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Our aim in these notes is to study spectral properties of quantum mechanical hamiltoniafi$-aitfebra techniques. The
algebras which will concern us are generated by the hamiltonian operators corresponding to certain types of kinetic an
potential energies; for this reason we call thalgebras of hamiltonianer algebras of energy observableBhe best way
to explain what we have in mind is to begin with an example.

Let us denote by/, andV}, the unitary operators ih?(R™) corresponding to translation byandk in position and
momentum space respectively; @6, f)(y) = f(z +y) and (Vi f)(y) = €%¥ f(y). We call Fréchet filteron a locally
compact spac&’ the family of subset$” such thatX \ F is relatively compact.

Home Page

Theorem 1.1 Let H be a self-adjoint operator if,?(R™) such that: E—

lim [(U — (H+9) 7 =0 and Jim |[Vi, (H +0) 74| = 0. (1)

Then, for each ultrafiltesr on R™ finer than the Fechet filter, the family of self-adjoint operatak, = U, HU}, = € R",
has a strong limitH,, whenz — oo along s, and

oes{H) =, 0(H..). (1.2)

We shall give later on examples which show that this theorem has interesting consequences even in elementary case
The convergence involved above has to be understood as follows: there is a self-adjoint (not necessarily densely def#
fined) operatorH,, on L?(R") such that for eaclp € Cy(R), ¢ > 0, andf € L?*(R") there isF € s such that
lp(Hz)f — w(Hs)f|| < eforall z € F. Note that one can get (quite often, in faéf), = oo, wherecc is the unique
operator with domaif0}. We say that the operatof$,, arelocalizations at infinityof the hamiltonianf, so the theorem
says thathe essential spectrum éf is the union of the spectra of its localizations at infinéye should emphasize that we
talk about the “infinity” associated to the position observablg.e. we localize af) = o0). Indeed, the region where some
other observable (e.g. the momentiithis infinite could play a role too, and this actually happens in physically interesting
situations, e.g. if there is an external magnetic figld:) which does not vanish as| — oc.
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C*-algebras do not seem to play a role in Theofiefin However we discovered it by studying a certélfralgebra, its
proof involvesC*-algebra techniques, and we do not know a proof independent of such techniques. We do not exclude thel
possibility of proving it by decomposingf with the help of certain partitions of unity, but such a proof would certainly be
much more intricate. On the other hand, Theorefis only a particular case of a theorem in whiRh is replaced by an
arbitrary locally compact abelian group, where techniques based on patrtitions of unity would not work.

Now we explain the connection with*-algebras. LeC}(R") x R™ be the crossed product of tki&-algebraCy(R"™)
(bounded uniformly continuous functions) by the natural actioRbdf(translations). This is &*-algebra whose exact
definition does not matter here (it will be recalled§in4). Let o(Q) be the operator iL?(R") of multiplication by the
functiony andy(P) = F~14(Q)F, whereF is the Fourier transformation.

Theorem 1.2 There is a faithful representation 6f/(R™) x R™ on L?(R") whose range is the norm closed linear space
generated by the operators of the foprQ)y(P) with ¢ € Cy(R™) and € Cy(R™).

This is a particular case of Theoreirl 7, where the representation is described explicitly. For the moment, the relation
with crossed product is irrelevant and one can simply think (k™) < R" is the C*-algebra of operators oh?(R")
generated by (Q)y(P) with ¢ andi as above. Then we have the following two other equivalent descriptions of it.

Theorem 1.3 Let i be a real elliptic polynomial of ordern on R™. ThenCy(R™) x R" is equal to theC*-algebra of
operators onZ?(R") generated by the self-adjoint operators of the fdr(#®) + V, whereV’ runs over the set of symmetric
differential operators of ordex m with coefficients irCg°(R™).

We mention that we define thg*-algebra generated by a family of (possibly unbounded) self-adjoint operators on a
Hilbert spaces#, as the smallest*-algebra#” of operators oZ’ such thatp(H) € ¢ for all H € % andy € Cy(R).

We denotedCt°(R™) the space of2>° functions which are bounded together with all their derivatives. The (easy)
proof of Theoreml.3 can be found inlPG1]. This result justifies our interpretation 6fj(R™) x R™ as an “algebra of
hamiltonians”.
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Theorem 1.4 A bounded operato$ on L2(R") belongs taCY(R™) x R™ if and only iflim,_q || (U, — 1)S™|| = 0 and
limy_ ||V;*SVi — S|| = 0.

If a symbol like S™*) appears in a relation, this means that the relation holdsS fand its adjointS*. The preced-
ing theorem has been proved in:7] and is a nontrivial description af)y(R™) x R™ similar to the Riesz-Kolmogorov
characterization of th€’*-algebra# (R™) of compact operators oh?(R"). We mention that? (R") = Cy(R™) x R™.
Theoreml.4 allowed us to formulate Theoreinlin a C*-algebra independent manner and to get general and easy to check
assumptions o .

The assumptionsl(1) of Theoreml.1 can now be writter(H + i)~! € CP(R") x R™. Then the theorem will be a
consequence of the following assertianS € Cy(R™) x R" then for each ultrafiltesc on R™ finer than the Fechet filter,
the family of operators,, = U, SU;, x € R", has a strong limitS,, whenz — oo along s, andoesd.S) = J,, o(S..).

We now sketch the proof the last assertion. The essential spectriiris @qual to the spectrum of the imaéeof S'in
the quotienC*-algebraC!(R™) x R™ by the ideal’? (R") of compact operators ab?(R™). But.# (R™) = Cp(R") x R"
and one has a canonical isomorphism

U o e [ 20

Now CE(R™)/Co(R") — C(yR™) whereyR" is the boundary oR™ in the StoneCech compactificatioR™. One can
use this in order to get a natural embedding

U n n
Cp(R™) xR Co®") xR~ 1] CHER™) = R"
xeyR"™

To finish the proof it suffices to compu@ as element of the right hand side.

The technical details make the complete proof rather involved, but the role 6ftladgebras and the general strategy
of the proof should be clear by now. The main novelty of our approach is the idea of reglaehamiltonian of a physical ,‘
system by aralgebraof hamiltonians. Roughly speaking, we proceed as follows. Assume that we are given a quantum 4
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physical system (with a Hilbert spac# as state space) subject to a certain type of interactions. The first step is to point
out a class of “elementary” admissible hamiltonians. This depends on the class of kinetic and potential energies which ar
natural in this context; for example, in Theordn3 we fixed the kinetic energi and considered potentials of the foiin
described there. But the “real” hamiltonians that we would like to study are much more complicated objects, e.g. they do
not admit such a simple decomposition into kinetic and potential parts. To define th&frhéetheC*-algebra of operators
on 7 generated by the resolvents of the elementary hamiltonians. It is rather surprising that in mary sasesatural
mathematical object, for example it is the crossed pro@{¢R"™) x R" for the class of elementary hamiltonians considered
in Theorem1.3. In several of our examples we have been able to give an “intrinsic” characterizatién lide that of
Theorem1.4. Such a result is important because it allows us to show that the class of hamiltonians affiliated to the algebra [
is much larger than one would expect and to formulate the final results without explicit referefitalgebras. However, I/
the crucial point is to give a convenient and rather explicit description of the quotient algebr&’/[¢ N K (.2¢)], where

K (27) is the ideal of compact operators off. Results like those of Theorefinl and other more subtle properties (the
proof of the Mourre estimate) depend on this. TlUshould be considered as the main object of the spectral theory of the
given system and the determination of the structure’ ahe main problem one has to solve.

operatorS € B(s¢). The quotientC*-algebraC(.7") = B(.#)/K () is the Calkin algebra associated.# and
oesdS) = o(5), whereS is the image ofS in C(#). Itis out of question to computg as an element af (.7, because
this algebra is too complicated. But if one can find'&algebra% C B(s#) such that# can be described relatively
explicitly, and if S’ as element of6 can be computed, then one could use this method to corapsfé) (note thaté is a
subalgebra of’(7#)). The main problem now is how to choogein nontrivial situations, e.g. i is (the resolvent of) an
N-body hamiltonian, a more general anisotropic hamiltonian on an abelian locally compact group, or in a situation with an
infinite number of degrees of freedom like in quantum field theory. All these cases will be treated later on in this lecture.
The idea of considering the quotient algefifain connection with the computation of the essential spectrum of an ;
operator appeared quite early in the mathematical literature. What is new here is a kind of experimental observation: we}
noticed that in several physically interesting and nontrivial situations there is a simple algorithm for consteucting
particular, we found that crossed productgttalgebras by actions of groups play a remarkable, although not exhaustive,
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role in this context. Moreover, one of our main observations was that taking the quotient of a hamil{fonignrespect to
an ideal (an operation which does not make sense if we fix a Hilbert space) gives physically interesting objects, which play
an important role in the spectral and scattering theorkf ofMe explain this below.

The main advantage of thé*-algebra framework is that one can define an operation on observables which does not
make sense in a purely hilbertian setting: that of taking the image through a morphism. For exampie aif ideal in a
C*-algebra# of operators on a Hilbert spac#” and if H is a self-adjoint operator o’ affiliated to%’, then the image
H/.7 of H through the canonical morphisti — ¢’/.7 is a perfectly well defined observable affiliated to ttie-algebra
¢ /.7 (see§2.7), but in nontrivial cases it cannot be realized as a self-adjoint operaté#’ofhus we are forced to work
with “abstract”C*-algebras: although the starting point is a concé&tealgebra on the physical Hilbert space, the quotient
operation will give an algebra which a priori is not represented. A new Hilbert space is obtained when looking for faithful
nondegenerate representations of the quotient algebra, on Whighcan be realized as a self-adjoint operator with a clear
physical interpretation (cf. th&/’-body and quantum field models).

When.# = ¢ n K(s¢), we usually denotéd/ = H/.# and call itlocalization at infinity of . We shall compute it /|
in the second part of this lecture in many models. However, localizing at some region of infinity gives often an object of Fg#™
physical interest, and these “partial” localizations are obtained by taking quotients with respect to larger ideals. The fact
that quotients of hamiltonians with respect to ideals other than the compacts are useful and appear naturally in physicall
interesting situations has first been observed-is[] and [2G7]. Indeed, if H is the hamiltonian of a nonrelativistic
N-body system and if is a partition of the system of particles, then two other hamiltonians are defined in the physical
literature: H,, the hamiltonian with interactions between clusters set to zero MFEhdvhich is H, for zero intercluster
momentum (seé3.4). In [ ] it was shown that, is the quotient ofH with respect to a certain ideal in théV*body
algebra”. Then in[fG7] it was proved that the essential spectrum of the internal hamiltaHiars the essential spectrum
of H with respect to some other ideal (see the last pa§Baf [EG7], or §8.1.5 an;8.2.4 in | 1). Similar localizations
at“Q = £oo” and “P = +o00” with the help of ideals appeared in the pap€i{] concerning one dimensional anisotropic
systems (summarized here §f.5. We met more subtle type of localizations at infinity in our study of the interactions
first considered by M. Klaus in{a] (§3.2is devoted to this question; Propositidgr20is an abstract example of the kind
of quotients which appear in such situations). We mention that in the recent pegéer pne can find an interesting
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observation concerning the relevance of the observabjeg in relation with the propagation properties of the system.

The idea of using operator algebras in the study of the spectral propertesgberator goes back to the origin of the
theory ofC*-algebra and many people worked on this topic. We are not really entitled to give references on this question, see|
however Dav, ! ] and references therein. The work of H. O. Cordegtralgebras of pseudodifferential operators
has to be especially acknowledged (seel]). However, it seems to us that the goals and methods, as well as the examples
studied in these works, are quite far from ours.

Most noteworthy is the work of J. Bellissard on almost periodic and random operators in connection with solid state
physics, seefjel, ]. In particular, he considers th€*-algebra generated by the translates of the hamiltonian of a
physical system and shows that under certain conditions it is a crossed product. Although an “algebra of hamiltonians” i
in our termlnology, the resulting algebra is very dlfferent from those we consider here, belng rather tightly retated to

spectral propertles aoff and to point out a remarkable connection betwégitheory and the quantum Hall effect. The J
algebras which appear in our work are much larger and, in a certain sense, simpler. So we can treat a larger class of mod
but we are not able to study finer spectral properties of the hamiltonians. "
The first paper in which the algebraic point of view appears in connection witiVthedy problem is fG1]. This

paper is devoted to the study of a class(tf-algebras graded by semilattices ($8e6) which allow one to formalize

in a convenient way the notion af-connected component of an operator (this approach was motivated by the papers
[ , Pol, ]). It is also shown there that (dispersiv&®)}body hamiltonians are affiliated to such algebras and that the
decomposition of the resolvent according to the homogeneous components of the grading gives exactly the well knowrjigk
Weinberg-Van Winter equation. As a consequence, a purely algebraic proof of the HVZ theorem is obtained (see Theorenid
3.25. The algebraic formalism was then extendedHin:P] such as to cover the proof of the Mourre estimateebody J
hamiltonians (not necessarily non-relativistic, the proof being given for a class of hamiltonians abstractly defined). The
Mourre estimate for such systems is a highly technical and nontrivial inequality (see the first gapgrarjd [-rH]
devoted to this question) and it seems to us quite remarkable that a purely algebraic statement involving quétients of
algebras is relevant in this context. In fact, it was shown that one can realize a complete decoupling of channels by taking
such a quotient (thus eliminating the Simon partition of unity, which gave only an approximative channel decoupling). This
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paper also contains new examples of gra@&ehlgebras associated to symplectic spaces, which allow one ta\rbaty
systems in constant magnetic fields. These methods were shown to be efficient in the treatment of veryNéibgdiar
systems (with hard-core interactions) i 5], where the Mourre estimate was proved for such systems, aid jnWhere
the scattering theory was treated. A complete and unified presentation of these algebraic techniques can be found in Chaptg
8 and 9 of RBG].

However, the physical meaning of th&*body algebra” which was in the background of the theory remained obscure,
cf. the introduction of the Chapter 8 of EG]. The main point of our work on one dimensional anisotropic systems] [
was the clarification of this point (althoug [6] was ready in the summer of 1998, we decided not to publish it, because
meantime we discovered that the main idea works very easily in much more general situations). We understood that thdf#
grading of the algebra was only an accident and we developed a general strategy for the construction of “algebras of / 7
observables”. Here a remark of G. Skandalis played a fundamental role: he noticed that the homogeneous components w"///,«‘
the (graded)V-body algebra are crossed products (this was not at all obvious in the presentationl$)f [This opened
the way to a unified theory of anisotropic hamiltonians along the lines describgdlitvelow, point out view presented
in detail in our preprints®12, ]. These ideas have been applied to (a generalized version oy #hedy problem in
[ : ]. Note that P G7] also contains the first non-trivial affiliation criterion, which shows that the clagg-bbdy
hamiltonians affiliated to thé&/-body algebra is much larger than what one would think at first sight (Theargh

This lecture is mostly based o [4] and [513] (see also {512], which is the preprint version of{l4]) and consists of
two parts. The second one is devoted to examplés edilgebras of hamiltonians and to the spectral theory of the operators
affiliated to them. Since the audience we have in mind consists of people working in the spectral theory of quantum Jigk
hamiltonians and having only an elementary knowledg€'tflgebras, we thought it useful to present in the first part of v
these notes the necessary background from the theaty-@ligebras. Thus, although a rough knowledge of the first two
chapters of the book{ix] is necessary (and largely sufficient) to understand what follows, we stg2tiy emphasizing
some simple butimportant points. Next we present some elements of the theory of crossed products, which is a less standaf
subject. Indeed, in these notes we stress the role of crossed products and of algebras of hamiltonians associated to algeb§
of functions on locally compact abelian groups. This is a nice setting because it gives a unified view of many models of |
anisotropic interactions in quantum mechanics (and the possibility of their systematic study). Proofs are given only for |
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assertions which are not easy to isolate in the literature. The last pétti®flevoted to notions and results that are more
specific to our subject: observables affiliated’tb-algebra.

The theory oiC*-algebras developed in strong connection with statistical mechanics and quantum field theory (algebras
of local observables and crossed products). We use crossed products, but with quite different purposes. On the other hanf
we also apply our ideas in quantum field theory, but our point of view seems to be new, a€'isdalgebra of hamiltonians
of a boson field described §3.7and its use in the spectral theory of such hamiltoniarisalgebras play a role in scattering
theory as algebras of asymptotic observables (s@4]: this has nothing to do with the algebras of hamiltonians considered
here.

Finally, we would like to make some comments concerning the rol€”shlgebras in highly technical regions of
mathematical physics, like thg-body problem or the study of quantum field models. Most people working in such domains
would probably agree about the “soft” role @f-algebras, in the sense that these provide a general and nice framework for

underestimate the impact of the formalism on the technical aspects even in the simplest situdiaim®much more is true:
algebraic techniques allow one to get rid of many involved technical arguments and estimates. For example, compare th
proof of the Mourre estimate due to Perry, Sigal, and Simaad (including the improvements due to Froese and Herbst :
[FrH]) with the algebraic proof fromHG2] (which appears as Theorems 8.4.3 and 9.4.4\inG]), which extends without
any effort to a large class of dispersive systems [] and to quantum field models with strictly positive mass (see Theorem
3.32and [5ed). Or see the treatment of the relativistic HVZ theorem lis{/] and compare it with that infjan] (cf.
Theorem3.25here). Theorem..1is another example of the same nature: see the results and treatmentifrbth(jvhen
magnetic fields are absent).

Acknowledgements: These notes are an extended version of the talks we gave at the conference “Operator Algebras andpgl
Mathematical Physics” Constanta 2001. We would like to thank the organizers of the conference for inviting us and for
financial support. We are particularly grateful to Florin Boca and Radu Purice for their kindness and hospitality. Finally, we §
thank the referee for his very careful and competent review. j
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2.1.C*-algebras. We begin with some elementary facts and definitions from the theoty*edigebras. A«-algebra
is a complex algebras equipped with an involutior — S*. A map« — % between twox-algebras is anorphism
if it preserves all the operations (i.e. is linear, multiplicative and intertwines the involutiong§)¥-#eminormon <7 is a
seminorm| - | satisfying| AB| < |A| - |B| and|A*A| = |A]? for all A, B € «/. A C*-seminorm which is also a norm is
calledC*-norm

A x-algebra<’ is calledC*-algebraif there is a complet€*-norm|| - || on it. It is remarkable that if such a norm exists, L
then it is unique. All topological assertions concernimgrefer to this canonical norm. It is also remarkable tha/if 2 Home Page
areC*-algebras and : &/ — % is a morphism, thew is a contraction for the (canonical) norms.af and % and the [
range ofp is aC*-algebra. Moreovegp is injective if and only if it is isometric (1.3.7 and 1.8.1 inif]). | Title Page

We definedC*-algebras in a way which emphasizes their purely algebraic charactet isfa x-algebra you do not AL
have to give some extra structure to make ("aalgebra (as in the case of Banach algebras). In more technical terms, the
category ofC*-algebras is a full subcategory of the category-@flgebras. Thus, givensaalgebra, it makes sense to ask
whether it is aC*-algebra or not.

If two C*-algebrasey’ and % are canonically isomorphic we write’ = 44; in such a situation the canonical morphism
is either obvious from the context or we give it explicitly. An algebra with unit element is also called unital; a morphism
between two unital’*-algebras which sends the unit of the first in the unit of the second is aaliéal.

A x-subalgebra of &*-algebra is a&*-algebra if and only if it is closed; then we callit*-subalgebraof <7. A closed
two-sided (hence self-adjoint) ideal in &*-algebra will be simply calledideal If .# is an ideal in a
C*-algebrasz, then the quotient-algebras/ /.7 is a C*-algebra, the canonical norm being the quotient norm (1.8.2 in
[Dix]).

Let 57 be a Hilbert space. Then the spaBés#’) of bounded linear operators off’ is aC*-algebra and< (s¢), the
subspace of compact operators, is an ideal i@ {t77) = B(s¢)/ K (¢ ) is theCalkin algebraof 7.

A morphism from ax-algebras into B(s7) is calledrepresentation of/ on s#. If the morphism is injective the
representation is calle@ithful, and then we say tha¥ is realized on7#. The following is nontrivial:a x-algebra is a



http://www.u-cergy.fr

C*-algebra if and only if it can be realized as(&‘-subalgebra ofB(.7#) for somesZ (2.6.1 in [Dix]).

A representatiom of 7 on.7# is nondegenerat# the only vectorf € .7 suchthatr(A)f = 0forall A € &7 is f = 0.

If o7 is aC*-algebra of operators o’ and the identity representation is nondegenerate, we say#hsiondegenerate
on 7. Equivalently, this means that linear subspace generated by the elements of theffowith A € ¥ and f € 57,
is dense iz

Now some notations. Lef' be a topological locally compact space. They(7T') is the C*-algebra of complex con-
tinuous bounded functions dfi, C(7") the C*-subalgebra of functions which have a limit at infinity, a@g(7") the
C*-subalgebra of functions convergent to zero at infinity. If the topology’ @ associated to a given uniform structure
(e.g.ifT"is alocally compact abelian group) théj(7") denotes th€'*-algebra of bounded uniformly continuous functions.
More generally, it/ is aC*-algebra therCy(T'; ), Coo (T'; o7), Co(T; 27 ) and (if T" is a uniform spacey'y (T'; /) are
similarly definedC*-algebras. There is one more useful algelira(7’; «7), the C*-algebra of continuous mags — o/
with relatively compact range.

Later on we shall define other interesting algebras in terms of filtef8.dh« is a filter on a sef’, Y is a topological
space, ang : T — Y has a limity alonga (i.e. one has)~!(V) € « for each neighborhootl” of 7), then we write
lim, ¢ = y orlim; o ¢(¢t) = y. If T'is a noncompact locally compact topological space, thetfrtbehet filteron T" is the
family of subsetd” such tha’\ V' is relatively compact; the limit along it is denotieh; ., ¢(t).

2.2. EnvelopingC*-algebras.Let (<7, || - ||) be a Banach-algebra, i.e. a complete norin || is given on thex-algebras’
such thal| AB|| < ||A]|| - | B]| and||A*|| = ||Al|. Theneach morphism fromy into a C*-algebra is a contractiorf1.3.7 in
[Dix]). Hence we havé- | < || - || for eachC*-seminorm ongZ. Since the upper bound of any family 6f-seminorms is
aC*-seminorm, there is a largeSt-seminorm orng? : we call itthe C*-seminorm ofe7 (or C*-norm of<?, if it is a norm)
and we denote it by - ||, (note that] - ||, < | - ||). TheC*-algebra obtained by separation and completiof || - |[,,)
is denotede7, (and its norm| - ||,.) and is calledhe enveloping’*-algebra of.<’.

Letd,, : & — </, be the canonical morphism. Thép is continuous (contractive) with dense range and it is injective
if and only if || - ||, is @a norm one, so if and only if there is &-norm on.¢. In this case we say tha¥ is an A*-algebra
and we identifye/ C <7, ; thus.e/ becomes a densesubalgebra of7, and|[A||,. < ||A| if A € &

The algebrazZ, obviously has the followinginiversal property if ¢ is aC*-algebra and : &/ — ¢ is a morphism

Home Page
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then there is a unique morphism, : <7, — ¢ such thaip = ¢, o 0. As a consequence, we get a (covariant) functor
from the category of Banachalgebras to that of'*-algebras. Indeed, if : &/ — % is a morphism between two Banach
x-algebras, then clearly there is a morphism: <7, — %, such thatp, 00, =05 0 ¢,.

It is easy to see thift ¢ has dense range thef, is surjective But we stress that, could be non-injective evendfis
injective

For example, if there are several distidét-norms one/ (which is the case if7 is the convolution algebra!(G) of a
non-amenable locally compact groGy), then there is @*-norm| - | on .o/ distinct from|| - ||.. So| - | < || - ||, and if </
is the algebra obtained by completiqg’, | - |) then there is a canonical morphisay — <7, which is surjective but not
injective.

For similar reasons it may happen that the inclusidn— 2% of a closed«-subalgebraz’ of the Banachk-algebra? 71
induces a morphismy, — %, which is not injective. So if4 is an A*-algebra thenzZ, cannot (in general) be identified Title Page
with the closures of & in %, ; but there is a canonical surjectiori, — </, s0.¢/ is a quotient ofe7, . |

Such unpleasant features do not occur, however, in the case of idealedbin a Banach-algebra we mean “two-sided
closed«-ideal”), as a consequence of the following result.

Home Page

Theorem 2.1 Let

0 E ¢ of v 74 0
be an exact sequence of Banachlgebras. Then
0 — 7, P o, Y B, —— 0

is an exact sequence 6f-algebras.

Proof: a) We need only one non-trivial result, namely the Theorem VI1.19.11 fiam]} which says that it# is an ideal
in a Banachx-algebrae” and = is a nondegenerate representationsofon a Hilbert space’, then there is a unique
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representatiofr of . on.s# which extendsr. This implies that the2*-seminorm| - || of .7 is equal to the restriction of
the C*-seminorm|| - || of <7 to .#. Indeed, note that th€*-norm of 7 is also given by:

1511 sup{||7(S)| | 7 is a representation o/ }

= sup{||=(9)| | 7 is a nondegenerate representatiors0f.

b) We apply these remarks with the choige= ¢(_#) = ker. Since¢ is a bijective morphism of# onto.#, we have
l6(S)IZ = 1511, hence alsd S| = [l6(S)[| . Sogis anisometry of 7, | - [|") into (<7, || - ) with range equal
to .7. This implies that, is an isometry of 7, into 7, with range equal toZ, the closure inZ, of 6,(.7).

c) Now we compute folS € o7 the norm off o ¢(S) by noticing thatr — = o 1) realizes a bijective correspondence
between the representations#fand the representations of which are zero on# (denote by Refps/, .#) the set of
unitary equivalence classes of such representations):

19()|Z = sup{||mwo(S)|| | = is a representation cB}
= sup{[[p(S)| | p € Rep(«,.7)}

The mapp — p_ is a bijective correspondence between the representations afid the representations of, (with
inverseX — X o f,,) which sends Ref7, .#) onto the space of representationszgf which are zero on?. Hence

19 ()€ = sup{[[A 0 6., ()] | A € Rep(c7,, #)}.

The right hand side here is equal to the norm of the image,¢f5) into the quotientC*-algebrac/, /.#. So we see that

¥, o, — B, factorize to a surjective isometry, /.9 — %, . Henceker, = .9 = ¢, (_7,). H
We shall restate a particular case of the preceding theorem in a form which is particularly useful forasbé anA*-
algebra and # an ideal in & such that the quotient Banach-algebra %4 = &/ 7 is an

A*-algebra (which is not always the case). Then one has a dense embedding=/, and #_ is canonically identi-
fied with the closure # of ¢ in <, (the C*-norm of # being equal to the restriction tgZ of the C*-norm of 7).
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Moreover, the canonical mag/ — <7/ _¢ induces a surjective morphise, — (//_#), whose kernel is equal to
. = _#,sowe have a canonical identificatiow’/_#), = </, /_#,. In other terms, the natural mag, — 7, / 7,
induces an isomorphism ¢t7/ ¢), onto<, / 7, .

2.3. Tensor products. We shall briefly review some facts concerning the tensor product offivalgebrases and 4
(see PeH for tensor products of Banach spaces aidif], [ Tks], and Appendix T in [Ved for the case of_*-algebras).
The algebraic tensor produet © % has an obvious structure efalgebra. In general there are mafi§-norms on this
x-algebra, but it can be shown that there is a smallest|jong,i, and a largest ong - ||max. Hence aC*-norm satisfies

| lmin < |l -1| < || [lmax- The completion of7 ® % under aC*-norm isa C*-tensor producbf <7 and%. The particular
cases of| - ||lmin @and|| - ||max give theminimal (or spatial) andnaximaltensor product, respectively. &*-algebrac’ is Home Page
callednuclearif for any % one has| - || min = || - ||max- Abelian algebras are nuclear. ’“

Title Page

The maximal tensor product is, in a natural sense, the enveldgirgigebra ofeZ © 4. Indeed, it is easy to see that
there is a largest norm o © £ satisfying||A @ B|| < ||A]| - || B|| and that this is &-algebra norm. The completion of
o/ © % for this norm is a Banack-algebra and its envelopin@*-algebra is just the maximal tensor produt®,.x 4.
Obviously, all the other tensor products are quotients of this one.

For reasons of simplicity we shall consider from now on only the minimal tensor product and we shall dericgiezAt
If <7 is realized on a Hilbert spac&” and % on a Hilbert space?’, then we have an obvious embeddisg® % C
B(# @ ') ande/ ® % can be defined as the norm closurezdf® 4. In particular, if¢ is aC*-subalgebra of7, then
& ® % can (and will) be identified with the closure 6f© % in o ® 4.

We stress that taking tensor products of continuous linear maps beffealgebra does not always make sense. More
precisely, lete#) , oo, %1, %> be C*-algebras and : &4 — b,y : B1 — PBo be linear continuous maps. Then the
algebraic tensor produgt © 1 is a well defined linear map © ¢ : @ © 9h — %1 © H>, but in general this map is
not continuous for the topologies induced by ® <% and %, ® %,. The next two results are not so easy to prove, see
Theorems 6.5.1 and 6.5.2 in[ir].

Theorem 2.2 If ¢, i) are morphisms, thep ® ¢ extends to a morphisth® ¢ : o ® oo — B1 ® HBo. If ¢, 1) are injective,
S0 iS¢ ® .
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Theorem 2.3 Let. .7, o/, $, ¢ be(C*-algebras and let
0 54 ¢ o i B 0
be an exact sequence of morphisms. AssumeZhats” has a unique_*-norm. Then, ifid is the identity morphism &,

sy ST S i

BRE —— 0
is an exact sequence.

Corollary 2.4 Let.«/, % beC*-algebras and let# be an ideal ineZ. Then.¥ ® £ is anideal ineZ ® % and if </ /.# or
2 is nuclear, then

(o ® B/ [5® B =5 ® B. 2.1)

Let ¢1,¢> beC*-algebras and let?; C 41, #> C % be ideals. For each=1,2letP; : ¢; — €;/ 7; = CZ be the
canonical surjection and 1&], = P; ®id andP}, = id ® P2, morphisms of6] ® 6 into ¢, ® ¢2 and%; ® ¢, respectively.
The following result from §>14], quite useful for the study of coupled systems, is another consequence of Th&8rem

Theorem 2.5 If %1, %> are nuclear, then the kernel of the morphism
PLOP,: 610G — [%I ®<€2} @ [% ®‘?§}
is equalto_#1 ® _#s.

Let .o be aC*-algebra and’ a set. If we think ofl" as a locally compact topological space equipped with the discrete
topology, theC*-algebrasCy(T'; &), Cy.(T; &), andCy(T'; &) are well defined (se§2.1). The first one plays no role in
what follows and we adopt special notations for the other w6?! = C..(T; /) and./(") = Cy(T’; o). Thus.e/!"]
is the set of familieg A;).cr such that{ A; | ¢ € T'} is a relatively compact subset of with the natural operations and
thesup norm. And.e7(7) is the ideal consisting of familiesA;);c7 such that| A, — 0 whent — oc. Below we use the
standard T being discrete) notations (7'), °°(T') for the space€(T'), Cp(T).
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Lemma 2.6 &7 = ¢y(T) ® & and T} = [®(T) ® o .

Proof: The first relation is obvious. To prove the second one, assume#hatB(.7’) and realizd*>*(T') as aC*-algebra
on/?(T) in the standard way. Thef®(T) ® <7 is realized on?(T) @ ¢ = I?(T; ) as the sek°(T; <7 ) of operators of
multiplication by functions” : T' — <7 such that the range df is included in a finite dimensional subspacez6f Now it
suffices to note thdf®(T'; «7) is dense ina7!7]. |

One more object will appear naturally in our later investigations:ItFesymptotic algebraf 7. This is the quotient
algebra:

2T — ad /%(T) (2.2)

From Lemma2.6 and @.1) we geta/{"? = [1°°(T))/co(T)] ® <. Let T be the set of ultrafilters: on T finer than the
Frechet filter (sincd” is a discrete space, this is the family of sets having finite complemeéfitghould be thought as the
“boundary” of 7" and it is equipped with a natural topology of compact space (see ch:-25}) puch thaf(>*(T") /co(T)] =
C(6T). Thus

o1 = C(6T; ). (2.3)

A detailed presentation of this topic, as well as applications, can be foundih [Note that one can consider an arbitrary
locally compact spac€ and the algebraSy(7; /) andCy.(T'; <7 ).

2.4. Crossed products. We now recall the definition of the crossed product af"aalgebra by the action of a locally
compact abelian grouf (with the operation denoted additively). Most of what follows is valid in the non-abelian case too,
see Ped. We fix a Haar measureadon X but note that the crossed produetsx X defined below will not depend on this
choice.

We shall say that &"-algebra</ is an X -algebraif a homomorphismxy : = — «, of X into the group of automor-
phisms of«/ is given, such that for each € . the mapr — «,.(A) is continuous. A subalgebra of is calledstableif it
is left invariant by all the automorphisnas;. If (<7, o) and(4, 3) are two X -algebras, a morphism : &7 — £ is called
X-morphism(or covariantmorphism) ifp[a, (A)] = Bz[¢(A)] forallxz € X andA € <.
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Let <7 be anX-algebra and leL!(X;.2) be the Banach-algebra constructed as follows. As a Banach space it is
just the space of (Bochner) integrable (equivalence classes of) fun&iod§ — 7. The product and the involution are
defined by:

(8 T)(x) = /X 5(y) oy [Tz — y)] o, (2.4)
) — e (2.5)

Note thatC¢(X; <7), the space of continuous functiodd — .o with compact support, is a densesubalgebra of
LY(X; /). Moreover, the algebraic tensor produgt> C¢(X) is a dense subspace (identified with the set of elements from
C¢(X; o7) whose ranges are contained in finite dimensional subspace3.of

Assume, furthermore, tha¥ is realized on a Hilbert space#” and let#x = L?*(X;2#). Then one has a faithful
representation of! (X; <) on 2#, the so-calledeft regular representatianone defines the action ¢f € L!(X; <) onto
& € Hx by

(509)@) = [ alS-n]Ew) . (26)
In particular,L' (X; .<7) is an A*-algebra(see§2.2).

Definition 2.7 If &7 is a X-algebra, then therossed productf <7 by the actionn of X is the enveloping'*-algebra of
the A*-algebraL'(X; /). ThisC*-algebra is denoted by x X.

Thus.«/ x X is the completion of.! (X; .«7) under the largest’*-norm on it, and each representation/d{ X ; «7) extends
to a representation o/ x X (see§2.2). Due to the fact thak is abelian (hence amenable) the crossed product defined
above coincides with the so-called “reduced crossed product” (cf. Theorems 7.7.5 and 72d)in [

Theorem 2.8 The left regular representation df' (X ; <) extends to a faithful representation .of x X. In particular,
o/ x X is canonically isomorphic to the closure B(#% ) of the set of operators of the forrA.().
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Heuristically, one should think o7 x X as a kind of twisted tensor product of the algebsaandCy(X™*), whereX*
is the group dual toX. In fact, if the action ofX on <7 is trivial, thens x X = & ® Cyp(X™*) (if X is not abelian, the
crossed product is the maximal tensor productfvith the groupC*-algebra ofX, while the reduced crossed product is
the minimal tensor product o with the reduced group™-algebra ofX).

We now point out a certain universal property of the algefstas X. We treat this question only as far as we need it
(see Ped and [rRaq for a more complete discussion). The following notations will be used? |f% are subalgebras of a
C*-algebra® thens - £ is the set of finite sums of the foreh, B; + - - - + A, B, with A; € &7, B; € 4. Thisis a linear
subspace of and we denote by« - 4] its norm closure. The notatian(P) from the next theorem looks strange here,
but is suited to our later purposes. “ Home Page

Theorem 2.9 Assume thaty is a C*-algebra of operators on a Hilbert spac#’ and that there is a strongly continuous
unitary representatioq U, },cx of X on J# such thato,(A) = U, AU} forall x € X, A € «. If u € L}(X) we set
u(P) = [y Upu(z)dz. ThenZ = {u(P) | u € L'(X)} is a«-algebra of bounded operators o’ and [« - ] is

a C*-subalgebra ofB(#). There is a uniqgue morphisf : &7 x X — [« - %] such thatP[A ® u]| = Au (P) for all

A € o andu € L*(X). This morphism is surjective.

Note thatd ® u € &/ ® L'(X) which is a dense subspacelof(X; .<7), hence ofeZ x X. The theorem says tht? - %]
is a quotient ofe x X. The morphismd is not injective in general (e.g. X acts trivially on.«?).

Proof: The mapu — @ (P) is a morphismL!(X) — B(s#) if we equip L!(X) with the usual convolutior-algebra
structure. SaZ is ax-subalgebra oB (). From standard properties of the algebraic tensor product it follows that there
is a unique linear ma@, : & ©® L'(X) — [« - %] such thatby[A @ u] = Au (P) forall A € & andu € L'(X). Itis

clear that the range @ is dense irf.<7 - #]. Observe that fof € &/ ® L'(X) we have

Bo[S] = /X S(2)U, dz. 2.7)

The relation is obvious fo6(z) = Au(x); the general case is an immediate consequence. Fzoinwe see thatb,
extends to a contractiob; from L (X; o) onto a dense subspace[of - ]. But ®; is a morphism (useX(4) and @.5)).
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Sinces/ x X is the enveloping algebra df' (X ; <7), ®; extends to a morphism : &7 x X — B(J#). The range ofp;
is closed, hence equal fe7 - 4], which therefore is &*-subalgebra oB(.77). [

2.5. Functorial properties. The correspondence’ — &/ x X extends to a covariant functor from the categoryXof
algebras (withX-morphisms as morphisms) into the category (@f-algebras. Indeed, ih : &/ — % is an
X-morphism, then it clearly induces a morphism : L'(X;.«/) — L'(X; %) by the formula(¢oS)(z) := ¢[S(x)].
Hence we may define the morphisiy : &/ x X — 2 x X as the canonical extension ¢ to the enveloping algebras,

8.0, = (0)y-
Theorem 2.10 Let 7, <7, % be X -algebras and let

¢ Y

o B 0

0 S

be an exact sequence &Fmorphisms. Then

DU U BT e e e
is an exact sequence.

Proof: It suffices to prove that

0 — X #) -2 D) —Y DX, 8) —— 0
is an exact sequence of Banachlgebras; then we use Theor@m. The injectivity of ¢y and the relation)y o ¢g = 0 are
obvious. IfS € LY(X; o) andy(S) = 0 theny[S(z)] = 0 for a.e.z € X, i.e. S(z) € ¢(_#) for a.e.z. But¢ is an
isometry, so there i¥ € L' (X; _#) such thatS(z) = ¢[T(z)] for a.e.z. This proves thaker 1o = ¢o(L'(X; _#)).
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The surjectivity ofyg is a consequence of the following general property (&8 in [DeH). Let E be a Banach space
andF € L'(X;E). Then for each number> 0 there are sequencgs € L' (X) ande,, € E suchthat" = > e, ® f,
and

leall [ |fn(x)|dz < (1+€) [ ||F(z)| de.
> e | Ji

Note also that since the mag/ ker v — % induced by is an isometric bijection, for eadhe % there isa € </ such
thaty(a) = b and|al| = (1 + €)||b]|. |

Let ¢ be a stable ideal of aix -algebra</. According to Theoren2.1Q if j : ¢ — & is the inclusion map, then
J« + F x X — & x X is an isometric morphism of¢ x X onto an ideal ofZ x X. From now onwe shall identify
_Z x X with its image undey,.. More explicitly, # x X is just the closure in7 x X of the idealL!(X; #) of L}(X; <).

Now the quotientC*-algebra = «// ¢ has a natural structure of-algebra such that the canonical morphism
o/ — o/ ¢ is anX-morphism. The Theorerd.10says also that the morphisst x X — [&//_#] x X associated to it
has_# x X as kernel. We thus get the following reformulation of Theoteft

Theorem 2.111f ¢ is a stable ideal of arX -algebra.e/ then

MNX/fNXg[,Q{//]xX. (2.8)

The simplest case of the preceding situation is that when the exact sequence splitsz8p #haan be realized as a
stableC*-subalgebra of7. Then we have:

Corollary 2.12 Let.</ be anX-algebra, ¢ a stable ideal, and” a stableC*-subalgebra such that/ = % 4 ¢ direct
linear sum. Then# x X isanideal ineZ x X, % x X isaC*-subalgebraofZ x X,ande x X = Zx X+ 7 x X
direct linear sum.

In particular, if.<7, 2 are X -algebras and? @ % is equipped with the naturaf -algebra structure, thefw? @ %) x X =
(o x X)® (£ x X). We mention one more fact:
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Proposition 2.13 If ¢ : &/ — % is an injective or surjective-morphism thenp, : &/ x X — % x X is injective or
surjective respectively. In particular, i7 is a stableC*-subalgebra of theX-algebra %, then< x X can be identified
with a C*-subalgebra of# x X.

The assertion is obvious in the surjective case. For the injective case, see Proposition RZ@ iB¢ what we proved
above for ideals is valid for subalgebras too.

Proposition 2.14 Let (<7, a) be anX-algebra and( 4%, ) a Y -algebra. EquipeZ ® % with the X x Y'-algebra structure
defined byy(, ) (a ® b) = az(a) ® B, (b). Then

(A RB) X (X xY)2 (I XX)R(BNY). (2.9)
We send to Takai (Proposition 2.4 ingK]) for a similar result. Since there is no proof there, we shall sketch here a simple
one.

Proof: Assume thater and % are realized on the Hilbert space€ and¥ respectively. Theny @ % can be identified
with the norm closure IB(# ® ¢) of the algebraic tensor produet © % (realized on# ® ¢). The C*-norm on
LY(X x Y;o/ ® %) is obtained by using the left regular representationfore L?(X x Y;.# @ 9) = L*(X; /) ®

LAY;9) = st % . I L € LNX xY;o @ B) is of the formL(x,y) = S(x) ® T(y), with S € L' (X; /) and
T € L(Y; %), we have

Le(E@n)(z,y) = / /X VIS =) @ T —1)] - (€Sn)(s. ) dsck

— [ asulSt@-9)- g dsw [ o] nt)c
X Y
_ [(Se&)® (T en)l@,y).

If we denote byr %, T, andwg the left regular representations bt (X x V; &/ ® %), L' (X;.«/) and L' (Y'; )
respectively, we see that, sz = 7y @ T In & = % ® 9y, which proves the proposition. [ |
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The next consequence is sufficient for our purposes.

Corollary 2.15 Let<” be anX-algebra and let” be a nuclear (e.g. abeliart)*-algebra. EquipZ @ % with the X -algebra
structure defined by, (a ® b) = a,(a) ® b. Then

(T QB) 2 X2 (A xX)RB. (2.10)
We close this paragraph with a consequence @) @nd of Lemma2.6.
Corollary 2.16 If &7 is an X-algebra andl” a set, then
AT X = (o x5 X)T) and 7" % X = (o x X)) (2.11)

Moreover, thel'-asymptotic algebraz () has a canonicalX -algebra structure and one has
[T]
(o » X) /(% W« )@ = (& 0 X) D = CET; o % X), (2.12)

This follows from Lemma2.6 and the definitionZ.2).

2.6. Pseudodifferential operators.We introduce several new notations and recall facts concerning the harmonic analysis
on X (see [ol], [Loc], and [/Ve] for details). Note that the Hilbert spade(X) = L?(X, dr) depends on the choice
of the Haar measuread but theC*-algebras#(X) = B(L?*(X)), #(X) = K(L?(X)) do not. We shall embed the
C*-algebrag’y(X), Cy(X), Cp(X) in A(X) by associating te € Ch(X) the operator of multiplication by the function
». In order to avoid ambiguities we often denote this operatap(dy) (as in quantum mechanics, whepas the X -valued
position observable

Let X* be the abelian locally compact group dual¥o The Fourier transform af € L'(X) is the functionFu = u €
Co(X*) given byt (k) = [y k(z)u(x) dz. Let us equipX* with the unique Haar measurés duch thatF induces a unitary
mapF : L*(X) — L%*(X*). For each) € Cy(X*) we define the operatas(P) € #(X) by ¢(P) = F~'M,F, where
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M, is the operator of multiplication by in L?(X*) (in the quantum mechanical settifyis interpreted as th& *-valued
momentum observableThe injective morphismy — «(P) gives us an embedding,(X*) € Z(X).

Let U, be the unitary operator if?(X) defined by(U,.f)(y) = f(z + y). We get a strongly continuous unitary
representation of on L*(X). We also seti (k) = [, k(z)u(z)dz for u € L'(X). Then it is easy to check that
u(P) = [y Uyu(x) dz, which explains the notation used in Theorgr. SinceFL'(X) is dense inCy(X*), we see that
the closure of the algebra denotéglin Theorem2.9is just Cy(X™) (when thisC*-algebra is embedded i#(X) as a
subalgebra o€, (X™)).

If « € X we denote by, the operator acting on functiorfson X according td 7, f)(y) = f(y —x). We equipCy(X)
with the X -algebra structure defined by the action= 7_,. If &/ is aC*-subalgebra o€ (X)) stable under translations
then.e/ becomes arX -algebra too. We have, [0 (Q)] = U,¢(Q)U., so that we are under the conditions of Theotzf
The next result is important in our applications: it says that the representation of the crossed .gfoducton the Hilbert
spaceL?(X) described in Theorem.9is faithful (this is Theorem 3.12 in{|2]).

Theorem 2.17 Let &/ be aC*-subalgebra ofC}(X) stable under translations. Thea? - Cy(X*)] is a C*-algebra of
operators onZ?(X) and
[« - Co(X*)] & o x X. (2.13)

More precisely, there is a unique morphigm &7 x X — [« - Cy(X™)] such that?b[y @ u] = ¢(Q)u (P) forall p € &7
andu € L'(X) and® is an isomorphism.

Corollary 2.18 7 (X) = [Co(X) - Co(X*)] = Co(X) x X.

2.7. Observables affiliated toC*-algebras. If ¥’ is a C*-algebra then awbservableH affiliated to% is a morphism
H : Cy(R) — %. In order to keep close to standard notations we shall denoté By (not H ()) the image ofp € Cy(R)
through this morphism. We say that is ¥-nondegenerateor that H is strictly affiliated to%’, if the linear subspace
generated byfp(H)A | ¢ € Cyo(R), A € €'} is dense ir’. The following nontrivial fact follows from the Cohen-Hewiitt
theorem (see V.9.2 ir]):
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Theorem 2.19 If H is an observable strictly affiliated tg, then for eachd € ¢ there arep, ¢y € Cy(R) and B € ¢ such
that A = o(H)By(H).

In particular, &’-nondegeneratél extends to a morphism frodi,(R) to the multiplier algebra o¥’, but we shall not use
this fact.
The spectrunof the observablé] is defined by:

oH)={AeR|peCp(R)andp(A) #0 = p(H) # 0}. (2.14)

We define the image of an observable through a morphism as follows., #, areC*-algebrasH; is an observable
affiliated to%; andP : 41 — % is a morphism, thep — P [¢(H;)] is a morphismCy(R) — %>. Thus we get an
observable affiliated t&, that we shall denote b¥f, = P [H;|. Obviouslyo(H2) C o(H1).

In particular, if ¢ is an ideal iré, ¢ = ¢/ _7 is the quotient algebra and is an observable affiliated t&, we may
define the quotienfi\ (denotedH/ ¢ in case of ambiguity) as the observable affiliateé’?cgiven byf{\ = 7(H), where
m is the canonical morphisrd — % . In this context, it is useful to remark the similarity between:

o(H)={AeR|p e Co(R) andp()) # 0 = p(H) ¢ 7}, (2.15)

and one of the characterizations of the usual notion of essential spectrum in a Hilbert space setting (see @§#&ntt of
is thus natural to call this set the essential spectruti @fith respect to the ideal?, and denote it # -ces{ H ).

We mention a result, important for one of our applications, which also involves the essential spectrum with respect to
general ideals. Le{%;}.cr be an arbitrary family of”*-algebras. If for eachh € T an observabld?; affiliated to%; is
given, we may associate to it an observakle= [[,., H; affiliated to¢ = [[,., € by settingp(H) = (@(H¢))er for
eachp € Co(R). Itis easily shown thati is affiliated to the subalgebé@®, - ¢; if and only if H; — oo ast — oo in T'in
the following sense: for each compact real Kethere is a finite subsdt C 7' such thaio(H;) N K =0 if t € T\ F. One
has

o(H) = UteT o(H;)
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and if H is affiliated todD, . ¢; then the union is already closed. The following generalization of this relation is important
for us (see(:12)).

Proposition 2.20 For eacht € T'let ¢; be anideal inf6; and let ¢ = @, ., 7, sothat # is anideal in€ = [[,. €.
Denote byﬁ; the quotient ofZ; in 6;/_#; and letH be the quotientoff in ¢/ _#. Then

—

o) = (N {(Uier o)) U (Useryr o) )} (2.16)

FCT
Ffinite

Remark that, with the notations introduced abo2e] § may be written:

F -Oesd H) = m {(UteF jt'o'es{Ht)) U (UseT\F O'(HS)>} ;

FCT
Ffinite

2.8. Affiliation of self-adjoint operators. We consider now the case where ttie-algebra#’is realized on a Hilbert space
. 1.e.€is aC*-subalgebra o3(.#). A self-adjoint operatofl on 27 is calledaffiliated to% if (H — 2)~! € ¥ for
somez € C\ o(H). This impliesp(H) € ¢ for all ¢ € Cy(R), so each self-adjoint operator off affiliated to¢” defines
an observable affiliated t6¢. The other observables affiliated#can be realized ason-denselylefined operators ap”.

If H is a self-adjoint operator oy’ affiliated to% and if the corresponding observablegsnondegenerate we say that
H is strictly affiliated to%’. In this case Theorerd.19implies that for eactl € ¢ there arep;, v2 € Cp(R) andB € ¢
such thatd = ¢, (H)By2(H). As a consequence, the operatp(s? ) A and Ap(H ) belong to% for all ¢ € Cph(R).

It can be shown that #’is nondegenerate ag?; then the correspondence between self-adjoint operatorgostrictly
affiliated to% and observables strictly affiliated @ defined above is bijectiysee G2]). The following is Proposition
2.3in] ]. Note that if there is a self-adjoint operator on a Hilbert spa€eaffiliated to aC*-algebra of operators on
2, then this algebra is nondegeneratessh
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Theorem 2.21 Let %}, %> be nondegenerat€*-algebras of bounded operators on the Hilbert spakgsH- respectively
and letP : ¥ — %> be a morphism such th& (%)) acts nondegenerately o#, (e.g. assumé surjective). Then for
each self-adjoint operatof{; on H; strictly affiliated to%; there is a unique self-adjoint operatdf, on Hs such that
Ple(Hy)] = ¢(Ha) for eachy € Cy(R). Hy is strictly affiliated toa.

We give an example which clarifies the distinction between affiliation and strict affiliation. Considérthlgebra
Co(R) realized as usual oh?(R) and leth be the real function given by(z) = x + 2~! for 2 # 0 andh(0) = 0. Then
the operatorrd of multiplication by is affiliated toCy(R), becauséh + i) ~! is equal outside zero (so almost everywhere)
to a function fromCy(R). But if ¢ € Cy(R) thenyp(H) is the operator of multiplication by a function fro@t(R) which
vanishes at zero, si cannot be strictly affiliated t6’y(R). Moreover, ifp is a continuous function equal to zero neax : Home Page
and to 1 nea#-oo, thenyp(H ) is multiplication by a function discontinuous at zero (@) A does not belong t6 (R) if "‘

\ Title P
A € Cy(R) does not vanishes at zero. i

We stress that if 7 is an ideal irt6” and H is a self- adjomt operator affiliated 5, then the quotlenH is a well defined
observable affiliated t&@ = ¢/ 7, butin most case& has no meanlng as operator gff becaus& has no natural
realization ons7. If H is strictly affiliated to%’, then one can realizH as a self- -adjoint operator in each nondegenerate
representation o#’.

Let us take abovef = K(s¢) N ¢. We recall that a real numberdoes not belong to the essential spectrum of a
self-adjoint operatof{ if and only if p(H) € K(5¢) for someyp € Cy(R) such thato()\) # 0. Hence ifH is affiliated to
% we getoesd H) = o(H).

2.9. Affiliation criteria. The algebras that we consider have to be rather small, such that the quotient with respect to the i
ideal of compact operators be computable. On the other hand we would like that the class of self-adjoint operators affiliatedg
to them be large. So we are interested in having efficient affiliation criteria. We present two such criteria below.

We remain in the setting df2.8 and consider a self-adjoint operatfly on 7. We say thafl” is a standard form

perturbationof H if V' a continuous symmetric sesquilinear form@n= D(]HOI%) and if there are numbeys € [0, 1)

andé € R such that eithet-V < u|Hy| + ¢ as forms or, or Hy is bounded from below and > —uH,y — ¢ as forms on
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¢. Then the form sunf = Hy + V is a self-adjoint operator op¢” with the same form domain d4,. We give a criterion
which ensures the affiliation df to ¢ if H is affiliated to%. We introduce

M) = {Ae B(#)| B¢ — AB, BA€ %}. (2.17)

Clearly M(%) is aC*-algebra. It can be identified with the usual multiplier algebra (as defined elgzii) [f and only if
% is nondegenerate off’. The next result is a particular case of Theorem 2.8 from ).

Theorem 2.22 (i) Let Hy, be bounded from below and affiliated & and assume moreover that the operator
U = (|Ho| 4+ 1)"'2V(|Hy| 4+ 1)~'/2 belongs taM(%). ThenH is affiliated to%.

(i) If Hy is strictly affiliated to% thenU € M(%) if and only if one hagp(Ho)V (|Ho| + 1)~/ € € for all ¢ € C¢(R).

In this caseH is strictly affiliated to%.

The preceding theorem is interesting because it does not require that the positive Paseafmall with respect to
Hj (as in the criteria from4BG]). However, the fact that the form domain Bf must contain that of{, is sometimes
annoying: it requireV < C(|Hy| + 1) for some numbe€'. We mention a second method for checking the affiliation to
% of a formal sumH = Hy + V which is useful wherV is in no sense dominated .

Theorem 2.23 Let Hy and V' be self-adjoint operators bounded from below. Assumettiat D(Hy) N D(V) is dense in
¢ andH = Hy + V with domain? is a self-adjoint operator. [&~*Hoe=2tVe~tHo ¢ ¢ for all t > 0, thenH is affiliated
to ¢

Proof: This is a slight improvement of a result on page 369/iB{>]. According to a theorem of D. L. Rogova concerning
the Trotter formula (see also[Z]) we havelim,, ., [etHo/me~2V/ng=tHo/n]"™ = =24 jn norm sense. Thus & € ¢,
so H is affiliated to% (see page 369 in'[3C]). [

This criterion, coupled with the fact that the set of observables affiliatedtoalgebra is closed under the natural norm
convergence (cf. page 367 IAEG)), is efficient in applications to quantum field theory.

i
1
L
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3.1. Crossed product techniquesln this subsection we introduce a general clas§"ofalgebras which can be interpreted
as C*-algebras of energy observables (or hamiltonians). We study quantum systems having as configuration space a
arbitrary abelian locally compact grou$. This seems to be a natural setting for the quantum theory of systems with a finite
number of degrees of freedom: both position and momentum obser¢ablesnaturally defined. Of course, this also shows

the power of the algebraic methods. The basic examples one should have in mid=alRé* or Z". However, the case of

finite dimensional vector spaces over local fields (g-gdic numbers) is very interesting and also of some importance (see
[Tai, S- for a pseudo-differential calculus on such spaces). Self-adjoint operators with “pathological” spectral properties
become then quite natural objects. Many other nontrivial situations can be considered, likeattie torus” (the dual of

the compact, totally disconnected, non-discrete groypadic integers); see-pl, , Wel]. However, we stress that even

in the simplest situationsY = R or Z) the algebraic techniques give, rather easily, results which do not seem to be covered
by other means.

Definition 3.1 Analgebra of (internal) interactionson X is anyC*-algebra.e7 of functions onX such that
Cx(X) C & C Cy(X) and« is stable under translations (3.2)
Thealgebra of hamiltoniansassociated ta is & x X.

We callelementary hamiltonian of clasg any self-adjoint operator oh?(X) of the formh(P) + v(Q), whereh is a real

continuous function oX™* such thalim;_,~, |h(k)| = co andv € o7 (the notations are as &2.6). Then ahamiltonian

of class« is an observable affiliated t&Z x X. The next result explains the terminology. Se=Z] for a more precise
assertion and the proof.

@Here the term observable has a more general meaning thgn7ina T-valued observable is a morphism frafia (T') into aC*-algebra, where
T is a locally compact space, ¢8.1.2 in | ]. Even more general interpretations of this notion are in fact required in order to treat “non-abelian”
observables like the momentum when a magnetic field is present, or the kinetic momentum. In our context, we stibwlalwatl observable any
morphism from the group algebra of a locally compact gréupto aC*-algebra.
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Proposition 3.2 o7 x X is theC*-algebra generated by the elementary hamiltonians of ctdss

As we explained in the Introduction, our main purpose is to give an “explicit” description of the quotient algebra
o/ x X/ #(X). From 3.1) we see that?' (X ) = Cy(X) x X is anideal ineZ x X. The main point here is that the crossed
product structure leads to a drastic simplification of the problem. Indeed, Thebiémives

o ”X/%(X) > [of /Co(X)] % X. (3.2)

This relation reduces the problem of the computation of the quotient of the two noncommutative algebras from the left hand ,/ L
side to an easier abelian problem: that of giving a convenient descriptiofy 6f,(X). | AOne g

The preceding formalism also covers systems interacting with a vanishing at infinity external magnetic, i.e. hamiltonians [§#i  Title Page
of such systems are affiliated to algebras of the farihx X. This is not so if the magnetic field does not vanish at infinity. s
We describe now a class of algebras which are suited to such situations (a more detailed account can befaiJpdirt [ /
we shall not give concrete applications of this formalism. In fact, the framewdjR.6overs the case of constant nonzero
magnetic fields, but there we do not use crossed product methods.

The formalism we propose here forces us to use crossed products of (ab&liaigebras by actions of non-abelian
groups, case not treated in this lecture. We only mention that the definition of crossed products in general is essentiall
identical to that from the abelian case.

We recall that amxtension ofX by an abelian groupV is a locally compact grou® > N equipped with a continuous
surjective group morphism : G — X such thaker 7 = N (the assumption of local compacity is not convenient in general,
but we keep it here to have the standard definition of crossed products). We denote multiplicatively the opefatsm in
the trivial case G = X" corresponds taV = {1}, G = N x X andn(1,z) = z.

We get a transitive action @¥ on X by settingg.z = = — 7(g) and then(ayp)(z) = ¢(97'.2) = p(z + 7(g)) gives
a continuous action ofr on theC*-algebraCy (X ), which thus becomes @-algebra. The action aff on X looks like
that of X on itself by translations, henceastableC*-subalgebraz of C{'(X) is the same thing as a translation invariant
C*-subalgebra. However, the crossed produfct« G of o7 by the action ofGG is quite different from the crossed product
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&/ x X of o/ by the action ofX. The fact that this has something to do with magnetic fields will be shown below. We
mention that, sincker = N is a closed abelian normal subgroup &mdker 7 = X is abelian, the grougr is amenable
(see 7.3.5inffed). Thus.eZ x G coincides with the reduced crossed product.

Definition 3.3 The crossed product’ x G is thealgebra of hamiltoniansof the system having” as configuration space,
subject to internal interactions of type’, and interacting with an external field of typ€. An observable affiliated to
&/ x G is ahamiltonian of class 7, G).

In order to justify the definition it is useful to think in terms of the universal property of crossed products, which
says that the representations.@f x G are in bijective correspondence with covariant representations/of=, o) (see
Theorem2.9and [Ped Rad). By covariant representatiowe mean a couple consisting of a non-degenerate representation
¢ — (Q) of &7 and a strongly continuous unitary representatjon U, of G on the same Hilbert spac#’, such that
Ugp(Q)Uy = ¢(Q + 7(g)). SetU(0) = |, Uy0(g) dg for 6 € C¢(G) and ¢ a Haar measure ofi. Then the range of the
representation o7 x G associated to this covariant representation is the closed linear subsgac#&ofgenerated by the
operatorsp(Q)U(6). But, if we denoter” andC*(G) the representations e and of the groug*-algebraC*(G) on
A, then[.@” - C*(G)"] is a representation of the abstract crossed pradtct G on.7Z. In the trivial cased = X one
hasC*(X) = Cy(X™), hence we gee” - Co(X™*)] asC*-algebras of energy observables, which is the correct prescription
(see Theorem.17).

The extensions oK can be classified in terms &f, actions ofX on N by automorphisms, and elements of a second
order cohomology group of with coefficients inlV (see [>13] for details). We now construct certain extensions associated
to magnetic fields orX .

LetU(1) = {\ € C | |A] = 1} and letC(X;U(1)) be the group of continuous functiods — U (1), equipped with
the group structure given by usual multiplication of functions and with the topology of uniform convergence on compact |
subsets ofX; we get a topological group (not locally compact). Translations induce a natural act®oronfC'(X; U (1))
by group automorphismgz.u)(y) = u(y + ). We choose a closed locally compact subgraup- C(X;U(1)) stable
under translations. For example, the chalée= U(1) (constant functions) suffices to treat constant magnetic fields. A
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more interesting choice in the case whkgris a finite dimensional real vector space is
N = {€? | ais a polynomial of order < m}

wherem is a fixed positive integer. This suffices for the treatment of magnetic fields of@las$ with derivatives of order
m -+ 1 tending to zero at infinity. A (normalize@)}cocycle onX with coefficients inV is a continuous map: X x X — N
such that

b(z,y)b(x +y,z) = x.b(y, 2)b(z,y + z) andb(x,0) = b(0,y) = 1.
We denoteV x; X the setV x X provided with the product

(u,z) - (v,y) = (uz.vb(x,y), T+ y).

Itis easy to see thaV x;, X has a locally compact group structure and that the naturalap X — X gives a group
extensionz of X. We shall explain now the relation between the 2-cocy@ed the magnetic field.

Assume thatX is a finite dimensional real vector space. Theemagnetic field is a 2-form oA, more precisely, it is
a continuous ma@ : X — A2X*. If z,y, z are points ofX, let T(z, y, ) be the oriented (possibly degenerate) triangle
determined by the points z + x, z + x + y. Then we takeé(z, y) = b, with

by y(2) = exp ( - i/T( B). (3.3)

z,Y,2)

The integral from the exponent is tiflex of the magnetic fiel@® through the oriented triangl&'(x, y, z). One can check
thatb is a 2-cocycle with coefficients i (X; U(1)). We assume that the closed subgréugenerated by these coefficients
is locally compact and denot®p = N x; X the extension ofX associated to it. Finallyy? x Xp is theC*-algebra of
hamiltonians of a system havidg as configuration space, subject to internal interactions of tgfyeand interacting with
an external field asymptotically equal 1 (a more detailed justification of this interpretation can be found-iiz]). We
emphasize that this algebra depends only on the magnetic field, not on the magnetic potential.

Home Page

Title Page
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3.2. Bumps algebras. From now on we assume that is not compactnd in the next three subsections we give three
nontrivial examples of algebras of interactions. Other examples can be foutdin Bee [Vial, ] for constructions
based on compactifications &f (see also$im)).

Fix a closed set., C X such thatLy, = L+ A # X if A is compact. Then the family of open sets
{L{ | A C Xcompact}, whereL{ = X \ L,, is the base of a filteF;, which is finer than the fchet filter and
translation invariant. We denote lylim ¢ the limit along the filter7;, and we define”';, (X)) as theC*-algebra of func-
tionse € Cp(X) such thatl-lim ¢ exists. Itis obvious that', (X) is an algebra of interactions. The corresponding algebra
of hamiltonians will be denoted, (X). This is the first class of algebras that we consider.

Let Cro(X) = {¢ € C§(X) | L-limy = 0}, this is an ideal irC'z,(X) andCr(X) = C + Cp(X). According to
Corollary2.12, we can writes7,(X ) as a linear direct sum

CL(X) = Co(X™) + CL,0(X). (3.4)

The algebrasy o(X) = Cro(X) x X is an ideal of67,(X) and % (X) — Co(X*) is a surjective morphism which
gives the pure kinetic energy part of a hamiltonian of clegsOn the other hand;s(X) being a stable ideal af';, o(X),
the crossed product subalgeltfg X) x X = # (X) is an ideal of67, o(X).

We cannot give a complete description of the quoti&ntX)/.# (X)) for an arbitraryL. From now on we shall assume
that L is sparse which means that it is locally finite and for each compacif X there is a finite sef’ ¢ L such that if
le M=L\Fandl' e L\{l}then(l+ A)n (' + A) = (. The consideration of these sets was suggested to us by the
work of M. Klaus [<!a] on Schibdinger operators with “widely separated bumps”. For this reason w&gal ) thebumps
algebrawhenL is sparse.

The bumps algebra fits very nicely in our framework, the quotient algebra having an especially interesting structure.
Besides# (X)), we need below thewo-body algebra7 (X)) = Cy(X*) + # (X)) (see§3.4for terminology).

Theorem 3.4 The quotient algebr&, o(X)/.# (X) is canonically isomorphic to thé&-asymptotic algebraz (X)),

One has a natural elllbedding:
(X T (X)L
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The notations are those §2.3. The computations are done at an abelian level usiig),(but neither the abelian case is
trivial here. We send taj|”] for the complete proof and we quote below a more explicit formulation of The&rénvhich
is a byproduct of the proof (see also Lemgé).

Theorem 3.5 There is a unique morphisfiy, (X) — .7 (X)) /¢ (X)(F) such that the image of an element of the form
Y(P) + > e U KUy, wherey € Co(X*), M C L, and K € J(X) is such thatk = X, (Q) K X,(Q) for some
compact sef C X, be the quotient of the element; ® (¢(P) + K) € .7 (X)) with respect to the ideak (X)(X). The
kernel of this morphism is#(X) and its restriction to¢7, o(X) induces the canonical isomorphism®f o(X)/.# (X)
with the L-asymptotic algebra of compact operata#s (X ) (L),

Now we give an application in spectral theory. Liétbe an observable affiliated t6;,(X) and letH be its image
in €..(X)/# (X). Then there is a familyH;);c;, of observables affiliated to the two-body algelsrd X') such that the
quotient of[ [, , H; with respect to the ideak” (X)) is equal toH (we use the embedding.€)). We say that H;),c, is
arepresentativef H. We have[[,.; (H, — 2)~! € 7 (X)L and the component ¢, — z)~* in Cy(X*) is independent
of [ € L, sooesd H;) is independent of. Thus the next result is a consequence of the Propositio

Theorem 3.6 If H is an observable affiliated t&7, (X) and{ H; };, is a representative aff, then

FCL IeL\F

Ffinite
The simplest case is already interesting. Assumehhdtiself is an operatof° independent of; thenoesd H) = o(H®).
Example: Very general examples can be found ialf]), here we consider the easiest nontrivial one. Ket= R™ and let
h : R™ — R be a continuous function such that

C7Hz|* < |h(z)| < Clz|* if |z| > R,
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for some constants > 0, C > 0 andR < oo. Lett € [0, s) real, letL be a sparse subset&f, and letW : 7t — 7!

be a symmetric operator such th&)*W € B(s#*, ") for some numbes > 2n (#* are usual Sobolev spaces and
(Q) is the operator of multiplication byl + |z|?)'/2). Then the seriel ;. ; U WU, converges in the strong topology of
B(, 271 and its sum is a symmetric operafor: 7t — s#~t. LetH = h(P)+V, H, = H° = h(P) + W be the
self-adjoint operators i’ defined as form sums. Thét is strictly affiliated to%7, (X), H; is strictly affiliated to.7 (X),
and the family{ H; },c1, is a representative df . In particular

oesdh(P) + V] = alh(P) + W].

We mentioned in the introduction the problem of obtaining “intrinsic” characterization§'6falgebra of hamiltonians.
In most of the cases this is a difficult question. The answer in the present case is as follovis Z5éar the proof). For
k € X* we denote by the operator of translation by in momentum space{Vy. f)(z) = k(z)f(x). The relations
involving 7*) must hold separately f&f and its adjoint.L is a sparse set.

Theorem 3.7 An operator]” € %(X) belongs tcé7, o(X) if and only if
(i) limg o ||(Uz — YT =0,

(i) limg—o VATV = T|| =0,

(iii) Ve > 0 3A C X compact such thatx < (Q)T™]| < e.

This is of the same nature as Theor&ribut holds for an arbitrary grouf. We stress that the following characteriza-
tion of compact operators, the Riesz-Kolmogorov theorem, is behind all our results of this type.

Theorem 3.8 If T € #(X) thenT € 7 (X) = Cp(X) x X if and only if
lin% |(Uy —1)T|| = 0 and én% (Ve — 1)T| = 0.

In [G11] there are other applications of this remarkable result.



http://www.u-cergy.fr

3.3. Localizations at infinity. The second example of algebra of interactions willdde= Cp(X), which is the largest
possible choice. The main results in the caSe= R™ have been stated in the Introduction as Theote?and Theorem
1.4, which gives an intrinsic description of the algebra. We now discuss in more detail the proof of an analogue of Theorem
1.2for arbitrary X and give some applications. This results have been announcéd]inllhe proofs are sketched in[”]
and will be developed in}15].

Lemma 3.9 Let s be an ultrafilter onX finer than the Fechet filter. IfS € Cy(X) x X C %(X) then the strong limit
s-im, ,. U, SU; = P,[S] exists and belongs 16} (X ) x X. The magP,, : Cj(X) x X — Cy(X) x X is a morphism.

Proof: This is based on the remark: functiony € Cy(X) belongs toCy(X) if and only if for some (and hence for all)
0 € Cy(X),0 # 0, the set of functions of the forér,p, x € X, is relatively compact ity (X). In more technical terms
(cf. [Lar]), the set{T,p | x € X} is relatively compact in the strict topology 6f,(X ). But any ultrafilter on a compact
space is convergent, hencegfe Cj(X) the limit ¢,, = lim, ,. 7_, exists locally uniformly onX andy,, € Cy(X).
Now the lemma is an immediate consequence of the facttfigk’) x X is the norm closure of the linear space generated
by the operators of the fora(Q)y (P). |

We call P,.[S] = S,. localization of S at » and the family{S..}.,.csx is the set oflocalizations at infinity ofS.
We denoted by X the set of all ultrafilters orX finer than the Fechet filter. These notions extend immediately to any
observabled affiliated toCy(X) x X by settingH,. = P,.[H], which is again an observable affiliated@j(X) x X. We
have

Theorem 3.101f S € Cy(X) x X then{P..[S] | » € 6X} is a compact subset 6f(X) x X. One hasP,[S] = 0 for all
» e dX ifandonly ifS € 7 (X).

In particular, we get an embedding
CY(X) x X/ (X) C [CY(X) x X]0X] (3.6)
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Corollary 3.11 If H is an observable affiliated 6} (X) x X then

Oesd H) = U, ,c5x o(H..). (3.7)

The fact that the union is closed is not trivial. We also stress that a formula3ikei¢ remarkable because it involves
only localizations ofH in the regionQ = oo. For other hamiltonians of physical interest one must include localizations at
P = oo, as it will be shown later on.

The definition of localizations at infinity is practically convenient but not sufficient for the proof of the main results.
We need a basic fact concerning the St@resh compactification ok: if F'is a continuous map fronX to a Hausdorff .
topological spacé&” and if the range of is a relatively compact set, thédnhas a unique continuous extensiortd (this Home‘gge
is the universal property gf X). This is related to the fact that the limit &f along any ultrafilter exists. /7,

Recall also thak is an open dense subset®X (becauseX is locally compact) and denoteX = X \ X the boundary | Title Page
of X in 5X. Thus eaclp € Cp(X) extends to an element 6f(3X) and this gives an identification of the algeb€ag X) J( AP AL
andC(BX). The restriction mag — |, x induces an isomorphism betwe€g(X)/Cy(X) andC(vX). Similarly, for /|
eachS € Cy(X) x X the strongly continuous map— U, SU;; extends to a strongly continuous max — Cp(X) x X
whose restriction te/ X is related to the localizations at infinity f(see [51]]). In [G12] there are some further comments
on this question, but a complete proof is given only @n‘f], where we also treat the case of non-vanishing at infinity
magnetic fields.

We give now examples which show that Theor&rf can be used for concrete computations. We consider R™
and hamiltoniang? = h(P) + V(Q), whereh, V are real functions oR™. Assumeh of classC", polynomially bounded,
h(p) — oo if p — oo, and|Vh(p)| < C(1 + |h(p)|). LetV be locally integrable and assume that its negative part is form
bounded with respect t( P) with relative bound< 1. ThenH is a well defined self-adjoint operator drf(R") affiliated
to Cy(R™) x R", so we can use3(7). We haveU,HU} = h(P) + V(xz + @), so the localizations at infinity off are
determined by the (suitably defined) localizations at infinity of the functionThus, for the computation efesd H), we
are once again reduced to an abelian situation.

In order to use these facts one has to define and study the localizations at infinity of unbounded functions and eve
of distributions. We stress that most of these localizations are equaticalmost everywhere, so the corresponding
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localizations of the hamiltonian are also infinite, hence do not contribute to the unir/jr{lfecauser(oc) = 0). Thus
we shall have
Oes{h(P)+ V) =J, o(h(P) +v)

where the union is performed over all the finite localizations at infiniyf the potentiall’. Results of this type have
been obtained by Helffer and Mohamed iri€]\] but only for h(p) = p? and under quite restrictive conditions ®h

(however, they also treat the case of nontrivial magnetic fields). We shall quote one of our results, where the localizationsi
are understood in the sense of local uniform convergence.

Proposition 3.12 LetV : R™ — R be continuous and bounded from below andilet 0 an integer. The localizations of
V' at infinity are either equal ta-oo almost everywhere or are polynomials of ordemn if and only if

lim sup |[(7; — 1)™Hy] (y)| =0. (3.8)

Y70 al<1

Example: if V is a function of clas€™*! and if all its derivatives of ordem + 1 tend to zero at infinity, ther8(8) holds.

Finally, we shall give an explicit example in the case- 1 (which is not covered by the preceding proposition). Note
that if »c € SRR then eithef0, 0o) € s or (—oco, 0] € 3. Thus there are two contributiong-{ /) to the union from8.7) and
Oes{ H) = o i{ H) U oe{ H). We takeH = h(P) + V(Q) on L*(R), whereh is as before and : R — R is continuous
and bounded from below. Thdi is affiliated toC(R) x R andogd H) is determined by the behavior bf at +oo.

Proposition 3.13 Assume that for large positive we haveV (z) = z%w(2) witha > 0,0 < # < 1 andw a positive
continuous periodic function with period 1. Moreover, assumedhainishes only at the points @fand that there are real
numbers\, x> 0 such thatv(t) ~ A|t|* whent — 0. Then there are three possibilities:

(1) If @ < (1 — 6) the localizations at-oo of V' are all the non-negative constant functions, tiads( H) = [inf h, +00).
(2) If a = u(1 — 6) the localizations at+oo of V' are the functions)(z) = A6z + ¢[* with ¢ € R. Thusel{H) =
o(h(P) + A\|6Q|*), hence it is a discrete not empty set.

(3)If @ > u(1 — 6) the only localization att-co of V' is +oo, sooghd H) = 0.
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The case whew has different asymptotics from left and right at zero can also be treated.

3.4. The N-body problem. The third example of algebra of interactions coversihdody hamiltonians. This should be
considered as the first example of’4-algebra of hamiltonians: it appears in a disguised forniin []. The treatment in
terms of crossed products and the extension to infinite semilattices of subspaces was giver.in [

In this subsectiorX” will always be a finite dimensional real vector space (some possible extensions are mentioned in an
appendix of {513]). For each linear subspagéwe denotery the canonical surjection of onto the quotient vector space
X/Y. We shall embed’y(X/Y) C Cy(X) with the help of the map — ¢ o my. ForY = {0} = O andY = X we get
Co(X/0) = Cp(X) andCy(X/X) = C respectively.

Let G(X), thegrassmannian of, be the set of all linear subspacesXfequipped with the natural order relation.
This is clearly a complete lattice. It is not difficult to show that the family’tfsubalgebragCo(X/Y)}ycg(x) has the
following properties:

(i) if £ C G(X) is finite, then) .. . Co(X/Y) is a closed subspace 6f/(X) and the sum is direct in the vector space
sense;
(i forall Y, Z € G(X) one hasly(X/Y) - Co(X/Z) C Co(X/(Y N Z)).

Thealgebra of interactions of av-body systens of the formC (L) = >y ., Co(X/Y), wherel C G(X) is finite,
stable under intersections, and such thaX’ € £. According to (i) and (ii),C'(£) is indeed aC*-algebra of interactions
on X. To understand the meaning &f, note thatC, equipped with the order relation induced ®yX), is a finite lattice;
then N + 1 is the rank of this lattice. For example, talebra of two-body interactionsust correspond t€ = {O, X },
hence it isC + Cyp(X). The corresponding algebra of hamiltonigfis+ Cy(X)] x X = Co(X*) + #(X) = T(X) is
particularly important and has already been used before.

Co(X/Y) is a translation invarianf*-subalgebra oC}(X) and so we may construct the crossed prodféty’) =
Co(X/Y)x X. If C(L)is as above, the corresponding algebra of hamiltoriiahéL) = C(L£) x X is the N-body algebra
associated t. It is easy to see that the structure®f£) is inherited by&X (L), more precisely

eX(L) =) X(Y) (3.9)
YeL
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and properties similar to (i) and (ii) hold. Note thain £ = O and¢X(0) = #(X). In §3.6 we shall explain how
to compute the quotier®’* (£)/.# (X) in a more general abstract setting. In the present particular case, the result is as
follows.

Proposition 3.14 For eachY € L let 43X (£) be theC*-subalgebra of¢* (£) defined by} ;. - ,~y €~ (Z). Let M be
the set of atoms af. Then there is a canonical embedding

CX(L) /A (X) = Byem 65 (L). (3.10)

This implies classical results on the essential spectrufi-tody hamiltonians, like the HVZ theorem. Moreover, this has
as a corollary the Mourre estimate far-body systems, as has first been showrtits ] (see§8.4 and§9.4 in | ] fora
more systematic presentation).

The linear direct sum decompositiof.9) has other interesting consequences. For example, it was shownsifj [
that the decomposition of the resolvent of a hamiltonfaraffiliated to %X (£) according to 8.9 is just the Weinberg-
Van Winter equation introduced in th€-body problem in the sixties. Moreover, the decomposition of a functioh )
determined by ¥.9) gives the connected components and the truncated pagt§Fof, objects defined by rather involved
combinatoric arguments in the standard approach tévtiedy problem, cf.[PS9 and [Po].

An elementY” € £ determines the ideal;X (£) = > €% (Z), where the sum runs ovef € £ such thaty ¢ Z,
such thate™X (L) = X (L) + _#5* (L) linear direct sum. ThugX (L£)/. %X (L) = €X(L). The quotient ofH with
respect to this ideal, or the projection Bf onto theC*—subaIgebréf%(ﬁ) determined by the preceding linear direct sum
decomposition, is the sub-hamiltonidfy- (denotedH, in the physical literature) which plays an important role in the
spectral and scattering theory Bf. The algebr&syX (£) has a special structure which allows one to define the “internal
hamiltonian” HY , see DG7] for this question.

An extension of this formalism to arbitrary (not finit€) in particular a study of the hamiltonians affiliated to the most
natural algebr&X obtained as closure @‘:YEG(X) %X (Y), can be found in[pG7]. Besides the non-relativistity -body /
hamiltonians, this framework covers the dispersive case and the class of pluristratified media first considered by Dermenjia
and Iftimie in [Del]. We mention one result fromiJGZ] in order to make the connection with the localizations at infinity
discussed before.
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Theorem 3.151f S € ¢X andw € X thens dimy ., Ux,SU5,, = P,[S5] exists. The mafp,, so defined is a morphism
€X — €X. LetH be an observable affiliated 6~ and let us sefi,, = P,[H]. Then

One hasH,, = Hy whereY is a vector subspace generateddoy

The following “intrinsic” characterization of the algebt&* (V) is obtained in DGZ]. We denote by * the polar set
of Y in X* and the limits are in norm sense.

Theorem 3.16 X (Y) is the set of operator§” € %(X) satisfying the following conditions{T,U,] = 0 Vy € Y;
[T, V3] = 0if k — 0in X*; (U, — )T® = 0ifz — 0in X; (Vi — )T™ - 0if k —» 0in YL,

3.5.(Q, P)-anisotropy. The rest of these notes is devoted to the descriptiofi“eélgebras of hamiltonians which are
not necessarily of the crossed product type. The algebra we study in this subsection is much simpler than all those we tre
in this lecture. However, we find that its study is quite instructive: the algebra has a simple “intrinsic” definition and the [y
computation of the quotient with respect to the compacts can be done by direct elementary means. In fact this example lie '
at the origin of our approach: we found it (i [6]) when trying to go beyond the gradédt-algebra framework suited to ' 1
the N-body problem. After its study we understood the relevance of crossed products and the fact that the interpretation i
terms of algebras of energy observables is the relevant one for further investigations. On the other hand, in spite of thei
simplicity, the algebras studied in this subsection cover several physically interesting models, for example the hamiltonians§l
studied in Ben, ] are affiliated to algebras of this type, hence can be systematically studied in our framework. This /|
section is a&sune of the first part of [-16].

We shall work in the Hilbert space” = L?(R;E) = L?(R) ® E whereE is a complex Hilbert space (corresponding
to internal or confined motion). The operat@sand P are now given bYQ f)(z) = zf(z) andPf = —if’. If a € R the
operator &” is well defined and&” = U,,.

We shall use the notatiop(Q) even in the more general case whenR — B(E) is a weakly Borel function; in this
casep(Q) is the operator of multiplication i#Z” by the operator-valued functign We also set)(P) = F*¢(Q)F, so the
operator)(P) is well defined even if) is a B(E)-valued weakly Borel function.
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If A is a self-adjoint operator o’ then{ A}’ is thecommutant algebraf A, i.e. the set of all bounded operators
commuting withA. For example, it is well known thdtQ}’ is the set ofp(Q) with bounded weakly Boreb : R — B(E),
and similarly forP instead of). Observe that

{QY N {P} =1® B(E) = B(E). (3.12)

We denote byX(A > r) the spectral projection ot associated to the intervat, oo[. So, if X; is the characteristic
function of |1, oo[, thenX(A > r) = X1(A/r). The symbolsX(A < r) or X(]A| < r) have a similar meaning.

We denoteCF(R) = Cp(R) ® K(E) = Co(R; K(E)). Other interesting algebras are obtained by taking various
compactifications oR, but only one of them will be considered here. Bet= [0, oo] be the two-point compactification
of RandCE(R) = C(R) ® K(E), or

CEMR) ={p:R — K(E) | isnorm-continuous and the norm limits
lim, oo (z) and lim,_,_ ¢(x) exist}.

We defineCE(R*) = F*CF(R).F and similarlyC®(R*). For exampleCF (R*) is the set of operators(P) with ¢ : R —
K (E) norm continuous and norm convergent to zero at infinity.

It is useful to give a meaning to the notion of limit @&— ‘oo or P — oo for some operator$’ € B(s¢). These
objects will be denotetlmg_.+, 7" andlimp_. ., 7' respectively. Sinc€) and P play a similar role, we present in detail
only the case of th&-limits. Note that the limitdimg_.+., should be “independent @” and it is natural to identify
the constants with respect & with translation invariant operators, i.e. the elements of the commutant alg&tfa If
T, = sdim, . €4 Te " exists theril’. € {P}’' and one should think 6f, as the limit of7" as@Q — -+oco. But this
condition is not strong enough in@*-algebra setting: some kind of norm convergence is needed.

Definition 3.17 We say thatT” € B(s) has a limit at Q = +oco if there is Ty € {P} such that
limg o0 [[X(Q > a) (T — T)®) || = 0. Then we setimg . oo T = T}.
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Observe that one will necessarily haVg = sdim, .., €*Te"". Similarly is definedimg_, o T = T-. As we
previously said, the roles @ and P can be interchanged in Definitidh17. Hence one may definénp .1, 7T € {Q}

for some class of operatofs € B(.7”). However, since the commutation relati@p, P| = i gives[P, —Q] = ¢, we have
to change in the preceding formul@sin P andP in —Q). For example,

lim T =TT =sdim e “9TeQ,
P——+o0 B=9
The Riesz-Kolmogorov criterion (Theoref8) can now be stated ast” € ' (R) if and only if limg 10,7 =
limp_,45 1T = 0.
The simplest examples of operators that have limit§)at= +oo and atP = +oo are those of the formi’ =

> =1 ¢i(Q)¥;(P) wherep;, ¢; : R — B(E) are continuous functions which have limits-ato and —co. We set Title Page
p(Fo0) = limz_ 1+ ¢(z). Then ‘

Home Page

i T = ; pj(Fo0)ej(P)and lim T =73 ;(Q)v;(o0).

j=1
The algebras of main interest for us are defined below. Other descriptions of these objects will be given later.

Definition 3.18 Zis thg set of operator$’' € B(.7) such thatimg_,+~, 7" exist and belong to®(R*) andlimp 400 T
exist and belong t@’®(R). ¥'is the subset ofg consisting of operator' such thatimp_.1., 7 = 0.

The elements of4 have an anisotropic behavior at infinity in both variabigeind P (phase-space anisotropy). The
operators of the subalgeb#dare characterized by anisotropy in t@evariable only: thus one may calf the position-
anisotropic algebra (it is easy to prove thaflife ¢ thenlimg 1.7 € CE(R*)). Analogously one can introduce a
purely momentum-anisotropic algebra (which is in f&¢t¢’F). On the other hand, taking e.g¢ = L?(R?) ® E one may ,
consider anisotropy in several position (or momentum) one dimensional variables, but the structure of the correspondindg
algebras does not differ essentially of thatédand may be treated analogously.
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Itis easy to show tha## and¢’areC*-algebras. The algebr# is unital if and only ifE is finite dimensional#’is never
unital. We haveC®(R) ¢ % andCE(R*) ¢ 4. Also, K () C € C .

The next theorem contains the alternative characterization af’'thalgebras# and% standing at the origin of our
approach.

Theorem 3.19
# = [C*(R) - C*(R¥)] = [C*(R*) - C*(R)], (3.13)
% = [C*(R) - CF(R")] = [C5(R*) - C*(R)]. (3.14)

Proof: Functions of clas€’> with derivatives of compact support are dense’ifR). Hence, ifS € CE(R) andT €
CE(R*) then[S, T] is a compact operator. This implies the second equalitie3.irff(and @.14). The fact thatZ contains
[CE(R) - CE(R*)] follows from CE(R) c %, CE(R*) C £ and the fact that# is a norm closed algebra. We now prove
the inverse inclusion. Lef’ € # and denotély = limg 400 7' andT* = limp_1, T. Letf, € C(R) such that
O (z)=0if x <landf (x) =1if z > 2andletus sef_(z) = 6, (—x) andfy =1 — 6_ — 6. Denoted§ = 6y(cQ)
andfi = 0. (eQ). Then

T=0QT+60 Ty +0°T_+0(T-Ty)+6(T-T1-)

The last two terms tend to zero in norm when,, 0, so it suffices to prove th#@ T;, belongs to r.h.s. off 13 if & = 0, +.
SinceTy € C®(R*), this is clear fork = +. Fork = 0 we use a decomposition in tifevariable. Setting)! = 6, (v P) for
k =0, &, we have

06T = 05ne T + Ogn' . T* + 0" T~ + Ogn’ (T —T) + 05n” (T —T~)
As before, the last two terms tend in norm to zera/as, 0. Also, 0gng7" is compact, so it belongs to the second member
of (3.13. Finally, 051, T+ belong to the third member 08(13. The proof of §.14) is quite similar, but simpler (only a
Q-variable decomposition suffices). |

We remark that one also has

B =[CR)-C(R")] ® K(E) and € = [C(R) - Co(R*)] ® K(E).
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In the next theorem we shall give an explicit description of the quotient alg&biid(.77”). For this purpose we shall
introduce four map®., P* of Z into itself by the formulas

Pi[T]= lim T and PE[T]= lim T.
Q—to0 P—+oo

Itis clear thatP. are morphisms2 — % and also that they are projections (in the vector space sensBzi.e. P) of #
onto its subalgebLé,’E(W) (in particular they ar@xpectations Similarly, P+ are morphisms and projections &f onto
its subalgebr@®(R).

Now we define . - B B

P B — 9 =CER*) @ CER*) @ CER) ® CE(R)

by 2 = (P_,P+,P~,P"). The space? is considered as direct sum 6f-algebras, so it is &*-algebra and? is a
morphism.

Theorem 3.20 The kernel of the morphisa® is K () and its range is the set of operatdfs= (7,7, 7-,T%) €
such that the following compatibility conditions are satisfied:

lim 7- = lim 7% and lim Ty, = lim T%. (3.15)
P—+oo Q——0o0 P—+oo Q—+o0

Proof: That K () is the kernel of# follows from the Riesz-Kolmogorov theorem as formulated after Definifidry.
Note that the relations3(15 may be written a®*[T_] = P_[T*] andP*[T,] = P [T*]. We check that they are satisfied
on the range of”. By Theorens.19 it suffices to showP=P_[T| = P_P*[T] for T of the formT = (Q)v(P); but this
is obvious. Reciprocally, [T’ be as in the statement of the theorem. We have to condfructZ such that? [T = T.
Let oy, ™ € CE(R) such thally = ¢+ (P) andT* = ¢*(Q). Then the compatibility relation$(15 can be written as
*(—00) and g (£00) = ™ (

p—(£o0) = ¢ +00).
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Using the cutoff9., introduced in the proof of Theoref19we define

$4(P) = 92(P) = 26_(P)p(~00) = 50+ (P)pa(+o0)

2
¥(Q) = *(Q) — 50-(Q)p*(~00) — 50+(Q)p* (+00).

Then we construct the desir&das:

T =0_(Q)Y-(P) + 04(Q)¥+(P) +0_(P)y™(Q) + 0+(P)yT(Q).
The relation 8.13) shows thafl” € & and for example one has:

= 0_(+00)Y—(P) + 04 (+00)tp+(P) + 6_(

= P4 (P) + 0_(P) {p~(+00) — 20_(+00) 01 (+00)p~ (+00) }
+ 0+(P) {¢T(+00) — 36_(+00)T(—00) — 364 (+00)pT (+00) }

= 1h4 (P) + 20_(P)p~(+00) + 30, (P)p* ) =@ (P)=T4.

In the last equality the second compatibility relation has been used. Similarly, one shodisathat ., 7' = 7 and
limp_10 T = T. |

P)ip~(+00) + 04 (P)ypT (400)
+

Remark: The morphism%? induces an isomorphism between the quoti€falgebraz/ K (7#) and theC*-subalgebra
of 2 defined by the compatibility relation8.(L5. From now on we shall embed

B/K () C 2 = CE(R*) ® CE(R*) © CER) @ CE(R) (3.16)

with the help of this isomorphism.

The C*-algebra® deserves a separate study because many hamiltonians of interest in physics are affiliated to it.
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Theorem 3.21 The mapT — (P_[T],P+[T]) is a surjective morphism o# onto the C*-algebraic direct sum
CE(R*) @ C¥(R*) with K () as kernel.

Remark: We identify the quotienC*-algebra®’/ K (#) and theC*-algebraC¥(R*) @ C¥(R*) with the help of the
isomorphism induced by the maP_, P,.). This is the precise meaning of the equality

C/K(H#) = CE(R*) @ CE(R*). (3.17)

Observe that the quotiefat/ K () has a simpler description tha#i/ K (.77). Indeed, in 8.17) we have equality whereas
in (3.16 one has only inclusion.

Proof of the theorem: Remember that by DefinitioR.18the algebraz’is the set ofl’ € % such thatP*[T] = 0 and

PL[T] € CE(R*). Also, K () is the set ofl' € ¥ such thatP.[T] = 0. On the other hand, with the notations of

Theorem3.20 T € Z[¢| ifand only if T = (T-,T4,0,0) andlimp_, 1 T+ = limp_. 1o T = 0 (see 8.15). But this

is equivalent tdl. € CF(R*). |
We would like now to give a description of the action of the projectifhsin 4 suggested by the definition of the

corresponding morphisms in grad€d-algebras (see[=1] and§3.6). For this we observe that the kernels

€= {T €€ | P[] =0} ={T €| lim T=0} (3.18)
—F 00

are closed self-adjoints ideals# which, by the proof of Theorer®.19 can also be written as
@x = [CE(R) - Co(RY)]. (3.19)
Here

CI[R) ={p € C*(R) | lim ¢(z) =0}

T—F 00

are closed ideals i (R).
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Since the restrictions dP.. to ¢ are projections of norm one & onto its closed subspacg’(R*), we see that
€ = ¢+ + CE(R*), topological direct sum. This allows us to change our point of view, to forget the preceding meaning of
the mapsP.., and to see them as the projectiongbbnto C¥ (R*) determined by the preceding direct sum decompositions.
We emphasize that it is possible to adopt this point of view from the beginning and to develop the theory without using the |
notion of limit at infinity of an operator. We mention some easy to prove properties of the #leals

C=C+F-, €NC-=K(H), €+ 6+ C K(). (3.20)
Observe that the spa@g,, of T' € ¥ such thatP, T' = P_T is aC*-subalgebra o¥, a two-body type algebra. Indeed,

Goo = [CL(R) - Co(R*)] = CF(R*) + K (). (3.21)

We give a third description of thé™*-algebra%’ (the proof is straightforward and will not be given). An operator
T € B(s¢) is calledsemi-compadif for all 6 € Cp(R) the operatoré(Q)T" and7'0(()) are compact.

Proposition 3.22 % coincides with the set of semicompact operators suchlihaf .+, 7' exist and belong te'F (R*).

If H is an observable affiliated &, thenH.. := P.[H] are well defined observables affiliated®§ (R*). If H is the
hamiltonian of a physical system, théh. will be calledasymptotic hamiltonian®r localizations off at() = +oco. One
has a purely anisotropic situationff_ # H, .

Theorem 3.23 Let H be an observable affiliated t§. Then:
Oesd H) = 0o(H_) Uo(H).

Moreover, there are numbersco < ai < by < oo such thato(Hy) = R\ (ax,bs). Hence, ifa = max{a_,ay}, b =
min{b_, by } thenoesd H) = R\ (a,b).
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Proof: We have to prove only the second assertion. We show that for an arbitrary obsehafiliated toC¥ (R*) one has
o(A) =R\ (a, B) for some—oco < o < 5 < co. We can assume that¢ o(A) and so it suffices to prove that the spectrum
of S = A~!is an interval containing zero. L&t be an arbitrary symmetric operatori After a Fourier transform$
becomes the operator of multiplication by a norm continuous and norm convergent to zero at infinity symmetric operator |
valued functiorp — S(p) € B(E). Theno(.S) is the closure of the union of the spectra of the operaigps and the lower
and upper bounds of the spectrum&if)) belong too(S(p)), depend continuously gnand tend to zero ag| — co. M

We finish with some comments on the self-adjoint operators affiliat&d tA self-adjoint operatofd on 7 is locally
compactf for each¢ € Cy(R) and eacty € Cy(RR) the operatof(Q)¢(H) is compact. Equivalently, if there is¢ o(H)
such tha¥(Q)R(z) is compact. From Propositich22we get: H is affiliated to# if and only if H is locally compact and ; Home Page
for somez € C \ R the limitslimg_ 1., R(2) exist and belong t&'F (R*). ‘

Consider a map from R to the set of self-adjoint operators &nWe writelim,, .o h(p) = oo if ||(h(p) + )71 — 0
as|p| — oo. This is equivalent to: for each > 0 there isry > 0 such thato(h(p)) N [—r,7] = 0 if |p| > ro. Now
assume that: (i) the map— (h(p) + i)~! is norm-continuous, (ii) for each € R, h(p) has purely discrete spectrum, (iii)
lim,_,, h(p) = oo. Then the self-adjoint operatdl P) is affiliated toCE(R*). This is obvious.

Finally, we give an explicit class of hamiltonians affiliateddo

Proposition 3.24 Let H be a self-adjoint operator i#” and H.. a pair of self-adjoint operators affiliated t6F (R*) such
that D(Hy) = D(H). Assume that:
lim ||x(+Q > £r) (H — H1)||p(ery—» = 0. (3.22)

r—=4o0

ThenH is affiliated to¢” andP.[H] = H.

Itis clear that this covers one-dimensional quantum mechanical models like trilBcjar or Dirac operator with different
spatial asymptotics at left and right. For instance, Het= Pa(Q)P + v(Q) such that: (i)a : R — R is continuous,
inf a(z) > 0 andlim,_ 1 a(x) = ax existinR, (i) v € L} (R) andlim, 4 v(z) = vy exist. ThenHy = hy (P) =
aj:P2 + V4.
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An important aspect of the algebais that one can prove the Mourre estimate for a large abstract class of hamiltonians
affiliated to it (in fact, this can also be done faf). This class covers Sabdinger operators in domains with cylindrical
ends, with different asymptotic at each end, like those studie&dm,[DDI]. This question is treated irJ6] and will
eventually be published.

The preceding techniques can be used in other types of one-dimensional anisotropy. Here is an examplecfrom [
where potentials with different periodic asymptoticstak are considered. We mention it because the definitio# af
quite nice, namely

¢ ={peCy(R)| lim ¢(z+nay)existforallz € R}, ‘
3 Home Page
wherea are given strictly positive real numbers. THéitis aC*-subalgebra of’}(R) which contains”y(R) and is stable [/
by translations. Let us dendie= R/Z. Then UL

% /Co(R) = O(T) & C(T).

This allows one to compute the quotient with respect to the compacts of the algebra of hamiltonians associated to thigg,
problem:

%€ x R/%(R) ~ /C =~ [C(T) x R] @ [C(T) x R]
=~ ®J£/( )] @ [C(T) ® X (T)).

3.6. GradedC™*-algebras. In this subsection we considéf*-algebras graded by semilattices, a class of algebras useful
in the study ofN-body systems and their generalizations, which have been introduced and studiéed jri3[>7] for the

case of finite semilattices (see also=[G]) and then in DG, ] for arbitrary ones. Their usefulness in thébody ‘
problem has already been discusse§idrt. The new example considered in this subsection concerns an algebra associated (@l
to symplectic spaces studied mainly ialp]. N-body hamiltonians in constant magnetic fields (asirl]) belong to this '
framework.
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A family {%;}:c; of subalgebras of an algebf is linearly independenif for each family {.S;};c; such thatS; €
%; Vi,S; # 0 for at most a finite number afand) ,_; S; = 0, one hasS; = 0 for all i € I. The sums of algebras which
appear below are understood in the sense of linear spaces.

Let £ be asemilatticei.e. a partially ordered set in which each pair of elemenishas a lower bound A b. Fora € L
we setl, = {b € L | b > a}; thisis also a semilattice.

We say that aC*-algebra# is £-gradedif a linearly independent family% (a) },c of C*-subalgebras o& has been
given such that:

(i) €(a)-€(b) C €(anbd)foralla,be L;
(i) if £ C Lis finite then)_ . € (a) is a closed subspace of, Home Page
(iii) > °,c € (a) is dense irg'.

For eacht C L we define?’(£) as the closure oF' (£)° = >, C(a). If a € L we setd, = €(L,). Itis clear thats, is
aL,-gradedC*-subalgebra o¥’. There is a natural map; : ¢ (£)° — ¢(L,)° defined byPg > . T'(b) = > 4, T(D)
if T'(b) € € (b) andT'(b) # 0 only for a finite numbers db. This map is clearly a surjective morphismseélgebras. It can
be shown that this map is continuous, so it extends to a surjective morfhisi¥ — %,. Moreover,P, is a projection (in
the sense of linear spaces) and its kern&l (£,), wherel), = {b € L | b # a}.

Assume that has a least elementin £, denoteM the set of atoms of (i.e. minimal elements of \ {min £}) and
assume thaf is atomic (i.e. each # min £ is minorated by an atom). Observe thétmin £) is a closed self-adjoint ideal
in ¢, so theC*-algebra® /¢ (min L) is well defined. The important fact is that one can explicitly realize this algebra as
follows. There is a natural morphism

= (Pa [T])aEM (S Hae/\/l cga’ (323)

where the direct product is in th&*-algebra sense, and the kernel of this morphism is equéltoin £). It is easy to see
that for eachl” € ¢ the set{P,[T] | a € M} is relatively compact ir¥’. Thus, we get a canonical embedding

¢ /€ (min L) — [y Ca (3.24)



http://www.u-cergy.fr

where the right hand side is tki&-algebra of familieg S, }.c such thaf S, | a € L} is relatively compactif¥’. As usual,
such aresult allows one to compute the essential spectrum and to prove the Mourre estimate for the observables affiliated i
%. The example below is a general and abstract version of the HVZ (Hunziker, Van Winter, Zihslin) theorem.

Theorem 3.25 Assume tha¥ is realized as aC*-algebra of operators on a Hilbert spac#’ such that% (min £) =
K (). LetH be an observable affiliated @ and for eachu € £ let H, = P,[H]|, which is an observable affiliated %,
hence to6’. Thenoesd H) is equal to the closure df],. ,, o(H,). Moreover, if for eacll” € ¢ the set{P,[T] | a € M}
is compact iri¢’, then one has

oesdH) = | | o(Ha).

aeM

We mention that the property required in the last part of the theorem holds for the atg€dram §3.4 (whereL = G(X)
henceM is the projective spadg(X) of X), as well as for the symplectic algebra considered below.

We have already seen examples of graded algebi&s4nA new example follows (seéd] 3] for details). We consider
a system(=, o; .2, W) consisting of a symplectic spa¢g, o) and a representatidiy’ of it on a Hilbert space?’. So= is
a real finite dimensional vector space equipped with a real antisymmetric nondegenerate bilineaaholi¥i is a strongly
continuous map frori to the set of unitary operators o’ satisfying, for all¢, n € =:

W (€ + n) = e 27 EDW ()W ().

To each abelian group one can associate a structure of thisSyyseng only an abelian group in general (§8€5 in [G12]).
If F is a vector subspace &fwe set

E?:={€E|o(n) =0, foralln e E}.

ThenE°? = E and(E N F)° = E? + F?. Note thatE? can also be defined as the set of thgse = such that
W (W (n) =W (n)W(¢) forall n € E. We shall takeZ = G(Z) the set of all vector subspacesmfilf £ € G(ZE), then
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we define?’(E) as the set of operatofs € B(s#) such that:
@) W), Tl - 0if £ = 0inE,
(i) W (), T)=0if £ € E,
(i) | (W(€) — )T || — 0if ¢ € E° and¢ — 0.
Let ¢ be the closure 0}, ¢ (E). Then the family ofC*-subalgebra®’(E) provides? with a G(=Z)-gradedC*-algebra
structure.

The hamiltonians ofV-body systems interacting with an external constant magnetic field (s24)[are affiliated to
gradedC*-subalgebras of algebras of the preceding form (this is prove@ i)

We mention only one important theoretfi:IV is an irreducible representation, thesi( E') coincides with the closure
in B(.7¢) of the set of operator®/(x) with  an E7-a.c. integrable measurélere, an integrable measyien = is F-a.c.
for some vector subspade of = if there are a Haar measuig- on F and a functiorp € L'(F) = L'(F, A\r) such that
1= pAr. Then we definéV (1) = [2 W (&) pu(dE).

On can construct graded*-algebras by taking tensor products of grad&dalgebras. The following results (Lemma
3.26and Proposition8.27, 3.28 are part of a joint work of M. Mntoiu and one of us (V. G.). They are useful in the study
of quantum field models with a particle number cutoff, e.g. the results ofé€ar@ concerning the Mourre estimate for the
spin-boson modeldel are easy to prove in this framework.

Let {€"*}rcn be a finite family ofC*-algebras. Assume that” is £*-graded, wherec* is a finite semilattice. Thus
linear direct sum decompositios® = > .« ¢*(a) are given with¢*(a) C ¢* C*-subalgebras such that*(a) -
¢*(b) C €%(a A D). Recall thatg® = Y, €*(b) areC*-subalgebras ot* and that the projectiorB? : ¢* — €*
asociated with the given linear direct sum decompositioeofire morphisms.

The product set = [], . £* will be equipped with the product order relationuit= (a*), b = (b*) are elements of
L, thena < bif and only if a* < b* for all k. It is clear thatC becomes a semilattice withA b = (a* A b¥). Consider now
the tensor products

C = xE*, €(a) = NWF ("), € =xEr.
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Lemma 3.26 The family ofC*-subalgebras{%’(a)}.c, defines anl-grading of theC*-algebra®@. One has%, =
> b>q € (b) and the canonical projectio®?, : ¢ — €, is given byP, = @;P,x.

Proof: The projectiorfP*(a*) of 6™ onto¢*(a*) is a linear combination of morphisn®, (this is clear by induction or
follows from the Mobius inversion formula, see chapter 8 ix{]), hence the tensor produt(a) = ®;,P*(a*) is a well
defined continuous m&ag — ¢ (use Theoren2.?). It is easy to check tha®(a) is a projection ofs” onto ¢’ (a) and that
P(a)P(b) =0if a # b, Y, P(a) = id. The lemma follows easily from these facts.

The simplest casg€f = {0,1} with 0 < 1 is already interesting. To cover the spin-boson model as treatedsif |
(or, more generally, a boson field with a particle number cutoff coupled with a confined system) one has to take one of the
lattices equal td0} and the corresponding algebra equakiQF) for some Hilbert spac, but this is a mathematically ‘
trivial extension of what follows, so will not be treated. Now we ha#e = C* + KC*, with new notation&* = €% (1)
andK* = €%(0). ThusC* c €* is aC*-subalgebrak* c %* is an ideal, an€* N KC* = {0}. Letm, : €% — C* be
the natural projection, sey is a morphism withC* as kernel. We have an obvious identificationfofvith the lattice of all
subsets ofV’ with the order relation given by inclusion, ao= £ meansz C .

In order to avoid confusions below we shall change notations and @Wite= ®,cA¢* for the algebra denoted
above. ThersN (a) = @B* with B¥ = C¥ if k € a andB* = K if not. Similarly, ¥ = @B* with B¥ = CFif k € a
andB* = €* if not. Clearly,P, = w, is a tensor product of morphismg at placest € a and identity operators in the
remaining places.

The algebr&s”V has a remarkable ide&lV = ¢V () = ®,K* and the quotient" /K can be easily described with
the help of the general result3.23), (3.24). We clearly have:

Proposition 3.27 The maps; sy : € — @, CK{/X} is a morphism withC' as kernel, hence it gives an embedding

eV /KN < @ Eh- (3.25)

We now take abov&” = ¥ = C + K independent of: and denoter the projection morphisr® — C. Let N =
{1,...,n}. The algebr&# is interpreted as the one particle energy observable algebra. Now we would like to consider
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a system ot identical particles, hence the corresponding algebra of energy observables has to be the symmetric part o
&N . This will destroy the grading, but the quotient is easy to compute.i$fa permutation of\" then we denote by the

same symbol the automorphism @t defined by the conditiorr ®;, T}, = ®rT,-1(x). We define thealgebra of energy
observables of a systemwoidentical particlesby

V" ={T €N |ocT =T, Vo}. (3.26)

We emphasize two things concerning the physical interpretation of what we are doing. It is meaningless to speak he
about bosons because this is an algebra of observables and we did not mention any statistics (or superselection sector). A ‘
in fact, it is not easy to take statistics into accétintObserve that working with3(26) is not a loss of generality if one is | AOne g
interested only in proving the absence of singularly continuous spectrum, but the point is that the set of thresholds predicte "
by it is not the physical one. Of course, the essential spectrum too depends on the statistics. On the other hand, when o
applies this formalism in the context ¢EE1], the particle we are talking about isdead or aliveboson. There are exactly
n such particles, but the number of alive bosons could be anything between® Asdve said it before, it is trivial to add
a spin.

Title Page

Proposition 3.28 There is a unique morphis@ : €V" — C @ ¢V("~1 such thatP[T®"] = =(T) @ T®"=1) for all
T € €. One hasker P = K", hence we get an embedding

RPNV ke BN (3.27)

Proof: Uniqueness is obvious and to show the existence it suffices to definer;y |4 v-. Itis obvious thabr, = 7,40
for all permutationsr and all subsets of A'. Hence ifP[T] = 0 thenmy;, [T'] = 0 for all &, so by Propositioi3.27we have

T e KN ngvr = KVn. [ |

®This is related to a problem discussed in the Comment below. Reduction to a symmetry sector is a difficult question also in the context of the
N-body problem. M. Damak studied it during the preparation of his thesis, but the results have not been published.
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Comment by V.G l:have used Propositidh 28in order to prove Theorems 1.1 and 1.2 frare[]. Unfortunately, | recently

found a gap in the argument leading to Theorem 1.2, which | am still unable to fill. So for the moment | do not know if that
theorem is true in the degree of generality stated-iad, more precisely | have to put more conditions on the algebra of one
particle kinetic energies (a condition Grsimilar to that imposed off after Corollary3.30below suffices). In applications

to standard boson models, these conditions are easy to check. On the other hand, | found a new proof which extends wit
no difficulty to models without particle number cutoff. Some results in this direction are described in the next subsection.  [ff

3.7. Quantum fields.In this section we consider a bosonic quantum field and defin€'thalgebra of hamiltonians in the
case when the boson mass is strictly positive. Our main purpose is to explain how one can derive a Mourre estimate fro

[ ]; see [zeq for a summary adapted to the present situatiory808 from | ] for a complete presentation. We refer
to [ ] for a proof of the Mourre estimate for the(¢), model and for the second quantization formalism that we use
without further explanation. We denote lythe one-particle Hilbert space(u) anda*(u) the annihilation and creation
operators of a boson in the statec §), and recall that the field operatordggu) = (a(u) + a*(u))/V/2.

The Hilbert space generated by the states of the field is the symmetric Fock¥acaVe will proceed as i§3.1and
define¥ as a kind of crossed product of an algebra of interacti@nsith an algebra of kinetic energieg, more precisely
we take? = [« - #] (cf. Theoren2.17). To understand this choice and the next definitions/ofnd %, one has to prove
a version of PropositioB.2 with resolvents replaced by exponentiais’e(see the proof of Propositich 2 given in [G17]
and the discussion after Theorén®1). Note also that in the standard ca$e= L?(R®) our purpose is to study models for
which the “elementary” hamiltonians are of the fodfi(w) + W, wherew is affiliated toCy(R**) with inf w = m > 0 and
W is a polynomial in the field operators with a particle number cut-off. We recall that an important point of our approach is
to start with a small class of elementary hamiltonians which, however, should genératdgebra to which the physically
realistic hamiltonians are affiliated (sg&.1).

We define thealgebra of interactions’ as theC*-algebra generated by the operatofs)I’(\), whereu € $ and
A € Cwith |A| < 1. Clearly, < is also the algebra generated ) (N) with u € $ andy € Cc(R), whereN is the
particle number operator. We deno#($)) = K (I'(9)).
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Theorem 3.29 There is a unique morphisf, : @/ — & satisfying one of the equivalent conditions:
() Po[p(w)T'(N)] = Ap(uw)T'(N) if A € Cand|A| < 1,

(i) Polp(u)p(N)] = d(u)e(N + 1) ifu € $andp € Cc(R).

One has’#'($)) C </ andP, is surjective and has? ($)) as kernel, hence

o | H(H) = o (3.28)
In particular, for eacl” € o we have||P§[T]|| — 0if k — co. Thus

Corollary 3.30 All the operators ineZ have a countable spectrum.

We assume thahe algebra of one-particle kinetic energies is an abeli@nialgebra€ of operators onf) such that
the Von Neumann algebra generated by it does not contain non-zero finite rank projegt@mswe define thalgebra of
kinetic energies of the fielals theC*-algebraZ generated by the operatdréS) with S € €, ||S|| < 1. Finally, as we said
before, = [/ - ] will be thealgebra of hamiltonians of the field

There is a shorter but rather cryptic definition®f this is theC*-algebra generated by the operato(s)I'(.S), where
u € HandS € € with ||S|| < 1, whereC is the unital algebra generated @y The main result is:

Theorem 3.31 There is a unique morphisf : ¢ — € ® ¢ such thatP [¢(u)I'(S)] = S ® [¢p(u)T'(S)] if u € §H and
S € € with ||S]| < 1. One has’# ($)) C ¢ and the kernel oP is J#($)), which gives a canonical embedding

C=¢/H(H) —CRE. (3.29)

In the present situation the most convenient affiliation criterion is the following{ i§ a self-adjoint bounded from
below operator oi'($)), and if et ¢ €, thenH is affiliated to%. To check it, we use Theoret23 For example, ifv
is a self-adjoint operator ofy affiliated to€ with inf w > 0 and the symmetric operatd¥ is a (generalized) polynomial
in the field operators, and i,, = X,,(N)WX,,(N) (wheren € N andX is the characteristic function @6, n]), then it
is easy to see that&"I'(e™) € ¢ andP [e""T(e*)] = e“ @ [e"»-1I'(e™*)]. Then Theoren?.23shows that

Home Page
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H(n) = dT'(w) + W, is affiliated to#” andP [e # (W] = e= @ e H("=1)_|f there is a self-adjoint operatd¥ such that
e (") _, e H in norm asn — oo, we get thatH is affiliated to% andH =w®l+1Q H. Taking limits in norm
resolvent sense (which preserves affiliation) one gets a much larger class of hamiltonians affifiételd this way one
can prove, for example, that the hamiltonian of @), model ¢ = 1) with a spatial cut-off is affiliated t& (we thank
Christian Gerard for help in this context).

We come now to the question of the Mourre estimate for a hamiltoHiaffiliated to%’. Now we assumé) = L?(R®)
and€ = Cy(R**). We consider only conjugate operators of the fotma= dI'(a), wherea = F(P)Q + QF(P) andF is
a vector field of clas€>°; such an4 will be calledstandard A self-adjoint operator o' ($)) which is of classC}(A) or
C11(A) for each standard will be called of clas” or 11, respectively.

Theorem 3.32 Let H be a bounded from below hamiltonian strictly affiliated&aand such thaH = wP)®1+1®H,
wherew : R® — R (the one-particle kinetic energy) is a function of cl&s$ inf w = m > 0, andw(p) — oo if p — co.
Thenoesd H) = [m +inf H, o0). Assume thatl is of classC.. Denotex(w) the set of critical values of the functian let
Kn(w) = k(w) + - - - + k(w) (n terms), and define the threshold sefbby

T(H) = UpZy [kn(w) + 0p(H)] = [UpZy kn(w) ] + op(H) (3.30)

whereoy(H) is the set of eigenvalues &f. Thent(H) is a closed set andl admits a standard local conjugate operator
at each point not inr(H). In particular, the eigenvalues df which do not belong te-(H) are of finite multiplicity and
their accumulation points belong to( H). If H is of classC!!, then it has no singular continuous spectrum outstd# ).

If we also assume thai(w) is countable, ther(H) is countable too, sé/ has no singular continuous spectrum.

The preceding result is a rather straightforward consequence of TheébBdmas explained inted. We note only
that the threshold and critical set defined by a standard conjugate operator suggest to considet( fi¢ satisfying the
relation

T(H) = k(W) + [T(H) Uop(H)] = [k(w) + T(H)] U [k(w) + op(H)] .

wherex(H) = 7(H) U op(H). The unique solution is given by (30).



http://www.u-cergy.fr

Observe that the strict positivity conditiom > 0 plays an important role above. This is no more necessary if we consider
hamiltonians with a particle number cut-off, as indd. Indeed, ifH is given by a formal expressiaid = dI'(w) + W, the
restrictionsH,, = X,,(N)HX,,(N) are often well defined self-adjoint operators and they saffy=w ® 1+ 1® Hy_1.

Then the threshold set @f,, is defined by the relation (withyp(Hp) = {0}):

T(Hp) = U?:l ["Li(‘*’) + o'p(ani)} .

This is the solution of the recursive relation (3.5) frone[].

&
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