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1 Introduction

In the work [1] a concept called ‘a multidimensional superposition principle’ was
proposed for finding superposition laws of nonlinear PDEs. In the same paper it was
shown that so-called truncated singular expansions [2, 3] usually associating with the
Painlevè-analysis are connected with the existence of solitons in the related models
and directly lead to general solution formulas describing an interaction of the last
ones with other, arbitrary, solutions. In so doing, all such interactions have unified
features (like, e.g., a soliton phase shift as its result) and are fully determined by the
structure of a superposition formula.

Although truncated series are historically linked with the Painlevè-analysis indeed,
nevertheless it is an absolutely independent approach, and analogous presentations of
solutions can be obtained with various basis functions satisfying to any suitable system
of ODEs rather than only to the Riccaty ones [3]. Moreover, a similar technique, ‘a
generalized separation of variables’ (see [4], e.g., for references) has been applying to
nonlinear equations of the quite different types already long time. Some associated
questions and the common (algebraic) view to a finite sums approach were discussed in
[5]. In the same place it is shown how various problems arising in the framework of the
traditional ‘singular’ interpretation can be successfully solved from this standpoint.
The goal of the present paper is investigation of the existence and possible properties
of solitons associated with the simplest generalizations of the technique which use
expansions with respect to the powers of some basis functions satisfying to systems
of the first-order polynomial right-hand side ODEs.

The plan of the paper is as follows. In the next Section 2 the main idea of the mul-
tidimensional superposition approach and the basic moments of the finite expansions
technique are adduced. Solitons/kinks associated with the last ones are considered
in Section 3. The final section, Section 4, contains the simplest examples of corre-
sponding soliton interactions. At last in Conclusion the results obtained are discussed.
Secondary technical details concerning analytical and numerical calculations carried
out to Appendixes A–C.

2 General propositions

A multidimensional superposition principle. Suppose there is some differential
equation, linear or nonlinear, for the definiteness in (1 + 1) dimensions and for the
simplicity not depending explicitly on the independent variables

E
(

∂
∂x

,
∂
∂t

; u
)

= 0, u = u(x, t) (1)

Assume that, first, the function u(x, t) is a projection of another (2 + 2)-dimensional
function

u(x, t) = u(x1, x2, t1, t2)|x1=x2=x, t1=t2=t (2)

so that the original variables x, t appear to be split. In so doing, the latter has to
satisfy the following adjoint to (1) equation

E
(

∂
∂x1

+
∂
∂x2

,
∂
∂t1

+
∂
∂t2

; u
)

= 0, u = u(x1, x2, t1, t2) (3)
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Than assume that this equation for u(x1, x2, t1, t2) has the special property. — It
admits the existence of some invariant manifold or, simply speaking, additional dif-
ferential constraints (see, e.g., [6] and references therein) such that the equations only
with the derivatives with respect to x1, t1

G1i1

(

∂
∂x1

,
∂
∂t1

; u
)

= 0, i1 = 1, n1, n1 ∈ N (4)

and/or x2, t2

G2i2

(

∂
∂x2

,
∂
∂t2

; u
)

= 0, i2 = 1, n2, n2 ∈ N (5)

can be isolated from the last ones, possibly with other relations

G3i3

(

∂
∂x1

,
∂
∂x2

,
∂
∂t1

,
∂
∂t2

; u
)

= 0, i3 = 1, n3, n3 ∈ N (6)

Hence, in view of (3)–(6), the new variables x1, t1 and x2, t2 already appear to be
separated, the full solution (process) u(x1, x2, t1, t2) and respectively u(x, t) can be
presented as superposition of the two independent solutions (processes) proceeding in
the different (x1, t1)- and (x2, t2)-spaces and could be obtained by consecutive solving
with respect to x1, t1 and x2, t2. This paradigm was called a multidimensional super-
position principle. Such a presentation in the terms of x1, t1 and x2, t2 with regard to
the projection (2) for solutions of the original equation (1) can be used for constructing
superposition formulas and explanation of the related solutions properties.

All the foregoing are immediately generalized both to cases of any dimension and
to the systems of equations. In so doing, frequently it may be enough to introduce
splitting of only the part from independent variables, e.g., splitting of spatial coordi-
nates under investigation of waves collisions. Equations explicitly depending on the
independent variables

E
(

∂
∂x

,
∂
∂t

; x, t; u
)

= 0, u = u(x, t)

are considered in the same way. In the general case such a problem as usually reduces
to the previous one but already for a system by means of the formal introduction of
the new auxiliary dependent variables X(x1, x2) and T (t1, t2)

E
(

∂
∂x1

+
∂
∂x2

,
∂
∂t1

+
∂
∂t2

; X, T ; u
)

= 0, u = u(x1, x2, t1, t2)

Xx1 + Xx2 = 1, X = X(x1, x2)
Xt1 = 0
Xt2 = 0
Tt1 + Tt2 = 1, T = T (t1, t2)
Tx1 = 0
Tx2 = 0
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While it is possible to investigate particular cases with a concrete dependence of an
adjoint equation with respect to x1, t1, x2, t2

E
(

∂
∂x1

+
∂
∂x2

,
∂
∂t1

+
∂
∂t2

; x1, x2, t1, t2; u
)

= 0, u = u(x1, x2, t1, t2)

compatible with the projection x1 = x2 = x, t1 = t2 = t.

Presentation of solutions of NPDEs by truncated expansions. Consider
the simplest generalization of the truncated singular expansions technique or, more
precisely, its ‘invariant’ version [3].

Let there is a PDE with polynomial nonlinearity

F (U,Ux, Ut, . . . ; x, t) = 0, U = U(x, t) (7)

and some function V (x, t) being determined by the following system (by the calibra-
tion V → (−an)

1
1−n V − an−1

nan
the coefficients at V n and V n−1 in (8) are set to −1 and

0 without loss of generality)

Vx = −V n + an−2V n−2 + · · ·+ a1V + a0, ai = ai(x, t), i = 0, n− 2 (8)
Vt = bnV n + bn−1V n−1 + · · ·+ b1V + b0, bj = bj(x, t), j = 0, n, n ≥ 2 (9)

Where, according to its compatibility condition (see Appendix A), bj with j 6= n are
expressed through ai and bn (the formulas (63), (65) for n ≥ 3 or (67) for n = 2), the
function bn(x, t) remains arbitrary, and ai(x, t) themselves satisfy to some equations
((66) or (68) respectively).

After substitution of a solution U in the form of the finite sum

U(x, t) =
0

∑

i=m

wi(x, t)V i(x, t), m ∈ N (10)

into (7) (as usually, all possible values of m in (10) are determined by the related
dominant terms there) and equating all the coefficients at the different powers of V
to zero or, strictly speaking, after the procedure of variables separation [5], we will
have additional equations (both algebraic and differential) to the coefficients wi, ai, bi

in (8)–(10). In the case when the whole system is compatible, so that every solution
U from (7) possibly except specific ones can be associated with some ai and bj, its
investigation can be reduced to an investigation of the system (8), (9) for the function
V with the found additional relations to ai and bj (analogs of ‘Singular Manifold
Equations’ [3]).

In the next section such an investigation of (8), (9) is carried out to reveal the
possible existence and properties of solitons in these systems and, as a consequence,
in equations linked with them by series of the form (10).
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3 The simplest solitons associated with the basis
functions

Following the theory set forth in the previous section, consider the equations adjoint
to (8), (9)

Vx1 + Vx2 = −V n + an−2V n−2 + · · ·+ a1V + a0 = P (11)
Vt1 + Vt2 = bnV n + bn−1V n−1 + · · ·+ b1V + b0 = Q (12)

Since here our interest is with invariant manifolds and respectively solitons common
for the whole class of the equations possessing the solutions representation (10), then
we have to set the coefficients-functions ai, bj not depending on x1, t1, i.e.

ai = ai(x2, t2), i = 0, n− 2
bj = bj(x2, t2), j = 0, n

Really, for further investigation at ai, bj depending on x1, t1 the knowledge of ‘SMEs’
is already necessary, and this would do the results depending on a concrete form of
the initial equation (7).

Equation (11), (12) can be split in the obvious manner

Vx1 = P1 (x1, x2, t1, t2; V ) (13)
Vt1 = Q1 (x1, x2, t1, t2; V ) (14)

with, respectively,

Vx2 = P (x2, t2; V )− P1 (x1, x2, t1, t2; V ) (15)
Vt2 = Q (x2, t2; V )−Q1 (x1, x2, t1, t2; V ) (16)

without loss of generality, because (13) and (14) can simultaneously be considered as
the intermediate integrals [7] of more common equations like G(Vkx1 , . . . , V ; x1, x2, t1, t2) =
0, k ≥ 2. The compatibility conditions for them, namely

Vxixj − Vxjxi = 0
Vxitj − Vtjxi = 0
Vtitj − Vtjti = 0, i, j = 1, 2; i 6= j

are obviously equivalent to the following set of the relations

Vxt − Vtx = 0
Vx1t1 − Vt1x1 = 0
Vxx1 − Vx1x = 0
Vxt1 − Vt1x = 0
Vtx1 − Vx1t = 0
Vtt1 − Vt1t = 0
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where now

∂
∂x

=
∂
∂x1

+
∂
∂x2

∂
∂t

=
∂
∂t1

+
∂
∂t2

After the substitutions the last ones in turn directly give

P1t1 −Q1x1
+ [P1, Q1] = 0 (17)

Pt −Qx + [P,Q] = 0 (18)
Px1 − P1x + [P, P1] = 0 (19)
Qt1 −Q1t + [Q,Q1] = 0 (20)
Pt1 −Q1x + [P,Q1] = 0 (21)
Qx1 − P1t + [Q,P1] = 0 (22)

where

[A,B] = B
∂
∂V

A−A
∂
∂V

B ∀A, B

It is easy to verify that when fulfilling (17), (18) the rest equations (19), (22) and
(20), (21) are compatible, in other words the original equations always admit formal
splitting. However, to solve the above system in the general form does not seem to be
possible. Therefore one will further restrict ourselves to consideration of its particular
solutions.

First of all, note that for P1, Q1 not depending on x1, t1 as well the trivial relation

Q1(x2, t2) = −λP1(x2, t2), λ = const

takes place. Indeed, in this case the system (17)–(22) takes the form

[P1, Q1] = 0 (23)
Pt2 −Qx2 + [P,Q] = 0 (24)
−P1x2 + [P, P1] = 0 (25)
−Q1t2 + [Q,Q1] = 0 (26)
−Q1x2

+ [P, Q1] = 0 (27)
−P1t2 + [Q,P1] = 0 (28)

so that from (23) it follows that Q1 = −λ(x2, t2)P1, and (26) and (27) give that
λt2 = λx2 = 0. Equation (24) is fulfilled by the condition. The rest equations (25),
(28) are the homogeneous linear PDEs, from their form it is naturally to seek their
special solutions primarily among polynomials of the nth order on V , so

P1 = cnV n + cn−1V n−1 + · · ·+ c1V + c0, ci = ci(x2, t2), i = 0, n (29)

Q1 = −λ
(

cnV n + cn−1V n−1 + · · ·+ c1V + c0
)

(30)
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Equation (25) for P1 (29) has the same structure as the compatibility condition
(59) for (8), (9) (see Appendix A). At n ≥ 3 the following relations between ai(x2, t2)
and cj(x2, t2) take place

ci = −aicn, i = 0; 2, n− 1

c1 = −a1cn −
cnx2

n− 1

together with the equations

cnalx2 +
(

n− l
n− 1

)

alcnx2 = 0, l = 0; 2, n− 2

cna1x2 + a1cnx2 +
(

1
n− 1

)

cnx2x2 = 0

so that from the last ones we also have fixing some ak 6≡ 0 (k 6= 1) (the case al ≡ 0
for all l = 0; 2, n− 2 corresponds to the Bernoulli equation trivially linearizable by a
point transformation and is not considered here)

cn = −
(

λk

ak

) n−1
n−k

, λk 6= 0, k 6= 1 (31)

a1 =
1

n− k

(

akx2

ak

)

+ λ1

(

ak

λk

) n−1
n−k

(32)

al = λl

(

ak

λk

)n−l
n−l

, l = 0, n− 2; l 6= k, 1 (33)

λi = const, i = 0, n− 2

Although in the general case λi = λi(t2), however it can be shown that λit2 = 0,
because it would lead to the additional terms in (28) proportional to λit2 and violating
its compatibility with (25).

So, as a result, taking into account also the expressions (63), (65) for bi, we can
finally rewrite (8), (9) as

Vx = P (x, t; V ) = −V n + an−2V n−2 + · · ·+ a1V + a0, n ≥ 3

Vt = Q(x, t; V ) = −bnVx −
bnxV
n− 1

(34)

with aj (32), (33) and its splitting (13)–(16) as

Vx1 = P1(x2, t2; V ) = −cnVx2 −
cnx2V
n− 1

, n ≥ 3

Vt1 = Q1(x2, t2; V ) = −λP1(x2, t2; V )
Vx2 = P (x2, t2; V )− P1(x2, t2; V )
Qt2 = Q(x2, t2; V )−Q1(x2, t2; V )

with cn (31).
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It is easy to verify that the function V (x1, x2, t1, t2) is linked with another function
vn(x1, x2, t1, t2) determining by the system

vnx1 = −vn
n + λn−2vn−2

n + · · ·+ λ1vn + λ0, n ≥ 3 (35)
vnt1 = −λvnx1 (36)

vnx2 = θx2vnx1 =

[

(

ak

λk

) n−1
n−k

− 1

]

vnx1 (37)

vnt2 = θt2vnx1 =

[

λ− bn

(

ak

λk

) n−1
n−k

]

vnx1 (38)

vn = vn(x1, x2, t1, t2), θ = θ(x2, t2)

via the linear transformation

V = (θx2 + 1)n−1 vn
(

x1−λt1+θ(x2, t2)
)

=
(

ak

λk

) 1
n−k

vn (39)

Next, bounded real solution vn(ϑ) are kinks, i.e.

lim
ϑ→±∞

vn(ϑ) = r± (40)

where r± are the real roots of the polynomial

−rn +λn−2rn−2 + · · ·+λ1r+λ0 = 0

different from one another. Asymptotical behavior vn(ϑ) depends on their multiplicity
αr. So, one has the classical exponential decay case

vn(ϑ) ∼ r+β1eβ2ϑ, r = r+, r−; β1,2 = const

at αr = 1 and

vn(ϑ) ∼ r+
β1

(ϑ + β2)
1

αr−1
, r = r+, r−; β1,2 = const

when αr ≥ 2. In other words, we deal with the soliton (with the envelope describing
by the special function, the solution of (35)) with the amplitude and phase modulated
by a perturbation. The obtained solution has the following properties. Firstly, if for
x2 → ±∞ the phase θ has the asymptotic values

θ±∞ = lim
x2→±∞

θ(x2, t2) = const

then from (32)–(35), (37), (39) immediately follows

lim
θ→θ±∞

aj(x2, t2) = λj

and

V kink
±∞ (x1, t1) = lim

x2→±∞
V = vn

(

x1−λt1+θ±∞
)

(41)
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(by the way, together with lim
θ→θ±∞

bn = λ from (38), while λ (36), the speed of the

unperturbed kink (41), is determined by the related ‘ISMs’, in other words, by an
original equation under consideration. Secondly,

V θ
±∞(x2, t2) = lim

x1→±∞
V = r± (θx2 + 1)n−1 = r±

(

ak(x2, t2)
λk

) 1
n−k

(42)

see (39), (40).
So, in the different regions the general solution degenerates to the solutions depend-

ing only on x1, t1 or x2, t2, namely, to the kink (41) or pure perturbation describing
by the expression (42). In so doing, a perturbation on the left or right of the kink or
before/after an interaction will have different amplitudes according to the values r±,
so that it will be increased or slackened after a collision depending on the coefficient

η =
rafter

rbefor

including a possible change of the amplitude’s sign.
This situation is depicted in Figure 1. It demonstrates the typical scenario for such

kink-perturbation interactions. The fact that their features are common for all NPDEs
with the same superposition formula because is fully determined by the last one. The
case on the figure corresponds to the kink v3(x− t) with (λ0, λ1) = (−8.16, 7.69), i.e.
η = −32/15, and the ‘frozen’ perturbation

θ = −0.75 tanh(x−6.1)

The interaction’s results are the phase shift for the former together with the overturn-
ing and slackening for the latter. Figure 2 presents the corresponding 2D function
V (x1, x2, t1, t2) at one moment, t = 2.8, of the interaction, so that its projection
V (x, t) together with the reductions V kink

±∞ , V θ
±∞ are well seen there.

Return to the case n = 2. Here another type relations take place, namely

c0 = −a0c2 +
c2x2x2

2
c1 = −c2x2

a0 =
c2x2x2

2c2
− 1

4

(

c2x2

c2

)2

+
λ0

c2

which lead to the following form of (8), (9)

Vx = P (x, t; V ) = −V 2 + a0

Vt = Q(x, t; V ) = −b2Vx − b2xV +
b2xx

2

with the splitting

Vx1 = P1(x2, t2; V ) = −c2Vx2 − c2x2V +
c2x2x2

2
Vt1 = Q1(x2, t2; V ) = −λP1(x2, t2; V )
Vx2 = P (x2, t2; V )− P1(x2, t2; V )
Qt2 = Q(x2, t2; V )−Q1(x2, t2; V )
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and the linear transformation

V = (θx2 + 1) v2
(

x1−λt1+θ(x2, t2)
)

− θx2x2

2 (θx2 + 1)
= −c2

−1v2+
c2x2

2c2

between V and the function v2(x2, t2) satisfying the equations

v2x1 = −v2
2 − λ0

v2t1 = −λv2x1

v2x2 = θx2v2x1 = −
(

1
c2

+ 1
)

v2x1

v2t2 = θt2v2x1 =
(

b2

c2
+ λ

)

v2x1

v2 = v2(x1, x2, t1, t2), θ = θ(x2, t2)

This case was in details considered in [1].
In conclusion note that from the results obtained above it is seen now what the

restrictions made in this section beginning corresponds to. So, the supposition that
P1 and Q1 do not depend on x1, t1 means that we deal with the solitons with the
constant velocities λ, while the restriction by the polynomials (29), (30) corresponds
to its ‘linear’ deformation by a perturbation. (On the general condition for such a
deformation, see Appendix B).

4 Computer simulation of some of soliton interac-
tions for n ≥ 3

Nonlinear equations leading to the above systems for V with n = 2 are well known
and wide-spread. Among them apparently are all known integrable models (at the
assumption made before in 1D and associated with isospectral ISTs, of course). In [1]
computer simulation and analytics are presented for several of such models compre-
hensively enough. While up to now cases with n ≥ 3 have likely occurred neither in
numerical nor especially analytical investigations. This does not seem to be surprising
taking into account complexity and quantity of the additional constraints to the co-
efficients in (8) at n ≥ 3. Therefore, both from the theoretical and applied viewpoint,
it is interesting to carry out numeric modelling on concrete models possessing such
soliton interactions. On the one hand, such structures are solitons in the strict sense.
On the other hand, in contrast to known NPDEs they cannot be obviously described
in the framework of techniques habitual for the last ones, such as, e.g., the Hirota’s
anzats, etc.
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The case n = 3. The equations for V (34) together with the compatibility
conditions (66) are as follows

Vx = −V 3 + a1V + a0

Vt = b3V 3 −
(

b3a1 +
b3x

2

)

V − b3a0

a0t + a0xb3 +
3
2
b3xa0 = 0

a1t + a1xb3 + b3xa1 +
b3xx

2
= 0

(43)

with a1 and a0 have to be in addition linked by the relation λ2
0(3a0a1−a0x)3 = 27λ3

1a
5
0

(32) for the existence of the above indicated type solitons.
For our purposes choose one of the simplest ‘SME’, namely

b3 = −a1 +λ′, λ′ = const

Equation (43) together with the relation to a0, a1 can be simultaneously interpreted
as the system of three PDEs to the functions a0(x, t), a1(x, t), V (x, t)

a0t + (λ′ − a1)a0x −
3
2
a1xa0 = 0 (44)

a1t + (λ′ − 2a1)a1x −
a1xx

2
= 0 (45)

Vt + (λ′ − a1)Vx −
a1xV

2
= 0 (46)

with two extra constraints

Vx = −V 3 + a1V + a0 (47)
λ2

0(3a0a1 − a0x)
3 = 27λ3

1a
5
0 (48)

In so doing, only the function V may contents the soliton component. In principle,
in view of (47), (48) the system (44)–(46) can be reduced to the only equation with
respect to V only. However, in contrast to the wide-spread case n = 2 here a0 and a1

cannot be algebraically expressed through V . As a consequence, the resulting equa-
tion for V consists of several thousands addends including various mixed derivatives.
Therefore we will just partially transform (44)–(46) using only (47) thereby decreased
the quantity of the independent variables. One has as a result from (44), (46) the set
of two NPDEs of the reaction-diffusion type

2a0t − 2V −1a0xVx + (2λ′ − 2V 2 + 5a0V −1)a0x + 3a0V −2V 2
x

− 3a0V −2(a0 + 2V 3)Vx − 3a0V −1Vxx = 0
2Vt + a0x − V −1V 2

x + (a0V −1 + 2λ′ − 4V 2)Vx − Vxx = 0
(49)

with one constraint between a0 and V

λ2
0

(

3Vxa0 − 3a0
2 − a0xV + 3a0V 3)3 = 27λ3

1a0
5V 3 (50)
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Another system we will have if choose respectively equations (45) and (46)

a1t + (λ′ − 2a1)a1x −
a1xx

2
= 0

Vt + (λ′ − a1)Vx −
a1xV

2
= 0

(51)

together with the constraint

λ2
0

(

4a1Vx + 3a1V 3 + a1xV − 3VxV 2 − Vxx − 3a2
1V

)3 = 27λ3
1

(

Vx + V 3 − a1V
)5 .
(52)

With regard to the related constraints, (47), (48) for (44)–(46), (50) for (49), (52)
for (51), all these systems and the above-mentioned nonlinear equation only to V
are equivalent each other. Any of these ‘presentations’ can be used for a computer
simulation of the solitons.

The series of computer experiments (on the technical details here and below see
Appendix C) with the initial condition

V (x, 0) = v3(x, 0)+vperturbation(x)

was carried out to simulate collisions of localized perturbations and the various kinks
v3 of the family (35). At an initial moment the perturbations were set as

vperturbation(x) =
C0

(ek1(x−ϕ) + ek2(x−ϕ) + C1)
, C0, C1, k1, k2, ϕ = const

Figures 3, 4 demonstrate the most characteristic of them. In so doing, λ′ was choosing
such that the kink itself was stationery, i.e. λ′ = λ1 and λ = 0 everywhere. As a
result, any changes are well seen. Figures 3 corresponds to the kink-perturbation
interaction when (λ0, λ1) = (−3.75, 4.75) with the slackening coefficient η = 2/3
(r− = 1, r+ = 1.5), while Figure 4 corresponds to the choice (λ0, λ1) = (−0.25, 0.75)
with η = −1/2 (r− = 0.5, r+ = −1). In both cases the perturbations slackening take
place, but the second case differs from the first one by the perturbation overturning
according to the sign of η after passage through the kink’s front and by the left
asymptote ∼ 1/x because of the double root r−. As seen from the experiments,
the only change in the kinks is the phase shifts after the interactions, while the
envelopes remain unchanged always, although the medium itself is dissipative, so
that all localized disturbances are spreading and disappear with time.

While even to write the equation immediately for V appears to be not so trivial
and any appropriate physical models seem to be unknown yet, to derive a similar
equation to v (35)–(38) is much more easy. Indeed, from (35)–(38), summing vx1 , vx2

and vt1 , vt2 , one has

vnx =
(

ak

λk

) n−1
n−k

p(v), p(v) = −vn
n + λn−2vn−2

n + · · ·+ λ1vn + λ0 (53)

vnt = −bnp(v) (54)

If bn is expressed in terms of the relation ak
λk

, it can be done in the pure algebraic
manner. So setting

b3 = −

[

(

a0

λ0

) 2
3

]

x

12



for n = 3, we will arrive at the equation

vt = 2
(

vx

p(v)

)2 [

vxx − vxp′v(v)
(

vx

p(v)

)]

(55)

—
(

a0
λ0

) 2
3

is finding from (53) and then directly substituting into (54).
In such ‘marginal’ solitonic models, when a perturbation modulates only a soliton

phase, the interactions character slightly differs from the above. In these cases a
perturbation always asymptotically (i.e. before and after a direct collision) disappears
or, maybe, it will be better to say, gathers to zero. This is first. Second, a deformation
of a soliton envelope consists in only formation of compression or stretching zones on
a kink’s front. For equation (55) such a situation is shown on Figure 5 when

θ(x, 0) =
7

[e−2(x−2.5) + e2(x−2.5)]

There exist one zone of compression and one of stretching, which form the left and
right perturbation’s fronts respectively. Since lim

x→+∞
θ = lim

x→−∞
θ the phase shift is

absent here in contrast to the similar interactions on Figure 8 below and in Figure 7
[1].

The case n = 4. Equations (34), the conditions of their compatibility (66) and
the solitons existence (32), (33) can be also considered as the set of four PDEs

Vt + b4Vx +
b4xV

3
= 0

a0t + a0xb4 +
4
3
b4xa0 = 0

a1t + a1xb4 + b4xa1 +
b4xx

3
= 0

a2t + a2xb4 +
2
3
b4xa2 = 0

with three constraints to the independent variables a0, a1, a2, V , if λ0 6= 0

Vx = −V 4 + a2V 2 + a1V + a0
(

a2

λ2

)2

=
a0

λ0

λ3
0(4a0a1 − a0x)

4 = 256λ4
1a

7
0

(56)

and respectively

Vx = −V 4 + a2V 2 + a1V + a0

a0 = 0
λ3

2(2a2a1 − a2x)
2 = 4λ2

1a
5
2

(57)

if λ0 = 0. Again, choosing the same trivial linkage of b4 with the last ones

b4 = −a1 +λ′, λ′ = const

13



one has the simple system of two equations

a1t + (λ′ − 2a1)a1x −
a1xx

3
= 0

Vt + (λ′ − a1)Vx −
a1xV

3
= 0

(58)

to a1 and V . Here, in principle, the constraints (56) or (57) can be changed by the
only expression for a1 and V , but because of the huge square roots the initial forms
with a0, a2 as the auxiliary functions is preferable from many points of view.

Analogously to Figures 3, 4 Figures 6–8 illustrate the typical interactions of the
v4-kink (35) (stationary here, i.e. λ′ = λ1 was chosen) with the localized pertur-
bations. Again for the kinks the only effect takes place — the phase shift. Fig-
ure 6 for (λ0, λ1, λ2) = (0.112, 0.592, 1.48) and the slackening coefficient η = −5/7
(r− = −1, r+ = 1.4) demonstrates such the interaction for the kink with the nonmono-
tonic front. This kink is an analogy of a two-hump bell-shape soliton. Here the per-
turbation practically fully dissipates during the collision, nevertheless it effects to the
phase shift arising. In the case shown on Figure 7, (λ0, λ1, λ2) = (0,−0.25, 0.75), we
have the amplification of the perturbation after passage through the kink’s front with
the coefficient η = 2.5 (r− = 0.4, r+ = 1); while Figure 8, (λ0, λ1, λ2) = (0,−0.25, 0.75)
and η = 0 (r− = −1, r+ = 0), corresponds to the full absorption of the perturbation.
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Appendix A

Equating to zero the coefficients at the different powers V l in the compatibility con-
dition

Vxt−Vtx = 0 (59)

for (8), (9), we have the relations to the coefficients-functions ai, bj

alt − blx +
∑

l+1−n≤i,j≤n
i+j−1=l

(i− j)aibj = 0, l = 0, n− 2 (60)

−blx +
∑

l+1−n≤i,j≤n
i+j−1=l

(i− j)aibj = 0, l = n− 1, n (61)

14



for the cases n ≥ 3 also with
∑

l+1−n≤i,j≤n
i+j−1=l

(i−j)aibj = 0, l = n + 1, 2n− 2 (62)

This is the initial equations. Here and below, wherever it is needed for convenience,
an = −1 and an−1 = 0 have been again explicitly introduced into the formulas. Since
the cases with n = 2 and n ≥ 3 differ, further they should be consider separately.

The case n ≥ 3. First, prove that from (62)

bi =
ai

an
bn, i = 2, n− 1 (63)

with bn(x, t) being arbitrary.
Indeed, (62) can be written down as

(l+1−2n) (al+1−nbn − anbl+1−n)+
∑

l+1−n≤j≤n−1

(l+1−2j) (al+1−jbj − ajbl+1−j) = 0

(64)
Assume that for some k the equalities (63) with j ≥ k take place, then one has from
(64) at l = k + n + 2

(k − 1− n) (ak−1bn − anbk−1)

= −
∑

k≤j≤n−1

(k + n− 1− 2j)
[

ak+n−1−j

(

aj

an
bn

)

− aj

(

ak+n−1−j

an
bn

)]

= 0

because every addend in the rhs sum is obviously identically equal to zero. As a result,
(63) is true also for j = k − 1. But at l = 2n − 2 (62) directly have the form (63)
with j = n− 1, and on the mathematical induction we will have (63) for j = n− 2, 2
as well. While bn(x, t) itself remains arbitrary, because the coefficient at V 2n−1 in the
compatibility condition (59) is equal to zero identically.

Next, the sums in (61) have the same structure, so that equations (61) analogously
give us

b0 = −a0bn

b1 = −a1bn −
bnx

n− 1

(65)

taking into account that an = −1, an−1 = 0 and for them always bn−1 = 0.
Finally, again in view of the structure of the sums in (60) we have from these

relations

alt + bnalx +
(

n− l
n− 1

)

albnx = 0, l = 0, n− 2; l 6= 1

a1t + bna1x + a1bnx +
(

1
n− 1

)

bnxx = 0
(66)

i.e. the system of n− 1 equations to n− 1 functions al(x, t).
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The case n = 2. In this case, by the direct computation one obtains the relations
for b1, b0 (b2(x, t) is arbitrary)

b1 = −b2x

b0 = −a0b2 +
b2xx

2

(67)

together with the equation to the only function a0(x, t)

a0t +2a0b2x +b2a0x−
b2xxx

2
= 0 (68)

as expected [3].

Appendix B

Suppose there is some compatible system of the form

Vx1 = P1(x2, t2; V ), V = V (x1, x2, t1, t2)
Vx2 = P2(x2, t2; V )

(69)

Vt1 = Q1(x2, t2; V )
Vt2 = Q2(x2, t2; V )

(70)

Set the question: What do P1, P2, Q1, Q2 have to be so that the linear transformation

V = α(x2, t2)v(x1, x2, t1, t2)+β(x2, t2) (71)

reducing (69), (70) to another, simpler, system

vx1 = p(v)
vx2 = γ(x2, t2)p(v)

(72)

vt1 = q(v)
vt2 = δ(x2, t2)q(v)

(73)

exists? The direct substitution (71) into (69) gives

αp = P1(x2, t2, αv + β) (74)
αx2v + γP1 + βx2 = P2(x2, t2, αv + β) (75)

in view of (72). Next, taking into account that v = (V − β)/α, one has from (75)

P2 =
αx2

α
(V −β)+βx2 +γP1 (76)

In the same way, from (70), (73) one has

Q2 =
αt2

α
(V −β)+βt2 +δQ1 (77)

The conditions px2 = pt2 = 0 for p (74) and analogous conditions for q are identical
to the compatible conditions of the initial system (69), (70).

The relations (76), (77) are the relations sought between P2, P1 and Q2, Q1.
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Appendix C

In order to simulate solitonic interactions we used the systems (51) or (58). In so
doing, the following implicit finite-difference scheme (A ≡ a1)

A+ − A−

τ
+ λ′

(

A+
x + A−

x

2

)

− (A2)±x −
1

n− 1

(

A+
xx + A−

xx

2

)

= 0

V + − V −

τ
+

(

λ′ − A+ + A−

2

)(

V +
x + V −

x

2

)

(78)

− 1
n− 1

(

A+
x + A−

x

2

)(

V + + V −

2

)

= 0

was employed. In this symbolic notations the superscripts ‘+’, ‘−’ correspond to the
mth and (m+1)th layers, and V ±

x , V ±
xx, A±

x , A±
xx denote the standard approximations

for the related derivatives of V , A on five points, so that for example

V −
x =

V m
i−2 − 8V m

i−1 + 8V m
i+1 − V m

i+2

12h

The term (A2)±x analogously is

(A2)±x =
Am

i−2A
m+1
i−2 − 8Am

i−1A
m+1
i−1 + 8Am

i+1A
m+1
i+1 − Am

i+2A
m+1
i+2

12h

The scheme for the mesh functions Am
i , V m

i (i = 0, N ; m ≥ 0 such that t = τm and
x = hi) of the accuracy O(τ 2) + O(h4) is supplemented by the appropriate bounding
condition

A(0, t), V (0, t), A(L, t), V (L, t) = const

and also

Ax(0, t), Vx(0, t), Ax(L, t), Vx(L, t) = const

approximated also with the order of accuracy O(h4) on five left/right points. Such
a form of the last boundary conditions is necessary for the cases like depicted on
Figure 2 because of the slowly failing down left asymptote and is very effective for
stationary kinks and localized perturbations. The problem is reduced to solving the
algebraic system, firstly, for Am

i

am
i Am

i−2+bm
i Am

i−1+cm
i Am

i +dm
i Am

i+1+em
i Am

i+2 = fm
i

and then at the known already Am
i for V m

i

ãn
i V

n
i−2+ b̃n

i V
n
i−1+ c̃n

i V
n
i + d̃n

i V
n
i+1+ d̃n

i V
n
i+2 = f̃n

i

both with the band matrixes.
For our purposes here the above scheme appears to be economical, simple in the

implementation and has the high accuracy when |Vkx| . 1. For bigger values of Vkx in
(78) the residual begins to play an essential role, that visibly decreases the accuracy.
In particular such high value derivatives arise at the moment of the kink-perturbation
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touching in the cases depicted in Figures 4, 7, 8. The calculations were performed
with h = 0.1 (Figures 3, 6) and h = 0.05 (Figures 4, 7, 8) at τ = 0.01 with long
double precision (18 figures). This ensured the error from ε = 1 · 10−5 (Figure 3) up
to ε = 2 · 10−3 (Figure 4) in the most critical case from mentioned before, i.e. 0.0005–
0.2%, and was in the agreement with the theoretical estimations. An interesting
reader can find more about various schemes for similar equations in [8].

It is necessary separately to dwell on setting the initial conditions. The task here
is to determine A (a1) satisfying the constraints at a specified V . For the initial
conditions of the form

V (x, 0) = vn(x, 0)+vperturbation(x) (79)

when overlapping between a kink’s front and localized disturbance is absent, it can
be done very simply. Indeed, since V θ

±∞ ≡ vperturbation, from (42), (32) one directly
obtains

A(x, 0) ≡ a1(x, 0) =
vperturbationx

vperturbation
+λ1

(vperturbation

r

)n−1
(80)

where the root r corresponds to the appropriate kink’s asymptote. By this means the
initial conditions for V (x, 0) (79) are set directly, and A(x, 0) is calculated according
to the formulas (80). The derivative in the last one was approximated on 5 steps for
the adequate accuracy O(h4).

For the simulation of equation (55), because of its complex nonlinearity, the fol-
lowing simplest explicit scheme of the accuracy O(τ) + O(h2) appeared to be efficient

v+ − v−

τ
= 2D2 [

v−xx − v−x p′v(v
−)D

]

, D =
v−x
p(v)

(to avoid loss of the accuracy near the zeros of p(v) it is reasonable to calculate the
relation vx/p(v) separately — lim

v→r
vx

p(v) = 1) with the boundary conditions

v(0, t) = v(0, 0)
v(L, t) = v(L, 0)

In spite of the rigid limitation to τ for the stability, namely τ . 0.02–0.1h, computa-
tions are fast enough for not very small h because of its realization simplicity. In the
experiments τ = 0.00005 and h = 0.05 were used, that ensured the error ε = 1 · 10−3

(0.1%) or even less.
Finally note that when calculating vn we used the explicit fifth-order Runge-Kutta

method with the same step h as in the difference schemes.
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