xz$ needed in Section~6; then taking $\lambda=y/[(y+x)(y+z)]$ in the generating function (\ref{GC}) we have % \begin{equation} \sum_{q=0}^\infty \left(\frac{y}{(y+x)(y+z)}\right)^q\langle1|C^q|1\rangle = \frac{(y+x)(y+z)}{y^2}, \end{equation} % so that (\ref{GGG}) yields % \begin{eqnarray} \langle 1 | G^n | 1 \rangle \simeq \left( 1 - \frac{xz}{y^2} \right) \label{Glarge} \left[ \frac{(y+x)(y+z)}{y} \right]^n. \end{eqnarray} % \clearpage \begin{thebibliography}{99} \bibitem{Spohn} H. Spohn, {\it Large-Scale Dynamics of Interacting Particles}, Texts and Monographs in Physics (Springer-Verlag, New York, 1991). A. De Masi and E. Presutti, {\it Mathematical Methods for Hydrodynamic Limits}, Lecture Notes in Mathematics 1501 (Springer-Verlag, New York, 1991). See also references therein. \bibitem{LPS} J. Lebowitz, E. Presutti, and H. Spohn, ``Microscopic models of hydrodynamic behavior,'' {\it J. Stat. Phys.} {\bf 51}: 841--862 (1988). \bibitem{BS} B. Schmittman: ``Critical behavior of the driven diffusive lattice gas,'' {\it Int. J. Mod. Phys.} {\bf B4}: 2269--2306 (1990). \bibitem{GLMS} P. Garrido, J. Lebowitz, C. Maes, and H. Spohn, ``Long-range correlations for conservative dynamics,'' {\it Phys. Rev. A} {\bf 42}: 1954--1968 (1990). \bibitem{Grinstein} R. Bhagavatula, G. Grinstein, Y. He, and C. Jayaprakash, ``Algebraic Correlations in Conserving Chaotic Systems,'' {\it Phys. Rev. Lett.} {\bf 69}: 3483--3486 (1992). \bibitem{L} T. M. Liggett, {\it Interacting Particle Systems} (Springer-Verlag, New York, 1985), and references therein. \bibitem{R} H. Rost, ``Nonequilibrium behavior of many particle process: density profiles and local equilibria,'' {\it Z. Wahrsch. Verw. Gebiete} {\bf 58}: 41--53 (1981). \bibitem{BF} A. Benassi and J. P. Fouque, ``Hydrodynamic limit for the asymmetric simple exclusion process,'' {\it Ann. Prob.} {\bf 15}: 546--560 (1987). \bibitem{AV} E. D. Andjel and M. E. Vares, ``Hydrodynamical equations for attractive particle systems on $\bbz$,'' {\it J. Stat. Phys.} {\bf 47}: 265--288 (1987). \bibitem{W} D. Wick, ``A dynamical phase transition in an infinite particle system,'' {\it J. Stat. Phys.} {\bf 38}: 1015--1025 (1985). \bibitem{F} P. Ferrari, ``The simple exclusion process as seen from a tagged particle,'' {\it Ann. Prob.} {\bf 14}: 1277--1290 (1986). \bibitem{ABL} E. D. Andjel, M. Bramson, and T. M. Liggett, ``Shocks in the asymmetric exclusion process,'' {\it Prob. Th. Rel. Fields} {\bf 78}: 231--247 (1988). \bibitem{DKPS} A. De Masi, C. Kipnis, E. Presutti, and E. Saada, ``Microscopic structure at the shock in the asymmetric simple exclusion,'' {\it Stoch. and Stoch. Rep.} {\bf 27}: 151--165 (1989). \bibitem{FKS} P. Ferrari, C. Kipnis, and E. Saada, ``Microscopic structure of traveling waves in the asymmetric simple exclusion,'' {\it Ann. Prob.} {\bf 19}: 226--244 (1991). \bibitem{F2} P. Ferrari, ``Shock fluctuations in asymmetric simple exclusion,'' {\it Prob. Th. Rel. Fields} {\bf 91}: 81--101 (1992). \bibitem{BCFN} C. Boldrighini, G. Cosimi, S. Frigio, and M. G. Nu\~nes, ``Computer simulation of shock waves in the completely asymmetric simple exclusion process,'' {\it J. Stat. Phys} {\bf 55}: 611--623 (1989). \bibitem{JL} S. A. Janowsky and J. L. Lebowitz, ``Finite Size Effects and Shock Fluctuations in the Asymmetric Simple Exclusion Process,'' {\it Phys. Rev. A} {\bf 45}: 618--625 (1992). \bibitem{DJLS} B. Derrida, S. A. Janowsky, J. L. Lebowitz, and E. R. Speer, ``Microscopic Shock Profiles: Exact Solution of a Nonequilibrium System,'' submitted to {\it Europhys. Lett.} \bibitem{DEHP} B. Derrida, M. R. Evans, V. Hakim, and V. Pasquier, ``An Exact Solution of a 1D Asymmetric Exclusion Model Using a Matrix Formulation,'' {\it J. Phys. A}, to appear. \bibitem{DDM} B. Derrida, E. Domany, and D. Mukamel, ``An exact solution of a one dimensional asymmetric exclusion model with open boundaries,'' {\it J. Stat.\ Phys.} {\bf 69}: 667--687 (1992). \end{thebibliography} \end{document} % -- CUT HERE -- -- CUT HERE -- -- CUT HERE -- -- CUT HERE -- % ENDBODY