%% Y. Latushkin %% %% A remark on invariant manifolds: %% the optimal gap condition. %% AMS-LaTeX \documentstyle[12pt]{amsart} \setlength{\textwidth}{6.5in} \setlength{\textheight}{9in} \setlength{\abovedisplayskip}{14pt} \setlength{\belowdisplayskip}{14pt} \setlength{\abovedisplayshortskip} {14pt} \setlength{\belowdisplayshortskip} {14pt} \setlength{\oddsidemargin}{0in} \setlength{\evensidemargin}{0in} \setlength{\topmargin}{-.5in} \theoremstyle{plain} \newtheorem{thm}{Theorem} \newtheorem{lem}[thm]{Lemma} \newtheorem{prop}[thm]{Proposition} \newtheorem{claim}[thm]{Claim} \newtheorem{cor}[thm]{Corollary} \theoremstyle{remark} \newtheorem{rem}[thm]{Remark} \newcommand{\Lip}{\operatorname{Lip}} \renewcommand{\Pr}{\operatorname{Pr}} \newcommand{\bi}{\bibitem} \newcommand{\sys}{{(\ref{1.2})--(\ref{1.3})\,}} \newcommand{\bl}{{\bold l}} \newcommand{\br}{{\bold r}} \begin{document} \title{A remark on invariant manifolds:\\ the optimal gap condition.} \author{Y.~Latushkin} \address{ Department of Mathematics\\ University of Missouri\\ Columbia, MO 65211} \thanks{Supported by the NSF grant DMS-9622105 and by the Research Board of the University of Missouri} \keywords {Invariant manifolds, spectral gap conditions} \subjclass {34CXX, 34DXX, 58FXX, 35BXX} \email{yuri@@math.missouri.edu} \maketitle \begin{abstract} We give optimal gap conditions on Lipschitz constant of the nonlinear term and growth bounds of the linear term that imply the existence of Lipschitz invariant manifolds for semilinear equations on Banach spaces. This result improves recent theorems by C.~Foias and by N.~Casta\~{n}eda and R.~Rosa. \end{abstract} \section{Main Results} {}From its inception in now classic works, \cite{Carr,DK,Hale,Henry,HPS}, the invariant manifold theory plays an important role in the modern theory of infinite dimensional dynamical systems. We refer the reader to \cite{AW,BJ,CHT,ChLu,ChLuSell,DapLu,KP,Palmer,Scarp,Si,ZW} and to the literature cited therein. Recently, several advances in the invariant manifold theory have been made to obtain optimal gap conditions, see \cite{CR,Fo,Mik}. In this paper we consider semilinear autonomous differential equations on Banach spaces with globally Lipschitz nonlinearities. We give new sharp gap conditions on the spectrum of the linear part and Lipschitz constants for the nonlinear part under which the equation has Lipschitz invariant manifolds. Descriptively, our result says the following. Suppose the real part of the spectrum of the linear term of the equation has several disjoint spectral segments. Fix a spectral segment. Add the Lipschitz constant of the nonlinear term that correspond to this segment and the Lipschitz constant of the nonlinear term that corresponds to all segments to the right (respectively, to the left) of this fixed segment. Lipschitz invariant manifolds exist provided this {\it sum} is strictly less then the length of the spectral gap that lies to the right (respectively, to the left) of the segment. First, we give a precise formulation of this result for the case of two spectral segments. Let $Z$ be a Banach space, and $X, Y\subset Z$ are subspaces of $Z$ such that $Z=X\oplus Y$. We equip $Z$ with the norm $|z|_Z=|x+y|_Z=\max \{|x|_X,|y|_Y\}$. Consider a system of differential equations on $Z$ of the form \begin{eqnarray}\label{1.2} \dot{x}&=&Ax+F(x+y),\\ \label{1.3} \dot{y}&=& By+G(x+y).\end{eqnarray} Let us assume that the operator $A$ is an infinitesimal generator of a strongly continuous semigroup on $X$, the operator $-B$ is a generator of a strongly continuous semigroup on $Y$, the maps $F:Z\to X$ and $G:Z\to Y$ are globally Lipschitz, and $F(0)=G(0)=0$. Further, let us assume there exist constants $a1$ such that $$\|e^{tA}\|\leq M_Ae^{ta},\quad t\leq 0,\quad \|e^{tB}\|\leq M_Be^{tb},\quad t<0.$$ Assume the gap condition $$M_A \Lip (F)+M_B \Lip (G)i} \Lip (F_j) &<& b_i-a_{i+1},\quad i=1,\ldots , N-1,\\ \Lip (F_i)+\max_{j0$ there exists a unique solution $z(\cdot)$ of \sys on $[0,t_2]$ in the sense of \eqref{1.5.1}-\eqref{1.5.2} such that $z(0)=\xi +\varphi (\xi )$ and $z(t)\in {\cal M}_\varphi $ for $t\in [0,t_2]$. \begin{lem}\label{invM} ${\cal M}_\varphi$ is forward invariant for \sys if and only if $\varphi = {\cal L}(\varphi)$. \end{lem} \noindent{\bf Proof.} Indeed, \begin{eqnarray}\label{4.1} ({\cal L}\varphi )(x(t;\xi ))&=&-\int^\infty_0e^{-sB}G(x(s;x (t;\xi ))+\varphi (x(s;x(t;\xi))))ds=\nonumber\\ &=&-\int^\infty_0e^{-sB}G(x(s+t;\xi)+ \varphi (x(s+t;\xi)))ds=\\ &=&-\int^\infty_te^{(t-s)B}G(x(s;\xi )+\varphi (x(s;\xi )))ds,\quad t\geq 0.\nonumber\end{eqnarray} Assume $\varphi ={\cal L}\varphi$. Then for each $\xi \in X$ and every $t_2>0$ there exists a solution $z$ on $[0,t_2]$ to \eqref{1.2}-\eqref{1.3} such that $z(0)=\xi +\varphi (\xi)$ and $z(t)=x(t;\xi)+\varphi (x(t;\xi ))$ for each $t\in [0,t_2]$. Indeed, by the definition of $x(t;\xi )$ one has $$x(t;\xi )=e^{tA}\xi +\int^t_0e^{(t-s)A}F(x(s;\xi )+\varphi (x(s;\xi )))ds, \quad t\geq 0.$$ Let $g(s)=G(x(s,\xi )+\varphi (x(s,\xi )))$, $s\geq 0$. Denote $y(t):=\varphi (x(t;\xi ))$. Then, by the assumption, $$y(t)=({\cal L}\varphi)(x(t,\xi))=-\int^\infty_t e^{(t-s)B}g(s)ds,\quad t\geq 0,$$ and $y$ satisfies for $t\in [0,t_2]$ the following equation: \begin{eqnarray}y(t)&=&-\int^\infty_t e^{(t-s)B}g(s)ds=-e^{(t-t_2)B} \int^\infty_{t_2} e^{(t_2-s)B}g(s)ds-\int^{t_2}_t e^{(t-s)B}g(s)ds\nonumber\\ &=&e^{(t-t_2)B}y(t_2)-\int^{t_2}_t e^{(t-s)B}g(s)ds.\label{*0} \end{eqnarray} Thus, $z(t)=x(t;\xi)+\varphi (x(t;\xi))$ is the unique solution to \sys in the sense \eqref{1.5.1}-\eqref{1.5.2} on $[0,t_2]$ with the required properties. Conversely, assume that the graph ${\cal M}_\varphi$ of a $\varphi \in \Lip_1^0(X,Y)$ is forward invariant for \sys. This means that for each $\xi \in X$ and $t_2>0$ there exists a unique solution $z$ to \eqref{1.2}-\eqref{1.3} on $[0,t_2]$ such that $z(0)=\xi +\varphi (\xi )$ and $z(t)\in {\cal M}_\varphi$ for each $t\in [0,t_2]$. For $z(t)=x(t)+y(t)$ equation \eqref{1.5.1} yields $$x(t)=e^{tA}\xi +\int^t_0e^{(t-s)A}F(x(s)+\varphi (x(s)))ds,\quad t>0,$$ that is, $x(t)=x(t;\xi )$, $t\geq 0$. Also, $y(t)=\varphi (x(t;\xi))$ is the unique solution to $$y(t)=e^{(t-t_2)}y(t_2)-\int^{t_2}_t e^{(t-s)B}G(x(s;\xi)+\varphi (x(s,\xi )))ds,\quad t\in [0,t_2].$$ But, as we have seen in \eqref{*0}, the function $$\tilde{y}(t):=({\cal L}\varphi)(x(t;\xi ))=-\int^\infty_te^{(t-s)B}g(s)ds, \quad t\geq 0,$$ satisfies the same equation. Thus, $\varphi={\cal L}\varphi$.\quad $\Box$ Fix $\sigma \in {\Bbb R}$ such that \begin{equation} a+\Lip (F)<\sigma \Lip (F)\geq 0$ and $b-\sigma >\Lip (G)\geq 0$ by the choice of $\sigma $ in \eqref{5.1}. For any $f_{1,2}\in E_\sigma $ one has: \begin{eqnarray*}|T_\xi f_1(t)-T_\xi f_2(t)|&\leq &\max \{\int^t_0e^{(t-s)a}\Lip (F)|f_1(s)-f_2(s)|ds,\\ &\quad & \int^\infty_te^{(t-s)b}\Lip (G)|f_1(s)-f_2(s)|ds\}.\end{eqnarray*} Thus, \begin{eqnarray*}\|T_\xi f_1-T_\xi f_2\|_\sigma &\leq &\sup_{t\geq 0}\max \{ \Lip (F)\int^t_0e^{(t-s)(a-\sigma)}ds,\\ &\quad & \Lip (G)\int^\infty_te^{(t-s)(b-\sigma)} ds\}\|f_1-f_2\|_ \sigma \leq\\ &\leq &\max \left\{ \frac{\Lip (F)}{\sigma -a},\frac{\Lip (G)}{b-\sigma}\right\} \| f_1-f_2\|_\sigma .\quad\Box\end{eqnarray*} Therefore, for each $\xi \in X$ there exists a unique $f_\xi \in E_\sigma$ such that $f_\xi =T_\xi f_\xi$. We also remark that the operator $$(Tf)(t)=\int^t_0e^{(t-s)A}F(f(s)) ds-\int^\infty_te^{(t-s)B}G(f(s)) ds,\quad t\geq 0$$ is a Lipschitz map on $E_\sigma$ with \begin{equation}\Lip (T)\leq \max \left\{ \frac{\Lip (F)}{\sigma -a},\frac{\Lip (G)}{b-\sigma }\right\}<1.\label{7.1}\end{equation} \begin{rem}\label{VanAppr} Define $S:X\to E_\sigma $ such that $S(\xi )(t):=e^{tA}\xi$. Then $T_\xi f=S(\xi )+Tf$ for each $f\in E_\sigma$. By a general result on Lipschitz maps (see, e.g. \cite{Shub}, Appendix I, Ch.5, p. 49) $I-T:E_\sigma \to E_\sigma $ is a Lipschitz homeomorphism with $\Lip ((I-T)^{-1})=[1-\Lip (T)]^{-1}$. Equation $f_\xi =T_\xi f_\xi $ has the form $f_\xi =S(\xi)+Tf_\xi$. Thus, $f_\xi =(I-T)^{-1}S(\xi)$. \end{rem} Define $\varphi :X\to Y$ as follows: \begin{equation}\varphi (\xi ):=\Pr_Yf_\xi (0)=-\int^\infty_0e^{-sb}G(f_\xi (s))ds\label{7.2} \end{equation} \begin{prop}\label{Bigsmall} $\varphi={\cal L}\varphi$ for the Lyapunov-Perron operator \eqref{LP}.\end{prop} \noindent{\bf Proof.} For $f_\xi =T_\xi f_\xi$ let us denote: \begin{eqnarray*}x(t)&:=&\Pr_Xf_\xi (t)=e^{tA}\xi +\int^t_0e^{(t-s)A}F(f_\xi (s))ds,\\ y(t)&:=&\Pr_Yf_\xi(t)=-\int^\infty_t e^{(t-s)B}G(f_\xi (s))ds.\end{eqnarray*} Since $f_\xi =T_\xi f_\xi$ for each $\xi \in X$, for any $t\geq 0$ and $s\geq 0$ one has: \begin{equation}\label{3*} f_{x(t)}(s)=e^{sA}x(t)+\int^x_0 e^{(s-\tau )A}F(f_{x(t)}(\tau ))d\tau -\int ^\infty_s e^{(s-\tau )B}G(f_{x(t)}(\tau ))d\tau. \end{equation} Also, one has: \begin{eqnarray*}f_\xi (s+t)&=&e^{(s+t)A}\xi +\int^{s+t}_0e^{(s+t-\tau)A} F(f_\xi (\tau ))d\tau -\int^\infty_{s+t}e^{(s+t-\tau)B} G(f_\xi (\tau ))d\tau\\ &=&e^{sA}\left[e^{tA}\xi +\int^t_0e^{(t-\tau)A}F(f_\xi (\tau ))d\tau\right]+\int^{t+s}_te^{(s+ t-\tau)A}F(f_\xi (\tau))d\tau\\ &\quad & -\int^\infty _{s+t}e^{(s+t-\tau)B}G(f_\xi (\tau ))d\tau =\\ &=&e^{sA}x(t)+\int^s_0e^{(s-\tau)A} F(f_\xi (\tau+t))d\tau -\int^\infty_se^{(s-\tau)B}G(f_\xi (\tau+t))d\tau\end{eqnarray*} Since \eqref{3*} has the unique solution $f_{x(t)}(\cdot)$, we conclude $f_\xi (s+t)=f_{x(t)}(s)$, $s,t\geq 0$. Using our definition \eqref{7.2} we obtain: \begin{eqnarray*}\varphi (x(t))&=&-\int^\infty_0e^{-sB}G( f_{x(t)}(s))ds=-\int^\infty_0e^{-sB} G(f_\xi (s+t))ds\\ &=&-\int^\infty_te^{(t-s)B}G(f_\xi (s))ds=y(t).\end{eqnarray*} Therefore, $x(t)=x(t;\xi )$ satisfies \begin{equation}x(t)=e^{tA}\xi +\int^t_0e^{(t-s)a}f(x(s)+\varphi (x(s)))ds,\label{**}\end{equation} and \begin{equation*}\varphi (\xi )=-\int^\infty_0e^{-sB}G(x(s;\xi )+\varphi (x(s; \xi )))ds=({\cal L}\varphi )(\xi)\quad\Box\end{equation*} \begin{rem} If $\varphi ={\cal L}\varphi$ then $g_\xi (t)=x(t;\xi )+\varphi (x(t;\xi ))$, $t\geq 0$ satisfies $T_\xi g_\xi =g_\xi$. Indeed, as in \eqref{4.1}, $$\varphi (x(t;\xi ))=-\int^\infty_te^{(t-s)B}G(x(s;\xi )+\varphi (x(s;\xi )))ds.$$ By adding this to \eqref{**}, one gets $T_\xi g_\xi =g_\xi$.\end{rem} \begin{rem}\label{justLip} Proposition \ref{Bigsmall} and Lemma~\ref{invM} already imply the existence of a Lipschitz $\varphi :X\to Y$ with the invariant graph ${\cal M}_\varphi$. To see that $\varphi$, as defined in \eqref{7.2}, is a Lipschitz map, we recall that also $\varphi (\xi )=(I-T)^{-1}\circ S(\xi )(0)$. Since $(I-T)^{-1}:E_\sigma \to E_\sigma $ is Lipschitz by Remark \ref{VanAppr}, we have from \eqref{7.1}: \begin{eqnarray*}|\varphi (\xi _1)-\varphi (\xi _2)|&=& |(I-T)^{-1}\circ S(\xi _1)(0)-(I-T)^{-1}\circ S(\xi _2)(0)|\leq\\ &\quad & \leq \| (I-T)^{-1}\circ S(\xi _1)-(I-T)^{-1}\circ S(\xi _2)\|_\sigma \\ & \quad & \leq \Lip ((I-T)^{-1})\| S(\xi _1)-S(\xi _2)\|_\sigma\\ &=& [1-\max \{ \Lip (F )/(\sigma -a),\Lip (G)/(b-\sigma )\}]^{-1}\|S(\xi _1)-S(\xi _2)\|_\sigma .\end{eqnarray*} Since $$\|S(\xi _1)-S(\xi _2)\|_\sigma =\sup_{t\geq 0}|e^{-\sigma t}e^{tA}(\xi _1-\xi_2)|\leq |\xi_1-\xi_2|,$$ we conclude that $\varphi $ is Lipschitz. \end{rem} However, to prove the sharp estimate \eqref{estlipphi} for $\Lip (\varphi )$, we will need a lemma. For fixed $\xi_i\in X$, $\xi_1\neq \xi_2$ let $z_i(t)=f_{\xi_i}(t)$, and set $z_i(t)=x_i(t)+y_i(t)$, $i=1,2$, $t\geq 0$. Recall, that we define $|z|_z=\max \{|x|_x,|y|_z\}$, $z=x+y$. \begin{lem}\label{xz} $|z_1(t)-z_2(t)|=|x_1(t)-x_2(t)|$ for all $t\geq 0$.\end{lem} Let us first finish the proof of the main Theorem \ref{main}, using the lemma. Since $z_i=T_{\xi_i}z_i$, the functions $z_i(\cdot )$ are solutions to \sys in the sense \eqref{1.5.1}-\eqref{1.5.2}. In particular, $x_i(t)=\Pr_Xz_i(t)$ satisfy $$x_i(t)=e^{tA}\xi_i+\int^t_0 e^{(t-s)A}F(z_i(s))ds,\quad i=1,2.$$ Using Lemma \ref{xz}, we obtain: \begin{eqnarray*}|x_1(t)-x_2(t)|&\leq & e^{ta}|\xi _1-\xi _2|+\int^t_0e^{(t-s)a}\Lip (F)|z_1(s)-z_2(s)|ds=\\ &=&e^{ta}|\xi_1-\xi_2|+\Lip (F)\int^t_0e^{(t-s)a}|x_1(s)-x_2(s) |ds,\end{eqnarray*} and \begin{equation}\label{(1*)}|x_1(t)- x_2(t)|\leq e^{t(a+\Lip(F))}|\xi_1-\xi_2|,\quad t\geq 0\end{equation} by Gronwall's inequality. Since $\varphi (\xi_i)=y_i(0)=\Pr_Yf_{\xi_i}(0)$ by the definition \eqref{7.2}, we have from Lemma \ref{xz} and \eqref{(1*)}: \begin{eqnarray*}|\varphi (\xi_1)-\varphi (\xi_2)|&=&|\Pr_Yf_{\xi_1}(0)-\Pr_Y f_{\xi_2}(0)|\leq\\ &\leq & \int^\infty_0e^{-sb}\Lip (G) |z_1(s)-z_2(s)|ds=\\ &=&\Lip (G) \int^\infty_0e^{-sb}|x_1(s)-x_2(s) |ds\leq \Lip (G)\int^\infty _0e^{(a-b+\Lip (F))s}|\xi_1-\xi_2|ds\\ &=&\frac{\Lip (G)}{b-a-\Lip (F)} |\xi_1-\xi_2|.\end{eqnarray*} This proves Theorem \ref{main}.\quad $\Box$ \noindent{\bf Proof of Lemma \ref{xz}.} We want to show that \begin{equation}\label{11.1}|x_1(t)- x_2(t)|\geq |y_1(t)-y_2(t)| \mbox{ for all } t\geq 0.\end{equation} Let us suppose that for some $t_1>0$ one has \begin{equation}\label{11.2} |y_1(t_1)-y_2(t_1)|>|x_1(t_1)-x_2 (t_1)|.\end{equation} \begin{claim} Inequality \eqref{11.2} implies \begin{equation}\label{11.3}|y_1(t)- y_2(t)|>|x_1(t)-x_2(t)|\mbox{ for all } t\geq t_1.\end{equation}\end{claim} To prove the claim, we suppose there is a point $t_2>t$, such that \begin{eqnarray}|x_1(t_2)-x_2(t_2)| &=&|y_1(t_2)-y_2(t_2)|\quad \mbox{ but}\nonumber \\ |y_1(t)-y_2(t)|&>&|x_1(t)-x_2(t)\quad \mbox{ for all }\quad t\in [t_1,t_2).\label{11.4}\end{eqnarray} Recall, that $z_i(t)=x_i(t)+y_i(t)$, $i=1,2$ are solutions to \eqref{1.5.1}-\eqref{1.5.2}, that is, for $t\in (t_1,t_2)$ and $i=1,2$ one has: \begin{eqnarray*}x_i(t)&=& e^{(t-t_1)A}x_i(t_1)+\int^t_{t_1} e^{(t-s)A}F(z_i(s))ds,\\ y_i(t)&=&e^{(t-t_2)B}y_i(t_2)- \int^{t_2}_te^{(t-s)B}G(z_i(s)) ds.\end{eqnarray*} Let us denote, for brevity: \begin{eqnarray*} u(t)&=&x_1(t)-x_2(t),\quad v(t)=y_1(t)-y_2(t),\\ f(t) &=&F(z_1(t))-F(z_2(t)),\quad g(t)=G(z_1(t))-G(z_2(t)),\quad t\in [t_1,t_2].\end{eqnarray*} Then \begin{eqnarray}u(t)&=&e^{(t-t_1)A} u(t_1)+\int^t_{t_1}e^{(t-s)A}f(s)ds, \label{12.1}\\ v(t)&=&e^{(t-t_2)B}v(t_2)- \int^{t_2}_te^{(t-s)}g(s)ds. \label{12.2}\end{eqnarray} Since $|z_1(t)-z_2(t)|=|u(t)|$ for $t\in [t_1,t_2]$ by \eqref{11.4}, we conclude: $$|f(t)|\leq \Lip (F) |v(t)|,\quad |g(t)|\leq \Lip (G)|v(t)|,\quad t\in [t_1,t_2].$$ Now \eqref{12.2} implies $$|v(t)|\leq e^{(t-t_2)b}|v(t_2)|+\int^{t_2}_t e^{(t-s)b}\Lip (G)|v(s)|ds,$$ and, by the Gronwall's inequality, \begin{equation} |v(t)|\leq |v(t_2)|e^{(\Lip (G)-b)(t_2-t)},\quad t\in [t_1,t_2]\label{12.4}\end{equation} We use the last inequality to have the following estimate in \eqref{12.1} for $t=t_2$: \begin{eqnarray}|u(t_2)|&\leq & e^{(t_2-t_1)a}|u(t_1)|+\Lip (F)|v(t_2)|\int^{t_2}_{t_1} e^{(t_2-s)a}e^{(\Lip (G)-b)(t_2-s)}ds\nonumber\\ &=&e^{(t_2-t_1)a}|u(t_1)|+ \frac{\Lip (F)}{b-a-\Lip (G)}|v(t_2)|[1- e^{(b-a-\Lip (G))(t_1-t_2)}]. \label{12.3}\end{eqnarray} However, by the first assumption in \eqref{11.4} one has $|v(t_2)|=|u(t_2)|$. Denote, for brevity, $\delta =b-a-\Lip (G)$, $\ell =\Lip (F)/\delta$. Solve \eqref{12.3} for $|v(t_2)|$ to get: $$|v(t_2)|\leq e^{(t_2-t_1)a}|u(t_1)|\{1-\ell (1-e^{\delta (t_1-t_2)})\}^{-1}.$$ Use again \eqref{12.4}, this time for $t=t_1$ to get: $$|v(t_1)|\leq |u(t_1)|\left\{\frac{e^{-\delta (t_2-t_1)}}{1-\ell (1-e^{-\delta (t_2-t_1)})}\right\}<|u(t_1)|.$$ Indeed, the expression in \{\quad \} is strictly less then 1 due to the gap condition \eqref{1.5}. But the inequality $|v(t_1)|<|u(t_1)|$ contradicts \eqref{11.2}, and the claim is proved. To finish the proof of the lemma, we stress that \eqref{11.3} implies $|z_1(t)-z_2(t)|=|v(t)|$ for all $t\in [t_1,\infty )$. Therefore, using \eqref{12.4} with $t=t_1$, we conclude that for an arbitrarily large $t_2\geq t_1$ one has: \begin{equation}\label{13.1} |v(t_1)|\leq |v(t_2)|e^{(\Lip(G)-b) (t_2-t_1)}.\end{equation} Recall, that $z_1-z_2=f_{\xi_1}-f_{\xi_2}\in E_\sigma$ with $\sigma1} \Lip (F_j)$, $\Lip (G)=\Lip (F_1)$ and the gap condition \eqref{1.5} of Corollary~\ref{back} gives the existence of the desired $\varphi _1=\psi :Y\to X$. Similarly, for $i=N$ Theorem \ref{main} gives $\varphi _N=\varphi :X\to Y$ for $X=X_N$, $Y=X_1+\ldots +X_{N-1}$. Fix $i=2,\ldots , N-1$. We will show here only the existence of a map $\varphi_i:X_i\to\hat{X}_i$ with the invariant graph. The estimates on the $\Lip(\varphi_i)$ as in \eqref{bigestphilip} will require more work; they will follow from Theorem \ref{central} below. Define subspaces $Y_-=X_1+\ldots +X_{i-1}$, $Y_+=X_{i+1}+\ldots +X_N$, $Y=Y_++Y_-$ and operators $B_-=\mbox{diag} (A_j)_{j=1}^{i-1}$, $B_+=\mbox{diag} (A_j)^N_{j=i+1}$. First, we apply Theorem \ref{main} for $X=Y_++X_i$, $Y=Y_-$ and $A=B_++A_i$, $B=B_-$ to get $\varphi :Y_++X_i\to Y_-$ with (forward) invariant graph ${\cal M}_\varphi =\{ y_++x_i+\varphi (y_++x_i)|y_++x_i\in Y_++X_i\}$. Next, we apply Corollary~\ref{back} for $X=Y_+$, $Y=X_i+Y_-$ and $A=B_+$, $B=A_i+B_-$ to get $\psi :X_i+Y_-\to Y_+$ with (backward) invariant graph ${\cal M}_\psi =\{\psi (x_i+y_-)+x_i+y_-|x_i+y_-\in X_i+Y_-\}$. Note, that $M={\cal M}_\varphi \cap {\cal M}_\psi$ is invariant in both directions, and $$M=\{y_++x_i+y_-|x_i\in X_i,y_+=\psi (x_i+\varphi (y_++x_i)),y_-=\varphi (\psi (x_i+y_-)+x_i\}.$$ Fix $x_i\in X_i$. Define a map $\rho_{x_i}:Y_++Y_-\to Y_++Y_-$ as follows: $$\rho_{x_i}:y_++y_-\mapsto \psi (x_i+\varphi (y_++x_i))+\varphi (\psi (x_i+y_-)+x_i).$$ Since $\Lip (\psi )<1$ and $\Lip (\varphi) <1$, one concludes $\sup_{x_i}\Lip (\rho _{x_i})<1$. Thus, there exists a unique $y(x_i)$ such that $\rho _{x_i}(y(x_i))=y(x_i)$. Define: $$\varphi _i(x_i):=y(x_i)=(I-\rho _{x_i})^{-1}(0).$$ Clearly, $\varphi _i$ is Lipschitz, $M=\mbox{graph }\varphi _i$.\quad $\Box$ The main step in the proof of estimates \eqref{bigestphilip} is to consider a system of type \sys, but with three equations. Consider \sys, and assume that the space $Y=Y_++Y_-$, the operator $B=\mbox{diag}(B_+,B_-)$, and the nonlinearity $G(z)=G_+(z)+G_-(z)$, where $G_\pm :Z\to Y_\pm$, and $B_\pm$ are operators on $Y_\pm$, respectively. In fact, system \sys takes now the following form: \begin{eqnarray}\dot{y}_+&=& B_+y_++G_+(y_++x+y_-),\nonumber\\ \dot{x} &=& Ax +F(y_++x+y_-),\label{3S}\\ \dot{y}_-&=&B_-y_- +G_-(y_++x+y_-).\nonumber \end{eqnarray} We assume that $A$ generates a strongly continuous group on $X$, and $B_+$ and $-B_-$ generates a strongly continuous semigroup on $Y_+$ and $Y_-$, respectively. Also, for constants $\alpha< b\le a <\beta$ we assume that the following estimates hold: \begin{eqnarray}\|e^{tA}\|&\leq &e^{ta},\quad \|e^{tB_+}\|\leq e^{t\alpha},\quad t\geq 0\nonumber\\ \|e^{tA}\| &\leq & e^{tb},\quad \|e^{tB_-}\|\leq e^{t\beta },\quad t\leq 0.\label{19.1}\end{eqnarray} Solutions to \eqref{3S} are understood in a mild sense, as in \eqref{1.5.1}-\eqref{1.5.2}, if applied for $A$ replaced by $B_++A$ and $B$ replaced by $B_-$. Assume gap conditions: \begin{equation}\Lip (G_+)+\Lip (F)\sigma_-$ as follows: \begin{eqnarray}a+\Lip (F) &<&\sigma_+<\beta -\Lip (G_-),\nonumber\\ \alpha +\Lip (G_+)&<&\sigma _-0\\ J_2&=&\int^t_{-\infty}e^{-t\sigma_-} \|e^{(t-s)B_+}\| \Lip (G_+)e^{\sigma_-s}ds,\\ J_3&=&\int^0_t e^{-t\sigma _-}\|e^{(t-s)B_-}\|\Lip (G_-)e^{\sigma_-s}ds %+\\ &\quad & +\int ^\infty_0e^{-t\sigma_-}\|e^{(t-s)B_-} \|\Lip (G_-)e^{\sigma _+s}ds,\end{eqnarray*} and \begin{eqnarray*}J_1 &\leq & \frac{\Lip (F)}{a-\sigma_-}\leq \frac{\Lip (F)}{b-\sigma_-},\\ J_2 &\leq &\frac{\Lip (G_+)}{\sigma_- -\alpha},\\ J_3 &\leq &\frac{\Lip (G_-)(1-e^{t(\beta -\sigma_-)})}{\beta -\sigma_-}+\frac{e^{t(\beta -\sigma_-)}\Lip (G_-)}{\beta -\sigma_+}\leq \frac{\Lip (G_-)}{\beta -\sigma_+}.\quad \Box\end{eqnarray*} Thus, for each $\xi \in X$ there exists a unique $f_\xi \in E_{\sigma _\pm}$ such that $T_\xi f_\xi =f_\xi$. Define: \begin{equation}\label{24.1} \Phi(\xi ):=\Pr_Yf_\xi (0)=\int^0_{-\infty}e^{-sB_+}G_+(f_\xi (s))ds-\int^\infty_0e^{-sB_-}G_-(f_\xi (s))ds.\end{equation} As in Remark~\ref{justLip}, one already has that $\Phi $ is Lipschitz. We proceed to estimate $\Lip (\Phi )$. Fix $\xi _1\neq \xi_2$ in $X$, let $$z_i(t)=f_{\xi_i}(t),\quad z_i(t)_=y^+_i(t)+x_i(t)+y^-_i(t),\quad t\in {\Bbb R}, \quad i=1,2.$$ Note, that $z_i$ are solutions to \sys, and $z_1-z_2\in E_{\sigma_\pm}$. \begin{lem}\label{centralxz} $|z_1(t)-z_2(t)|=|x_1(t)-x_2(t)|$ for all $t\in {\Bbb R}$. \end{lem} Let us first finish the proof of Theorem \ref{central} using the lemma. Since $$x_i(t)=e^{tA}\xi_i+\int^t_0 e^{(t-s)A}F(z_i(s))ds,\quad t\in {\Bbb R},\quad i=1,2,$$ Lemma \ref{centralxz} implies, for $t\leq 0$: $$|x_1(t)-x_2(t)|\leq e^{ta}|\xi_1-\xi_2|+\Lip (F)\int^t_0e^{(t-s)a}|x_1(s)-x_2(s) |ds.$$ The Gronwall's inequality implies, for $t\geq 0$: \begin{equation}\label{24.2} |x_1(t)-x_2(t)|\leq e^{t(a+\Lip (F))}|\xi _1-\xi _2|,\quad t\geq 0.\end{equation} Similarly, for $t\leq 0$: $$|x_1(t)-x_2(t)|\leq e^{tb}|\xi_1-\xi_2|+\Lip (F)\int^0_te^{(t-s)b}|x_1(s)-x_2(s) |ds,$$ and \begin{equation}|x_1(t)-x_2(t)|\leq e^{t(b-\Lip (F))}|\xi_1-\xi_2|,\quad t\leq 0.\label{24.3}\end{equation} We use \eqref{24.1} and Lemma \ref{centralxz} to estimate: \begin{eqnarray*}|\Phi (\xi _1)-\Phi (\xi_2)|&\leq & \max \{\int^0_{-\infty}e^{-s\alpha} \Lip (G_+)|z_1(s)-z_2(s)|ds,\\ &\quad & \int^\infty_0e^{-s\beta}\Lip (G_-)|z_1(s)-z_2(s)|ds\}=\\&=&\max \{\Lip (G_+)\int^0_{-\infty}e^{-s\alpha}| x_1(s)-x_2(s)|ds,\\ &\quad & \Lip (G_-)\int^\infty_0e^{-s\beta}|x_1(s)- x_2(s)|ds\}.\end{eqnarray*} Now apply \eqref{24.2}-\eqref{24.3} to get: \begin{eqnarray*}\Lip (\Phi )&\leq & \max \{ \Lip (G_+)\int^0_{-\infty}e^{-s\alpha }e^{s(b-\Lip (F))}ds,\\ &\quad \qquad & \Lip (G_-)\int^\infty_0e^{-s\beta }e^{s(a+\Lip (F))}ds\}=\\ &=&\max\left\{\frac{\Lip (G_+)}{b-\alpha -\Lip (F)},\frac{\Lip (G_-)}{\beta -a-\Lip (F)}\right\}.\quad \Box\end{eqnarray*} \noindent{\bf Proof of Lemma \ref{centralxz}.} Some preparations are in order. Denote $z(t)=z_1(t)-z_2(t)$, $x(t)=x_1(t)-x_2(t)$, $y^\pm (t)=y^\pm _1(t)-y^\pm _2(t)$. We want to prove that \begin{equation}\label{25.1} |x(t)|\geq \max \{|y^+(t)|, |y^-(t)|\},\quad t\in {\Bbb R}.\end{equation} \begin{prop}\label{contrprop} For each $t_0\in {\Bbb R}$ {\bf neither} one of the following inequalities is possible: \begin{enumerate}\item[(a)] $\max\{|x(t_0)|,|y^-(t_0)|\}<|y^+ (t_0)|$; \item[(b)] $\max \{|x(t_0)|,|y^+(t_0)|\}<|y^-(t_0)|$; \item[(c)] $|x(t_0)|<|y^+(t_0)|=|y^-(t_0)|$. \end{enumerate}\end{prop} To derive \eqref{25.1} from the proposition, let us suppose that, say, $|x(t_0)|<|y^+(t_0)|$ for some $t_0\in {\Bbb R}$. Clearly, $|y^-(t_0)|\neq |y^+(t_0)|$, otherwise we get (c). By $|y^-(t_0)|>|y^+(t_0)|$ yields (b), while $|y^- (t_0)|<|y^+(t_0)|$ yields (a), a contradiction that proves the lemma.\quad $\Box$ \noindent{\bf Proof of Proposition~\ref{contrprop}.} Let us suppose that (a) holds. We claim, that (a) implies \begin{equation}\label{26.1} \max \{ |x(t)|, |y^-(t)|\}<|y^+(t)|\mbox{ for all }t\leq t_0.\end{equation} to prove the claim \eqref{26.1}, let us denote: $u(t)=x(t)+y^-(t)$, $v(t)=y^+(t)$. Thus, (a) means that $|u(t_0)|<|v(t_0)|$. Suppose, there exists a point $t_10$ by the choice of $\sigma_-$ in \eqref{21.1}. So, we conclude that $0=|v(t_0)|=|y^+(t_0)|$, which contradicts to the strict inequality in (a). Let us suppose that (b) holds. We claim that (b) implies \begin{equation}\max\{|x(t)|,|y^+(t)| \}<|y^-(t)|\mbox{ for all }t\geq t_0.\label{29.1}\end{equation} Indeed, denote $v(t)=x(t)+y^+(t)$, $v(t)=|y^-(t)|$, $f(t)=F(z_1(t))-F(z_2(t))+G_+(z_1 (t))-G_+(z_2(t))$, $g(t)=G_-(z_1(t))-G_-(z_2(t))$. Suppose, there exists $t_2>t_0$ such that $|u(t)|<|v(t)|$ for all $t\in [t_0,t_2)$, but $|u(t_2)|=|v(t_2)|$. Now, for $t\in [t_0,t_2]$, \begin{eqnarray} u(t)&=&e^{(t-t_0)(A+B_+)}u(t_0)+ \int^t_{t_0}e^{(t-s)(A+B_+)}f(s)ds \label{29.2}\\ v(t)&=&e^{(t-t_2)B_-}v(t_2)- \int^{t_2}_te^{(t-s)B_-}g(s)ds. \label{29.3}\end{eqnarray} Gronwall's inequality and the estimate $|g(s)|\leq \Lip (G_-)|v(s)|$ applied in \eqref{29.3} give \begin{equation} |v(t)|\leq e^{(t-t_2)(\beta -\Lip (G_-))}|v(t_2)|.\label{30.1} \end{equation} In particular, for $t=t_0$ one gets: \begin{equation}|v(t_0)|\leq e^{(t_0-t_2)(\beta -\Lip (G_-))}|v(t_2)|.\label{30.2} \end{equation} As before, apply \eqref{30.1} in $u$-equation \eqref{29.2} at $t=t_2$. For the $x$-component one has: \begin{equation}|x(t_2)|\leq e^{(t_2-t_0)a}|x(t_0)|+\frac{\Lip (F)}{\beta -a-\Lip (G_-)}\left(1-e^{(t_0-t_2)(\beta -a-\Lip (G_-))}\right)|v(t_2)|. \label{30.3}\end{equation} By our assumption $|v(t_2)|=|u(t_2)|=\max \{|x(t_2)|,\quad |y^+(t_2)|\}$. If $|v(t_2)|=|x(t_2)|$, similarly to the case (a), \eqref{30.3} leads to a contradiction. Analogous argument works for the $y^+$-component in the $u$-equation \eqref{29.2}, and the claim \eqref{29.1} is proved. Now, since $z(\cdot )=z_1(\cdot )-z_2(\cdot )\in E_{\sigma _\pm }$ and $|z(t_2)|=|v(t_2)|$ for any $t_2>\max \{0,t_0\}$, we have $|v(t_2)|\leq \|z \|_{\sigma_\pm }e^{\sigma _+t_2}$. Thus, by \eqref{30.2}, $$e^{(\Lip (G_-)-\beta )t_0}|v(t_0)|\leq e^{t_2(\sigma_+-\beta +\Lip (G_-))}\to 0\mbox{ as } t_2\to \infty$$ by the choice of $\sigma_+$ in \eqref{21.1}. But $0=|v(t_0)|=|y^-(t_0)|$ contradicts the strict inequality in (b). Finally, let us suppose that (c) holds. First, we note that there exists $t_1|x(t_0)|$, which is a contradiction.\quad $\Box$ \begin{thebibliography}{xxxx} \bi{AW} B.~Aulbach and T.~Wanner, Integral manifolds for Caratheodory type differential equations in Banach spaces, In: ``Six Lectures on Dynamical Systems'', B.~Aulbach and F.~Colonius (eds.), World Scientific, Singapore (1996) 45--119. \bi{BJ} P.~Bates and C.~Jones, Invariant manifolds for semilinear partial differential equations, {\em Dynamics Reported}, {\bf 2} (1989) 1--38. \bi{Carr} J.~Carr, ``Applications of Centre Manifold Theory'', Springer Verlag, New York, 1981. \bibitem{CR} N.~Casta\~{n}eda and R.~Rosa, Optimal estimates of the uncoupling of differential equations, {\em J. Dynamics Diff. Eqns.} {\bf 8} (1996) 103--139. \bibitem{CHT} Xu-Yan Chen, J.~Hale and Bin Tan, Invariant foliations for $C^1$ semigroups in Banach spaces {\em J.~Diff. Eqns}, to appear. \bi{ChowLinLu} S.-N.~Chow, X.-B.~Lin, and K.~Lu, Smooth invariant foliations in infinite dimensional spaces, {\em J. Diff. Eqns.} {\bf 94} (1991) 266--291. \bibitem{ChowLu} S.-N.~Chow and K.~Lu, $C^k$ centre unstable manifolds, {\em Proc. Royal Soc. Edinburgh,} {\bf 108A} (1988) 303--320. \bi{ChLu} S.-N.~Chow and K.~Lu, Invariant manifolds for flows in Banach spaces, {\em J. Diff. Eqns.} {\bf 74} (1988) 285--317. \bi{ChLuSell} S.~N.~Chow, K.~Lu, and G.~Sell, Smoothness of inertial manifolds, {\em J. Math. Anal. Appl.} {\bf 169} (1992) 283--312. \bi{ChowYi} S.~N.~Chow and Y.~Yi, Center manifold and stability for skew-product flows, {\em J. Dynamics Diff. Eqns.} {\bf 6} (1994) 543--582. \bibitem{DK} J.~Daleckij and M.~Krein, ``Stability of Differential Equations in Banach Space," Amer.~Math.~Soc., Providence, RI, 1974. \bi{DapLu} G.~Da~Prato and A.~Lunardi, Stability, instability and center manifold theorem for fully nonlinear autonomous parabolic equations in Banach spaces, {\em Arch. Rat. Mech. Anal.} {\bf 101}, no. 2, (1988) 115--141. \bi{Delay} O. Diekmann, S.~A.~van~Gils, S.~M.~ Verduyn Lunel, and H.-O.~Walther, ``Delay Equations. Functional-, Complex-, and Nonlinear Analysis'', Springer Verlag, New York, 1995. \bibitem{Fo} C.~Foias, `` Lecture Notes on Ordinary Differential Equations,'' Indiana University, 1993 (unpublished). \bi{Hale} J.~Hale, ``Ordinary Differential Equations'', Wiley, New York, 1969. \bibitem{Henry} D.~Henry, ``Geometric Theory of Nonlinear Parabolic Equations," Lecture Notes in Math., no.~840, Springer-Verlag, New York, 1981. \bibitem{HPS} M.~Hirsch, C.~Pugh, M.~Shub, ``Invariant Manifolds'', Lect. Notes Math. {\bf 583}, Springer-Verlag, 1977. \bibitem{KP} U.~Kirchgraber and K.~Palmer, ``Geometry in the Neighborhood of Invariant Manifolds of Maps and Flows and Linearization'', Pitman, London, 1991. \bibitem{Mik} M.~Miklavcic, A sharp condition for existence of an inertial manifold, {\em J. Dynamics Diff. Eqns.} {\bf 3} (1991) 437--456. \bibitem{Palmer} K.~Palmer, Linearization near an integral manifold, {\em J.~Math. Anal. Appl.} {\bf 51} (1975) 243--255. \bibitem{Pazy} A.~Pazy, ``Semigroups of Linear Operators and Applications to Partial Differential Equations," Springer-Verlag, N.Y./Berlin, 1983. \bibitem{Shub} M.~Shub, `` Global Stability of Dynamical Systems,'' Springer-Verlag, N. Y. / Berlin, 1987. \bi{Scarp} B.~Scarpellini, Center manifolds of infinite dimensions I: Main results and applications, {\em J. Appl. Math. Phys. (ZAMP)} {\bf 42} (1991) 1--32. \bi{Si} J.~Sijbrand, Properties of center manifolds, {\em Trans. Amer. Math. Soc.} {\bf 289} (1985) 431--469. \bi{Vander} A.~Vanderbauwhede, Center manifolds, normal forms and elementary bifurcations, {\em Dynamics Reported}, {\bf 2} (1989) 89--169. \bibitem{VI} A.~Vanderbauwhede and G.~Iooss, Center manifold theory in infinite dimensions, {\em Dynamics Reported}, {\bf 1} (new ser.) (1992) 125--163. \bi{VG} A.~Vanderbauwhede and S.~A.~Van Gils, Center manifolds and contractions on a scale of Banach spaces, {\em J. Funct. Anal.} {\bf 72} (1987) 209--224. \bi{ZW} Zhang Weinian, Generalized exponential dichotomies and invariant manifolds for differential equations, {\em Advances in Math.} {\bf 22}, no 1, (1993) 1--44. \bi{Yi} Y.~Yi, A generalized integral manifold theorem, {\em J. Diff. Eqns.} {\bf 102} (1993) 153--187. \end{thebibliography} \end{document}