08-18 Albert Fathi, Alessandro Giuliani, Alfonso Sorrentino
Uniqueness of Invariant Lagrangian Graphs in a Homology or a Cohomology Class. (115K, LATeX 2e) Jan 23, 08
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. Given a smooth compact Riemannian manifold $M$ and a Hamiltonian $H$ on the cotangent space $T^*M$, strictly convex and superlinear in the momentum variables, we prove uniqueness of certain ergodic invariant Lagrangian graphs within a given homology or cohomology class. In particular, in the context of quasi-integrable Hamiltonian systems, our result implies global uniqueness of Lagrangian KAM tori with rotation vector $\rho$. This result extends generically to the $C^0$-closure of KAM tori.

Files: 08-18.src( 08-18.keywords , FaGiSo22-01-2008_Submitted_Version.tex )