ON ENERGY SURFACES AND THE RESONANCE WEB

ANNA LITVAK-HINENZON AND VERED ROM-KEDAR

ABSTRACT. A framework for understanding the global structure of near inte-
grable n d.o.f. systems is proposed. The goal is to reach a similar situation
to the near integrable 1.5 d.o.f. systems, where one is able in a glance of the
integrable phase portrait, understand where instabilities are expected to arise
under small perturbations. It is suggested that the main tool for understand-
ing the system structure is an energy-momentum bifurcation diagram (EMBD)
and generalized Fomenko graphs - the branched surfaces. It is demonstrated
that for some systems this procedure is sufficient for achieving a full qualita-
tive description of the near-integrable dynamics. In particular, the persistent
appearance of instabilities associated with resonant lower dimensional tori are
discussed. The relation between the EMBD and the presentation of the en-
ergy surfaces in the frequency space is established. Finally, it is proved that
topological changes in the energy surfaces topology are associated with strong
resonances of lower dimensional tori.

1. INTRODUCTION

The study of the structure of energy surfaces of integrable systems and the study
of resonances and instabilities in near integrable systems developed into vast dis-
parate research fields. The relation between the two received very little attention.
Indeed, near regular level sets of the integrable Hamiltonian, the standard Arnold-
resonance web structure appears and the relation between the two fields reduces
to the study of Arnold conjecture regarding instabilities in phase space. Here, we
demonstrate that near singular level sets of the integrable Hamiltonian much infor-
mation regarding possible instabilities of the near integrable case may be deduced
from the structure of the energy surface and its relations with resonance surfaces.
We suggest that by adding some information to the traditional energy-momentum
diagrams, which we name energy-momentum bifurcation diagrams (EMBD), one
achieves a global qualitative understanding of the near-integrable dynamics. We re-
late the geometrical properties of the surfaces corresponding to lower dimensional
tori in this diagram to both bifurcations in the energy surface topology and the
appearance of lower dimensional resonant tori.

Recall that integrable systems are foliated almost everywhere by n-tori!, which
may be expressed locally as a product of n circles on which the dynamics reduces
to simple rotations (the action-angle coordinates). A given compact regular level
set (the set of phase space points with given values of the constants of motion)
may be composed of several such tori. The energy surface is composed of all level
sets with the same energy. These iso-energy level sets have different number of
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components iff there exists a singular level set on this energy surface which is not
smoothly conjugate to a collection of n-tori. Such singularities may be expressed
locally, using the Arnold-Liouville-Nekhoroshev coordinates, as fixed points (and
their homoclinic loops) in s d.o.f. subsystem (s < n), called the normal system, and
simple tori in the remaining n — s d.o.f. (see exact statements in the formulation
section below, and Lerman and Umanskii [30] for a complete treatment). The
regular n tori correspond to the case s = 0. The larger the s the more cases and
possibilities one has for the behavior in the normal directions. The larger the n — s,
the more possibilities to transfer between the different cases, namely to encounter
bifurcations. In this context, Lerman and Umanskii work [30] is mainly concerned
with n = s = 2, whereas Fomenko and Oshemkov work [15, 4], is mainly concerned
with n =2, s = 1. Here, we consider s = 1 and n > 2, studying the implications of
phase space bifurcations as a source for instabilities in the near-integrable systems.

Our main result, Theorem 2 (section 7.3), roughly states that the ezistence of
non-degenerate n — 1 dimensional torus of fized points implies bifurcations in the
topology of the energy surface. Furthermore we prove that such a torus appears as
an extrema of certain surfaces in the EMBD. In other words, this provides relation
between energy surface topology, bifurcations in the EMBD and lower dimensional
resonant tori.

Since the integrable system has n integrals of motion, a representation of the
energy surfaces corresponds to indicating the range of allowed motion and its char-
acter in some n dimensional space (the innocent words “its character” hide a vast
body of work dedicated to understanding the topology of the level sets which are
represented as points in this reduced space as discussed below). Traditional spaces
for such representation are the frequency domain [25], the space of constants of mo-
tion (e.g. [2, 30, 36, 17, 16]), the energy-momentum space and the momentum space
(e.g. [2,1,6,7,43,9, 30, 36]). Such presentations are all equivalent near regular
level sets, where action-angle coordinates may be introduced. Furthermore, each of
these representation is inherently non-unique as one may choose any non-singular
vector function of the conserved quantities to serve as the new set of coordinates.
We propose that a convenient representation appears in a specific combination of
energy and momentum space. Convenient here means:

C1: The geometric presentation supplies a concise summary of all the dy-
namics and geometrical features of the integrable system for all energy
levels.

C2: The geometric presentation provides clear criteria for the location of
special regions in phase space which are expected to produce strong insta-
bilities under a given form of a perturbation.

While many presentations in the n dimensional space satisfy the first criteria,
it appears that the second one has not been explicitly addressed. Notice that the
first criteria deals with the integrable part of the Hamiltonian only. On the other
hand the second one depends on the nature of the applied perturbation, hence the
choice of the most convenient representation of the integrable system depends on the
form of the perturbation. These issues are explained more fully in section 3 where
we propose a choice of convenient coordinates. Similar approach, in which the
perturbation determines the appropriate integrable system is taken in the partial
averaging procedure. Other related works, in which the geometry of the energy
surfaces and their intersection with the resonance web are related to the perturbed



ENERGY SURFACES AND THE RESONANCE WEB 3

dynamics, are those on “resonance streaming”, where it is argued that in 2 d.o.f.
integrable systems a small angle between the intersecting resonance and energy
curves (plotted in the frequency space) enhances the effect of added noise [31, 44].

The various representations in the n dimensional spaces of the constants of mo-
tion identify the regions of the allowed motion but do not, in general, supply in-
formation regarding the topology of the level sets. Indeed, the classification of all
the possible topologies of the level sets of energy surfaces of integrable Hamilto-
nians is extremely challenging (see [2, 30, 36, 16, 1, 43]) and has been completed
for the 2 d.o.f. case only [16, 30]. Lerman and Umanskii use the n = 2 integrals
of motion near fixed points to obtain local and global information regarding the
level sets of the integrable motion and to classify all possible generic homoclinic
connections which are induced by the local behavior [27, 28, 29]. We use their
formulation in our treatment of lower dimensional tori. Fomenko and co-workers
suggested to use graphs to represent all topologically distinct tori which appear in
the integrable dynamics [16, 17, 15, 39, 4]. Some of these ideas have been extended
to classify integrable 3 d.o.f. dynamics such as the motion of rigid body [16, 9, 10].
Oshemkov, Fomenko and co-workers use the 2 d.o.f. constructions on given level
sets of the third integral to analyze such systems [39, 16, 17]. Dullin et al. (see e.g.
[9, 10, 47] and references therein) have shown that such approaches may be used to
develop schemes for computing action-angle coordinates even when the topology of
the energy surfaces is complicated and finding n topologically independent circles
(n circles which are irreducible to each other) is an a priori complicated task. Here
we investigate the structure of energy surfaces with very simple topological struc-
ture for which we are able to generalize Fomenko-Oshemkov graphs to branched
surfaces.

The paper is ordered as follows; in section 2 we describe the type of the near-
integrable Hamiltonians we study, with prototype examples of 3 d.o.f. systems
which demonstrate the appearance of non-trivial energy surfaces. In section 3 we
propose a convenient choice of momentum, and explain how the choice of suitable
coordinates depends on the form of the perturbation. In section 4 we describe the
structure of the energy surfaces and the resonance web in the frequency space and
in the energy momentum space near normally elliptic lower-dimensional tori. The
integrable structure in this a priori stable case is trivial and we add essentially no
new insights to the known results. It is included here to build intuition for the next
two sections. In section 5, we describe these structures near level sets corresponding
to normally hyperbolic invariant (n — 1)-tori. In section 6 we proceed to describe
these structures near normally parabolic tori. In section 7 we formulate the notion
of branched surfaces and topological bifurcations of the energy surfaces and prove
our main theorems. We conclude with a discussion section.

2. FORMULATION

Consider a near integrable Hamiltonian Ho(q,p) + €Hi(q,p;€),(¢,p) € M C
R"™ x R", where M is a 2n-dimensional, smooth, symplectic manifold, Hy € C" (M),
and H; is analytic in ¢,p and €. H, represents the completely integrable part
of the Hamiltonian, having n linearly independent integrals of the motion (the
unperturbed system) and its structure is described below. On each energy level
H = h, Hy, the Hamiltonian perturbation, is assumed to be uniformly bounded in
the C” topology. For any ¢, a perturbed orbit with energy h resides on the energy



4 ANNA LITVAK-HINENZON AND VERED ROM-KEDAR

surface Ho(-) = h — eHi(-;¢). Hence, the structure of the unperturbed energy
surfaces and their resonance webs in an O(e)-interval of energies near h supplies
global information on the allowed range of motion of the perturbed orbits [34, 35].

The integrable n d.o.f. Hamiltonian, Ho(q,p); (¢,p) € M C R® x R", has n
independent integrals of motion: Hy = Fy, F,...,F, € C*(M), which are pair
wise in involution: {F;, F;} = 0; 4,j = 1,...n. Assume that n > 3 and that the
Hamiltonian level sets, M, = {(¢,p) € M, F;=yg;; i=1,...,n}, are closed and
compact. By the Liouville-Arnold theorem (see [38] and [2, 24]), the connected
compact components of the level sets M, on which all of the dF; are (point wise)
linearly independent, are diffeomorphic to n-tori and hence a transformation to
action-angle coordinates (Hg = Ho(I)) near such level sets is nonsingular. Con-
sider a neighborhood of a possibly singular level set M ; on each such connected
and closed Hamiltonian level set there is some neighborhood D, in which the Hamil-
tonian Hy(g,p) may be transformed to the form:

(21) H[)(iI,‘,y,I), (x,y,B,I) eUC R* x R* x T"° x R"*°

which does not depend on the angles of the tori, §. The symplectic structure of
the new integrable Hamiltonian (2.1) is 377_, da; A dy; + X7 df; A dI;, where
(0, I) are the action-angle variables (s = 0 corresponds to the maximal dimensional
tori - the n-tori discussed above). The motion on the (n — s) dimensional family

(parameterized by the actions I) of (n — s)-tori is described by the equations:
éi:wi(xay;I)v IZZO

The geometrical structure of the new Hamiltonian, Ho(z,y, I), is such that for
any fixed I an (n — s)-torus is attached to every point of the (x,y) plane (space,
for s > 1). The (z,y) plane (space) is called the normal plane (space) [2, 40, 3]
of the (n — s)-tori, and defines their stability type in the normal direction to the
family? of tori. Invariant lower dimensional tori, of dimension (n — ), generically
exist for each 1 <1 < n — 1; indeed, for any given s consider an m-resonant, value
of I. Then, for each such I, there exists an m dimensional family (corresponding
to different initial angles) of n — s — m dimensional tori. All these tori belong to
the higher n — s dimensional resonant torus, associated with I. The existence of
such lower dimensional tori is restricted to the n — s — m dimensional resonant
surface of I values. A different type of lower dimensional invariant tori, which are
of the main interest here, correspond to isolated fixed point(s) of the s-dimensional
normal space. These appear on an n — s dimensional manifold of I values, the
singularity manifold (such a generalized fixed point corresponds to a manifold on
which each dF; for i = 1,...,s is linearly dependent on dIi,...,dI,_). Locally, one
may choose the (z,y,I) coordinate system so that for these tori:

(22) v(z,y) HO(:anaI”pf = 05 bf = (xfayfalf)

Hereafter, consider the case s = 1 only. The invariant (n — 1)-tori have an (n — 1)-
dimensional vector of inner frequencies, 6 = w(py). The normal stability type of
such families of (n — 1)-tori is determined by the characteristic eigenvalues (respec-
tively, Floquet multipliers for the corresponding Poincaré map) of the linearization

2Notice that a single torus belonging to this family has neutral stability in the actions direc-
tions. The normal stability referred too in the Hamiltonian context ignores these directions, see
[5, 3] and references therein.
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of the system about the tori; generically, these tori are either normally elliptic® or
normally hyperbolic’. If the torus has one pair of zero characteristic eigenvalues
in the direction of the normal (z,y) space, it is said to be normally parabolic. In
addition, the normal frequency® [2, 40], Q, of the (n — 1)-tori is defined as the
(non-negative) imaginary part of the purely imaginary characteristic eigenvalues®.

Locally, in the (x,y,I) coordinate system, the normal stability of the invariant
torus is determined by:

) = _)‘129f
ps

0%*H,

(2.3) det <82(x,y)
where p; satisfies (2.2). Indeed, when Ap, is real and non-vanishing the correspond-
ing family of tori is said to be normally hyperbolic, when it vanishes it is called
normally parabolic and when it is pure imaginary it is normally elliptic. For more
details on the above see [2, 5, 11, 12, 13, 14, 20, 21, 22, 23, 24, 40, 3] and references
therein.

An example of a 3 d.of. integrable Hamiltonian which is in the form (2.1),
possesses families of invariant 2-tori of all three normal stability types at x =y =0
and satisfies all the stated above assumptions, is:

2 g2 4 1.12 12
(2.4) Hw@meg:%—5h+zﬁﬂn+?%+§+mb+%hb

where the «;’s and uq are fixed parameters. We may compare it with a standard
model of a priori stable systems with bounded energy surfaces having a family of
normally elliptic 2-tori at z = y = 0:

2 2 4 2 2
Y T x I3
2. Hy(z,y, I, 1) = =— 4+ — + — I L+ —+—=
(2.5) t(z,y, 11, I2) gty T tahtabt+ o+
2
I?
:Z<az-[z+?l>; ag=1
i=0
and to the corresponding a priori unstable system:
2 42 4 2 g2
(2.6) me%hm:%—?+z+mhmm+%+§

which has a family of normally hyperbolic 2-tori at = y = 0.

3. THE DEPENDENCE OF THE PRESENTATION ON THE FORM OF THE
PERTURBATION.

To proceed, we first recall the trivial geometry of the resonance surfaces in the
frequency space. Consider a phase space domain where all level sets of the integrable
Hamiltonian are regular and compact, so that the transformation to action-angle
coordinates (6, I) € T™ x R” in this domain is regular and the frequency vector w(I)

3If all the characteristic eigenvalues of an invariant lower dimensional torus (with respect to its
normal (x,y) space), are purely imaginary (and do not vanish), it is said to be normally elliptic.

4If all the characteristic eigenvalues of an invariant lower dimensional torus (with respect to
its normal (z,y) space) have a nonzero real part, it is said to be normally hyperbolic.

5In some references, these are called characteristic frequencies.

6In some references, e.g. [5], the normal frequencies are defined as the positive imaginary parts
of all the characteristic eigenvalues.
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is well defined. In such domains the dynamics is equivalent to that of n non-linear
oscillators with amplitude vector I. The resonance surfaces, which are given by
the frequencies satisfying (k,w) = 0, are co-dimension one hyper-planes, passing
through the origin of the frequency space. The energy surfaces themselves may
have non-trivial structure in the frequency space - both topologically and geomet-
rically. As we will demonstrate below it is therefore beneficial to plot them in
additional space - the energy-momentum space. However, before embarking into
detailed analysis of these surfaces in these different coordinates systems an impor-
tant natural question arises - what is the significance of the different representations
if they are coordinate dependent? In particular, it is clear that a general symplectic
transformation from the (6, ) coordinates to the (¢, J) coordinates changes some
geometrical properties of the energy surface. Furthermore, transformations of the
form (0,1) — (¢ = 0—wt, I), which correspond to moving relative to particular tori

with frequency vectors w = w, for which Hy,ey(J) = Ho(J) —wJ where § = %}U,
may change the topology of the energy surfaces, the structure of their singularity
manifolds and the nature of their intersections with the resonance hypersurfaces.
In fact, we may even take w = w(I), with H,e,(J) = Ho(J) — H(J) where w(I) =

agy), which demonstrates that we may deform the energy surface in almost ar-

bitrary way. Hence, it appears that indeed finding the “correct” representation is
ill-defined in the context of the integrable system. We propose that the form of the
perturbation resolves these issues.

Consider first the issue of moving frames. The transformation (6,I) — (¢ =
0 — w(I)t,I), produces in general time-dependent Hamiltonians, hence, the coeffi-
cients w(I) may be determined by requiring that the transformed Hamiltonian is
autonomous (if such a transformation is possible). Notice that if we start with an
autonomous near-integrable system H = Hq(q,p) +eH1(q,p) = Ho(I) + eH,(6,1),
we immediately obtain that generally w(I) must vanish identically to preserve the
autonomous character of the problem. This trivial statement implies, in particular,
that given an a priori stable near integrable system of the form (2.5), for generic
vector ¢, it may not be transformed to the system with a = 0 without introducing
time-dependent perturbations.

The second issue which arises is the choice of the action variables, which im-
plicitly determines which resonances are considered strong. This issue is well un-
derstood in the context of averaging [2]; the form of the anticipated perturbation
determines which of the resonant surfaces will produce the strongest response; con-
sider the near integrable system, expressed near a singular level set in some local
Arnold-Liouville-Nekhoroshev coordinates:

(3.1) H(q,p) = Ho(x,y,I) +eH(z,y,0,1).

Consider the Fourier series of Hj:

Hy(q,p) = Hi(2,y,0,1) = > hi (2, y, 1) exp(i (k, 6)).
[k|=k1|+:+|kn|>7T0

Then, provided h; are monotonically decreasing (we assume H; is analytic, so
hi decays exponentially for large |k|) the strongest resonances are given by the
frequencies satisfying (k,w) = 0 for k values which are included in the sum (hy # 0
near the singular level set) and satisfy |k| ~ rg, see [2] for exact definition and
discussion. In particular, by a change of the action angle coordinates (6, I) — (¢, J)
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one may arrange so that the first n terms in the above sum have k/ = rjel =
(0,...,7j,...0) for j = 1,...,n (where r; is in the j'* place, and are monotonically
increasing with 7). Then, the strongest resonances occur along the action variables
directions.

Summarizing the above observations, we propose:
Definition 1. The local Arnold-Liouville-Nekhoroshev coordinates (z,v,0,1) of the
integrable part of a near-integrable system are called suitable if:

e The perturbed system is autonomous.
e The strongest n — s resonant terms are aligned, in decreasing order, along
the n — s actions. More precisely, let

(32)  Hi(q,p) = Hi(w,y,0,1) = > Iy (w,y, D) exp(i(k’,6)), jeN
J
with |k7| monotonically increasing with j and ||hy; || monotonically decreas—
ing with j for equal |k7| values. Then, ki||e,_, (i.e. k7 is parallel to e ),
for j =1,..,n — s, where €,_, is the n — s dimensional unit vector with 1

at the jt entry.

Lemma 1. If (x,y,6,1) and (q,p,p,J) are two suitable coordinates for the system
(8.1) then I = J and ¢ = 6 + f(I).

Proof. First, notice that the requirement that I, and J, ¢ are action-angle coordi-
nates implies that a general symplectic transformation between these two coordinate
systems must satisfy:

dg -t

for some analytic functions g, f. Expressing the perturbed part of the Hamiltonian
in the (x,y,0,I) coordinates and using the above transformation in (3.2), we obtain

0
Hi(g,p, ¢, J th a,p,J exp(< 85} >)

with kj||efl_s for j = 1,..,n — s. Therefore, insisting that ¢, p,p,J are suitable
implies that for all ¢

9y j .
<e"21—s’ §<,0> = <eﬁl_s,<p> for j=1,..,n—s

hence that ‘99 = Id. Since g is analytic and % = Id in an open neighborhood of
the singular level set, it follows that g(z,y,I) = I. O

Conversely, one may take the usual convention by which, given an integrable
Hamiltonian in a given coordinate system, the analysis determines which form of
the perturbation will cause the largest instability in the vicinity of a given resonance
junction. In particular, by the appropriate change of coordinates of the integrable
system, one obtains that the strongest resonances possible are realized when k =

= (0,0,...,0,1,0,...,0). With this view the notion of strongest resonances is
inherently coordinate dependent.

In our presentation of the energy surfaces in the energy-momentum plots we
relate changes in the energy surface singular structures to strong resonances of
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lower dimensional tori. To make such statements well defined, we insist that the
coordinates we use are locally suitable coordinates.

4. A PRIORI STABLE SYSTEMS

To obtain a good understanding of our proposed presentation of the energy-
momentum bifurcation diagram (EMBD) we begin with the simplest and most
familiar model of a priori stable systems near lower dimensional torus. Let us ex-
amine the presentation of the regular part of the energy surface first in the frequency
space, and then in the energy-momentum space.

F1GURE 1. A resonance web on a cap of an energy surface of an a
priori stable system ( eq. (4.1) with h = 0.5).

4.1. Energy surfaces in the frequency space (S). For the standard Hamil-
tonian Hg; (see equation (2.5)) the transformation from momentum to frequency
variables is a shift (w(I) = a+ I, «a = (1,a;1,as)), and is regular everywhere, so
we can write:

(41) Hou(I) = Ha() = 3 (DI - 3 llo]?

and we obtain the standard result that in the definite case the energy surfaces
appear in the frequency space as spheres centered at w = 0. The natural oscillations
near the elliptic fixed point = y = 0 (where the transformation from the (z,y)
coordinates to the action-angle coordinates is singular) corresponds to the circle
wo = ap = 1, and in this representation appears as a regular level set of the energy
surface. Here it is natural to insist on positive Iy value, leading to energy surfaces in
the form of “caps” with boundaries: w”" = {w| ||lw||* = 2h+||al|*, wo > ao = 1}. The
boundary wg = ag corresponds to the family of lower dimensional tori x =y = 0
on the given energy surface, see figure 1. In the figure we also show the dense
intersection of the resonance surfaces, given by planes passing through the origin,
with this cap (see [2, 22, 31] and references therein). The planes w; =0, i =0,1,2
correspond to the strongest resonances. Notice that the only energy surface which
includes the origin is a sphere with diminishing radius, and such an energy surface
is disallowed for systems of the form (4.1).
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al=1.0, a2=1.0

F1GURE 2. Energy-momentum bifurcation diagram of an a priori
stable system

4.2. Energy surfaces in the Energy-Momentum space (S). Alternatively,
in figure 2, we construct the EMBD of the system (2.5) by presenting the energy
surfaces in the space (Hg, I, o) where Hg(z,y,I) = Hy. For any given energy
Hy = h, the allowed region of motion is bounded by the family of normally elliptic
2-tori (z,y,I) = (0,0, I(h)). The corresponding singularity surface in the EMBD is
given by the paraboloid:

2
1
pou(h I, L) = {(h;-71,12)| H(0,0,1) 52 ai+15)*—ai)=h, h>hey = O}a

i=1

namely, for a given h, (I1,I>) belong to a circle of radius \/2h + o2 + a3 which
is centered at (—ay, —as).The singularity manifolds corresponding to normally el-
liptic invariant tori are denoted by a collection of solid curves in the EMBD as
demonstrated in figure 2. To see that motion is allowed only for I values which are
interior to this paraboloid notice that from (2.5):

2 1.4

1 o? + a?

0§%+7+Z_h——2(1i+ai)2+%
The energy surfaces which appear as caps in the frequency space are “flattened”
here to discs in the energy-momentum space. An example of an energy surface in
the (I, I) plane, corresponding to the 2D slice of figure 2 at Hy = 1, is presented
in figure 3A. The thin vertical lines in the 2D sections of the EMBD indicate the
region of allowed motion. In 3B we present a 2D slice in the (Hp,I;) plane at
I, = 0, on which we schematically indicate the corresponding Fomenko graph by
a thick black line. The Fomenko graph for any positive h and an interior I value
is simply a segment: each interior point on this segment corresponds to a single 3-
torus, and each of the end points corresponds to a normally elliptic 2-torus (“atom
A” in [17]). For such a fixed I, value the energy surface appears as a 2-sphere in the
(z,y,I;) space. The poles of this sphere are normally elliptic 2 dimensional tori,
and they correspond to the boundaries of this component of the energy surface.
Equivalently, we may think of a natural generalization of the Fomenko graphs to
branched surfaces, and in this trivial case the branched surface is simply a single
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disk, as shown in figure 9A: an interior point to the disc corresponds to a 3-torus,
and a point on the disc boundary corresponds to a 2-torus.

A:HO0=1.0, a1~1.0, a2=1.0 B: 12=0.0, a1=1.0, a2=1.0

BESS — ] 1

it Fomenko Graph — T

11
11

FI1GURE 3. 2D slices of an energy-momentum bifurcation diagram
of an a priori stable system: A - one energy surface, B - range of
energy values for a fixed value of I, and a schematic Fomenko
graph.

The strong resonances w; = 0,i = 1,2, correspond here to the hyperplanes

I; = —a;. Their intersections with the singularity manifold p?,, satisfies:
9. — OH _ dH (pey) —0.
! 811 dIz

r=y=0,I,=—a; r=y=0,I;,=—a;

Namely, it corresponds to a fold in the singularity manifold p%,. Here the rela-
tion between total derivatives w.r.t. I; along pY, and the corresponding partial
derivatives of H is trivial. We notice that it is satisfied even when the location
of the singularity manifold depends on I; since V, ,H vanishes on the singularity
surfaces. This latter property is coordinate independent as long as the coordi-
nates are suitable. It follows that the families of lower dimensional tori {(z,y,I) =
(0,0,—aq, 1), Hs:(0,0,I) = h,Ir € R}, {(z,y,I) = (0,0,11,—as), Hs:(0,0,I) =
h,I; € R} are strongly resonant. They intersect at the minimal possible energy
where (I1,Is) = (—a1, —as), corresponding to a two-torus of fixed points. In figures

2 and 3 we indicate these strongest resonances by starred lines (for #; = 0) and
dotted lines (for 8, = 0).

4.3. Qualitative behavior of the near-integrable system (S). The motion in
the near-integrable system H(6,1) = Hs(I) + eH1(0, I) is restricted to the energy
level H = h. Since H; (8, I) is assumed to be bounded in the C" topology, we obtain
that the unperturbed energy surfaces with Hy:(I) = h*, |h* — h| < Ce supply a-
priori bound to the motion. For energy surfaces of large extent, such an a-priori
bound is irrelevant due to Nekhoroshev type theorems and the Arnold conjecture.
Hence, in this case the only new information obtained from the EMBD is regarding
the appearance of strong lower-dimensional resonant tori (and even this information
can be extracted from the frequency plot). Near the doubly resonant normally
elliptic lower dimensional torus, where (z,y, ) = (0,0, —a1, —«as), one may expect
small perturbations to produce large instabilities. Our trivial observation regarding
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the extent of the energy surface immediately shows that the extent of the instability
cannot be larger than O(1/€), the extent in the I space of the energy surfaces with
Hy(I) = b*, |h* — h| < Ce. We may except that the behavior near the doubly-
resonant torus will be dramatically different if the dependence on the actions is
linear or indefinite:

2 2 4 2 2

Y T T I I

Hg— L, L)="4+—+4+ —+ a1 ] +asls — — + =
st unbounded(waya 1, 2) B 5 4 Qi1 T Qala B 5

namely, the energy surfaces are unbounded, and, in particular, the energy sur-
face passing through the elliptic double resonant fixed point is unbounded. Such
considerations are the trivial analogs to the non-linear stability theorems of Arnold-
Marsden and have been studied and discussed in the context of normal forms near
elliptic fixed points ([2],[36]).

5. A-PRIORI UNSTABLE SYSTEMS

The phase space structure of the standard Hamiltonian H,s (equation (2.6)):

y2 22 7t 1 2 , )
(5.1) Hust(w,y,h,lg)=7—7+Z+§;((ai+m —a?)
(5.2) = Hyy(z,y) + Hi(I)

is given by the product of a figure eight motion in the zy plane and a family
of 2-tori in the (6,I) space. The precise structure of each energy surface, which
demonstrates how a given energy may divide between the three modes (degrees
of freedom) requires a bit more attention. Since there are no global action-angle
coordinates in the (z,y) plane, it is instructive to start with the presentation of the
energy surfaces in the energy-momentum space and then discuss the presentation
in the frequency space.

5.1. Energy surfaces in the Energy-Momentum space (U). To construct the
EMBD we find the singularity manifolds of the Hamiltonian (5.1). These manifolds
correspond to fixed points of Hyy(z,y). The normally elliptic singularity surfaces,
corresponding to {x = +1,y = 0}, are given by the identical” paraboloids:

2
1 1
p;‘;l(ha 11712) = {(h711512)| § ; ((al +IZ)2 - a?) = h+ Za h Z hell} )
where

2
1 1<,
hell:—Z—Ei_Elai.

The normally hyperbolic singularity surface corresponding to z = y = 0 and its
separatrices is given by the paraboloid

2

1

p?zyp(haIlv-IQ) = {(h711112)| 2 E ((al + Il)2 - a?) =h, h> hhyp} ’
i=1

where

2
1
hhyp = —§ Za?
i=1

7Adding an asymmetric term like nx to Hys lifts this degeneracy.
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In figure 4 an EMBD of system (5.1) is presented as two nested paraboloids.
The singularity manifolds are drawn according to the normal stability of the lower
dimensional invariant tori they represent - the normally elliptic singularity mani-
folds (p;t”(h, I,,1,)) are drawn as a collection of solid curves whereas the normally
hyperbolic singularity manifold (p?lyp(h,ll,lg)) is drawn as a collection of black
dashed curves. Thus we follow the traditional notation in bifurcation diagrams.

Given an energy surface Hyg(x,y,I1,10) = Ho = h with hey < h < hpyp,
the 3D and 2D EMBD look locally similar to those of the a priori stable system,
presented in figures 2 and 3: for each fixed energy value in this range the energy
surface is a disk in the (I»,I;) plane. However, each point interior to this disk
corresponds to two sets of 3-tori, one in each well of the potential of H,,(2,y).
Points on the boundary of the disk correspond to the two normally elliptic 2-tori,
{x = £1,y = 0, Hys:(£1,0,I;,I5) = h}. Hence, the Fomenko graph for any 1D
section of each such disk is given by two disconnected segments, as shown in figure
5B. Equivalently, the generalized branched surfaces for this range of energies is
the union of two disconnected discs (see figure 9B). Each point belonging to the
interior of the branched surfaces represents, as before, a single 3—torus, and every
point on the solid boundary of the discs represents, as before, a single, normally
elliptic 2—torus. The multiplicity in the number of components of the level set
corresponding to a given (h, I, I5) is expressed by the multiplicity in the number
of components of the branched surfaces for these values of (h,I,I5). A precise
construction of the branched surfaces is suggested in section 7.2.

01=1.0,02=1.0

12 ’ HO

FIGURE 4. Energy-momentum bifurcation diagram of an a priori
unstable system.
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For h > hpy;, the energy surfaces include the singular level set of the separatrices,
which divides the energy surface to two topologically different regimes, see figure
5A. A point (h, I, I,) inside the disk enclosed by pgyp(h, I, I,) (the dashed circle
in 5A) corresponds to a single 3-torus. Trajectories belonging to this torus encircle
both wells in the zy plane. A point inside the ring bounded between pgyp(h, I, L)
and pff”(h,fl, I,) corresponds to two sets of 3-tori - trajectories belonging to one
of these tori oscillate in one of the wells in the zy plane. The Fomenko graph for
this case is shown schematically on the cross-section in figure 5B (in thick black).
The generalized branched surfaces here are two rings which are glued together in a
central disk (figure 9C). Each regular point of the branched surface corresponds to
a single 3—torus, each point belonging to the dashed circle corresponds to a nor-
mally hyperbolic 2—torus and its separatrices, and each point belonging to the solid
(outer) boundaries of the rings corresponds to a single normally elliptic 2—torus.

A: H0=-0.8, a1=1.0, a2=1.0 B: 12=0.0, a1=1.0, a2=1.0

T -

o

11
11

FI1GURE 5. 2D slices of an energy-momentum bifurcation diagram
of an a priori unstable system with h > hpyp: A - one energy
surface, B - range of energy values for a fixed value of I, and a
schematic Fomenko graph.

Intersections of the singularity manifolds with the hypersurfaces of strongest
resonances correspond to folds of these singularity manifolds in the EMBD (see
figures 4 and 5). This is the essence of Theorem 1 (see section 7.1). For example, the
paraboloids p?lyp(h, I, 1) and pf”(h, I, I,) fold as they cross the surface Iy = —a;

(and similarly at I, = —a») and indeed 6;| = «; + I;. Thus, the families of 2-
ps

tOI‘i, pil (h7 —Qi, 12)1 pil (h7 Ila _a2)a ngp(ha —Qq, IQ) and p?zyp(ha Ila _a2)a are all
resonant and the 2-tori pf”(heu, —ay,—as) and p?wp(hhyp, —ai, —ay) are doubly
resonant - these are 2-tori of fixed points. In figure 4 the strong resonance in the
I; direction (91 = 0) is denoted by a surface of green starred lines and the strong
resonance in the Ir direction (92 = 0) by a surface of cyan dotted lines; the double
fold corresponding to a 2-resonant hyperbolic 2-torus (a hyperbolic torus of fixed
points) is denoted by a red star.

Observe that the topology of the family of equi-energy normally hyperbolic lower
dimensional tori (p(,]wp(h, -), with fixed h) changes exactly at this double fold point,

p?lyp(hhyp,—al,—ag), where a 2-torus of fixed points resides; for h < hp,y, the
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singularity surface p?wp(h, -) does not exist and the energy surfaces have two dis-
connected components (figure 9B) whereas for h > hp,, the singularity surface
p(,]wp(h, -) is a circle and the two components of the energy surface connect on this
circle (figure 9C). This is the essence of Theorem 2 (see section 7.1). Similarly, for
the natural n d.o.f. generalization of H,:

" 22?2t 1R 9
(53) Hust(x:yy-lla---:]—nfl) = E — 7+Z+§ ((al—f-IZ) —al)
=1
(54) = sz(x,y) + H}n(I)

pgyp(h, -) changes from non-existence for h < hpy, to an n — 2 sphere for h > hpy,.
In particular, for n = 2, there are either none or two non-resonant hyperbolic circles
on each energy surface. If the dependence on the I variables is indefinite then one
may have other topological changes in p?, (h,-) occurring at the (n — 1)-resonant
(n — 1)-torus; either the genus of pgyp(h, -) changes or two components of pgyp(h, )
coalesce/separate. Notice that the flow along the lower dimensional (n — 1)-torus

reverses its direction as a strong resonance surface is crossed (namely, 6;| changes
pf
its sign there). This property holds for the general case of non-separable systems

as well (see [42, 35, 34]).

5.2. Energy surfaces in the frequency space (U). For small energy levels,
hett < h < hpyp, we have seen that the disk Hys:(2,y, I1,I>) = hin the (I2, I1) plane
(see figures 5B and 9B) corresponds to two separate smooth compact components
of the energy surface. In the frequency space these appear as a cap of hyperbola,
centered at the origin. Indeed, the natural frequency in the xy plane at the elliptic
points is wo(h, 11,12)|pei”(h7117]2) = /2, the direction of rotation is preserved for all
orbits (so wo(h, I1,I5) > 0) and the frequency monotonically decays as the action
of the periodic orbits grows. Denoting by womin(h) > 0 the frequency of the two
symmetric periodic orbits in the zy plane satisfying Hy,(x,y) = h, it follows that
for this range of energies

(5.5) Womin(h) < wo(h, 1, 1) < V2.

In figure 6 an example of such a cap shaped energy surface of system (5.1) in the
frequency space is shown.

For h > hp,y, the behavior near the separatrices needs to be presented. Since
the frequency in the zy plane is well defined for all orbits except the separatri-
ces, and since wo(z,y) — 0 as the separatrix is approached, defining wy(0,0) = 0
makes wo(z,y) a continuous (non-differentiable) function of the zy energy level
(this observation is used extensively in the Frequency map plots, see [26]). Hence,
for Hy = h > hpyp, an energy surfaces in the frequency space has an annular cap
component which meets at the (singular) circle wg = 0 a central cap, see figure
7. The annular cap corresponds to the two sets of tori for which the motion is
restricted to one of the wells in the zy plane whereas the central cap corresponds
to a single family of 3-tori for which the motion in the zy plane surrounds both
wells of the potential. Recall that strong resonances are created when the energy
surface intersects one of the w; = 0 planes. However, here, the surface approaches
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HO=-1.1, al=1, a2=1.

FI1GURE 6. Energy surface of an a priori unstable system in the
frequency space, for hey < Ho < hpyp

the plane wy = 0 singularly, and the normally hyperbolic torus is not resonant in
the 6 direction.

HO=-0.8, a1=1., a2=1.
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FI1GURE 7. Energy surface of an a priori unstable system in the
frequency space, for Ho > hpyp

5.3. Qualitative behavior of the near-integrable system (U). Using the
plots of the EMBD we may read off all possible sources of instabilities for near
integrable n d.o.f. systems with unperturbed Hamiltonian of the form (5.3). Here
we need to combine several effects:

e Instabilities associated with the regular resonance web. Such instabilities
may appear near any point in the EMBD.

¢ Instabilities associated with splitting of the separatrices (as in one and a
half d.of. systems). Such instabilities may appear for any h > hpyp in an
e neighborhood of the surface pp, (h, ).

¢ Instabilities associated with the existence of families of separatrices on the
same energy surface (as in Arnold’s conjecture for the existence of whiskered
transition chain). For n > 3, these appear for any h > hp,, near the surface

p?zyp(h7 .)‘
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e Instabilities associated with strongly resonant normally hyperbolic tori. For
k < n—1, the k—resonant normally hyperbolic tori appear for all h > hpy,p,
and their effect must be included in the above mentioned transition chain.

e Instabilities associated with bifurcations in the structure of the singularity
manifolds as the energy varies. These appear near the critical energy surface
h = hpyp near the singularity surface pj, (h,-). There, p} () hasann—1
fold point and the normally hyperbolic torus pgyp(hhyp, -) is a torus of fixed
points.

-
T
Fomenko Graphs T
/ e
*\k]vr—*wwww*w*wwww
| [« F
N
€ L

F1GURE 8. 2d slice of the EMBD of the perturbed motion. Shaded
Strip - region of allowed motion for perturbed orbits near hyper-
bolic resonance. Dashed region - homoclinic chaos region.

While the detailed analysis of each of the above items is not yet well understood,
we propose that the inclusion of rough lower bounds on the instability associated
with each of the above phenomena supplies nontrivial information on the system.
In figure 8 we plot on a 2D slice of the EMBD an O(e) band around the separatrix
level sets (the light shaded region), and indicate an O(e) slab of energies to which
the perturbed motion is restricted near a hyperbolic resonance (the dark shaded
strip). The geometry near the hyperbolic resonant tori immediately presents itself
as a source for larger instabilities than the non-resonant terms. A detailed analysis
of this case for n = 2 has been developed, see [22] and references therein. Here we
see that in the 3-d.o.f. context the hyperbolic resonant 2-tori, ppyp(h, —a1,I2(h))
and ppyp(h, I (h), —a2), belong to the circle of equi-energy normally hyperbolic 2-
tori, pryp(h,-); hence, one is lead to the study of whiskered transition chains with
resonant gaps, a subject which has received much attention in recent years (see
[8, 45, 46]). Furthermore, as (I1, ) — (—ai, —a2) we approach a double resonant
hyperbolic torus - in this case the 3D figure corresponds to a revolution of the EMBD
in fig. 8 around the starred line, with the strong resonant planes intersecting as
in figure 4. Here the radius (in I) of the circle ppyp(h,-) scales as /e (see fig. 8)
hence the transition chain created near such a double resonant hyperbolic torus
cannot create large instabilities. If the terms in I are indefinite near such a torus
this situation may change (though our preliminary numerical simulations appear to
indicate that even then the instability induced by the separatrices is not significantly
enhanced [35]).

The doubly resonant elliptic tori pil(h, —a1, —as) reside on two small separate
components of the energy surface hence cannot induce large instabilities.
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Other cases corresponding to unbounded energy surfaces may be classified sim-
ilarly.

6. BIFURCATING SYSTEMS

For n d.o.f. systems with n > 3 the appearance of parabolic resonant tori is
persistent (see [35]), hence their study is both mathematically fascinating and phys-
ically relevant. Combining our understanding of the stable and unstable systems,
we can now study Hp,y:

2 $2 $4 1 12 12
(61) Hbif(x,y711,12) = % - ?II + Z + (,Ul + 5)71 + 72 + QQIQ + a311[2.

The phase space structure of the Hamiltonian Hy,¢ for any fixed I is obvious - for
I; > 0itis given by the product of a figure eight motion in the xy plane and a family
of 2-tori in the (8, I) space as in H,s, whereas for I; < 0 it corresponds to an elliptic
motion around the origin in the zy plane and a family of 2-tori in the (6, I) space
asin Hg. At IT = x = y = 0 the system has a family of normally parabolic 2-tori.
To understand the precise structure of each energy surface, we again construct the
EMBD and the corresponding branched surfaces and then present the interesting
energy surfaces in the frequency space.

FIGURE 9. Generalized Fomenko graphs - the branched surfaces.

6.1. Energy surfaces in the Energy-Momentum space (B). Recall that the
boundary of the allowed region of motion is composed of the singularity surfaces
corresponding to lower dimensional normally elliptic tori. For (6.1), these are given
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by the normally elliptic tori at {(x,y) = (£v/1,0); I; > 0}:

(6.2)
+ 112 122 +
poy(hy Iy In) = § (b Iy, I)| Mo+ 5 toeh+ashily=h; b2 hyn, I >0
and the elliptic tori at {(x,y) = (0,0); I; < 0}:
(6.3)
0 N 0
Peu(hs L1, Io) = § (hy [y, L) | (pa + 5)7 5t asly +azhils = h; h > hy;,, I <0p.

Another surface of singularity, on which the hyperbolic tori {(x,y) = (0,0); I; > 0}
and their separatrices live is given by
(6.4)

1.12 12
Phyp(h 1, ) = {(h,Il,Iz) | (u1 + 5)71 + 72 + ool +ashi Iy =h; h>h, I} > 0} )

Expressing the Hamiltonian on these surfaces in a quadratic form:

1 Qo3 2
ey (- o)

6.5 Hyir (0,0, I, I) =
(6.5) bif ( 1, 12) AT

N | =

1 2 1 2 1 (042043)2
~ (I IV - g2 - - \%2%3)
+2(2+a2+a3 1) 2a2 2u1+%_a§
1 asa 2
(6.6)  Hyif(£V/11,0,11, ) = = (1 — a2) (11 - =2 32>
2 o —aj
1 2 1 2 1(0&20&3)2
(I ) — Za2 — =
+2(2+a2+a3 1) 592 2/11—04%

shows immediately that the sign of u; — a2 determines whether the energy surfaces
are bounded or unbounded in I. Here, for simplicity and comparison with the
previous cases, we present a bounded case. In particular, we hereafter assume:

(6.7) p1 — ag >0, as > 0, 0<az<l.

Other cases change some of the inequalities below, leading to a different EMBD and
may be similarly analyzed - see for example [33, 32, 34, 35] where we considered
mainly unbounded models. Here, equations (6.5) and (6.6) define paraboloids, and
their intersections with the plane of constant energy define ellipses (see figures
10-16).

The minimal energies for which these paraboloids are defined are:

2 2
(6.8) R 1042 1(a2a3) 0 _ 1042— (aza3)

1
min _5 2_2u1_a§ min — 92 5#1‘*’%_@%’

with the corresponding minimizing actions:

(I I ) B Q03 [65) (/,Ll + %)
1542 )mj - -
3 min 0 N1+%_a%’ Hl‘*’%_a%

Qo203 Qo b1
I, 15)_. = ,— .
Tt T )i+ <N1 —a3’ - a%)
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ul=0.3, ¢2=1.0, a3=0.4

F1GURE 10. Energy-momentum bifurcation diagram for the bifur-
cating Hamiltonian, Hy¢.

Finally, notice that the surface I; = 0 cuts the paraboloids pzsl(h,ll,lg) and
pgll’hyp(h, I, I,) along a parabola which corresponds to a family of normally para-
bolic 2-tori:

_[2
69 Por(h 11, 12) = {(h,h,b) [ h=0, S +ak=h h> hf;m} :

where
hinin = —%a% > hinin-
Let us now examine the appearance of strong resonances. Since
OHpif(z,y, 1, I»)
oI,
resonances in 5 (i.e., resonances in the direction of I5) are given by the intersection

of the domain of allowed motion with the plane

(611) IQres = —Q3 — 04311

(610) UJZ(Il, Iz) = = IQ + oo + 043.[1

In particular, resonant lower dimensional tori appear when this plane intersects the
paraboloids p) (h, "), pY; (h,), p(h,-) and DPoar(hy-).

Due to the cross term ””2—211 in Hy;p (see eq. (6.1)) we cannot get such a simple
and explicit expression for the #;-resonant tori surface wi(l1,I>) = 0. However,
the intersection of this surface with the singularity surfaces may be easily found -
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the hyperbolic (resp. elliptic) lower dimensional tori pj, (h,-) (vesp. p%,;(h,-)) are
resonant when w! = 0, where
o _ OHpiz(0,0, 1y, 1)
w) =
ol

so resonance occurs exactly at the fold of the singularity surface in the I; direction.
Hence, the intersection of the plane

1
(6.12) = (u1 + 5)11 +aszly,

ag
ul+l

Ilres(] = — IZ
2

with the paraboloid p,,(h,-) U pyq,.(h,-) U py(h,-) corresponds to the family of
lower dimensional resonant in the I;j-direction tori (the green starred curves in
figure 10), p%,, ;(h,I). These tori are normally hyperbolic for I1,.; > 0, normally
elliptic for I1yes < 0 and, at Hp;y = hpar—res1 = 0, are normally parabolic (then
Ii,es = I = 0). Similarly, the elliptic lower dimensional tori at (z,y) = (£+/I1,0),
pil, are f;-resonant when wli = 0, where:

ot OHyif(+vT1,0,11, I,)
! o6

Hence, the intersection of the plane

= /J1I1 + a3I2.

Ilres:l: = _%12
M
with the paraboloids pjil(h, I, I,), corresponds to these two families of normally
elliptic lower dimensional resonant in the I;-direction tori, p, | (h, I) (denoted by
green starred curves in figure 10 as well). The manifold of 3-tori, which are strongly
resonant in 01, pres—1(h, I, I5), intersects the paraboloids pgyp(h, U pgm(h, U
p%,(h,-) and p,(h, I, I,) along the families p2.,_; (h, I) and pi-,_, (h, I).

Clearly, from the form of (6.1), strong resonance in the zy plane (namely, the
normal frequency Q = wg(h,I1,I>) = 0) may occur only at the parabolic tori
Ppar(h;0,12) = py, (7,0, I5) = p5,(h,0,15), where wy = /211 and w§ = /=1
vanish. Notice that here, at I; = 0, the natural frequency of the lower dimensional
torus does vanish, as opposed to the formal definition of vanishing w§ which we had
introduced for I; > 0.

In figure 10 a three dimensional EMBD of system (6.1) (Hamiltonian Hy,y) is
presented for typical parameter values, where the axis are the energy, Hg, and
the actions, I, and I;. The EMBD in this figure is plotted for a limited set of
I values to allow a glimpse into its complicated inner structure: the manifold of
solid curves corresponds to the singularity manifold of elliptic 2-tori, pjl(h, I, L)
and pY; (h, I, Is), the manifold of dashed curves to hyperbolic 2-tori, p)  (h, I1, I>),
and the curve of red circles to parabolic 2-tori, pgar (h, I, I5); strongest resonance

in the I, direction (where 6, = 0 on the regular 3-tori or on the singular 2-tori) is
denoted by a (vertical) blue surface of dotted lines and the 2-tori with the strongest
resonance in the I direction (01 = 0) by green starred curves. The yellow volume
(or shaded regions in the 2D EMBD) corresponds to regular 3-tori on which 61
changes sign (back-flow). The surface of 3-tori which have strong resonance in
the I direction is contained in this region. The intersection of this surface with
specific energy surfaces is calculated and is denoted by starred curves in the 2D
slices of the EMBD - see figures 11A, 12A,C,D, 13A, 15 and 16; the tori with the
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A: H0=-0.8, p1=0.3, u2=1.0, «3=0.4

B: 12=-1.0, @1=0.3, u2=1.0, a:3=0.4

Fomenko Graphs L

FiGure 11. 2D slices of the EMBD of the bifurcating system,
Hy;s: A - an energy surface in the energy range: h. < Hy < h%;,

B - an interval of energy values for a fixed value of Iy = —as and
all three possible types of (schematic) Fomenko graphs for Hyy.

strongest resonance in the I, direction are denoted in the 2D slices by a dotted
line. The typical parameter values we choose for all EMBD plots presented here
are: up = 0.3, as = 1, ag = 0.4; the corresponding bifurcation values for the
energies are: h. ~ —1.0714, hO, = —0.625, h?. = —0.5 and hpar—res1 = 0.

Below we describe the topological changes in the energy surfaces of system (6.1)
and in the iso-energetic strong resonance structure as the energy is varied - namely,
as one takes various 2D slices of figure 10. For energies in the range Hy = h,
h:;in < h < hY,,, the energy surfaces are composed of two separate components
corresponding to oscillations in each of the potential wells (as in the low energy a
priori unstable case). The energy surface in the EMBD is an ellipse, so any 2D
section of figure 10 for this range of energies is similar to the EMBD slices of sys-
tem Hg; presented in figure 3; see for example the energy surface in figure 11A.
The Fomenko graph for any one dimensional section of this ellipse is simply two
segments - see figure 11B. Equivalently, the branched surfaces are two identical
discs as in figure 9B, and the strong resonance surfaces wy (I1, ) = wa(I1, 1) =0
intersect the energy surface transversely, as shown by the starred and dotted lines
in fig. 11A and schematically in fig. 14A. In particular, since the two resonant
in the I; direction lower dimensional elliptic tori, pﬁs_l(h,ll,lg), are separated
along the circle pil(h, I, I,) by the two resonant in the I direction lower dimen-
sional elliptic tori, pﬁs_Q(h, I, I,), it follows that the curves pres—1(h, I1, I2) and
Pres—2(h, I, I3) of resonant 3-tori must intersect at least once in a double resonant
3-torus as shown schematically in figure 14A; indeed, a transverse intersection of
the strongest resonance curves is depicted in figure 11A.

At Hy = h = hY,, a hyperbolic resonant bifurcation occurs, exactly as in the a
priori unstable case; the singularity surface p?wp(h, I, I,) appears in a 2-fold (since
I mino > 0), creating a torus of fixed points which is normally hyperbolic - see figure
12A; the 2-resonant hyperbolic 2-torus is shown as a star (6; = w? = 0) residing on
the dotted line (62 = wo = 0) - look below the starred curve, at the boundary of the
yellow shaded region. In figure 12B the energy range Ho = h > hY. is shown for

the fixed value of Is = I5 mino - the newly born 2-resonant hyperbolic torus appears
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A: H0=-0.625, u1=0.3, a2=1.0, a3=0.4

B: 12=-1.25, a1=0.3, «2=1.0, «3=0.4

@

-

F1GURE 12. 2D slices of EMBD showing the energy range h2. <
Hy < hg: A - an energy surface corresponding to the energy value
Hy = h?.., showing the hyperbolic bifurcation point, B - a range
of energy values which includes the bifurcation value at which a
hyperbolic double resonance occurs for a fixed value of Iy = I5 nino,
C, D - energy surfaces containing the singular ellipse (dashed line)

corresponding to hyperbolic 2-tori and their separatrices.

there in the fold of the dashed curve. The two disks of the branched surfaces meet
exactly at this point (unlike in the a priori unstable case, where they connected at
the cross of the two resonance curves w; = wy = 0, as shown schematically in figure
14B; while the topology of the energy surfaces is identical in these two cases, the
topology of the strong resonances on the energy surfaces is different). For Hy = h,
hO.. < h < hP. we have, as before, a ring of I values for which two families of
3-tori, corresponding to oscillation in the wells, co-exists and a central region of I
values for which only one family of 3-tori, corresponding to motion around the two
wells exists. These regions are connected by an ellipse of I values, corresponding
to normally hyperbolic 2-tori. Hence, for this range of energy values, the branched
surface is a disk with two rings attached to it (figure 9C) and the energy surfaces
in the EMBD are similar to the energy surfaces of Hys in the hyperbolic energy
range, as in figure 5A - see for example figure 12C,D.

Using the computation of p,, ; »(h,I), the minimal number of intersections of
the strong resonance curves pres—1(h, I, Is) and pres—2(h, I1, I3) in the interior disk
is found to be one, as shown in fig. 14C. The 2D sections of figure 10 for these ranges
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of energies demonstrate that for the bifurcating system (6.1) additional intersections
appear (see fig. 12A,C,D); a bifurcation in the iso-energetic strong resonance curve
wi = 0 occurs at Hy = h = hY. : for h < hY, this resonance curve is simple
and smooth; at the bifurcation point A = hQ, it splits to two components - a
smooth curve of resonant 3-tori with two resonant elliptic 2-tori at its boundary
and a resonant hyperbolic 2-torus as a separate component (see fig. 12A); for
RO, < h < K¢, the iso-energetic curve wy = 0 has three components: the smooth
component of resonant 3-tori with elliptic resonant 2-tori as its boundary and the
other two components, which reside above and below the ellipse of hyperbolic 2-tori
and meet at the two resonant hyperbolic 2-tori, as seen in figure 12B. As the energy
value increases, the components of wy; = 0 approach each other until at the next
bifurcation point of this curve, Hy = h = h¢, , all three components meet again (for
the parameters chosen here h, ~ —0.59 - see figure 13D), forming, for A > A, , a
one non-smooth component with cusp points at the resonant hyperbolic 2-tori, as
seen in figure 13A (so the resonant surface w; = 0 folds in a shape of a nose looking

towards the negative h values in the EMBD).

A: H0=-0.5, n1=0.3, 02=1.0, 03=0.4 B: 12=-1.0, a.1=0.3, u2=1.0, ¢:3=0.4

{
/

FiGure 13. 2D slices of EMBD of the bifurcating system, Hy;y,
showing the parabolic bifurcation point: A - an energy surface
corresponding to the energy value Hy = h” . | B - a range of energy
values which includes the bifurcation value Hy = h? . for a fixed

value of Is = —ans.

At Hy = h = h};, the ellipses py (i) and pﬁl(hﬁlin,-) touch the I; =
0 plane at I = —as, creating a parabolic torus (see the energy surface in the
EMBD 13A and fig. 9D for a schematic representation). This bifurcation is, again,
associated with a fold in the singularity surfaces in the EMBD and therefore with
a resonance of a lower dimensional torus. Indeed, at Hy = A, , the parabola
pgm(h, I, I,) folds in the I direction at I = —aw, hence this parabolic 2-torus is
resonant in 6s:

_ OHi;(0,0,0, 1)
- al,

Furthermore, parabolicity of this torus implies that the torus is strongly resonant in
the zy plane, namely wl = 0, so at h = h2 . a double resonance occurs at the torus
(z,y,I) =(0,0,0,—as). Figure 13 demonstrates the appearance of such a resonant
parabolic torus for the system (6.1) (the dotted line in the figure, which denotes

6>

(0,0,0,—a2)

=0.

12:76!2
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resonance in the I» direction, intersects the boundary of allowed region of motion
at the parabolic torus, which is denoted by a circle). The schematic representation
of the branched surfaces with the resonant surfaces in figure 14C-D demonstrates
that the first appearance of a parabolic torus occurs in a resonant parabolic torus.

F1GURE 14. Energy branched surfaces and strong resonance curves.

In figure 15, 2D slices of the EMBD of system (6.1) for Hy = h > hb. -
energy surfaces in the (I»,I;) plane - are presented. For h > hL. . the ellipse
Hyip(£vT1h,0, 11, I5) = h is defined only for I; > 0 (the upper part of the bounding
solid ellipses in fig. 15), and the ellipse Hy;¢(0,0, 1, I5) = h corresponds to hyper-
bolic tori for I; > 0 (the dashed part of the inner ellipses in fig. 15) and elliptic
tori for Iy < 0 (the lower solid part of the ellipses in fig. 15). Furthermore, there
are exactly two parabolic tori on each energy surface (see eq. (6.9)); in figure 15
the two parabolic tori are denoted by circles and are seen at the meeting point of
the different parts of the ellipses - solid (elliptic) and dashed (hyperbolic). The cor-
responding branched surface is a disk with two flaps emanating from it (see figure
9E), where the two end points of the flaps correspond to parabolic tori.

Now, consider the relative location of the resonant in the I; direction 2-tori,
Pes—_1(h, I), and the parabolic 2-tori, p,,.(h,I) on the ellipse Hy;f (0,0, Iy, I2) = h.
For h values which are slightly larger than AP . . this pair of resonant 2-tori live
on the upper part of the ellipse, above the parabolic tori, hence they correspond
to normally hyperbolic resonant 2-tori, as shown schematically in 14D. For such
values of h the curve pres—1(h, I1,I5) intersects only the upper part of the ellipse
(the dashed part of the ellipse in fig. 15A, corresponding to hyperbolic tori), so
there are no resonant in the I; direction normally elliptic 2-tori at the origin (i.e.,
Pyl I, I2) N pres—i1(h, I, I>) = @), as shown in figure 15A. For energy values

greater than Hy = hpgr—rest = 0 (i.e. for h > hpgr_res1) this situation changes; for
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A: H0=-0.2, u1=0.3, a2=1.0, u3=0.4 B: H0=0.5, u1=0.3, u2=1.0, u3=0.4

FIGURE 15. 2D slices of an EMBD of the bifurcating system, Hy;;:
A - an energy surface with h* . < Ho < hpgr—res1, B - an energy
surface with Hy > hpar—res1-

H0=0.0, n1=0.3, «2=1.0, a:3=0.4
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FIGURE 16. A 2D slice of EMBD of the bifurcating system, Hy;¢
- an energy surface with Hy = hpar—res1, containing a strongly
resonant in the I; direction parabolic 2-torus.

Ho = h > hpar—rest, the resonant plane pyes—1(h, I1, I>) intersects each of the curves
Phyp(h,+) and pd,(h,-) at one point (see the schematic figure 14F and the energy
surface in figure 15B). Namely, one of the resonant hyperbolic lower dimensional
tori, becomes normally elliptic for Hy = h > hpar—res1. Therefore, at the bifurca-
tion value, Hy = hpgr—res1 = 0, the resonant plane in the I; direction intersects the
ellipse p) , (h, ) Up),,.(h,-)Up,; (h,-) at I = I = 0, where a parabolic, resonant in
the I direction, lower dimensional torus is created (see schematic figure 14E,F). In-
deed, in figure 16 it may be seen that at the bifurcation value, Hy = hpgr—res1 = 0,
one of the resonant hyperbolic tori changes it’s stability and becomes parabolic (the
end point of the starred curve, w; = 0, intersects one of the circles denoting a par-
abolic 2-torus; note that at the bifurcation point Ho = hpqr—res1, the iso-energetic
curve w; = 0 ceases to have two cusp points and thereon has only one cusp point at
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the remaining resonant hyperbolic 2-torus). Furthermore, in figure 17A a 2D slice
of the EMBD at Is = 0 demonstrates that the resonance in the I; direction is indeed
associated with a fold of the parabola pp (h, I1,0) Upp,,.(h, I1, 0) U pfy, (h, 11, 0) at
the origin - the circle denoting the parabolic torus and the star denoting the strong
resonance in the I; direction coincide.

A: 12=0.0, a1=0.3, 0:2=1.0, a3=0.4 B: 12=0.0, 1=0.3, 02=0.0, a3=0.4
i : ‘ : . E 0, a1=03; .0, a3=0. .
3 — 3k T
B g ,/—’/’/’_ 2 s ===
; = e =
= / e = // -

0 % or {

\ 9

. S
1 o E1S L
1-resonant parabolic 2-torus T _ 2-resonant parabolic 2-torus T ke

FI1GURE 17. 2D slices of the EMBD at I, = 0: A - regular pa-
rameter values - at Iy = Hy = 0 a resonance in the I; direction
occurs, B - at the special bifurcation value as = 0. Since as = 0,
at I = Hy = 0 a double resonance in the I; and I, direction
OCCUTS.

Bifurcation values for the parameters are now easily identified. First, we see that
at as = 0, ht. = A%, = hP. = Rhpar_res1 = 0, all the bifurcations mentioned
above occur at one energy surface, and a double resonant (torus of fixed points
in the 3 d.of. case) normally parabolic torus is created, as shown in figure 17B,
where the star (w; = 0), the dotted line (wy; = 0) and the circle (a parabolic torus)
coincide; then, the energy surface Hy = as = 0 of system (6.1) shrinks to one
2-resonant normally parabolic 2-torus of fixed points. The existence of a double
resonant parabolic torus is a co-dimension one phenomena for 3 d.o.f. systems and
a persistent phenomena in 4 or larger d.o.f. systems [35]. Normally parabolic tori
of fixed points are a co-dimension one phenomenon for any n > 2 (see [41], [35] and
[34] for more details).

Second, notice that

d?Hyip(£v/11,0, 11, I,)

dI?

hence, the fold of the singular surface pj”(h,ll,lg) in the I; direction becomes
flatter as py — 0 (put differently, the dependence of the frequency wli on I; becomes
weaker). It is seen that holding a3 fixed in this limit changes the character of the
energy surfaces from being bounded to being unbounded in I, Ir. We will not delve
into the analysis of all the different limits which may be taken here, and just note
that the appearance of flat parabolic resonant tori in such situation gives rise to
strong instabilities (see [35] and [34]).

=

6.2. The frequency domain plots (B). In the previous section we have estab-
lished that the bifurcation values of the energy, where the geometrical properties of
the energy surfaces are changed, are h'. < hO. < hP At hpar—res1 = 0 a lower

min min min*
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dimensional resonant torus changes its stability. Here, typical energy surfaces are
chosen in each of the possible regions and presented in the frequency space and are
denoted by w¥. In addition, we present here the resonance web on some of these
energy surfaces - to demonstrate its interesting structure (essentially different than
the structure of the resonance webs of a priori stable systems). The parameters
in all these plots are: pu; = 0.3, as = 1 and a3 = 0.4, and we remind that the
corresponding bifurcation values for the energies are: ht. ~ —1.0714, b9, = —0.
625, h?. = —0.5 and hpar—res1 = 0.

min

H0=-0.8, p1=0.3, a2=1.0, a3=0.4

wl ‘ w0

F1GURE 18. A typical energy surface corresponding to an elliptic
energy value Hy = h with ht. < h < h0

min min*

The simplest type of energy surface component contains only elliptic lower di-
mensional tori. For Hy = h, hl, < h < h%, it appears as a smooth co-dimension
one surface with boundaries, as shown in figure 18. Note the similarity to figure 6
where energy surface of the a-priori unstable system in the elliptic energy range is
presented. This smooth compact component is a smooth deformation of the disk
appearing in the energy-momentum space, (Hp, I2,I;). Transverse intersection of
a smooth component of w? with one of the planes wj = 0 corresponds to a strong
resonance; for energy surfaces in the range h;";in < h < A2, this occurs only for
j = 1,2 (it cannot occur for j = 0 since in this energy range wo > 0). In figure
18 (and in the following figures here) the red starred curve corresponds to the in-
tersection of the energy surface, wf, with the resonance plane, w; = 0, and the
dotted line denotes the intersection of w with ws = 0. The lower dimensional
elliptic resonant tori correspond to the intersections of the surfaces’ boundary with

the w; =0 (j = 1 or 2) planes.
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HO0=-0.625, u1=0.3, 02=1.0, a3=0.4 HO0=-0.625, n1=0.3, 02=1.0, a3=0.4

FIGURE 19. An energy surface corresponding to the bifurcation
value Hy = hY, | containing a double resonant hyperbolic torus of
fixed points: left - the frequency map plot, right - the resonance
web on this energy surface for |k| < 21, where the size of the dots

indicate the strength of the resonance.

The energy value Hy = hY, is a bifurcation value at which one 2-resonant

hyperbolic 2-torus (hyperbolic torus of fixed points) appears. It creates a singular
cusp point in the energy surface w? - see figure 19, where this energy surface
is presented in the three frequency space in the left plot (each blue thin curve
corresponds to a fixed value of I, the red starred curve to the strong resonance
w1 = 0 and the black dotted line to the strong resonance wy = 0) and the resonance
web on this energy surface is presented in the right plot. The resonance webs
presented here are calculated by finding (approximately) the points on the energy
surface for which (k,w") = 0 for 0 < |k| = |ky1| + |k2| + |ks| < 21, where the size of
the dots is in inverse relation to |k| - i.e. the stronger the resonance the larger the
dot indicating it (note that for the weaker resonances the difference in the size of
the dots is indistinguishable). It may be seen that the hyperbolic 2-resonant 2-torus
in fig. 19 resides in the cusp, far from where other resonance surfaces intersect this
energy surface; in particular, it resides far from the main resonance junction on this
energy surface, where strong resonances intersect (this might suggest an additional
reason for not observing strong instabilities of the perturbed system near such
hyperbolic double resonance [35]).

Energy surfaces with Hy = h, h%,, < h < k. . include a circle of hyperbolic tori
with their separatrices. As for the a-priori unstable case, we find that the energy
surface wH collides at this singular circle with the plane wy = 0, and then bounces
back with the same sign of wq (since the direction of motion does not change from
the exterior to the interior tori). Using equations (6.12) and (6.10) we find that the
singularity manifold corresponding to the family of hyperbolic 2-tori is given by

Hyip(0,0,11, 1) = Hpif (0,0, w1, ws) =

2 2

1 (w? — asws) 1 5 1 1 (wag)
(613) = 5 .1 o2 + = (CUQ) — —a% -5 1 =
2m+5—a3 2 2 2+ 5 —a3

For our parameter range it is a tilted ellipse, lying in the wy = 0 plane which is
centered at the origin, as can be seen in figure 20 (note similarity to figure 7).
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H0=-0.59, n1=0.3, a2=1.0, a3=0.4

wl w0

F1GURE 20. A typical energy surface in the hyperbolic energy
range, corresponding to an energy value Hop = h with h%. < h <
hr’;nin‘

On one side of this singularity manifold each point on the energy surface cor-
responds to two 3-tori, and on the other side to a single 3-torus as summarized
by figure 9C. Each of the surfaces w; = 0 (j = 1,2) intersects the ellipse at two
points, at hyperbolic 1-resonant 2-tori. In [35] we prove that such intersections are
persistent. Recall that even though the singular circle is contained in the wg = 0
plane it does not correspond to a double resonance of the lower dimensional torus:
wo = 0 at the homoclinic loop, whereas the normal frequency of the hyperbolic
torus is imaginary and is non-zero.

At the bifurcation value Hy = hb. a parabolic (resonant in the I, direction)
torus first appears - see figure 21. An important observation is that parabolic tori are
a priori resonant: their normal frequency vanishes. Indeed, let w = (Q,w™ 1) € R®
denote the n dimensional vector of frequencies, including the normal frequency
), and the inner frequencies (w™~' € R*7!) of the (n — 1)-torus. Parabolicity
implies Q@ = 0, hence, k' = el = (1,0,...,0) satisfies the resonance condition
(k',w) = 0 (indeed, in the resonance web plots a large dot indicating strongest
resonance always appears on the parabolic tori - see e.g. fig. 21). Lower dimen-
sional resonance implies that there exists at least one additional vector of integers,
k? = (0,1p—1),ln—1 € Z" 1, such that (k?,w) = 0. Hence, parabolic lower dimen-
sional resonant tori correspond to junctions in the resonance web with at least one
strongest resonance (indeed, the parabolic torus in fig. 21 is doubly resonant, resid-

ing on the junction wg = we = 0). In particular, if the parabolic torus appears at the
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HO0=-0.5, n1=0.3, a2=1.0, a3=0.4 HO0=-0.5, p1=0.3, a2=1.0, a3=0.4

2 ot

-1
wl )

FIGURE 21. An energy surface with Hy = h? . : left - the energy
surface in the frequency space, right - the resonance web on this
energy surface. Red circle - (double) resonant (in the Iy and I

directions) parabolic 2-torus.

HO0=-0.2, n1=0.3, 02=1.0, a3=0.4

FIGURE 22. A typical energy surface with h2. < Hy < 0.

min

origin, where all resonances intersect, it corresponds to (n — 1)-resonant (n — 1)-
torus, namely to a parabolic torus of fixed points. In [35] we prove that such a
scenario is persistent in a one parameter family of integrable n d.o.f. Hamiltonian
systems with n > 2.

A typical energy surface in the energy range Ho = h, hY . < h < hpar—res1 = 0
is shown in figure 22 and in the range Ho = h > hpgr—res1 = 0 in figure 23, where
the two parabolic tori are denoted by red circles. Then, the natural frequency in



ENERGY SURFACES AND THE RESONANCE WEB 31
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FIGURE 23. A typical energy surface in the range Ho >
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H0=0.0, p1=0.3, a2=1.0, a3=0.4

H0=0.0, 41=0.3, a2=1.0, a3=0.4

FIGURE 24. An energy surface with Hy = hpar—res1 = 0, contain-
ing a strongly resonant in the I; direction parabolic 2-torus (hence,
a double resonant parabolic torus): left - this energy surface in the
frequency space, right - the resonance web on this energy surface.

the zy direction found from linearization at the origin:

0

wi — asw
0 _ _ 1 3w2
wo=v -5 = ——T 5 — Q203
P+ 5 —a3
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shows that the singularity ellipse (eq. (6.13)) detaches from the wy = 0 plane with
a square-root distance. Topologically, the energy surface is well described by the
branched surface in figure 9E.

The colliding surface, at which w’ is singular (non-smooth), is clearly of co-
dimension two, and it corresponds to the family of hyperbolic tori which live on
the given energy surface. The end points of this collision surface, where the pro-
jection singularity heals and the energy surface cease to contain hyperbolic tori,
corresponds to parabolic tori, a co-dimension 3 surface, namely points in figures 9,
21, 22, 23 and 24 (the parabolic tori are denoted by red circles). At the parabolic
lower dimensional tori the wy frequency vanishes. If such an end surface (in the
figures, a point) intersects another resonance surface a parabolic (doubly) resonant
torus is born. It is now clear that with additional d.o.f. such an intersection (of
the boundary of the collision surface and the resonances on the wy = 0 plane) is
generically transverse (see [35] for a proof), hence parabolic resonances (PR) are
expected to occur on surfaces corresponding to a range of energies. For the 3 d.o.f.
case, since generically the end points (corresponding to the inner frequencies of the
parabolic tori) change continuously with the energy values, there exists a set of
dense values of energies for which these end points hit resonance surfaces and PR
are created. When an end point of a singularity curve belongs to a strong reso-
nance plane w; = 0 (j =1 or 2) it corresponds to a strong double resonance of the
parabolic lower dimensional torus (see the resonance webs in figures 21 and 24).

H0=0.001, p1=0.3, 02=0.0, a3=0.4

wl w0

FIGURE 25. A resonance web on an energy surface near the (lo-
cally KAM degenerate) energy surface with Hy = as = 0.

Figure 23 shows an energy surface for positive Hy, were the family of tori en-
circling the two wells crosses the w; = 0 plane. Figure 24 shows an energy surface
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with Hy = hpar—res1 = 0, which contains a resonant in the I; direction parabolic
torus (hence strongly doubly resonant with wg = wy = 0) and the resonance web on
this energy surface. Setting (in addition) as = 0, the energy surface with Hy = 0
shrinks to a parabolic torus of fixed points at the origin of the frequency space.
However, near by energy surfaces (i.e. energy surfaces with s = 0 and a small
energy value) have a non-diminishing extent in the frequency space, with resonant
parabolic 2-tori residing near the main junction where many strong resonances
intersect - see figure 25 (note the scale of the axis).

Summarizing, we discovered that the presentation in the frequency space of the
energy surfaces of Hamiltonians of the form Hy(z,y, ) with n — 1 dimensional tori
that change their stability has the following properties:

e For a range of energies, the energy surface is singular along a co-dimension 2
surface belonging to the wy = 0 plane. This singularity surface corresponds
to hyperbolic lower dimensional tori and their separatrices. The boundaries
of the singularity surface (of co-dimension 3) correspond to parabolic tori.

e Parabolic resonant tori may be recognized as resonance junctions which
belong to the boundary of the hyperbolic singular surface. For 3 d.o.f.
systems these appear on a dense set of energy values, for n > 4 these
appear for a range of energies.

e While the resonance surfaces still intersect the energy surfaces densely, the
uniformity seems to be lost.

e Parabolic torus of fixed points appears when the boundary of the singular
surface contains the origin. Such a scenario appears for special parameter
values (a co-dimension one phenomena), and on specific energy surfaces.

6.3. Qualitative behavior of the near-integrable system (B). Using the
plots of the EMBD we may read off all possible sources of instabilities. Here we
need to combine several effects:

e Instabilities associated with the regular resonance web, as in the elliptic
case.

e Instabilities associated with the existence of equi-energy family of separa-
trices and their resonances, as in the unstable case.

e Instabilities associated with resonant parabolic tori; their appearance im-
plies the co-existence of equi-energy families of separatrices and equi-energy
families of lower dimensional elliptic tori, meeting at the parabolic tori.

¢ Instabilities associated with bifurcations in the structure of the singularity
manifolds (manifolds corresponding to lower dimensional tori) of the energy
surfaces - namely the creation of elliptic, hyperbolic and parabolic lower
dimensional tori, all of which are associated with resonant lower dimensional
tori.

Once again, the detailed analysis of each of the above items is not yet understood.
For the parabolic case we have mainly numerical indications for the behavior of
the perturbed orbits. The behavior near non-resonant parabolic torus is not very
interesting - the lower dimensional parabolic torus persists [23] - and it appears
that the behavior near it is not distinguishable from that appearing near lower
dimensional normally elliptic torus. However, numerical simulations indicate that
the behavior near PR is dramatically different - orbits which appear to be chaotic
and of different nature then the homoclinic chaos are abundant. The structure of
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these perturbed orbits near 1-PR, which appear for a dense set of energy values, is

similar to the one observed in the 2 d.o.f. case, see [34], [41]. Further degeneracies
make the instabilities more pronounced, see [34, 35] for examples.

H0=0.001, p1=0.3, 02=0.0, a3=0.4
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F1GURE 26. Instability in the action variables near 2-PR: a
perturbed orbit projected on the (6,I) planes, corresponding
to the total energy H = 9.953e — 4, with initial conditions:
(2,y,61,11,02, Ib;e) = (0.2515,0,1.57,0,1.57,0, le — 3, 1e — 3).

One degeneracy we explore here is the existence of a normally parabolic torus
of fixed points, which is of co-dimension one (as = 0), and corresponds to a local
violation of the KAM non-degeneracy condition. The induced strong instabilities
of a perturbed orbit with initial values near this point is presented in figures 26
and 27; in figure 26 the perturbed orbit is projected on the (6,I) planes, where
it’s complicated structure, while it passes through the successive resonance zones
may be seen; in figure 27 we show the development of the instabilities in the ac-
tion variables depending on time. These figures were produced for the perturbed
Hamiltonian:

(6.14)
2 2 4 2 2
Y T T 1. I3
HE, L0, Ie) =L 24+ A L2 T
bif(T,Y,01, 11,09, I35 €) 5 ~ gty +(N1+2) 5 T 5 tashh+
2
+e((1- %) cos(361) + cos(362)).

Graphically, in the frequency space, such a scenario happens when the boundary
of the singularity surface (here the end points of the singularity lines) passes through
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FI1GURE 27. Instability in the action variables near 2-PR: a per-
turbed orbit projected on the time-actions plane, with initial con-
ditions as in figure 26.

Solid line: I, Dashed line: I5.

110=0.001, p1=0.3, ¢:2=0.0, 03=0.4
il H0=0.001, u1=0.3, 02=0.0, a3=0.4

FIGURE 28. An energy surface of Hy;¢ with as =0, Hy = le — 3:
left - an EMBD in the (I2, I1) plane, right - in the frequency space.

the origin, where all the resonance planes intersect. The fact that a parabolic 2-
resonant torus resides at this junction point seems to induce strong instabilities
in the perturbed system in both action directions, as seen in figures 26 and 27.
In figure 28 the corresponding unperturbed energy surface is shown in the (Iy, I1)
plane and in the frequency space (see the corresponding resonance web in fig. 25).
The perturbed orbit shown in figures 26 and 27 approximately covers the whole
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possible extent of the actions range on this surface (for more details and upper
bounds on the maximal instability rate see [34, 35]).

Note that in 4 or more d.o.f. systems the existence of a double resonant parabolic
torus is persistent without dependence of the system on external parameters, and
the local violation of the KAM iso-energetic non-degeneracy condition is avoided.
Numerical simulations suggest that near such double PR the instabilities and the
orbit structure are similar to the ones appearing in the locally degenerate 3 d.o.f.
system (with ax =0 ).

7. BIFURCATIONS IN THE ENERGY-MOMENTUM DIAGRAMS

Here we formulate the observed relations between bifurcations in the EMBD
and the appearance of lower dimensional resonances precisely. First we prove that
extrema of the non-parabolic singularity surfaces in the EMBD occur iff the cor-
responding tori are resonant. Then we address questions regarding changes in the
energy-surface topology. We define precisely what are the generalized branched
surfaces, define topological bifurcations as energies for which the topology of the
branched surfaces changes, and then prove that non-degenerate strong (n — 1)-
resonances of an (n — 1)-non-parabolic torus imply topological changes. We end
with formulating similar results for the parabolic case. After stating the results
for the generic parabolic case we discover that our model Hamiltonian Hy;¢ is non-
generic in this context and formulate the corresponding results to a suitable class
of Hamiltonians.

7.1. Folds in the EMBD and Resonances. Consider the EMBD near a singular
family of n — 1 lower dimensional tori, p; (here we again take s = 1. General value
of s will be considered elsewhere). The unperturbed Hamiltonian, expressed in
suitable local Arnold-Liouville-Nekhoroshev coordinates near py is given by Hy =
Ho(z,y,I), where py = (x5,yy¢, I7) satisfies Vz’yHg(x,y,Iﬂpf = 0. By the Implicit
Function Theorem (IFT), if the Hessian of Hy with respect to x,y is non-singular

2
at py (namely det %@’;”I) # 0), we may express this manifold as a graph over
pf

the I variables: py = (xs(I),ys(I),I). Then, apart of parabolic points (where

2
det %ﬁ,’;”]) = 0), ps is represented in the EMBD by the co-dimension one
Py

smooth manifold p’} = {hy(I), I} = {Ho(zs(I),ys(I),I), I} ®. It is now natural to
define extremal points of the singularity surface in the EMBD:

Definition 2. p} is a simple k— eztremal point of the singularity manifold p’} if p§
is non-parabolic and hy(I) = Ho(z;(I),ys(I),I) has a local extremal in k directions
at p}; i.e. there exist iy, ...,4; € {1,...,n — 1} such that

Ohy(I)

(7.1) o

=0 fOT’i = ’il, ,’Lk
Py
Theorem 1. Consider a family of singular non parabolic n — 1 dimensional tori
ps(I) = (zs(I),ys(I),I), where (x,y,I) are suitable coordinates near py(I). Then
P} = pr (I°) is a simple k—extremal point of the corresponding singularity manifold
in the EMBD iﬁp? corresponds to a k—strongly resonant lower dimensional torus.

8With a slight abuse of notation we denoted it in previous sections by ps = (hy(I),I) as well
(see for example equations (6.2), (6.3), (6.4))
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Proof. Since p} is not parabolic the representation p’]% ={hs(I) = Ho(zs(I),y;(I),1),I}
is non-singular near p;. Hence, p} is a k-extremal point iff the surface {hy(I) =
Ho(z¢(I),ys(I),I),I} in the (h,I) space is extremal in k directions I;,, ..., I;, at

D} This occurs, by definition, iff ahaf—lfl) vanishes in the corresponding k direc-
tions at p} as expressed in eq. (7.1). Since we use suitable coordinates, and since
VeyHo(z,y,I)] , = 0, it follows that for ¢ = 4y, ..., 9:

D
| _ 0H(y,D)| _ dH(p(1)| _ dhy(D)
(7.2) ;| =)y BB o = 0.
” o |, dli |, 0L |,

O

Theorem 1 relates extremal point of the singularity surfaces in the EMBD and
resonances. We have seen that the topology of the energy surfaces changes at folds
of these singular surfaces. We remind here the triviality that folds imply extremum
points and extremum points with first non-vanishing derivatives of even order imply
folds.

7.2. Generalized branched surfaces. In the previous section we saw that Hy;¢
has two values h. = h:}l, hgyp which are simple 2-fold points of the elliptic and hy-
perbolic singularity surfaces (namely these singularity surfaces have an even order
extrema in two action directions), several families of curves on which simple 1-fold
occurs (corresponding to the intersection of the singularity surfaces pil,pgyp,pgu
with the corresponding resonances) and h. = hg is a 1-parabolic fold point corre-
sponding to the first appearance of parabolic tori. We observe that hj”, h(ljzyp and
hg correspond to a topological change in the energy surfaces structure, namely,
the corresponding topology of the branched surfaces changes across these energy
values, but that the families along which a simple 1-fold occurs do not correspond
to such changes. We would like to formulate these observations. First, we need to
define the branched surfaces in a precise way.

Consider an integrable n d.o.f. Hamiltonian on a 2n dimensional symplectic
manifold M, and its associated n integrals of motion Hy = Fy, F3, ..., F},. We call
the set of constants of motion walid if they are almost everywhere independent on
M (i.e. the dF; are linearly independent on M) and are pair-wise in involution.
Denote by Aj the set of allowed values of Fy, ..., F,, on the energy surface Ej =
{(qap)| HO(qap) = h}’ namely’ Ah = {(g27gn)| M(h,gz,...g") # @} (recall that the
level set M, is defined as M, = {(¢,p) € M, F;=yg;; i=1,...,n}). It follows
that En = U(g,...gn)ean M(h,gs,...9,)- Let k(g) denote the number of disconnected

— o k(hs92,--9n) 7(h,92,...9n) 9
components of My, so My g,,..9.) = Lﬂjzl lj where lj denotes a

connected component of My. Fixing h, k(h,g2,...gn) is constant when the level
sets My g,,...g,) deform smoothly with g,...g,. Recall (see section 2) that the
singularity surfaces of A, are defined as the values of (g2,...g,) for which there
exist a point (q,p) € M(p,g,,..4,) at which s of the dF; are linearly dependent and
the rank of the n vectors dF; at the singularity is denoted by n — s. Let us denote
the union of the singularity surfaces of some given Ay, by A3. Clearly, k(h, g2, ...gn)
may change only across a singular level set, hence:

Ag D) Ags = {(g2, .--gn)| k(h, g2, ...gn) is discontinuous in go, ...g, }.



38 ANNA LITVAK-HINENZON AND VERED ROM-KEDAR

Equality of these sets is expected in the generic case with s = 1. Non-generic (e.g.
symmetric) coincidences, by which disconnected level sets coincide and split at the
same g value may be similarly treated and will be ignored here (see [17] and [30]
for discussion). The behavior of k(h, go,...gn) near singular level sets with s > 2
will be studied elsewhere.

Define a function Sy, : E;, — R" as follows (recall that g1 = h):

Sh(qap) = (6(qap)a927 gn); where Fz(qap) = 9i, 1= 1) el
where the scalar function §(g, p) satisfies:

e 0(¢,p) = 0 iff k(g(q,p)) = 1,
e Two points belonging to the same level set have the same ¢ iff they belong

to a connected component of M :

{(a,p),(d',p") € My and (q,p) = d(¢',p")} & (¢,p), (¢',p') € 1]

e (g, p) is smooth (C") for all (q,p) € Ej, with (g2, ...9,) € Ah\Af and d(q, p)
is continuous for (go,...gn) € Ap.

It follows that d(q,p) attains exactly k(g(q,p)) distinct values on each level set
ie.

M

g
{6(Qap)| (qap) € M!}} = {61(.9)7 “'v(sk(g) (g)}
and J;(g) # 0,(g) for i # j. Therefore we may define

3(l7) = 6(a: D) (g pyers = 9i(9)

hence
Sh(l}q) = Sh(‘]’p”(q,p)el]g. = (6](9),g2,gn)

Furthermore, if 1 and I coalesce to a (singular) level set lz*as g — g* then §(17 ;) —

6(li*). Summarizing, there is a 1-1 correspondence between the range of S;, and
the connected components of the level sets in Ej, and this correspondence depends
continuously on the phase space points even across singularities. In particular, if
the level sets are compact every point at which Sj(g,p) is smooth corresponds to
a single n-torus, and every point at which Sy (g, p) is not smooth corresponds to a
singular level set.

Figure 9 demonstrates that such a construction is possible for simple systems
with singularities of order 1 (namely with s = 1).

Definition 3. The branched surface of an energy surface Ey, is given by the surface
Su(En), namely it is the n — 1 dimensional surface embedded in R" : F = {y| y =
Sn(a,p), (¢,p) € En}.

Definition 4. Two branched surfaces are equivalent if there exists a diffeomorphism
of R™ which maps one branched surface to the other.

Corollary 1. Given an integrable Hamiltonian system, the branched surfaces con-
structed from two different valid sets of constants of motion (with Hy = F}) are
equivalent.

In particular, the construction of these surfaces from the EMBD, the frequency
space diagram and the constant of motion diagrams are all equivalent, as demon-
strated in the previous sections. Nearby energy surfaces correspond usually to a
smooth deformations of each other, hence they will usually have equivalent branched
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surfaces. For n = 2 the branched surfaces are the simplest form of the Fomenko
graphs.

7.3. Topological bifurcations. When nearby energy surfaces have different topo-
logical structure we say they undergo a bifurcation:

Definition 5. h. is a topological bifurcation point if the branched surfaces across
h. are not equivalent.

Changes in the structure of the branched surfaces may occur only if the topology
of A7, the singularity manifold for a given energy surface, changes. Below we
establish that for s = 1 the singularity manifold, Af , changes its structure near
folds of the singularity surfaces. Since folds of the singularity surfaces imply extrema
and extrema imply resonances the main result follows.

Definition 6. p} isan n—Fk (0 < k < n) strongly resonant n— 1 dimensional sin-
gular torus with non degenerate frequency vector if in the suitable Arnold-Liouville-
Nekhoroshev coordinates

dHo(p$) d? Ho(p5)
_ 1) il 4 i=1,..,k
(7.3) T 0, det dndl #0, j=1,..k

The relation between equation (7.3) and resonances, as stated in the definition,
follows from theorem 1.

Theorem 2. If p} is a non-parabolic n—1 strongly resonant n—1 dimensional sin-
gular torus with non-degenerate frequency vector then h. = Hy (pjc) s a topological
bifurcation point.

Proof. The theorem essentially follows from Morse lemma (see [24] or [37]); we
include some details to enhance the intuition. Using the suitable local Arnold-
Liouville-Nekhoroshev coordinates near py, we may write

(7.4) Ho(py —p§) = Ho(p}) + (I! — I)"A(IY — I°) + O(3)
2 c
where A is the Hessian at p} : A = ddliod(fjf) (recall that V, ,Ho(ps — p§) = 0).

Hence, by linear orthonormal transformation Uz = I, we may write eq. (7.4):

n—1—r

Ho(py — p}) — Ho(p}) + Z AiprZiy, = Zaizf +0(3)
=1 =1

where a; > 0, for all ¢ by the non-degeneracy assumption. In fact, r is the Morse
index of hy(I) = Ho(zy(I),ys(I),I) at p} (the dimension of the subspace for which
the Hessian A is positive definite). The Morse lemma, which applies to hy(I) by eq.
(7.3), states that by smooth local change of coordinates we can eliminate all higher
order terms and set all the a;’s to unity. It follows immediately that intersection of
the singularity surface {Ho(py), Iy} with the plane Ho(ps) = h near p$ changes its
topology across he = Ho(p$); if r = n — 1 (respectively 7 = 0) namely A is positive
(negative) definite, then near p$, for h < he (h > h.) there is no branch of p; near
D} satisfying Ho(py) = h whereas on the other side there is an n — 2 dimensional
ellipse satisfying this equation. If 0 < » < n — 1, the hyperboloids p¢(h,-) change
their orientation at h = h., namely, they do not depend smoothly on A at h.. Since
the branched surfaces change across the surfaces ps(h,-) the claim is proved. O
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7.4. Parabolic tori and topological bifurcations. Consider the surface of par-
abolic lower dimensional tori pp; = (zpy, Yps, Ipr) so that

O%H (z,y,1)

0z0y =0

Pps

(7.5) VaeyHo(z,y, I)|ppf = det

These 3 equations define (generically) a co-dimension two surface in the EMBD, the
singularity surface, plt;. Along plt; two (or more, in symmetric/degenerate cases)
singularity surfaces representing families of non-parabolic (n — 1)-tori, p’;i (I), i=
1,..,m, meet. For example, in section 6, the four singularity surfaces p’}m (I) = pjl,

p’}“ (I) = pgyp’e” meet at pj’;f = pgm. The natural oscillations in the xy plane of
the n — 1 dimensional tori p,¢ vanish, so these tori are strongly resonant in the
wp direction. We now address the natural question in view of theorem 1: when
do extremal points of this singularity surface (pi) in the EMBD correspond to
additional strong resonances? Here, one should take careful limits when considering
derivatives across the singular boundary of p’}l_ (I), namely across pj’;f. To formulate
such conditions let us investigate more fully equation (7.5). Define the functions

OH (w,y,I) _ OH(x,y,1) 0’H(z,y,1I)
ox Jy 0z 0y

then equation (7.5) defines the surface fi(z,y,I) = fo(z,y,I) = fs(z,y,I) =
0. Can this surface be represented as a graph over the n — 2 actions J? 2 =
(Ii, . Ij,—1, 1,41, ..., In—1) for some chosen index j,? By the IFT, this may be
done if % is non-singular, hence we define

sYsdjp

fl(l',y,I): ) f2(117,y,I) 3 f3(m7yaI):det

Definition 7. pps is an n —1 dimensional parabolic torus which is non-degenerate
in the I, direction if pyy satisfies (7.5) and

8H(z,y,I) O0H(z,y,I 82H(z,y,I
a((y) (@.y.0) ot 8;85))

7.6 det ox 9%y
(7.6) 9.1,

£0.
Ppy

If p;f is an n — 1 dimensional parabolic torus which is non-degenerate in the
I;, direction then in its neighborhood there is an 7 — 2 dimensional family of par-
abolic tori pp,y which may be expressed as a graph over the n — 2 actions Jn2 =
(Ins oo Ly mts Lyt ey Inm1) 1 0pp (J772) = (@pp (T 72), g (J772), I, (J772), T 72).
It follows that the corresponding co-dimension two surface in the EMBD can be
represented as a graph over the same actions as well:

Ppr(J"2) = {Ho(2pp (J"72),yps (J"72), L, (J"72), J"72), Ly (J2), T2}
= {hpf(Jn_Q)v ij (Jn_Q)’ Jn_Q}'

Using eq. (7.5), it follows that:

.7) Ohyp(J"2) _ <8H(x,y,f) 4 0H (x,y,I) 0I;, (J”_2)>
aI; . aI; o1, oI; oo
- - 8I-p(J”_2) L,
= <0j+6jp7]a_[j ) for j # jp

Ppr
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whereas
_ O0H(=z,y,1)
- oI,

Ohy: (1)

(7.8) b5, a1,

Pps Ppf Pf; —Ppf
and the independence of the last term on i follows from the smooth dependence of

the Hamiltonian flow on I, even across the parabolic (in the zy direction) point.

The relation between extremal points of hyr(J"~2) (at which Bhg—f(l) =0) and
‘ Pps

resonances is now clear:

Theorem 3. Consider a family of normally parabolic n —1 dimensional tori pyr =
(Tps,Ypss Ips) which is non-degenerate in the I direction at Dps- Then, for j # jp,
extremal point in the I; direction of the corresponding singularity manifold in the
EMBD at py,; corresponds to a strong resonance in this direction iff p; is strongly
resonant in the I; direction or if I is extremal in I; at Dpp- Ppy 18 strongly
resonant in the I; direction iff the non-parabolic singularity surfaces emanating
from pyy are extremal in the I;  direction in the limit py, — Dps-

Attempt to apply the above theorem to the system (6.1) immediately fails - this
system does not satisfy the non-degeneracy condition (7.6). Considering all systems
with natural mechanical potential in the zy plane having a parabolic invariant
(n — 1)-torus at the origin:

on 2 .’172
(7.9) HY (0,9, 1) = 5 = S F(D) +V(a, D),
2
=0 2} -0 221 -0
Oox (0,0) Ox (0,0)

we realize that the non-degeneracy condition (7.6) corresponds to insisting that:
3V 9V
0x3 0z01I; 70
z? 9xdlj, | o)

namely the system is asymmetric w.r.t. reflections in = and the location of the
bifurcating invariant tori depends on Ij,.

We observe that another possibility (which is realized in our case of system
(6.1)) to satisfy equations (7.5) along a simple n — 2 dimensional surface is to
require that the unperturbed system separates to a sum of two Hamiltonians, the
first depending on (z,y, I;,) and the second depending on the actions (I1, ..., [,_1).
In this case equations (7.5) are independent of J" 2 = (Iy,..,I;, 1,1, 41, ..., In—1)
and any solution of these equations is satisfied for all J?~2 values. This separability
assumption is of course highly non-generic from mathematical point of view but is
certainly of Physical relevance. Define:

Definition 8. p,s is an n — 1 dimensional parabolic torus fully degenerate in the
I;, direction, if p,; satisfies (7.5) and these equations are independent of I; for all
§# g

This condition is satisfied for any system of the form (7.9) if f(I) = f(I;,),V(z,I) =

V(z,I;,)+g(I). In this case p,s can be locally presented as the surface (zps,Yps. L, ps, J" %)

. . dI; C
with @7, ypr, Ij, ps independent of J"~2 so Ié+;” =0 for j # jp. Indeed, for eq.

(6.1), we saw that j, = 1 and ppr = (@ps, Yps, L1,p,I2) = (0,0,0, I5). Hence, near a
parabolic torus, which is fully degenerate in the I;, direction, we can present the n—
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2 dimensional family of parabolic tori as: pzf(J"_Q) = {Ho(zps,yps. L;,, J"72), 1; , J"?} =

Jp>
{hps(J""2),I;,,J" 2}. The relation between extrema of h,f(J" ?) and addi-

tional resonances follows immediately from equations (7.7) and (7.8), where we

oI

ip .
ol = 0 to conclude:

use

Theorem 4. Consider a family of normally parabolic n —1 dimensional tori pyr =
(TptYpss Ipp), which is fully degenerate in the I, direction at ;. Then, for j # jp,
extremal point in the I direction of the corresponding singularity manifold in the
EMBD at p,; corresponds to a strong resonance in this direction. py, is strongly
resonant in the I; direction iff the non-parabolic singularity surfaces emanating
from pyy are extremal in the I;  direction in the limit py, — Dyt

Asin section 7.3, by the Morse lemma, n—2 non-degenerate folds in the direction
of the n — 2 actions J"~? of the co-dimension two surface pf;(J"~?) correspond
to topological bifurcations. From equations (7.7) and (7.8) we conclude that such
folds are not always associated with resonances, and we should distinguish between
three cases”. For the fully degenerate case folds and resonances are simply related:

Theorem 5. Consider an n — 1 dimensional parabolic torus, Dps- Assume Dpy 18
completely degenerate in the I, direction and that py, is n — 2 strongly resonant
with non-degenerate frequency vector in the I, .., I;_1,Ij11, ..., In_1 directions, then
hpe = Ho(py;) is a topological bifurcation point.

In section 6, the energy hy,. = hg is a topological bifurcation point which is well
described by this theorem; at hg parabolic tori first appear, and we have seen that
a resonance in the I5 direction occurs there.

In the generic case, a fold of pzf(J”’Q) in the I; direction is associated with res-

A

e .o O . . . .
onance if §;, = 0 or if ST = 0. Hence, topological bifurcations occurring
J

Ppy

at an n — 2 fold of pzf(J”*Z) are associated with a resonance only if additional
conditions are satisfied. To satisfy these additional conditions in a persistent way
the system must have additional parameters or symmetries:

Theorem 6. Consider an n — 1 dimensional parabolic torus, Dps- Assume that

py¢ is non-degenerate in the I, direction and that the Hamiltonian at pj,, is locally
. n—2

%fj) =0 for all j # j,. Then, ifp;f is m — 2 strongly

Ppy
resonant with non-degenerate frequency vector in the Ir,..,Ij_1,Ij11,....In—1 di-

rections, then hp. = Ho(p;f) is a topological bifurcation point. Without imposed
symmetries, such a phenomena is of co-dimension n — 2.

separable, namely

Theorem 7. If p,, is an n—1 dimensional parabolic torus of fized points which is
non-degenerate in the I, direction and has non-degenerate frequency vector in the
Ly Ljo1, Ijja, oo Inoy direction then hpe = Ho(pj;) is a topological bifurcation
point. Without imposed symmetries, such a phenomena is of co-dimension 1.

9Note that there are two different (independent) types of non-degeneracies - one corresponds
to the standard assumption regarding changes in the frequency vector (definition 6) and is needed
for applying Morse lemma. The other corresponds to the non-degenerate (degenerate) dependence
of the parabolic tori on a specific action (definitions 7,8).
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8. DISCUSSION

We have shown that when the Arnold-Liouville-Nekhoroshev coordinates, valid
in a neighborhood of a singular level set with n — 1 dimensional invariant torus,
can be extended globally (as in our prototype models of normally stable, unstable
and bifurcating tori) the combination of the energy-momentum bifurcation dia-
gram (EMBD) and the branched surfaces supply full qualitative description of the
near-integrable dynamics: on these diagrams the topological changes in the energy
surfaces and the appearance of lower-dimensional resonances are apparent, thus var-
ious mechanisms for instabilities (such as homoclinic orbits, hyperbolic resonances
and parabolic resonances) may be clearly identified. In particular, we proved that
topological bifurcations of the energy surfaces correspond to folds of singularity
surfaces in these diagrams and hence to resonances. In other works ([34, 35]) we
have demonstrated that the curvature of these singularity surfaces at the folds plays
a crucial role in the extent of the instabilities in the perturbed system. Again, such
effects are easily identified in these diagrams.

Many issues remain for future studies:

e We have seen (sections 5.3 and 6.3) that there is a long list of instabilities
associated with the near-integrable motion near families of lower dimen-
sional tori which is not well understood yet.

e For 2 d.o.f. systems, the description of the energy surfaces as graphs gives
a useful insight regarding the evolution of the instabilities in the action
variables (or, more generally, in the adiabatic variables of the system) under
small conservative perturbations or conservative noise [19]. These ideas
were generalized to n d.o.f. systems with strong conservative noise which
destroys all integrals of motion and small non-conservative noise which leads
to diffusion between different energy surfaces [18]. In view of our work, one
is lead naturally to investigation of motion in integrable (or near-integrable)
systems with small conservative noise by studying random motion along
branched surfaces.

e The behavior of systems for which the local Arnold-Liouville-Nekhoroshev
coordinates cannot be globally extended is yet to be studied. In particular,
one would like to extend the presentation here so it will be applicable to
the work of Fomenko and co-workers in which the topology of complicated
systems, like the rigid body, are fully analyzed [16, 17]. On one hand, one
may use general constants of motion plots in a similar fashion to what we
have proposed for the EMBD yet the relation between folds and resonances
will be lost. On the other hand, even for such plots, finding the branched
surfaces topology from the Fomenko graphs is challenging.

e Finally, the effect of n — s dimensional tori with various stabilities in the
2s dimensional normal space for s > 1 (as in [30]) on the EMBD structure
and the branched surfaces structure is yet to be understood.
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