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Fractals are usually described through infinite intersection of sets by means


of iterated function systems. Although such descriptions are mathematically


elegant, it may still be helpful and desirable to have explicit formulae describing


the fractals. For instance, the famous middle-third Cantor set C =
⋂
i≥0Ci, often


constructed by the infinite intersection of a sequence of nested sets Ci, where


C0 = [0, 1] and each Ci+1 is obtained by removing the middle-third open interval


of every interval in Ci, can be expressed explicitly by C = {x |x =
∑∞


k=1 ak/3
k, ak =


0 or 2 ∀k ∈ N}. This expression has some advantages. For example, the dynamics


of the tent map x→ 3/2− 3|x− 1/2| on C can be understood in an algebraically


easy way. In general, it is difficult to find an explicit formula for a fractal. Here,


we study the Smale-Williams solenoid attractor, which is a fractal attractor,


and occupies a prominent place in the development of dynamical systems and


fractals. We find that an explicit formula, which describes the attractor, can


be obtained as an exact solution of a differential equation. With the formula,


the dynamics of the solenoid diffeomorphism on the attractor can be understood


straightforwardly and completely by direct computation. One of the main points


of this paper is to contribute such computation accessible to general readers.


I. INTRODUCTION


One of manifesting features of chaotic systems is the possession of fractal attractors. For


an attractor Λ of a map f , we mean that there exists a neighborhood N such that f(N) ⊂ N


and Λ =
⋂
i≥0 f


i(N). Hyperbolic chaotic attractors are, in particular, important in the


sense that they are structurally stable and exhibit complicated dynamical behavior. Here,


an attractor Λ is said to be chaotic if the restriction of f to Λ is topologically transitive


and has sensitive dependence on initial conditions. One popular mathematical model of


hyperbolic chaotic fractal attractors is the Smale-Williams solenoid attractor10,13,14.


The Smale-Williams solenoid has appeared in many typical textbooks on chaotic dy-


namical systems, for instance, Devaney1, Katok and Hasselblatt3, or Robinson8. Besides, a


physical realistic system of the solenoid has been proposed. In 2005, Kuznetsov4 constructed


a non-autonomous flow of two coupled van der Pol oscillators whose Poincaré map demon-
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strates the attractor of Smale-Williams type. The flow constructed can be implemented


as an electronic device6. (See also Kuznetsov and Sataev5, and Wilczak12 for numerical


examination of uniformly hyperbolicity for the attractor.)


The Smale-Williams attractor has both expanding (1-dimensional) and contracting (2-


dimensional) directions. By virtue of its hyperbolicity, as the contraction rate varies, the


attractor forms a continuous family of solenoids. We show that this family is the solution


of a differential equation with an explicitly prescribed initial condition. The solution itself


turns out to be an exact formula representing the solenoid attractor with a given contraction


rate.


Recall the definition of Smale-Williams solenoid diffeomorphism. Let D2 = {z ∈ C| |z| ≤


1} be the unit disk on the complex plane and S1 = ∂D2 = {z ∈ C| |z| = 1} its boundary.


The solid torus S1×D2 is the domain of interest. Let g : S1 → S1 be an expanding circle map


defined by g(s) = sm, where m ≥ 2 is an integer. The solenoid map q : S1 ×D2 → S1 ×D2


is define by


q(s, z) = (g(s), εz +
1


2
s),


where the positive real number ε has to satisfy


ε <
1


2
sin


π


m
≤ 1


2
(1)


so that q is an invertible map. Note qk+1(S1 × D2) ⊂ qk(S1 × D2) for any integer k ≥ 0.


The Smale-Williams solenoid for the map q is


Λq =
∞⋂
k=0


qk(S1 ×D2).


Denote Σ to be the space of sequences:


Σ = {a = (aj)j≤−1| aj ∈ {0, 1, 2, . . . ,m− 1} ∀j ≤ −1}.


One of the main results of this paper is to show that Λq satisfies a differential equation.


Theorem 1. A point (exp(i2πt), z) belongs to Λq if and only if z = ζ(ε) and ζ is a solution


of the following differential equation


dζ


dε
=
∑
k≤−2


ε−k−2 1


2
exp


(
i2π


(
tmk +


−1∑
j=k


ajm
k−j−1


))
(2)
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subject to the initial condition


ζ(0) =
1


2
exp(i2π


t+ a−1


m
) (3)


for some (ak)k≤−1 ∈ Σ.


As a matter of fact, there exists an exact formula for Λq.


Theorem 2. The Smale-Williams solenoid can be expressed explicitly as


Λq =
⋃


t∈[0,1)


⋃
a∈Σ


(
exp(i2πt),


∑
k≤−1


ε−k−1 1


2
exp


(
i2π


(
tmk +


−1∑
j=k


ajm
k−j−1


)))
. (4)


The inverse limit lim←−(S1, g) (see, for example, Devaney1 or Robinson8) of the map g on


S1 is defined by


lim←−(S1, g) := {s = (sk)k≤0| g(sk−1) = sk ∀k ≤ 0}.


There is a natural shift map σ on lim←−(S1, g) defined by


σ((. . . , s−2, s−1, s0)) = (. . . , s−1, s0, g(s0)).


The adding machine map A : Σ→ Σ, or called the odometer map, is defined as


A(a) = (. . . , a−3, a−2, a−1) + (. . . , 0, 0, 1) mod m. (5)


For points in the product space [0, 1]×Σ, denote by ∼ the equivalence relation that (1,a) is


identified with (0, A(a)). For any given a = (. . . , a−3, a−2, a−1) ∈ Σ and e ∈ {0, 1, . . . ,m−1},


we use the following notation:


ae := (. . . , a−2, a−1)e


:= (. . . , a−2, a−1, e).


Define a map τ of the quotient space ([0, 1]× Σ)/ ∼ by


τ(t,a) := (mt− e,ae) if
e


m
≤ t ≤ e+ 1


m
(6)


for some e ∈ {0, 1, . . . ,m− 1}. Then, we have
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Theorem 3. Let p : ([0, 1] × Σ)/ ∼→ lim←−(S1, g), (t, (. . . , a−2, a−1)) 7→ (. . . , s−1, s0), and


h : lim←−(S1, g)→ Λq, (. . . , s−1, s0) 7→ (s0, z0), be defined by


sk =



exp


(
i2π


(
tmk +


−1∑
j=k


ajm
k−j−1


))
if k ≤ −1


exp(i2πt) if k = 0


(7)


and


z0 =
∑
k≤−1


ε−k−1 1


2
sk, (8)


respectively. Then, the following diagram


([0, 1]× Σ)/ ∼ τ−→ ([0, 1]× Σ)/ ∼
p


y yp
lim←−(S1, g)


σ−→ lim←−(S1, g)


h


y yh
Λq


q−→ Λq


(*)


is commutative.


Actually, formulae (7) and (8) can be derived by straightforward observation from formula


(4), and vice versa. It has been known that the restriction of q to Λq is topologically conjugate


to the two-sided shift σ on the inverse limit space lim←−(S1, g) (see, for example, Devaney1,


Robinson8, Shub9). It is also known that it is topologically conjugate to the map τ on


the suspension ([0, 1]× Σ)/ ∼ over the adding machine (for example, Takens11). Moreover,


formulae similar to (4) for solenoids in more abstract mathematical settings, though little-


known, are also known (see Hewitt and Ross2, or Kwapisz7). One point of Theorem 3 is


to show that there are explicit formulae for the topological conjugacies, meaning that p


and h are the topological conjugacies with appropriate topologies. The main point is to


utilize these formulae to provide an algebraically explicit, clear, and less abstract proof of


the commutativity of the diagram (*). Our proof is accessible for general readers.


Remark 4. The fact that Λq is homeomorphic to the product [0, 1] × Σ with (1,a) iden-


tified with (0, A(a)) can be understood as follows: For each t ∈ R/Z, the intersection


Λq,t = Λq ∩ ({exp(i2πt)} × D2) of Λq and the section {exp(i2πt)} × D2 is a Cantor set.


(Thus, Λq,t is homeomorphic to Σ.) So, for small positive c, the intersection of Λq and
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⋃
t−c≤t′≤t+c exp(i2πt′) × D2 can be described as the product


⋃
t−c≤t′≤t+c exp(i2πt′) × Λq,t.


Following t, in a natural way, one can define a return map Rt : Λq,t → Λq,t. Then Λq is


homeomorphic to the product [0, 1]× Λq,t with (1, z) identified with (0,Rt(z)).


The rest of the paper is mainly devoted to proving and elaborating Theorem 3. In


addition to verifying the commutativity of the diagram (*), to show the bijections p and h


are topological conjugacies we need to prove they are homeomorphisms when lim←−(S1, g) and


([0, 1]×Σ)/ ∼ are endowed with appropriate topologies. Propositions 7 and 8 in Section II


address this issue. In Section III, we prove Theorems 1 and 3. For completeness sake, we


derive formula (4) for the Smale-Williams solenoid in the Appendix.


II. USEFUL LEMMAS AND HOMEOMORPHISMS p AND h


A. Useful lemmas


The precise meaning of the adding machine map A is as follows:


A(a) =





(. . . , a−2, a−1 + 1) if a−1 ∈ {0, 1, . . . ,m− 2} (9)


(. . . , al−2, al−1 + 1, 0, . . . , 0) if al−1 ∈ {0, 1, . . . ,m− 2},


al = . . . = a−2 = a−1 = m− 1, l ≤ −1 (10)


(. . . , 0, 0) if a = (. . . ,m− 1,m− 1). (11)


Note that A is a one-to-one and onto, with its inverse


A−1(a) =





(. . . , a−2, a−1 − 1) if a−1 ∈ {1, 2, . . . ,m− 1} (12)


(. . . , al−2, al−1 − 1,m− 1, . . . ,m− 1) if al−1 ∈ {1, 2, . . . ,m− 1},


al = . . . = a−2 = a−1 = 0,


l ≤ −1 (13)


(. . . ,m− 1,m− 1) if a = (. . . , 0, 0). (14)


The following lemma tells us how the adding machine is incorporated in formula (4) and the


diagram (*).


Lemma 5. Assume m ≥ 2 is an integer.


exp
(
i2π
(
(t+ n)mk + a−1m


k + a−2m
k+1 + . . .+ akm


−1
))


= exp
(
i2π
(
tmk + An(a)−1m


k + An(a)−2m
k+1 + . . .+ An(a)km


−1
))


(15)


for any t ∈ R, n ∈ Z, a ∈ Σ, and integer k ≤ −1.
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Proof. We prove the n = 1 case first. From (9) and (11), it is clear that the lemma holds if


a−1 ∈ {0, 1, . . . ,m− 2} or if a = (. . . ,m− 1,m− 1). If a−1 = a−2 = . . . = al = m− 1 and


al−1 ∈ {0, 1, . . . ,m−2} for some l ≤ −1, then from (10) the right hand side of (15) becomes


exp
(
i2πtmk


)
if k ≥ l,


or


exp
(
i2π
(
tmk + (al−1 + 1)m−1


))
if k = l − 1,


or


exp
(
i2π
(
tmk + (al−1 + 1)mk−l + al−2m


k−l+1 + al−3m
k−l+2 + . . .+ akm


−1
))


if k ≤ l − 2.


It is easy to see that the lemma holds for cases k ≥ l or k = l − 1. The case k ≤ l − 2 is


also easy to verify:


(t+ 1)mk + (m− 1)mk + (m− 1)mk+1 + . . .+ (m− 1)mk−l−1 + al−1m
k−l


+al−2m
k−l+1 + al−3m


k−l+2 + . . .+ akm
−1


= tmk + 0 ·mk + 0 ·mk+1 + . . .+ 0 ·mk−l−1 + (al−1 + 1)mk−l


+al−2m
k−l+1 + al−3m


k−l+2 + . . .+ akm
−1.


Having proved the n = 1 case, the n = −1 case can be proved by letting t = t′ − 1


and a = A−1(b). Thence, we can verify all n ∈ Z cases inductively. The verification is


straightforward, and we omit it.


Lemma 6.


(i) A(ae) = a(e+ 1) if e ∈ {0, 1, . . . ,m− 2}.


(ii) A(a(m− 1)) = A(a)0.


(iii) A−1(a0) = A−1(a)(m− 1).


(iv) A−1(ae) = a(e− 1) if e ∈ {1, 2, . . . ,m− 1}.


Proof. Asserts (i) and (iv) are clearly true. The proof of (ii) and (iii) is straightforward by


letting a = (. . . , a−2, a−1) and considering the definition of A and A−1 for three different


cases:


(9)⇒ A(. . . , a−2, a−1,m− 1) = (. . . , a−2, a−1 + 1, 0)


= (. . . , a−2, a−1 + 1)0;
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(10)⇒ A(. . . , al−2, al−1,m− 1, . . . ,m− 1
‖
a−1


,m− 1) = (. . . , al−2, al−1 + 1, 0, . . . , 0, 0)


= (. . . , al−2, al−1 + 1, 0, . . . , 0)0;


(11)⇒ A(. . . ,m− 1,m− 1
‖
a−1


,m− 1) = (. . . , 0, 0, 0)


= (. . . , 0, 0)0.


And,


(12)⇒ A−1(. . . , a−2, a−1, 0) = (. . . , a−2, a−1 − 1,m− 1)


= (. . . , a−2, a−1 − 1)(m− 1);


(13)⇒ A(. . . , al−2, al−1, 0, . . . , 0
‖
a−1


, 0) = (. . . , al−2, al−1 − 1,m− 1, . . . ,m− 1,m− 1)


= (. . . , al−2, al−1 − 1,m− 1, . . . ,m− 1)(m− 1);


(14)⇒ A(. . . , 0, 0
‖
a−1


, 0) = (. . . ,m− 1,m− 1,m− 1)


= (. . . ,m− 1,m− 1)(m− 1).


B. Homeomorphisms p and h


In this subsection, we equip spaces lim←−(S1, g) and ([0, 1]×Σ)/ ∼ with metrics, then show


that p and h are homeomorphisms.


Note that the shift map σ is one-to-one and onto. Its inverse is given by


σ−1((. . . , s−2, s−1, s0)) = (. . . , s−3, s−2, s−1).


The shift σ becomes a homeomorphism if the inverse limit space lim←−(S1, g) is equipped with


the following metric


d(s, s̃) :=
∑
j≤0


|sl − s̃l|2j, (16)
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where | · − · | is the usual Euclidean distance in the complex plane.


Assume the bijectivity of p in Theorem 3, with the metric d on lim←−(S1, g), we can equip


a metric δ on ([0, 1]× Σ)/ ∼ by


δ((t,a), (t′,a′)) = d(p(t,a), p(t′,a′)).


Then p is an isometry and hence an homeomorphism.


Proposition 7. The map p : ([0, 1]×Σ)/ ∼→ lim←−(S1, g) defined in Theorem 3 is a homeo-


morphism.


Proof. In view of the last paragraph, we only need to show p is a bijection.


Suppose there are 0 ≤ t′ ≤ t ≤ 1 and a′,a ∈ Σ such that p((t,a)) = p((t′,a′)) = (sk)k≤0.


Since s0 = exp(i2πt), it follows that t must equal t′ or that t′ = 0 and t = 1. If t = t′, then


s−1 = exp(i2π(
t


m
+
a−1


m
)) = exp(i2π(


t′


m
+
a′−1


m
)) = exp(i2π(


t


m
+
a′−1


m
)).


Because a−1, a
′
−1 ∈ {0, 1, . . . ,m− 1}, we have a−1 = a′−1. Assume aj = a′j for k < j ≤ −1


and k ≤ −2. Then,


sk = exp


(
i2π


(
tmk +


−1∑
j=k+1


ajm
k−j−1


))
exp(i2π


ak
m


)


= exp


(
i2π


(
tmk +


−1∑
j=k+1


ajm
k−j−1


))
exp(i2π


a′k
m


).


This leads to ak = a′k. By induction, (t,a) = (t′,a′). If t = 1 and t′ = 0, let sk = p((1,a))k =


p((0,a′))k, k ≤ 0. Now, by Lemma 5,


p((1,a))k = exp


(
i2π


(
(0 + 1)mk +


−1∑
j=k


ajm
k−j−1


))


= exp


(
i2π


(
0 ·mk +


−1∑
j=k


A(a)jm
k−j−1


))
= p((0, A(a)))k.


Using the just proved t = t′ case, we have a′ = A(a). Since (1,a) is identified with (0, A(a)),


this proves that p is one-to-one.


To show p is onto, given s ∈ lim←−(S1, g), we have to find (t,a) ∈ ([0, 1] × Σ)/ ∼ such


that p((t,a)) = s. By expressing s0 = exp(i2πt) with t ∈ [0, 1), we have the desired t. The


relation g(s−1) = sm−1 = s0 gives s−1 = exp(i2π( t
m


+ a−1


m
)) for a unique a−1 ∈ {0, 1, . . . ,m−1}.
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Assume sk = exp(i2π(tmk +
∑−1


j=k ajm
k−j−1)) with aj ∈ {0, 1, . . . ,m − 1} for k ≤ j ≤ −1.


Then smk−1 = sk leads to


sk−1 = exp


(
i2π


(
tmk−1 +


−1∑
j=k


ajm
(k−1)−j−1 + ak−1m


−1


))


= exp


(
i2π


(
tmk−1 +


−1∑
j=k−1


ajm
(k−1)−j−1


))


with a unique ak−1 ∈ {0, 1}. Inductively, we obtain an a = (. . . , a−2,a−1) ∈ Σ with which


p((t,a)) = s.


Having proved that p is a homeomorphism, the diagram (*) tells that τ is a composition


of homeomorphisms, τ = p−1 ◦ σ ◦ p, thus a homeomorphism. Indeed, τ is a bijection, with


τ−1(t,a) = (
t+ e


m
,w) if a = we.


Note that τ is well-defined since (1,a) ∼ (0, A(a)), and the well-definedness can be verified


by using Lemma 6.


Proposition 8. The map h : lim←−(S1, g)→ Λq defined in Theorem 3 is a homeomorphism.


Proof. We show h is a bijection first. The fact that h is onto is clear by (4) and (7).


In our derivation of (4), to come in the Appendix, we shall see that there is a one-to-one


correspondence between ([0, 1]×Σ)/ ∼ and Λq. Because we have proved that p is one-to-one,


h is one-to-one. Nonetheless, we provide an algebraically explicit proof below.


Assume there exist distinct s, s′ ∈ lim←−(S1, g) such that h(s) = h(s′). We get s0 = s′0,


and by (8), ∑
k≤−1


ε−k−1sk =
∑
k≤−1


ε−k−1s′k.


Since s 6= s′, there exists k0 ≤ −1 such that sk0 6= s′k0 and sk = s′k for k0 < k ≤ 0. Thus the


above equation becomes ∑
k≤k0


ε−k−1sk =
∑
k≤k0


ε−k−1s′k.


Because the series is absolutely convergent, the equation can be written as


ε−k0−1(sk0 − s′k0) =
∑
k<k0


ε−k−1(s′k − sk).
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The absolute value gives rise to∣∣ε−k0−1(sk0 − s′k0)
∣∣ =


∣∣∣∣∣∑
k<k0


ε−k−1(s′k − sk)


∣∣∣∣∣
≤
∑
k<k0


ε−k−1 |s′k − sk|


≤
∑
k<k0


ε−k−1 · 2


= 2
ε−(k0−1)−1


1− ε
. (17)


Since g(sk0) = sk0+1 = g(s′k0) and sk0 6= s′k0 , we have 2 sin π
m
≤
∣∣sk0 − s′k0∣∣ ≤ 2. Hence (17)


leads to
1


2
sin


π


m
≤ 1


1 + sin π
m


sin
π


m
≤ ε.


But this contradict (1), which requires ε < 1
2


sin π
m


. We thus conclude s = s′.


To show that h is an homeomorphism, suppose s, s′ ∈ lim←−(S1, g), h(s) = (s0, z0), and


h(s′) = (s′0, z
′
0). From (8), we see that (s′0, z


′
0) can be made arbitrarily close to (s0, z0)


provided that s′k = sk for k ≥ −n and n large enough. From (16), this means (s′0, z
′
0) can be


made arbitrarily close to (s0, z0) in Λq provided that s′ and s are close enough in lim←−(S1, g).


Therefore, h is continuous. Consequently, h is a continuous bijection from the compact space


lim←−(S1, g) into S1 ×D2, hence, a homeomorphism.


III. PROOFS OF THEOREMS 1 AND 3


A. Proof of Theorem 1


From Theorem 2, a point (exp(i2πt), z) belongs to Λq if and only if


z =
∑
k≤−1


ε−k−1 1


2
exp


(
i2π


(
tmk +


−1∑
j=k


ajm
k−j−1


))
(18)


for some (ak)k≤−1 ∈ Σ. Let z = ζ(ε). Immediately, dζ
dε


has to satisfy (2) and ζ(0) satisfy (3).


Conversely, integration of (2) by ε gives rise to


ζ(ε) = C +
∑
k≤−2


ε−k−1 1


2
exp


(
i2π


(
tmk +


−1∑
j=k


ajm
k−j−1


))
,


where C is the integration constant. The initial condition (3) requires that ζ(0) = C =


1
2


exp(i2π t+a−1


m
). Thus ζ(ε) satisfies the right hand side of (18).
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B. Proof of Theorem 3


Propositions 7 and 8 show that p and h are homeomorphisms. To prove the theorem,


it remains to verify that p ◦ τ = σ ◦ p and h ◦ σ = q ◦ h. Using (6), we get p ◦ τ(t,a) =


(. . . , sk, . . . , s0), where


sk =



exp


(
i2π
(
mtmk +


∑−2
j=k aj+1m


k−j−1
))


if k ≤ −2


exp(i2πt) if k = −1


exp(i2πmt) if k = 0


On the other hand, σ ◦ p(t,a) = (. . . , sk, . . . , s0), where


sk =



exp


(
i2π
(
tmk+1 +


∑−1
j=k+1 ajm


(k+1)−j−1
))


if k ≤ −2


exp(i2πt) if k = −1


(exp(i2πt))m if k = 0.


Hence, it is not difficult to see that p ◦ τ is equal to σ ◦ p. Now,


h ◦ σ(s) = (g(s0),
∑
k≤−1


ε−k−1 1


2
sk+1).


In comparison with


q ◦ h(s) = q((s0,
∑
k≤−1


ε−k−1 1


2
sk))


= (g(s0), (
∑
k≤−1


ε−k
1


2
sk) +


1


2
s0)


= (g(s0),
∑
k≤−1


ε−k−1 1


2
sk+1),


we get h ◦ σ = q ◦ h.
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APPENDIX: PROOF OF THEOREM 2


For convenience, let D(t) = {exp(i2πt)} × D2 be the section at ‘angle’ t ∈ [0, 1) of the


solid torus. What the map q does is sending the disk D(t) into the disk D(mt mod 1) with


a scaling ε in radius and a translation 1
2


exp(i2πt) from the center of D(mt mod 1).


Λq ∩ D(t) is the intersection of a sequence of nested disks. To label these disks, define


Da−1 = q(D( t
m


+ a−1


m
)) ⊂ D(t) for a−1 ∈ {0, 1, . . . ,m − 1}. Note that 0 ≤ t


m
+ a−1


m
< 1 if


0 ≤ t < 1. For each a−1, the disk Da−1 contains small disks Da−2a−1 , a−2 ∈ {0, 1, . . . ,m− 1}


satisfying q−2(Da−2a−1) = D( t
m2 + a−1


m2 + a−2


m
). Inductively, we get disks Da−n···a−2a−1 of


radius εn with aj ∈ {0, 1, . . . ,m − 1} for every −n ≤ j ≤ −1. Note that Da−n−1···a−2a−1 ⊂


Da−n···a−2a−1 . Therefore, we have Λq ∩D(t) =
⋂
n≤−1


⋃
a∈Σ Da−n···a−1 .


Let x ∈ Λq ∩ D(t). From the above paragraph, there exists a ∈ Σ such that x ∈


Da−n ∩ Da−2a−1 ∩ · · · ∩ Da−n···a−1 ∩ · · · . On the other hand, for given a, the intersection


Da−1 ∩ Da−2a−1 ∩ · · · ∩ Da−n···a−1 ∩ · · · contains only one point. So there is a one-to-one


correspondence between x and a.


Suppose x ∈ Da−1 ∩ Da−2a−1 ∩ · · · . Let the center of Da−n···a−1 be ca−n···a−1 . Since


x ∈ Da−n···a−1 and the radius of Da−n···a−1 is εn,


|x− ca−n···a−1| < εn. (19)


We have seen that Da−1 is the image of D( t
m


+ a−1


m
) under q, and that Da−2a−1 is the


image of D( t
m2 + a−1


m2 + a−2


m
) under q2. Similarly, by induction, we have that Da−n···a−1 is the


image of D( t
mn +


∑n
i=1


a−i


mn+1−i ) under qn. Let


tk :=



tmk +


−1∑
j=k


ajm
k−j−1 (k ≤ −1)


t (k = 0).


Note tk+1 = mtk mod 1 for k ≤ −1. The image of D(tk) is a disk in D(tk+1) with center at


(tk+1,
1
2


exp(i2πtk)), and after −k − 1 times iteration, D(tk+1) becomes Dak+1···a−1 in D(t).


Therefore, the vector 1
2


exp(i2πtk) from the center of D(tk+1) pointing to the center of


q(D(tk)) is shrunk by the factor ε−k−1 to a vector from the center of Dak···a−1 to the center
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of Dak+1···a−1 . So, cak···a−1 − cak+1···a−1 = ε−k−1 1
2


exp(i2πtk). Therefore,


ca−k···an = (ca−1 − 0) +
−2∑
j=k


(caj ···a−1 − caj−1···a−1)


=
1


2
exp(i2πt−1) +


−2∑
j=k


ε−k−1 1


2
exp(i2πtk)


=
−1∑
j=k


ε−k−1 1


2
exp(i2πtk).


Since ε < 1
2
, the series


∑
k≤−1 ε


−k−1 1
2


exp(i2πtk) = limk→−∞ cak···a−1 is absolutely convergent


and then by (19)


x = (exp(i2πt),
∑
k≤−1


ε−k−1 1


2
exp(i2πtk))


in Λq. Hence, we obtain formula (4).


Remark 9. Suppose (s, z) ∈ Λq. Let (sk, zk) = qk(s, z) for every integer k. Because q is


invertible, there are sequences (tk)k∈Z ∈ [0, 1)Z and (ak)k∈Z ∈ {0, 1, . . . ,m − 1}Z such that


s = exp(i2πt0), tk + ak−1 = mtk−1, and zk = εzk−1 + 1
2


exp(i2πtk−1) for all k. Then,


z = εz−1 +
1


2
exp


(
i2π


t0 + a−1


m


)
= ε


(
εz−2 +


1


2
exp


(
i2π


t−1 + a−2


m


))
+


1


2
exp


(
i2π


t0 + a−1


m


)
= ε2z−2 + ε


1


2
exp


(
i2π


t0 + a−1


m2
+
a−2


m


)
+


1


2
exp


(
i2π


t0 + a−1


m


)
=


...


=
∑
k≤−1


ε−k−1 1


2
exp


(
i2π


(
t0m


k +
−1∑
j=k


ajm
k−j−1


))
,


which coincides with the expression of z in Theorem 2.
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