by the number of derivatives in the low and high frequency

regions of the dispersion.

At present, there is a gap between Theorem 4.2 and the periodic orbits of Proposition

3.2 since we have not estimated any higher Sobolev norms of these solutions for fixed L2

norm. It is likely that some of these solutions have oscillations, and that we will need to

decrease their amplitude to bring them inside the domain where the normal form equation

is valid. We believe that this question can be partially addressed with some numerical

work in the future.
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