96-458 Jaksic V., Molchanov S.
Localization for one dimensional long range random Hamiltonians (213K, postscript) Oct 1, 96
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. We study spectral properties of random Schrodinger operators $h_\omega = h_0 + v_\omega(n)$ on $l^2({\bf Z})$ whose free part $h_0$ is long range. We prove that the spectrum of $h_\omega$ is pure point for typical $\omega$ if the random variables $v_\omega(n)$ have sufficently long tails and if off-diagonal terms of $h_0$ decay as $\vert i-j \vert^{-\gamma}$ for some $\gamma >8$.

Files: 96-458.ps