 96458 Jaksic V., Molchanov S.
 Localization for one dimensional long range random Hamiltonians
(213K, postscript)
Oct 1, 96

Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers

Abstract. We study spectral properties of random Schrodinger operators
$h_\omega = h_0 + v_\omega(n)$ on $l^2({\bf Z})$ whose free part
$h_0$ is long range. We prove that the spectrum of $h_\omega$
is pure point for typical $\omega$ if the random variables $v_\omega(n)$
have sufficently long tails and if offdiagonal terms of $h_0$ decay as
$\vert ij \vert^{\gamma}$ for some $\gamma >8$.
 Files:
96458.ps