Dario Bambusi and Andrea Sacchetti Exponential times in the one-dimensional Gross--Petaevskii equation with multiple well potential. (396K, Postscript) ABSTRACT. We consider the Gross-Petaevskii equation in 1 space dimension with a $n$-well trapping potential. We prove, in the semiclassical limit, that the finite dimensional eigenspace associated to the lowest n eigenvalues of the linear operator is slightly deformed by the nonlinear term into an almost invariant manifold M. Precisely, one has that solutions starting on M, or close to it, will remain close to M for times exponentially long with the inverse of the size of the nonlinearity. As heuristically expected the effective equation on M is a perturbation of a discrete nonlinear Schroedinger equation. We deduce that when the size of the nonlinearity is large enough then tunneling among the wells essentially disappears: that is for almost all solutions starting close to M their restriction to each of the wells has norm approximatively constant over the considered time scale. In the particular case of a double well potential we give a more precise result showing persistence or destruction of the beating motions over exponentially long times. The proof is based on canonical perturbation theory; surprisingly enough, due to the Gauge invariance of the system, no non-resonance condition is required.