A.A. Balinsky, W.D. Evans and Roger T. Lewis
On the Schr\"{o}dinger operator in $\mathbb{R}^2$ 
with an Aharonov-Bohm magnetic field
(106K, "Postscript")

ABSTRACT.  It is proved that the form domain of the magnetic 
 Schr\"{o}dinger operator $S_A$ in $L^2 (\mathbb{R}^2)$ 
 with an Aharonov-Bohm magnetic field is continuously 
 embedded in $L^{\infty} (\mathbb{R}^+, \ rdr) \otimes 
L^2 (\mathbb{S}^1)$. An implication of this is that, when 
 $V \in L^{1} (\mathbb{R}^+, \ rdr) \otimes 
L^{\infty} (\mathbb{S}^1) $, \ $S_A$ and $S_A +V$ 
have the same form domain and coincident essential spectrum, 
namely $[0, \infty)$