nonlinear heat equations, non Fredholm operators, Sobolev spaces





EXISTENCE OF STATIONARY SOLUTIONS FOR SOME


NONLOCAL REACTION-DIFFUSION EQUATIONS


Vitali Vougalter1, Vitaly Volpert2


1 Department of Mathematics, University of Toronto


Toronto, Ontario, M5S 2E4, Canada


e-mail: vitali@math.toronto.edu


2 Institute Camille Jordan, UMR 5208 CNRS, University Lyon 1


Villeurbanne, 69622, France


e-mail: volpert@math.univ-lyon1.fr


Abstract: The paper is devoted to the existence of solutions of a nonlocal reaction-


diffusion equation arising in population dynamics. The proof is based on a fixed


point technique. We use solvability conditions for elliptic operators in unbounded


domains which do not satisfy the Fredholm property.


AMS Subject Classification: 35J05, 35P30, 47F05


Key words: nonlinear heat equations, non Fredholm operators, Sobolev spaces


1. Introduction


In this work we study the existence of stationary solutions of the integro-differential


equation
∂u


∂t
= D∆u+


∫


Rd


K(x− y)g(u(y, t))dy+ f(x) (1.1)


arising in cell population dynamics. The space variable x corresponds to the cell


genotype, u(x, t) is the cell density as a function of their genotype and time. The


right-hand side of this equation describes the evolution of cell density due to cell


proliferation, mutations and cell influx. More precisely, the diffusion term corre-


sponds to the change of genotype due to small random mutations, while the integral


term describes large mutations. Here g(u) is the rate of cell birth which depends


on u (density dependent proliferation), and the function K(x − y) shows the pro-


portion of newly born cells which change their genotype from y to x. We suppose


that it depends on the distance between the genotypes. Finally, the last term in the


right-hand side of this equation describes the influx of cells for different genotypes.
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In what follows we will set D = 1 and will study the existence of solutions of


the equation


∆u+


∫


Rd


K(x− y)g(u(y))dy+ f(x) = 0. (1.2)


We will consider the case where the linear part of this operator does not satisfy


the Fredholm property and conventional methods of nonlinear analysis may not be


applicable. We will use solvability conditions for non Fredholm operators and will


use the method of contracting mappings.


Consider the equation


−∆u + V (x)u− au = f, (1.3)


where u ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and the


scalar potential function V (x) either vanishes or tends to 0 at infinity. When a ≥ 0,


the essential spectrum of the operator A : E → F corresponding to the left side


of problem (1.3) contains the origin. As a consequence, such operator does not


satisfy the Fredholm property. Its image is not closed, for d > 1 the dimension


of its kernel and the codimension of its image are not finite. The present article is


devoted to the studies of some properties of the operators of this kind. Note that


elliptic equations containing non Fredholm operators were studied actively in re-


cent years. Approaches in weighted Sobolev and Hölder spaces were developed in


[2], [3], [4], [5], [6]. The non Fredholm Schrödinger type operators were treated


using the methods of the spectral and the scattering theory in [12], [14], [15],


[16], [18]. The Laplacian operator with drift from the perspective of the operators


without Fredholm property was studied in [17] and linearized Cahn-Hilliard prob-


lems in [19] and [21]. Nonlinear non Fredholm elliptic equations were treated


in [20] and [22]. Important applications to the theory of reaction-diffusion prob-


lems were explored in [9], [10]. Operators without Fredholm property arise also


when treating wave systems with an infinite number of localized traveling waves


(see [1]). Particularly, when a = 0 the operator A is Fredholm in some properly


chosen weighted spaces (see [2], [3], [4], [5], [6]). However, the case of a 6= 0 is


significantly different and the approach developed in these articles cannot be used.


We set K(x) = εK(x), where ε ≥ 0. We suppose that the following assumption


is satisfied.


Assumption 1. Let f(x) : R5 → R be nontrivial, f(x) ∈ L1(R5) and ∇f(x) ∈
L2(R5). Assume also that K(x) : R5 → R and K(x) ∈ L1(R5).


The choice of the space dimension d = 5 is related to the solvability condi-


tions for linear elliptic problems in unbounded domains [22]. The results presented


below can be generalized for d > 5. From the point of view of applications, the


space dimension is not limited to d = 3 since the space variable corresponds to cell


genotype and not the usual physical space.
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By virtue of the Sobolev inequality (see e.g. p.183 of [11]) under the assump-


tion above we have


f(x) ∈ L2(R5).


Let us consider the Sobolev space


H3(R5) = {u(x) : R5 → C | u(x) ∈ L2(R5), (−∆)
3


2u ∈ L2(R5)}


with the norm


‖u‖2H3(R5) := ‖u‖2L2(R5) + ‖(−∆)
3


2u‖2L2(R5). (1.4)


The operator (−∆)
3


2 is defined by means of the spectral calculus. By virtue of the


Sobolev embedding we have


‖u‖L∞(R5) ≤ ce‖u‖H3(R5). (1.5)


Here ce > 0 is the constant of the embedding. The hat symbol will denote the


standard Fourier transform, namely


û(p) =
1


(2π)
5


2


∫


R5


u(x)e−ipxdx. (1.6)


Let us express the Sobolev norm as


‖u‖2H3(R5) =


∫


R5


(1 + |p|6)|û(p)|2dp. (1.7)


When the nonnegative parameter ε = 0, we obtain at the standard Poisson equation


−∆u = f(x). (1.8)


Assumption 1 via Lemma 7 of [22] implies that problem (1.8) has a unique solution


u0(x) ∈ H2(R5) such that no orthogonality conditions are required. By means of


Lemmas 5 and 6 of [22], in dimensions d < 5 we need certain orthogonality rela-


tions for the solvability of equation (1.8) in H2(Rd). Let us not study the problem


in dimensions d > 5 to avoid extra technicalities since the proof will use similar


ideas (see Lemma 7 of [22]). By virtue of Assumption 1


∇(−∆u) = ∇f(x) ∈ L2(R5).


Hence, for the unique solution of our linear equation (1.8) we obtain u0(x) ∈
H3(R5). Let us look for the resulting solution of the nonlinear problem (1.2) as


u(x) = u0(x) + up(x). (1.9)


Obviously, we arrive at the perturbative equation


−∆up = ε


∫


R5


K(x− y)g(u0(y) + up(y))dy. (1.10)
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We introduce a closed ball in the Sobolev space


Bρ := {u(x) ∈ H3(R5) | ‖u‖H3(R5) ≤ ρ}, 0 < ρ ≤ 1. (1.11)


Let us look for the solution of (1.10) as the fixed point of the auxiliary nonlinear


equation


−∆u = ε


∫


R5


K(x− y)g(u0(y) + v(y))dy (1.12)


in ball (1.11). For a given function v(y) it is an equation with respect to u(x). The


left side of (1.12) contains the non Fredholm operator −∆ : H2(R5) → L2(R5),
since its essential spectrum fills the nonnegative semi-axis [0,+∞) and therefore,


this operator has no bounded inverse. The analogous situation appeared in [20] and


[22] but as distinct from the present work, the problems studied there were nonlo-


cal. The fixed point technique was exploited in [13] to estimate the perturbation


to the standing solitary wave of the Nonlinear Schrödinger (NLS) equation when


either the external potential or the nonlinear term in the NLS were perturbed but


the Schrödinger type operator involved in the nonlinear equation had the Fredholm


property (see Assumption 1 of [13], also [7]). We define the interval on the real


line


I := [−ce‖u0‖H3(R5) − ce, ce‖u0‖H3(R5) + ce]. (1.13)


Let us make the following assumption about the nonlinear part of equation (1.2).


Assumption 2. Let g(s) : R → R, such that g(0) = 0 and g′(0) = 0. We also


assume that g(s) ∈ C2(R), such that


a2 := sups∈I |g
′′(s)| > 0.


Clearly a1 := sups∈I |g
′(s)| > 0 as well, otherwise the function g(s) will be con-


stant on the interval I and a2 = 0. For example, g(s) = s2 evidently satisfies the


assumption above.


We introduce the operator Tg such that u = Tgv, where u is a solution of equa-


tion (1.12). Our main statement is as follows.


Theorem 3. Let Assumptions 1 and 2 hold. Then problem (1.12) defines the map


Tg : Bρ → Bρ, which is a strict contraction for all 0 < ε < ε∗ for a certain ε∗ > 0.


The unique fixed point up(x) of the map Tg is the only solution of equation (1.10) in


Bρ.


Obviously the resulting solution of problem (1.2) given by (1.9) will be nontriv-


ial since the source term f(x) is nontrivial and g(0) = 0 due to our assumptions.


Let us make use of the following trivial technical lemma.
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Lemma 4. Consider the function ϕ(R) := αR +
β


R4
for R ∈ (0,+∞), where the


constants α, β > 0. It attains the minimal value at R∗ =


(
4β


α


) 1


5


, which is given


by ϕ(R∗) =
5


4
4


5


α
4


5β
1


5 .


We proceed to the proof of our main statement.


2. The existence of the perturbed solution


Proof of Theorem 3. We choose an arbitrary v(x) ∈ Bρ and denote the term involved


in the integral expression in right side of problem (1.12) as G(x) := g(u0 + v). Let


us apply the standard Fourier transform (1.6) to both sides of equation (1.12). We


obtain


û(p) = ε(2π)
5


2


K̂(p)Ĝ(p)


p2
.


Thus for the norm we have


‖u‖2L2(R5) = (2π)5ε2
∫


R5


|K̂(p)|2|Ĝ(p)|2


|p|4
dp. (2.14)


Evidently, for any G(x) ∈ L1(R5)


‖Ĝ(p)‖L∞(R5) ≤
1


(2π)
5


2


‖G(x)‖L1(R5). (2.15)


Note that as distinct from works [20] and [22] in lower dimensions, here we do not


try to control the norm ∥∥∥∥∥
K̂(p)


p2


∥∥∥∥∥
L∞(R5)


.


We estimate the right side of (2.14) using (2.15) with R > 0 as


(2π)5ε2
∫


|p|≤R


|K̂(p)|2|Ĝ(p)|2


|p|4
dp+ (2π)5ε2


∫


|p|>R


|K̂(p)|2|Ĝ(p)|2


|p|4
dp ≤


≤ ε2
1


(2π)5
‖K‖2L1(R5)‖G(x)‖2L1(R5)|S5|R + ε2‖K‖2L1(R5)


1


R4
‖G(x)‖2L2(R5). (2.16)


Here and further down S5 denotes the unit sphere in the space of five dimensions


centered at the origin and |S5| its Lebesgue measure (see e.g. p.6 of [11]). The fact


that v(x) ∈ Bρ yields


‖u0 + v‖L2(R5) ≤ ‖u0‖H3(R5) + 1
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and the Sobolev embedding (1.5) implies


|u0 + v| ≤ ce‖u0‖H3(R5) + ce.


Using the formula G(x) =


∫ u0+v


0


g′(s)ds, with the interval I defined in (1.13), we


easily arrive at


|G(x)| ≤ sups∈I |g
′(s)||u0 + v| = a1|u0 + v|.


Therefore,


‖G(x)‖L2(R5) ≤ a1‖u0 + v‖L2(R5) ≤ a1(‖u0‖H3(R5) + 1).


Evidently, G(x) =


∫ u0+v


0


ds
[ ∫ s


0


g′′(t)dt
]
. Thus, we obtain


|G(x)| ≤
1


2
supt∈I |g


′′(t)||u0 + v|2 =
a2


2
|u0 + v|2,


‖G(x)‖L1(R5) ≤
a2


2
‖u0 + v‖2L2(R5) ≤


a2


2
(‖u0‖H3(R5) + 1)2.


Hence we derive the estimate from above for the right side of (2.16) as


ε2


(2π)5
‖K‖2L1(R5)|S5|


a22
4
(‖u0‖H3(R5) + 1)4R + ε2‖K‖2L1(R5)a


2
1(‖u0‖H3(R5) + 1)2


1


R4
,


where R ∈ (0,+∞). Lemma 4 gives us the minimal value of the expression above.


Thus


‖u‖2L2(R5) ≤ ε2‖K‖2L1(R5)


|S5|
4


5


(2π)4
a


8


5


2 (‖u0‖H3(R5) + 1)3
3


5a
2


5


1


5


4
8


5


. (2.17)


Obviously, (1.12) yields


∇(−∆u) = ε∇


∫


R5


K(x− y)G(y)dy


and


∇G(x) = g′(u0 + v)(∇u0 +∇v).


Let us make use of the formula


g′(u0 + v) =


∫ u0+v


0


g′′(s)ds.


By virtue of the Sobolev embedding (1.5) we have


|g′(u0 + v)| ≤ sups∈I |g
′′(s)||u0 + v| ≤ a2ce(‖u0‖H3(R5) + 1).
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Let us make use of the inequality, which can be easily obtained via the standard


Fourier transform, namely


‖∇u‖L2(R5) ≤ ‖u‖H3(R5). (2.18)


We derive


‖(−∆)
3


2u‖2L2(R5) ≤ ε2‖K‖2L1(R5)a
2
2c


2
e(‖u0‖H3(R5) + 1)4. (2.19)


The definition of the norm (1.4) along with upper bounds (2.17) and (2.19) yield


‖u‖H3(R5) ≤ ε‖K‖L1(R5)(‖u0‖H3(R5) + 1)2a
4


5


2


√
|S5|


4


5


(2π)4
a


2


5


1


5


4
8


5


+ a
2


5


2 c
2
e ≤ ρ


for all positive values of ε sufficiently small, such that u(x) ∈ Bρ as well. If for


some v(x) ∈ Bρ there are two solutions u1,2(x) ∈ Bρ of equation (1.12), their


difference u(x) := u1(x)− u2(x) ∈ L2(R5) solves the Laplace’s equation. Due to


the fact that there are no nontrivial square integrable harmonic functions, u(x) = 0
a.e. in R5. Thus, problem (1.12) defines a map Tg : Bρ → Bρ for ε > 0 small


enough.


Our goal is to show that this map is a strict contraction. Let us choose arbitrary


v1,2(x) ∈ Bρ. By means of the argument above u1,2 = Tgv1,2 ∈ Bρ as well. (1.12)


yields


−∆u1 = ε


∫


R5


K(x− y)g(u0(y) + v1(y))dy, (2.20)


−∆u2 = ε


∫


R5


K(x− y)g(u0(y) + v2(y))dy. (2.21)


We introduce


G1(x) := g(u0 + v1), G2(x) := g(u0 + v2).


By applying the standard Fourier transform (1.6) to both sides of equations (2.20)


and (2.21), we arrive at


û1(p) = ε(2π)
5


2


K̂(p)Ĝ1(p)


p2
, û2(p) = ε(2π)


5


2


K̂(p)Ĝ2(p)


p2
.


Let us express the norm


‖u1 − u2‖
2
L2(R5) = ε2(2π)5


∫


R5


|K̂(p)|2|Ĝ1(p)− Ĝ2(p)|
2


|p|4
dp.


Clearly, it can be bounded from above via (2.15) by


ε2‖K‖2
L1(R5)


(2π)5
‖G1(x)−G2(x)‖


2
L1(R5)|S5|R +


ε2‖K‖2
L1(R5)


R4
‖G1(x)−G2(x)‖


2
L2(R5),
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where R ∈ (0,+∞). We will make use of the identity


G1(x)−G2(x) =


∫ u0+v1


u0+v2


g′(s)ds.


Hence


|G1(x)−G2(x)| ≤ sups∈I |g
′(s)||v1 − v2| = a1|v1 − v2|,


such that


‖G1(x)−G2(x)‖L2(R5) ≤ a1‖v1 − v2‖L2(R5) ≤ a1‖v1 − v2‖H3(R5).


Obviously,


G1(x)−G2(x) =


∫ u0+v1


u0+v2


ds
[ ∫ s


0


g′′(t)dt
]
.


We estimate G1(x)−G2(x) in the absolute value from above by


1


2
supt∈I |g


′′(t)||(v1 − v2)(2u0 + v1 + v2)| =
a2


2
|(v1 − v2)(2u0 + v1 + v2)|.


The Schwarz inequality yields the upper bound for the norm ‖G1(x)−G2(x)‖L1(R5)


as


a2


2
‖v1 − v2‖L2(R5)‖2u0 + v1 + v2‖L2(R5) ≤ a2‖v1 − v2‖H3(R5)(‖u0‖H3(R5) + 1).


Hence we obtain the upper bound for the norm ‖u1(x)− u2(x)‖
2
L2(R5) as


ε2‖K‖2L1(R5)‖v1 − v2‖
2
H3(R5)


{ a2
2


(2π)5
(‖u0‖H3(R5) + 1)2|S5|R +


a1
2


R4


}
.


Let us use Lemma 4 to minimize the expression above over R > 0 to derive that


‖u1(x)− u2(x)‖
2
L2(R5) is bounded above by


ε2‖K‖2L1(R5)‖v1 − v2‖
2
H3(R5)


5


4
4


5


a
8


5


2


(2π)4
(‖u0‖H3(R5) + 1)2|S5|


4


5a
2


5


1 . (2.22)


(2.20) and (2.21) yield


∇(−∆)(u1 − u2) = ε∇


∫


R5


K(x− y)[g(u0(y) + v1(y))− g(u0(y) + v2(y))]dy,


such that


‖∇(−∆)(u1 − u2)‖
2
L2(R5) ≤ ε2‖K‖2L1(R5)‖∇g(u0 + v1)−∇g(u0 + v2)‖


2
L2(R5).


Let us express ∇g(u0 + v1)−∇g(u0 + v2) as


g′(u0 + v1)(∇u0 +∇v1)− g′(u0 + v2)(∇u0 +∇v2) =
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= (∇u0 +∇v1)


∫ u0+v1


u0+v2


g′′(s)ds+ (∇v1 −∇v2)


∫ u0+v2


0


g′′(s)ds.


This gives us the upper bound for |∇g(u0 + v1)−∇g(u0 + v2)| as


sups∈I |g
′′(s)||v1 − v2||∇u0 +∇v1|+ sups∈I |g


′′(s)||u0 + v2||∇v1 −∇v2|.


This expression can be easily estimated from above via the Sobolev embedding


(1.5) by


a2ce‖v1 − v2‖H3(R5)|∇u0 +∇v1|+ a2ce‖u0 + v2‖H3(R5)|∇v1 −∇v2|.


Thus, by means of (2.18) using that v1 ∈ Bρ we arrive at the upper bound for


‖∇(−∆)(u1 − u2)‖
2
L2(R5) as


4ε2‖K‖2L1(R5)a
2
2c


2
e(‖u0‖H3(R5) + 1)2‖v1 − v2‖


2
H3(R5). (2.23)


Estimates (2.22) and (2.23) yield that the norm ‖u1 − u2‖H3(R5) is bounded from


above by


ε‖K‖L1(R5)(‖u0‖H3(R5) + 1)a
4


5


2


[ 5


4
4


5


a
2


5


1


(2π)4
|S5|


4


5 + 4a
2


5


2 c
2
e


] 1


2


‖v1 − v2‖H3(R5).


Hence, the map Tg : Bρ → Bρ defined by problem (1.12) is a strict contraction for


all values of ε > 0 small enough. Its unique fixed point up(x) is the only solution of


problem (1.10) in Bρ and the resulting u(x) ∈ H3(R5) given by (1.9) is a solution


of equation (1.2).


Acknowledgements. Stimulating discussions with D.Pelinovsky are gratefully ac-


knowledged.
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