Jens Marklof
Arithmetic quantum chaos
(490K, pdf)
ABSTRACT. The central objective in the study of quantum chaos is to characterize universal properties of quantum systems that reflect the regular or chaotic features of the underlying classical dynamics. Most developments of the past 25 years have been influenced by the pioneering models on statistical properties of eigenstates (Berry 1977) and energy levels (Berry and Tabor 1977; Bohigas, Giannoni and Schmit 1984). Arithmetic quantum chaos (AQC) refers to the investigation of quantum system with additional arithmetic structures that allow a significantly more extensive analysis than is generally possible. On the other hand, the special number-theoretic features also render these systems non-generic, and thus some of the expected universal phenomena fail to emerge. Important examples of such systems include the modular surface and linear automorphisms of tori (`cat maps') which will be described below.