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1. Introduction


Quantum graphs keep attracting a lot of attention, both as simple but effective models of


numerous artificially prepared microscopic structures in which transport is dominantly


ballistic, as well as a source of interesting questions in quantum theory. We refer to the


recent monograph [BK13] which can give the reader a picture of the breath and richness


of the subject. In this paper we focus on one class of such graphs, namely those with a


chain structure. They are characterized by a mixed dimensionality being periodic in one


direction, thus giving typically rise to band-and-gap spectra, the structure one which


depends on the ‘transverse’ shape, see e.g. [EKW10]. Moreover, it has been observed


recently that manipulating the vertex coupling one can control the transport in such


chains in an intriguing way [CP14].


A question of a particular interest, both theoretically and from the practical point


of view, concerns influence of magnetic field on quantum dynamics on such graph. Our


aim in this paper is to study the simplest chain consisting of a single array of rings in


presence of a homogeneous magnetic field; in contrast to [CP14] we consider the simplest


nontrivial vertex coupling. Our main concern will be local perturbations of periodicity


and the discrete spectrum they cause. A similar problem in the nonmagnetic case


was considered in [DET08] where the influence of a simple geometric perturbations,


‘bending’ of the chain, was analyzed. Here we focus on perturbations coming from


coupling constant variations. It is not the only possibility, of course, in a sequel to this


paper we are going to discuss the effect of local field modifications.


Let us now describe the model and the questions to be addressed in more details.


We are going to consider a chain graph Γ consisting of an array of rings of unit radius


— cf. Fig. 1 — connected through their touching points. The graph Γ is naturally


parametrized by two copies of the real line R corresponding to the upper and lower


semicircles, respectively. The state Hilbert space of a nonrelativistic and spinless charged


particle confined to Γ is L2(Γ). As indicated, we suppose that the particle is moving


under the influence of a homogeneous magnetic field perpendicular to the graph plane.


Since values of the physical constants are not important in our considerations we put


} = 2m = e = 1, where e is the particle charge, and identify the particle Hamiltonian


with the magnetic Laplacian acting as ψj 7→ −D2ψj on each graph link (the definition


of the quasiderivative D will be given in the next section). The domain of this operator


consists of all functions from the Sobolev space H2
loc(Γ) satisfying the δ-coupling at the


graph vertices which are characterized by conditions


ψi(0) = ψj(0) =: ψ(0) , i, j ∈ n ,
n∑
i=1


Dψi(0) = αψ(0) , (1.1)


where n = {1, 2, . . . , n} is the index set numbering the edges emanating from the vertex


— in our case n = 4 — and α ∈ R ∪ {∞} is the coupling constant possibly different


at different vertices of the chain. Note the vertex coupling (1.1) is a particular — and


simplest nontrivial — case of the general conditions that make the graph magnetic


Laplacian self-adjoint [KS03].
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In what follows we denote by α = {αj}j∈Z the set of coupling constants and by


−∆α the above described Hamiltonian. In accordance with our stated goal, we start


the discussion of spectral properties of this operator in Sec. 2 with the periodic case,


i.e. the situation when all the αj in α are equal to fixed α ∈ R. It is not difficult to


perform the Bloch-Floquet analysis showing that in this case the spectrum of σ(−∆α)


has a band-and-gap structure.


As we have indicated, our main goal is to analyze coupling constant perturbations,


that is, to look what happens if the ‘constant’ sequence {. . . , α, α, . . .} is modified to


αj = α+ γj , j ∈ M := {1, . . . ,m} ,
αj = α , j ∈ Z \M .


The method we employ is based on translating the spectral problem for the differential


equation in question into suitable difference equations. This trick is well known in


quantum graph theory [Ca97, Ex97, Pa13], however, it is assumed usually that not


more than one edge connects any two graph vertices. Since this is not the case here,


we have to work out the procedure for our purpose; this will be done in Sec. 3. Using


it we shall analyze in Sec. 4 the discrete spectrum coming from the perturbation both


generally and in examples where one or two vertices are perturbed.


The last two sections are devoted to particular cases. One is motivated by


comparison to the usual theory of Schrödinger operators; we ask about sufficient


conditions on the perturbation γj to assure existence of an eigenvalue of the perturbed


operator in the first spectral gap (under the threshold of the continuous spectrum) of


the unperturbed system. In Sec. 5 we will show that such a condition has the form∑
j∈M


γj < 0 , (1.2)


which is an analogue of the well-known necessary and sufficient condition
∫
R V (x) dx ≤ 0


valid for 1D Schrödinger operators −d2/dx2+V (x) with potentials V satisfying certain


integral-form decay requirements [Si76]. If the perturbation is sufficiently weak, there


is precisely one eigenvalue below the continuous spectrum; we derive the corresponding


asymptotic expansion in our model. Finally, in Sec. 6 we consider two distant


perturbations and show that their mutual influence decays exponentially with their


distance in analogy with the Agmon metric effects [Ag82] in the usual theory of


Schrödinger operators.


2. The spectrum of the periodic system


Let us first consider the ring chain Γ as sketched in Fig. 1; without loss of generality we


may and will suppose that the circumference of each ring is 2π. We suppose that the


particle is moving in the magnetic field generated by the vector potential A. The field is


assumed to be perpendicular to the graph plane and homogeneous§. The corresponding


§ In fact, however, the only quantity of importance will be the magnetic flux through the rings, hence


in general the field must be just invariant with respect to discrete shifts along the chain.
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Figure 1. The chain graph Γ


vector potential can be thus chosen tangential to each ring and constant; since the


coordinates we use to parametrize Γ refer to different orientations in the upper and


lower part of the chain, respectively, we choose −A as the potential value on the upper


halfcircles and A on the lower ones.


We denote by −∆α the particle Hamiltonian which acts as (−i∇ − A)2 on each


graph link, has the domain consisting of all functions from H2
loc(Γ) which satisfy the


boundary conditions (1.1) at the vertices of Γ with the quasiderivatives being equal to


the sum of the derivative and the function value multiplied by the tangential component


of eA as usual [KS03]. In the present case, however, we have two pairs of vectors of


opposite orientation so their contributions cancel and the left-hand side of (1.1) is in


fact nothing else than the sum of the derivatives taking into account different coordinate


orientations. In this section we suppose that the coupling constant α is the same at each


vertex, and we are going to determine the band-and-gap structure of the spectrum.


Figure 2. Elementary cell of the periodic system


In view of the periodicity of Γ and −∆α with respect to the discrete shifts, the


spectrum can be computed using Bloch-Floquet decomposition [BK13, Sec. 4.2]. Let us


consider an elementary cell with the wave function components denoted according to


Fig. 2 and look for the spectrum of the Floquet components of −∆α. Since the operator


acts as −D2 := (i d
dx


− A)2 on the upper halfcircles and as −D2 := (i d
dx


+ A)2 on the


lower ones, each component of the eigenfunction with energy E := k2 ̸= 0 is a linear


combination of the functions e−iAxe±ikx on the upper graph links and of eiAxe±ikx on the


lower ones. In what follows we conventionally employ the principal branch of the square


root, namely, the momentum k should be positive for E > 0, while for E negative we


put k = iκ with κ > 0. For a given E ̸= 0, the wave function components on the


elementary cell are therefore given by


ψL(x) = e−iAx(C+
L e


ikx + C−
L e


−ikx) , x ∈ [−π/2, 0] ,
ψR(x) = e−iAx(C+


R e
ikx + C−


R e
−ikx) , x ∈ [0, π/2] ,


(2.3)
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φL(x) = eiAx(D+
L e


ikx +D−
L e


−ikx) , x ∈ [−π/2, 0] ,
φR(x) = eiAx(D+


Re
ikx +D−


Re
−ikx) , x ∈ [0, π/2] .


As we have said, at the contact point the δ-coupling is assumed, i.e. we have


ψL(0) = ψR(0) = φL(0) = φR(0) ,
(2.4)


−DψL(0) +DψR(0)−DφL(0) +DφR(0) = αψL(0) .


On the other hand, at the ‘free’ ends of the cell the Floquet conditions are imposed,


ψR(π/2) = eiθψL(−π/2), DψR(π/2) = eiθDψL(−π/2) ,
(2.5)


φR(π/2) = eiθφL(−π/2), DφR(π/2) = eiθDφL(−π/2) ,


with θ running through [−π, π); alternatively we may say that the quasimomentum 1
2π
θ


runs through [−1/2, 1/2), the Brillouin zone of the problem. In both cases the vector


potential contributions subtract and D can be replaced by the usual derivative.


Substituting (2.3) into (2.4) and (2.5), one obtains after simple manipulations an


equation for the phase factor eiθ, namely


sin kπ cosAπ(e2iθ − 2ξ(k)eiθ + 1) = 0, (2.6)


with


ξ(k) :=
1


cosAπ


(
cos kπ +


α


4k
sin kπ


)
,


which has real coefficients for any k ∈ R ∪ iR \ {0} and the discriminant equal to


D = 4(ξ(k)2 − 1) .


We will treat the special cases A − 1
2
∈ Z and k ∈ N later, now we will suppose A − 1


2


does not belong to Z, the set of integer numbers, while k does not belong to N, the set


of natural numbers. We have to determine values of k2 for which there is a θ ∈ [−π, π)
such that (2.6) is satisfied, in other words, for which k2 it has, as an equation in the


unknown eiθ, at least one root of modulus one. Note that a pair of solutions of (2.6)


always give one when multiplied, regardless the value of k, hence either both roots are


complex conjugated of modulus one, or one is of modulus greater than one and the


other has modulus smaller than one. Obviously, the latter situation corresponds to a


positive discriminant, and the former one to the discriminant less or equal to zero. We


summarize this discussion as follows:


Proposition 2.1. Suppose that A− 1
2
/∈ Z and k ∈ R+ ∪ iR+ \ N. Then k2 ∈ σ(−∆α)


holds if and only if the condition


|ξ(k)| ≤ 1 (2.7)


is satisfied.


In particular, the negative spectrum is obtained by putting k = iκ for κ > 0 and


rewriting the inequality (2.7) in terms of this variable. Note that since sinhx ̸= 0 for


all x > 0, it never occurs that sin kπ = 0 for k ∈ iR+, the positive imaginary axis, thus


there is no need to treat this case separately like for k ∈ R+, cf. (2.6) above.
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Corollary 2.2. If A− 1
2
/∈ Z and κ > 0, then −κ2 ∈ σ(−∆α) holds if and only if∣∣∣ 1


cosAπ


(
coshκπ +


α


4κ
sinhκπ


)∣∣∣ ≤ 1 .


Observe that in the case E = 0 we repeat similar arguments to get the equation


e2iθ − 2eiθ


cosAπ


(
1 +


απ


4


)
+ 1 = 0 ,


replacing (2.6), whence we infer that 0 ∈ σ(−∆α) holds if and only if∣∣∣ 1


cosAπ


(
1 +


απ


4


)∣∣∣ ≤ 1 ,


hence zero can belong to the continuous part of the spectrum only and this happens iff


α ∈ [−4(| cosAπ|+ 1)/π, 4(| cosAπ| − 1)/π].


Let us finally mention the cases k ∈ N and A − 1
2
∈ Z left out above. In the


former one it is straightforward to check that k2 is an eigenvalue, and moreover,


that it has an infinite multiplicity. One can construct an eigenfunction which is


supported by two adjacent circles, which is given by ψL(x) = e−iAx sin kx and ψR(x) =


(−1)k+1eiA(π−x) sin kx with x ∈ [0, π] on the upper semicircles and ψL(x) = −eiAx sin kx


and ψR(x) = (−1)keiA(x−π) sin kx with x ∈ [0, π] on the lower ones. In the extremal


case A ∈ Z when | cosAπ| = 1, we can construct an eigenfunction supported by a single


circle, namely, ψ(x) = e−iAx sin kx on the upper semicircle and ψ(x) = −eiAx sin kx


on the lower one. In the case A − 1
2
∈ Z the spectrum is produced by solutions to


the equation cos kπ + α
4k


sin kπ = 0, each of which yields an eigenvalue of an infinite


multiplicity. One can construct an eigenfunction supported by two adjacent circles,


which is given by ψL(x) = −e−iAx sin kx, x ∈ [0, π], and ψR(x) = eiA(π−x) sin k(π − x),


x ∈ [0, π], on the upper semicircles and by φL(x) = eiAx sin kx, x ∈ [0, π], and


φR(x) = eiA(x−π) sin k(x− π), x ∈ [0, π], on the lower ones.


In conclusion, we can make the following claim about σ(−∆α).


Theorem 2.3 (Magnetic case). Assume that A /∈ Z. If A − 1
2
∈ Z; then the spectrum


of −∆α consists of two series of infinitely degenerate eigenvalues {k2 ∈ R: ξ(k) = 0}
and {k2 ∈ R: k ∈ N}.


On the other hand, suppose that A − 1
2
/∈ Z; then the spectrum of −∆α consists


of infinitely degenerate eigenvalues equal to k2 with k ∈ N, and absolutely continuous


spectral bands with the following properties:


Every spectral band except the first one is contained in an interval (n2, (n + 1)2)


with n ∈ N. The position of the first spectral band depends on α, namely, it is included


in (0, 1) if α > 4(| cosAπ| − 1)/π or it is negative if α < −4(| cosAπ|+ 1)/π, otherwise


the first spectral band contains zero.


The proof follows directly from Proposition 2.1 and the explicit formulæ given above.


The behavior of the first spectral band as a function of the coupling constant for a fixed


value of the magnetic flux is illustrated in Fig. 3.


The reader may wonder why integer values of A are not included in the ‘magnetic’


case. The reason is seen from the fact that the above spectral condition is invariant with







Spectra of magnetic chain graphs 7


Figure 3. The first spectral band of the operator −∆α against α at cosAπ = 0.7.


respect to the change of A by an integer which reflects the existence of a simple gauge


transformation between such cases. We note that in the chosen units the magnetic flux


quantum is 2π and A = 1
2
B = 1


2π
Φ; we can then rephrase the above claim saying the


systems differing by an integer number of flux quanta through each ring are physically


equivalent. In this sense the case of an integer A is thus equivalent to the non-magnetic


chain treated in [DET08]; to make the exposition self-contained, it is nevertheless useful


to single it out and state it explicitly.


Theorem 2.4 (Non-magnetic case). Suppose that A ∈ Z; then the spectrum of −∆α


consists of infinitely degenerate eigenvalues equal to k2 with k ∈ N, and absolutely


continuous spectral bands with the following properties:


If α > 0, then every spectral band is contained in an interval (n2, (n + 1)2] with


n ∈ N ∪ {0}, and its upper edge coincides with the value (n+ 1)2.


If α < 0, then in each interval [n2, (n+1)2) with n ∈ N there is exactly one spectral


band the lower edge of which coincides with n2. In addition, there is a spectral band


with the lower edge equal to k2 < 0, where k is the solution to the equation |ξ(k)| = 1


with the smallest square. The upper edge of this band is produced by the solution of the


equation with the second smallest square. The position of the upper edge of this band


depends on α, namely if −8/π < α < 0, then it is contained in (0, 1). On the other


hand, for α < −8/π the upper edge is negative and for α = −8/π it equals zero.


It is also worth mentioning that if | cosAπ| < 1, the interval (n2, (n+1)2) contains


one band and two gaps parts. Moreover, if | cosAπ| increases, the both gaps shrink, and


in addition, if α is positive (negative), then the right (respectively, left) gap vanishes in


the limit | cosAπ| → 1. Finally, for α = 0 the spectrum of the Hamiltonian coincides


with the positive half-line for | cosAπ| = 1, while it keeps the band structure with open


gaps for | cosAπ| < 1.
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3. Duality between differential and difference operators


Denote by α = {αj}j∈Z an arbitrary but fixed sequence of real numbers and consider


the corresponding magnetic Laplacian −∆α on our chain graph, that is, the operator


acting as −D2 on each graph edge with the domain consisting of those functions from


the Sobolev space that satisfy the δ boundary conditions at the graph vertices,


ψj(jπ) = φj(jπ) = ψj−1(jπ) = φj−1(jπ) , (3.8)


Dψj(jπ) +Dφj(jπ)−Dψj−1(jπ)−Dφj−1(jπ) = αjψj(jπ) . (3.9)


As before the wave function component ψj corresponds here to the upper halfcircle of


the jth ring while φj stands for the lower one, and D can be replaced by the usual


derivative. Our aim in this section is to formulate a one-to-one correspondence between


the differential operator −∆α in L2(Γ) and a certain operator acting in ℓ2(Z). We seek


a difference equation such that every bounded (square summable) solution of it gives


rise to a bounded (square integrable) solution of the Schrödinger equation corresponding


to −∆α, and vice versa every bounded (square integrable) solution of the Schrödinger


equation produces a bounded (square summable) solution of the difference equation.


This connection will play a crucial role in the following sections in determining the


spectrum of −∆α for particular sequences α.


Denote by
(
ψ
φ


)
the general solutions of the Schrödinger equation


(−∆α − k2)


(
ψ(x, k)


φ(x, k)


)
= 0 , ℑk ≥ 0 ,


which can be rewritten componentwise on the upper and lower semicircles as follows


(−D2 − k2)ψ(x, k) = 0 , ℑk ≥ 0 , x ∈ Ij ,
(3.10)


(−D2 − k2)φ(x, k) = 0 , ℑk ≥ 0 , x ∈ Ij ,


where the interval Ij := (jπ, (j + 1)π) corresponds to both the upper and lower


halfcircles. Recalling that the wave function should satisfy the continuity condition


(3.8), we see that the general solutions ψ and φ and their quasiderivatives are given by


ψ(x, k) = eiA(jπ−x)
(
ψ(jπ, k) cos k(x− jπ) +Dψ((jπ)+, k) sin k(x− jπ)


k


)
,


(3.11)
Dψ(x, k) = eiA(jπ−x)(−ψ(jπ, k) k sin k(x− jπ) +Dψ((jπ)+, k) cos k(x− jπ))


and


φ(x, k) = eiA(x−jπ)
(
φ(jπ, k) cos k(x− jπ) +Dφ((jπ)+, k) sin k(x− jπ)


k


)
,


(3.12)
Dφ(x, k) = eiA(x−jπ)(−φ(jπ, k) k sin k(x− jπ) +Dφ((jπ)+, k) cos k(x− jπ))


for ℑk ≥ 0 and x ∈ Ij. Next, let us introduce the vector


Ψj(k, τ) =


(
eτψ(jπ, k) + e−τφ(jπ, k)


eτDψ((jπ)−, k) + e−τDφ((jπ)−, k)


)
,







Spectra of magnetic chain graphs 9


and the matrix


Sj(k) =


(
cos kπ +


αj


2k
sin kπ 1


k
sin kπ


−k sin kπ +
αj


2
cos kπ cos kπ


)
,


then taking into account relation (3.9) we conclude that


Sj(k)Ψj(k, 0) = Ψj+1(k, iAπ) , ℑk ≥ 0, j ∈ Z .
In a similar spirit, we introduce the vector


Φj(k) =


(
ψ(jπ, k) + φ(jπ, k)


ψ((j − 1)π, k) + φ((j − 1)π, k)


)
to obtain, in view of (3.11) and (3.12), the relation


(cosAπ)Φj(k) = T (k)Ψj(k, 0)


where the matrix T is defined as follows


T (k) =


(
cosAπ 0


cos kπ − 1
k
sin kπ


)
.


Finally, define the matrix


Nj(k) = T (k)Sj(k)(T (k))
−1 =


(
2ξj(k) −1


1 0


)
,


where k ∈ K := {z:ℑz ≥ 0 ∧ z /∈ Z} and


ξj(k) =
1


cosAπ


(
cos kπ +


αj
4k


sin kπ
)
,


to get the relation


Nj(k)Φj(k) = Φj+1(k) , k ∈ K ,


which by continuity of the wave function at the graph vertices can be rewritten as


Nj(k)


(
ψj(k)


ψj−1(k)


)
=


(
ψj+1(k)


ψj(k)


)
, k ∈ K ,


or equivalently as


ψj+1(k) + ψj−1(k) = ξj(k)ψj(k) , k ∈ K , (3.13)


where ψj(k) := ψ(jπ, k). Summing up the above reasoning, we have arrived at the


following conclusion:


Theorem 3.1. Suppose that αj ∈ R; then any solutions ψ(·, k) and φ(·, k), k2 ∈ R,
k ∈ K, of (3.10) satisfy relation (3.13). Conversely, any solution of the difference


equation (3.13) defines via


ψ(x, k) = e−iA(x−jπ)
[
ψj(k) cos k(x− jπ)


+ (ψj+1(k)e
iAπ − ψj(k) cos kπ)


sin k(x− jπ)


sin kπ


]
, x ∈ Ij ,


(3.14)
φ(x, k) = eiA(x−jπ)


[
ψj(k) cos k(x− jπ),


+ (ψj+1(k)e
−iAπ − ψj(k) cos kπ)


sin k(x− jπ)


sin kπ


]
, x ∈ Ij ,
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solutions of equations (3.10) satisfying δ-coupling conditions (3.8), (3.9). In addition,(
ψ(·, k)
φ(·, k)


)
∈ Lp(Γ) if and only if {ψj(k)}j∈Z ∈ ℓp(Z) for p ∈ {2,∞}.


Proof. It remains to demonstrate the last statements. Let k2 ∈ R, k ∈ K, and assume


that all the solutions ψ(·, k), φ(·, k), and ψj(k) are real-valued. If ψ, φ ∈ Lp(R), and
thus D2ψ,D2φ ∈ Lp(R), we infer that Dψ,Dφ ∈ Lp(R) holds for all 1 ≤ p ≤ ∞. Then


{ψj(k)}j∈Z ∈ ℓp(Z) follows from


ψ(jπ, k) = eiA(x−jπ)
(
ψ(x, k) cos k(x− jπ)−Dψ(x, k) sin k(x− jπ)


k


)
, x ∈ Ij ,


for p = ∞ and from


(ψ(jπ, k))2 +
1


k2
(Dψ((jπ)+, k))2


= e2iA(x−jπ)
(
(ψ(x, k))2 +


1


k2
(Dψ(x, k))2


)
, x ∈ Ij ,


for p = 2. Conversely, assume {ψj(k)}j∈Z ∈ ℓp(Z) for p = ∞ or p = 2. The case p = ∞
directly results from (3.14) and the case p = 2 follows from (3.14) and


e2iA(x−jπ)
(
(ψ(x, k))2 +


1


k2
(Dψ(x, k))2


)
= (ψj(k))


2 +
(ψj+1(k)e


iAπ − ψj(k) cos kπ


sin kπ


)2
, x ∈ Ij ,


which completes the proof of the theorem.


4. Systems with local impurities


Let the Hamiltonian of the periodic system −∆α be defined as in previous sections, and


choose {π, 2π, . . . ,mπ} as the set of coordinate values at which the vertex coupling


suffers a perturbation that models an impurity changing the δ-interaction coupling


strength by γj, j ∈ M := {1, 2, . . . ,m}. The perturbed Hamiltonian will be then


denoted by −∆α+γ . Our goal here is to relate spectral properties of the two operators.


Since the resolvents of −∆α+γ and −∆α differ by a finite-rank operator the essential


spectra of the two operators coincide, of course. However, the perturbation may give rise


to eigenvalues in the gaps and we are going to derive a characteristic equation giving this


discrete spectrum. It will contain a determinant given in terms of a recurrent expression,


which makes its analysis in the general case a rather challenging task. Because of this


complexity, we shall analyze in detail a few particular cases, starting with m = 1 and


m = 2, followed by perturbation with an arbitrary natural m but with all the impurities


identical, in other words, γ1 = . . . = γm.


As we have shown in the previous section, wave functions in the neighboring rings


are related by the matrix Nj as follows,


Φj+1(k) = Nj(k)Φj(k) , j ∈ Z .
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Since these matrices are the same outside the perturbation support, we have


Φm+j+1(k) = (N(k))jΦm+1(k) , j ∈ N , (4.15)


Φj+1(k) = Nj(k)Φj(k) , j ∈ M , (4.16)


Φj(k) = (N(k))j−1Φ1(k) , −j ∈ N0 , (4.17)


where the matrix N corresponds to the function


ξ(k) =
1


cosAπ


(
cos kπ +


α


4k
sin kπ


)
in the same way as the matrix Nj is constructed using ξj. It is obvious that the


asymptotical behavior of the norms of Φj is determined by the spectral properties of the


matrix N . Specifically, let Φm+1 be an eigenvector of N corresponding to an eigenvalue


µ, then |µ| < 1 (|µ| > 1, |µ| = 1) means that the norm of Φj decays exponentially with


respect to j > m (respectively, it is exponentially growing, or independent of j). At


the same time if Φ1 is an eigenvector of N corresponding to an eigenvalue µ such that


|µ| > 1, then the norm of Φj decays exponentially with respect to negative j (with a


similar conclusions for |µ| < 1 and |µ| = 1).


By virtue of Theorem 3.1 the wave function components on the j-th ring are


determined by Φj, and thus, in view of (4.15) and (4.17), by Φm+1 or Φ1 depending


on the sign of j. If Φm+1 has a non-vanishing component related to an eigenvalue of


N of modulus larger than one, or Φ1 has a non-vanishing component related to an


eigenvalue of modulus less than one, then the corresponding coefficients Φj determine


neither an eigenfunction nor a generalized eigenfunction of −∆α+γ . On the other hand,


if Φm+1 is an eigenvector, or a linear combination of eigenvectors, of the matrix N


with modulus less than one (respectively, equal to one), and at the same time Φ1 is an


eigenvector, or a linear combination of eigenvectors, of the matrixN with modulus larger


than one (respectively, equal to one), then the coefficients Φj determine an eigenfunction


(respectively, a generalized eigenfunction) and the corresponding energy E belongs to


the point (respectively, continuous) spectrum of the operator −∆α+γ . To perform the


spectral analysis of N(k), we employ its characteristic polynomial at energy k2,


λ2 − 2ξ(k)λ+ 1 ; (4.18)


it shows that N(k) has an eigenvalue of modulus less than one iff the discriminant of


(4.18) is positive, i.e.


|ξ(k)| > 1 ,


and a pair of complex conjugated eigenvalues of modulus one iff the above quantity is


less or equal to one. In the former case the eigenvalues of N(k) are given by


λ1,2(k) = ξ(k)±
√
ξ(k)2 − 1 , (4.19)


satisfying λ2 = λ−1
1 , hence |λ2| < 1 holds if ξ(k) > 1 and |λ1| < 1 if this quantity is less


than −1. Moreover, the corresponding eigenvectors of N(k) are


u1,2(k) =


(
1


λ2,1(k)


)
. (4.20)
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It is convenient to define the function


λ(k) = ξ(k)− sgn (ξ(k))
√
ξ(k)2 − 1 ,


which coincides with λ1(k) if ξ(k) < −1 or with λ2(k) if ξ(k) > 1, hence the modulus


of λ(k) is smaller than one unless k2 ∈ σ(−∆α). Abbreviating


P0(k) = 1 , P1(k) = 2ξ1(k) , Pm(k) = 2ξm(k)Pm−1(k)− Pm−2(k) ,


Q0(k) = 0 , Q1(k) = 1 , Qm(k) = 2ξm(k)Qm−1(k)−Qm−2(k) ,


we arrive at the following conclusion.


Proposition 4.1. Assume that k2 ∈ R \ σ(−∆α); then k2 is an eigenvalue of −∆α+γ


iff for this k we have


Qm−1(k)λ(k)
2 − (Pm−1(k) +Qm(k))λ(k) + Pm(k) = 0 . (4.21)


Proof. Suppose first that ξ(k) < −1, so that |λ1(k)| < 1 and |λ2(k)| > 1; then by


virtue of Theorem 3.1 and formulæ (4.15), (4.17) the only possibility to construct an


eigenfunction of −∆α+γ is by demanding that


Φm+1 ∼ u1 , Φ1 ∼ u2 .


Thus condition (4.16) implies


det{Nm(k) . . . N1(k)u2(k), u1(k)} = 0 . (4.22)


Observe that the product


Nm(k) :=
m∏
j=1


Nj(k) , m ∈ N ,


can be recursively expressed in terms of quasi-polynomials Pm and Qm,


Nm(k) =


(
Pm(k) −Qm(k)


Pm−1(k) −Qm−1(k)


)
, m ∈ N .


It is worth mentioning here that detNj = 1, hence we have also detNm = 1. This


fact in combination with formula (4.22) implies the spectral condition (4.21). The case


ξ(k) > 1 may be handled in the same manner.


4.1. Example: a single impurity


As indicated, we will discuss in detail a few examples. The simplest one concerns


the situation with a single impurity, m = 1. In this case N1(k) = N1(k), and the


characteristic equation of Proposition 4.1, which is a quadratic polynomial with respect


to λ, is reduced to a linear equation giving thus the following condition for eigenvalue


existence


γ1 = −sgn (ξ(k))
4k cosAπ


sin kπ


√
ξ(k)2 − 1 . (4.23)


Let f stand for the right-hand side of relation (4.23) and suppose that A /∈ Z. Then, as
k2 varies from the lower end of a gap in σ(−∆α) to the upper end, f(k) is continuous with
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respect to k and strictly increasing with respect to k2. In particular, f(k) alternately


increases from −∞ to zero or from zero to ∞, starting with the increase from −∞ to


zero in the first gap (the one below the continuum spectrum threshold). This behavior


is illustrated in Fig. 4, in view of (4.23) the plots also show the dependence of the


eigenvalues in the gaps on the perturbation parameter γ1.


Figure 4. The dependence of k2 on f(k) for cosAπ = 0.6 and the perturbation


coupling strength (i) α = 1, (ii) α = −1, (iii) α = −3.


Suppose next that A approaches an integer number and α is positive. As we have said


at the end of Sec. 2, the spectral gaps in the positive spectrum, where f(k) is positive,


disappear in the limit. Thus if A ∈ Z and α > 0, then f(k) increases from −∞ to zero


in every spectral gap. Likewise, if A approximates an integer and α < 0, then we should


‘exclude’ those spectral gaps in the positive spectrum, where f(k) is negative. Hence


for A ∈ Z and α < 0, f(k) increases from −∞ to zero in the first gap and from zero to


∞ in every gap starting from the second one.


Denote by −∆α+γ(1) , γ(1) = {. . . , 0, γ1, 0, . . .}, the Hamiltonian corresponding to


the system with one vertex perturbation of the strength γ1; then the above considerations


lead us to the following conclusion.


Theorem 4.2 (Magnetic case). Assume that A /∈ Z. The essential spectrum of


−∆α+γ(1) coincides with the spectrum of −∆α. For γ1 < 0, the operator −∆α,γ1 has


precisely one simple impurity state in every odd gap of its essential spectrum (starting


from the first one). On the other hand, for γ1 > 0 it has precisely one simple impurity


state in every even gap of its essential spectrum.


As before, we single out the case of integer A.


Theorem 4.3 (Non-magnetic case). Suppose that A ∈ Z. The essential spectrum of


−∆α+γ(1) coincides with the unperturbed one. For α > 0 and γ1 > 0, the operator


−∆α+γ(1) has no eigenvalues. On the other hand, for α > 0 and γ1 < 0, it has precisely


one simple impurity state in every gap of its essential spectrum. For α < 0 and γ1 > 0,


there is precisely one simple impurity state in every gap except the first one; for α < 0


and γ1 < 0, there is precisely one simple eigenvalue below the first band and −∆α+γ(1)


has no other eigenvalues.
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4.2. Example: two adjacent impurities


Consider next the problem of eigenvalue existence in the case m = 2 and denote the


corresponding Hamiltonian by −∆α+γ(2) where γ(2) = {. . . , 0, γ1, γ2, 0, . . .}. It is natural
to assume that γ1γ2 ̸= 0, since the opposite case has been already treated, and that


γ1 ̸= γ2, since the case of equal impurities will be mentioned separately below, then


Proposition 4.1 leads to the a quadratic equation. One can easily solve it to deduce the


relations


γ1 + γ2 = f(k)− 4k cosAπ


sin kπ


(
ξ(k)±


√
1 + (ξ1(k)− ξ2(k))2


)
. (4.24)


Let f± stand for the right-hand side of relations (4.24) and suppose that A /∈ Z. Then,
as k2 varies from the lower end of a gap in σ(−∆α) to the upper end, both f−(k) and


f+(k) are continuous with respect to k, strictly increasing in with respect to k2 and do


not intersect. In particular, f− (f+) increases from −∞ to some positive (respectively,


negative) number in the first spectral gap and then from another positive (respectively,


negative) number to ∞ in the second one (cf. Fig. 5); in the next two gaps the f±
switch roles and so on. As in the case of a single impurity half of the spectral gaps is


eliminated as an eigenvalue support when A approaches an integer.


Figure 5. The dependence of k2 on f± for cosAπ = −0.6, γ1 = 3, γ2 = 1, and the


perturbation coupling strength (i) α = 1, (ii) α = −1, (iii) α = −3.


Theorem 4.4 (Magnetic case). Suppose that A /∈ Z. The essential spectrum of


−∆α+γ(2) coincides with that of −∆α. If γ1 + γ2 < 0, the operator −∆α+γ(2) has at


least one (and at most two) impurity state in every odd gap of its essential spectrum


(starting from the first one). For γ1 + γ2 > 0, it has at least one (and at most two)


impurity state in every even gap of its essential spectrum.


In the case of an integer A we can make the following conclusion.


Theorem 4.5 (Non-magnetic case). Suppose that A ∈ Z. The essential spectrum of


−∆α+γ(2) coincides with that of −∆α. For α > 0 and a sufficiently large γ1 + γ2 > 0,


the operator −∆α+γ(2) has no eigenvalues. For α > 0 and γ1 + γ2 < 0, it has at least


one impurity state in every gap of its essential spectrum. For α < 0 and a sufficiently
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large γ1 + γ2 > 0 there is at least one impurity state in every gap except the first one.


For α < 0 and γ1 + γ2 < 0 there is at least one eigenvalue below the first band.


4.3. Example: an array of identical impurities


Let us consider again arbitrary m ∈ N, however, restricting ourselves to the case when


all the γj are equal. We keep the notation −∆α+γ for the corresponding Hamiltonian.


Abbreviating


cosϕ(k) = ξ1(k) ,


we see that the matrix Nm of Proposition 4.1 acquires the form


Nm(k) =
1


sinϕ(k)


(
sin[(m+ 1)ϕ(k)] − sin[mϕ(k)]


sin[mϕ(k)] − sin[(m− 1)ϕ(k)]


)
,


and the characteristic equation (4.21) has the following solutions


λ(k) = cosϕ(k) + cot
[
(m−1)ϕ(k)


2


]
sinϕ(k) ,


λ(k) = cosϕ(k)− tan
[
(m−1)ϕ(k)


2


]
sinϕ(k) .


leading thus to the characteristic conditions


γ1 = f(k)− 4k cosAπ


sin kπ
cot
[
(m−1)ϕ(k)


2


]
sinϕ(k) ,


(4.25)


γ1 = f(k) +
4k cosAπ


sin kπ
tan
[
(m−1)ϕ(k)


2


]
sinϕ(k) .


Note that if m = 2, the above conditions lead to relations (4.24) with γ2 = γ1.


The explicit structure of the characteristic equations (4.25) shows that as k2 varies


from −∞ to the lower end of σ(−∆α), then both functions at the right-hand side of


the above relations are continuous with respect to k, except possibly a finite number of


points, strictly increasing in k2 and their graphs do not intersect, in particular, at least


one of the functions includes (−∞, 0] in its range. Thus the following claim holds.


Theorem 4.6. The essential spectrum of −∆α+γ coincides with that of −∆α. Suppose


that γ1 = . . . = γm, then −∆α+γ has at least one eigenvalue below the first spectral band.


As we have mentioned both the functions at the right-hand side of (4.25) could have


a finite number of jumps of the second order (approaching ∞ in the left vicinity of the


discontinuity point and −∞ in the right one). The total number of discontinuity points


does not exceed m − 2, hence the total number of eigenvalues in the first spectral gap


does not exceed m. Of course, this fact follows also from general principles [We80], since


the operators −∆α and −∆α+γ have a common symmetric restriction with deficiency


indices not exceeding (m,m).
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5. Weakly coupled systems


Our next task is to compare the spectral properties of −∆α with those produced by a


weak finite-rank perturbation. Specifically, we suppose that the perturbation strength


is εγj, j = 1, . . . ,m, at the vertices with the coordinates from πM. Here ε is a small


parameter and the perturbed Hamiltonian will be denoted by −∆α+εγ . As one could


expect such kind of perturbation preserves again the essential spectrum. In this section


we are going to demonstrate that, as ε → 0, the presence of the eigenvalue in the gap


of the essential spectrum of −∆α+εγ is determined by the sign of
∑
γj.


With this aim, we mimick the argument from the proof of Proposition 4.1 to obtain


a pair of characteristic equations,


det{Nm(k)u2(k), u1(k)} = 0 , ξ(k) < −1 ,


det{Nm(k)u1(k), u2(k)} = 0 , ξ(k) > 1 ,


The product Nm = Nm . . . N1 here can be written in terms of the matrices


Nj(k) = N(k) +
εγj sin kπ


2k cosAπ
M


with


N(k) =


(
2ξ(k) −1


1 0


)
, M =


(
1 0


0 0


)
.


Using the explicit structure of the matrices Nj, one can easily see that, as ε → 0, the


product Nm admits the following expansion,


Nm(k) = (N(k))m +
ε sin kπ


2k cosAπ


∑
j∈M


γj(N(k))m−jM(N(k))j−1 +O(ε2) .


Next, using the fact that uj is an eigenvector of the matrix N , we find the relations


det{(N(k))m−jM(N(k))j−1u2(k), u1(k)} = (λ2(k))
m−1 det{Mu2(k), u1(k)} ,


det{(N(k))m−jM(N(k))j−1u1(k), u2(k)} = (λ1(k))
m−1 det{Mu1(k), u2(k)} ,


which together with the above asymptotic formula for Nm result in the relation


det{Nm(k)u2(k), u1(k)} = (λ2(k))
m det{u2(k), u1(k)}


+(λ2(k))
m−1 det{Mu2(k), u1(k)}


ε sin kπ


2k cosAπ


∑
j∈M


γj +O(ε2) ,


or


det{Nm(k)u1(k), u2(k)} = (λ1(k))
m det{u1(k), u2(k)}


+(λ1(k))
m−1 det{Mu1(k), u2(k)}


ε sin kπ


2k cosAπ


∑
j∈M


γj +O(ε2)


as ε → 0. Finally, from what has already been said, cf. (4.23), it follows that the


characteristic equation for −∆α+εγ reads as follows,


ε
∑
j∈M


γj +O(ε2) = f(k) , ε→ 0 , (5.26)
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where f stands for the right-hand side of (4.23). As a result we immediately obtain the


following claim.


Theorem 5.1 (Magnetic case). Suppose that A /∈ Z. For any ε ∈ (0, 1) the essential


spectrum of −∆α+εγ coincides with that of −∆α. Assume that
∑


j∈M γj < 0, then in the


limit ε → 0, the operator −∆α+εγ has exactly one simple impurity state in every odd


gap of its essential spectrum. If the sum
∑


j∈M γj is positive, then in the limit ε→ 0 it


has exactly one simple impurity state in every even gap of its essential spectrum. If k2n,ε
is the corresponding eigenvalue, then kn,ε admits the following asymptotic expansion


kn,ε = kn + (−1)2n+1Knε
2 +O(ε2) , ε→ 0 , n ∈ N .


Here k21 < k22 < . . . are produced by the solutions to the equation |ξ(k)| = 1, and


Kn =
sin knπ(


∑
j∈M γj)


2


cosAπ(32kπ2
n − 8αkπn cot knπ + 8α)


, n ∈ N .


Proof. The claims concerning existence of eigenvalues follow from the arguments above;


the argument for the asymptotic expansion claim is rather straightforward, it suffices


to use Taylor expansions at the right-hand side of (5.26).


Theorem 5.2 (Non-magnetic case). Suppose that A ∈ Z. The essential spectrum of


−∆α+εγ coincides with that of −∆α. To describe the discrete spectrum −∆α+εγ in


the limit ε → 0 we distinguish four cases depending on the sign of coupling constant


α and the sum
∑


j∈M γj. First we assume that both are positive, then −∆α+εγ has


no eigenvalues as ε → 0. For α > 0 and
∑


j∈M γj < 0, the operator −∆α+εγ has


precisely one simple impurity state in every gap of its essential spectrum. For α < 0


and
∑


j∈M γj > 0 there is precisely one simple impurity state in every gap except the first


one. Finally, if we assume that both α and
∑


j∈M γj are negative, then there is precisely


one simple eigenvalue below the first band and −∆α+εγ has no other eigenvalues.


6. Systems with distant impurities


Finally, let us consider the system with two impurities at large distances from each


other. To be more specific, we change the coupling constants at two arbitrary but


fixed points into α+ γ1 and α+ γ2; we suppose that there are exactly n graph vertices


between the chosen two. For the sake of brevity, let −∆α,n denote the Hamiltonian of


the perturbed system; we are interested in spectral properties of the operator −∆α,n


for large n. To this aim, we repeat the proof of Proposition 4.1 to obtain one of the


characteristic equations


det{Nn(k)u2(k), u1(k)} = 0


or


det{Nn(k)u1(k), u2(k)} = 0 ,
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depending on sgn (ξ(k)), where the product Nn is defined as follows


Nn(k) =
(
N(k) +


γ2 sin kπ


2k cosAπ
M
)


︸ ︷︷ ︸
N2(k)


(N(k))n
(
N(k) +


γ1 sin kπ


2k cosAπ
M
)


︸ ︷︷ ︸
N1(k)


with the definitions of the matrices N and M given above. Noting that


Ni(k)uj(k) = c1j(k, γi)λ1(k)u1(k) + c2j(k, γi)λ2(k)u2(k) ,


with


cij(k, γ) := δij + (−1)iγ sgn (ξ(k))/f(k) , (6.27)


where δij is the Kronecker delta and f stands for the right-hand of (4.23). We recall


that uj is an eigenvector of N corresponding to the eigenvalue λj to conclude that


det{Nn(k)u2(k), u1(k)} = [(λ1(k))
nc12(k, γ1)c21(k, γ2)


+ (λ2(k))
nc22(k, γ1)c22(k, γ2)] det{u2(k), u1(k)} ,


det{Nn(k)u1(k), u2(k)} = [(λ1(k))
nc11(k, γ1)c11(k, γ2)


+ (λ2(k))
nc12(k, γ1)c21(k, γ2)] det{u1(k), u2(k)} .


Using the expression for the entries cij, the characteristic equation for our system reads


(f(k)/γ1 − 1)(f(k)/γ2 − 1) = (λ(k))2n+2 . (6.28)


Consider an arbitrary but fixed spectral gap of −∆α, denoted I, which is an open subset


of the real line. We have to analyze equation (6.28) as k2 varies from the lower end of


I to its upper end. It is worth noting that the right-hand side of the above relation


approaches one, as k2 approximates any of the endpoints of the spectral gap, and tends


to zero as n → ∞ within the interval I. At the same time, the left-hand side also


approaches one, as k2 approximates the endpoints of I.
For starters, we assume that γ1 and γ2 have different signs and recall that f preserves


its sign on I. Hence the range of the left-hand side on I includes all values from −∞ to


one. Moreover, having the explicit expression for f one can show that if f is negative on


I, then the left-hand side of (6.28) is monotonously increasing function on I, possibly
except a small left neighborhood of its right endpoint. Similarly, for positive f the left-


hand side monotonously decreases on I, possibly except a small right neighborhood of


its left endpoint. In both cases the equation (f(k)/γ1 − 1)(f(k)/γ2 − 1) = 0 admits a


unique solution on I. As a result, equation (6.28) gives a unique solution in every such


an interval, thus producing an eigenvalue in every spectral gap of the operator −∆α.


Next we address the situation when γ1 and γ2 are of the same sign and distinguish


two cases depending on the sign of f . Suppose first that the sign of the function f on


I is opposite to those of γj. Then the left-hand side of (6.28) is a monotonous function


on I and its range there is (1,∞), hence (6.28) admits no solution on I. Let us turn


to the second case, when f and γj are of the same sign. Then, obviously, the equation


(f(k)/γ1 − 1)(f(k)/γ2 − 1) = 0 has two solutions on I, say, x1 and x2 (in the case


γ1 = γ2 we have x1 = x2). In addition, depending on the sign of f the left-hand side
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of (6.28) monotonously decreases from one (from ∞) to its local minimum, which is


negative (or to zero if γ1 = γ2) and attained at some point between x1 and x2, and then


monotonously decreases from its local minimum to ∞ (respectively, to one). In this case


equation (6.28) admits two solutions on I. If γ1 = γ2, then the mentioned solutions are


close to each other. Indeed, equation (6.28) leads to the relations


γ1 =
f(k)


1± |λ(k)|n+1


and from the explicit formulas for f and λ it follows that, as n → ∞, both functions


at the right-hand side are O(exp{−C1(n + 1)})-close to each other for some positive


C1. At the same time, one can see that the functions are not too sloping, hence that


both solutions are O(exp{−C2(n + 1)})-close with possibly different constant C2 > 0.


Summarizing the discussion, we have arrived at the following conclusions.


Theorem 6.1 (Magnetic case). Suppose that A /∈ Z. For any n ∈ N the essential


spectrum of −∆α,n coincides with that of −∆α. Assume that γ1γ2 < 0, then any for


sufficiently large n, the operator −∆α,n has precisely one simple impurity state in every


gap of its essential spectrum. If γ1 and γ2 are positive (negative), then for sufficiently


large n, −∆α,n has two simple impurity states in every even (respectively, odd) gap of its


essential spectrum and no impurity state in every odd (respectively, even) one (provided


we start counting from the first gap). If γ1 = γ2, then impurity states in every even or


odd gap are exponentially close to each other with respect to n.


Theorem 6.2 (Non-magnetic case). Suppose that A ∈ Z. For any n ∈ N the essential


spectrum of −∆α,n coincides with that of −∆α. Assume that γ1γ2 < 0, then for any


sufficiently large n, the operator −∆α,n has precisely one simple impurity state in every


gap of its essential spectrum. If γ1 and γ2 are positive (negative), then for sufficiently


large n, −∆α,n has two simple impurity states in every odd (respectively, even) gap of its


essential spectrum and no impurity state in every even (respectively, odd) one (provided


we start counting from the zeroth gap). If γ1 = γ2, then mentioned two impurity states


are exponentially close to each other with respect to n.
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