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Abstract. We analyze spectrum of Laplacian supported by a periodic
honeycomb lattice with generally unequal edge lengths and a δ type
coupling in the vertices. Such a quantum graph has nonempty point
spectrum with compactly supported eigenfunctions provided all the edge
lengths are commensurate. We derive conditions determining the contin-
uous spectral component and show that existence of gaps may depend
on number-theoretic properties of edge lengths ratios. The case when
two of the three lengths coincide is discussed in detail.
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1. Introduction


Quantum graphs, more exactly di�erential operators on metric graphs de-
scribing quantum motion con�ned to networks, attracted a lot of attention
recently as a fruitful combination of spectral theory, geometry, combinatorics,
and other disciplines. The number of results in this area is large and perma-
nently increasing; we refer to the monograph [1] for an up-to-date survey.


A class of particular interest are quantum graphs having a periodic
structure. On one hand they are interesting mathematically, in particular,
because the corresponding operators may exhibit properties di�erent from
standard periodic Schrödinger operators, for instance they may have com-
pactly supported eigenfunctions. On the other hand, they provide a physical
model of various systems having crystalline structure which become popular
especially recently in connection with the discovery of graphene and related
material objects such as carbon nanotubes [5].


Physical models of various lattice structures usually involve symmetries
as arrangements which the nature favours. This may be true in the ideal
situation but it can change under in�uence of external forces, for instance,
mechanical strains. At the same time, we know from the simple model of a
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rectangular quantum-graph lattice [2, 3] that the graph geometry may give
rise to interesting number-theoretic e�ects in the spectrum. This motivates
us to inspect how edge length variations can a�ect the spectrum of the lattice
appearing most frequently in the applications, the hexagonal one.


Let us thus consider an in�nite honeycomb graph Γ dilated indepen-
dently in all the three directions, as depicted in Figure 1 below. That is, each
hexagon consists of two andtipodal edges of length a, two antipodal edges of
length b and two antipodal edges of length c. The operator to investigate is
the corresponding quantum-graph Hamiltonian, that is, a Laplacian on the
Hilbert space H = L2(Γ) consisting of sequences ψ = {ψj} the elements of
which refer to edges of Γ. The operator acts as Hψ = {−ψ′′j } on functions


from H1(Γ) ∩ H2(Γ \ V), where V is the set of graph vertices. In order to
make it self-adjoint we have to specify its domain, for instance, by indicating
boundary conditions. We choose the so-called δ-coupling [2] requiring


ψ1(0+) = ψ2(0+) = ψ3(0+) =: ψ(0) ,


3∑
i=1


ψ′i(0+) = αψ(0) , (1)


where i = 1, 2, 3 number three edges meeting in a vertex, which are para-
metrized by their arc length with zero at the junction. We suppose that the
coupling is the same at each vertex, hence the operators exhibit translational
symmetry corresponding to the geometry of the hexagonal lattice. It would be
thus natural to label the operator by the parameter appearing in (1) writing
it, for instance, as Hα for a �xed α ∈ R, however, since there will be no
danger of misunderstanding, we shall drop the index.


An alternative way is to characterize the operator H by means of the
associated quadratic form which is given by


q[ψ] =


∫
Γ


|ψ′(s)|2ds+ α
∑
i


|ψi|2 (2)


with the domain consisting of all functions from H1(Γ), where the �rst term
is a shorthand for the sum over all the edges and in the second term we
sum over all the vertices and ψi is the function value at the i-th vertex. It is
obvious from (2) that H ≥ 0 holds for α ≥ 0, and it is not di�cult to check
that for α < 0 we have inf σ(H) < 0.


Our goal in this paper is to analyze the spectrum of H. Since the system
is periodic, it has a band structure but in general it can have a nonempty
point component [1]. We are going to show that this happens i� all the
lattice edges are commensurate. Next we derive the condition determining
the spectrum, in particular, its open gaps. After the general discussion, we
focus in Sec. 4 on the particular case when two of the three edge lengths are
identical and analyze the gap structure in detail. We conclude the paper by
mentioning a couple of questions about the model which remain open.
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2. Point spectrum


In contrast to the usual Schrödinger operator theory, quantum graph Hamil-
tonians may violate the unique continuation principle � see, e.g., [4]. It hap-
pens also in our present model; a su�cient condition for that is a commen-
surability of the lattice edges lengths.


Proposition 2.1. If b
a ∈ Q and c


a ∈ Q, then σp(H) 6= ∅.


Proof. Under the assumption, there is an in�nite number of values k such
that ka, kb, and kc are integer multiples of 2π. Then a sinusoidal function
on a perimeter of a hexagon cell with zeros at the vertices gives rise to an
eigenfunction of H since it solves the equation −φ′′ = k2φ and satis�es the
boundary conditions (1). �


It is also obvious that such a point spectrum is of in�nite multiplicity. On
the other hand, the commensurability is also a necessary condition.


Proposition 2.2. If σp(H) 6= ∅, then b
a ∈ Q and c


a ∈ Q.


We postpone the proof of this claim to the next section.


3. Continuous spectrum


3.1. Determining the spectrum


Since we are dealing with a periodic graph, a natural tool to employ is the
Floquet-Bloch decomposition [1, Chap. 4]. The elementary cell of Γ is shown
in Fig. 1, together with the symbols we use to denote the wave function
components on the edges.


Figure 1. A dilated honeycomb network and the elemen-
tary cell


We are interested in generalized eigenfunctions of the graph Laplacian
at an energy E. If E > 0, we put conventionally E = k2 with k > 0 and
assume that sin(`k) 6= 0 holds for at least one ` ∈ {a, b, c}; without loss of
generality we may suppose that sin(ak) 6= 0. Since the Hamiltonian acts as a
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negative second derivative, the wavefunction on each edge has to be a linear
combination of the exponentials eikx and e−ikx, speci�cally we can write


ψ1(x) = C+
1 eikx + C−1 e−ikx, x ∈ [0, a/2] (3a)


ψ2(x) = C+
2 eikx + C−2 e−ikx, x ∈ [0, b/2] (3b)


ψ3(x) = C+
3 eikx + C−3 e−ikx, x ∈ [0, c/2] (3c)


ϕ1(x) = D+
1 eikx +D−1 e−ikx, x ∈ [−a/2, 0] (3d)


ϕ2(x) = D+
2 eikx +D−2 e−ikx, x ∈ [−b/2, 0] (3e)


ϕ3(x) = D+
3 eikx +D−3 e−ikx, x ∈ [−c/2, 0] (3f)


Obviously, ψ1(0) = ϕ1(0) and ψ′1(0) = ϕ′1(0), hence


C+
1 = D+


1 , C−1 = D−1 . (4)


The wave functions have to satisfy the following six boundary conditions
corresponding to the δ-couplings in the vertices (1), namely


ψ2(0) = ψ3(0) = ψ1(a/2) (5a)


ψ′2(0) + ψ′3(0)− ψ′1(a/2) = αψ1(0) (5b)


ϕ2(0) = ϕ3(0) = ϕ1(−a/2) (5c)


−ϕ′2(0)− ϕ′3(0) + ϕ′1(−a/2) = αϕ1(0) (5d)


where α ∈ R is the coupling parameter. On the other hand, the Floquet-Bloch
decomposition requires to impose the following conditions,


ψ2(b/2) = eiθ1ϕ2(−b/2) , ψ3(c/2) = eiθ2ϕ3(−c/2) ,


ψ′2(b/2) = eiθ1ϕ′2(−b/2) , ψ′3(c/2) = eiθ2ϕ′3(−c/2)
(6)


for some θ1, θ2 ∈ (−π, π]. Substituting (3b)�(3f) into (6) enables one to ex-
press variables D±2 and D±3 in terms of C±2 and C±3 : we obtain


D+
2 = C+


2 · ei(bk−θ1) , D+
3 = C+


3 · ei(ck−θ2) ,


D−2 = C−2 · ei(−bk−θ1) , D−3 = C−3 · ei(−ck−θ2) .
(7)


The continuity at the vertices � cf. conditions (5a), (5c) � together with
(4) allow us to eliminate coe�cients C±1 and D±1 . In this way we obtain a
system of four linear equations containing C+


2 , C
−
2 , C


+
3 , C


−
3 as the unknown


quantities and a, b, c, k, α as parameters, namely


M



C+


2


C−2
C+


3


C−3


 = 0 , (8)


where the matrix M is given as


M =



1 1 −1 −1


ei(bk−θ1) ei(−bk−θ1) −ei(ck−θ2) −ei(−ck−θ2)


m31 m32 i −i
m41 m42 −iei(ck−θ2) iei(−ck−θ2)










Spectrum of a dilated honeycomb network 5


with


m3j :=
−e−iσjak + ei(σjbk−θ1)


sin ak
− α


k
and


m4j :=
−ei(σjak+σjbk−θ1) + 1


sin ak
− α


k
ei(σjbk−θ1)


for j = 1, 2, where σj := (−1)j−1. A nontrivial solution of the form (3)
exists i�


(
C+


2 , C
−
2 , C


+
3 , C


−
3


)
is a nonzero vector. Therefore, k2 belongs to the


spectrum ofH if (8) has a non-trivial solution for certain pair (θ1, θ2), in other
words, if there exist θ1, θ2 ∈ (−π, π] such that det(M) = 0. A straightforward
calculation leads to


det(M) = −4
[
2 sin ak cos bk cos ck + 2 cos ak sin bk cos ck


+ 2 cos ak cos bk sin ck − 3 sin ak sin bk sin ck


− 2 sin ak cos(θ1 − θ2)− 2 sin ck cos θ1 − 2 sin bk cos θ2


+ 2
α


k
(cos ak sin bk sin ck + sin ak cos bk sin ck + sin ak sin bk cos ck)


+
α2


k2
sin ak sin bk sin ck


]e−i(θ1+θ2)


sin ak
.


(9)


The spectral condition can be put into a more convenient form if we exclude
all the �Dirichlet points�, i.e. if we consider k such that sin(`k) 6= 0 holds for
all ` ∈ {a, b, c}. After a simple manipulation, we then obtain


det(M) = −4


[
2(cotg ak cotg bk + cotg ak cotg ck + cotg bk cotg ck)


+ cotg2 ak + cotg2 bk + cotg2 ck − 1


sin2 ak
− 1


sin2 bk
− 1


sin2 ck


− 2


(
cos θ1


sin ak sin bk
+


cos θ2


sin ak sin ck
+


cos(θ1 − θ2)


sin bk sin ck


)
+ 2


α


k
(cotg ak + cotg bk + cotg ck) +


α2


k2


]
sin bk sin ck


ei(θ1+θ2)
,


hence


det(M) =− 4


[(
cotg ak + cotg bk + cotg ck +


α


k


)2


− 1


sin2 ak
− 1


sin2 bk
− 1


sin2 ck


−2


(
cos θ1


sin ak sin bk
+


cos θ2


sin ak sin ck
+


cos(θ1 − θ2)


sin bk sin ck


)]
sin bk sin ck


ei(θ1+θ2)
.


We can conclude that k2 ∈ σ(H) holds if there are θ1, θ2 ∈ (−π, π] such that(
cotg ak + cotg bk + cotg ck +


α


k


)2


=
1


sin2 ak
+


1


sin2 bk
+


1


sin2 ck


+ 2


(
cos θ1


sin ak sin bk
+


cos θ2


sin ak sin ck
+


cos(θ1 − θ2)


sin bk sin ck


)
. (10)
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The obtained spectral condition allows us to determine the positive part of
the spectrum. This is su�cient if α ≥ 0, in the opposite case we have to
take also negative energies into account. This can be done in a similar way,
replacing the positive k in the above considerations by k = iκ with κ > 0. In
particular, the condition (10) is then replaced by(


coth aκ+ coth bκ+ coth cκ+
α


κ


)2


=
1


sinh2 aκ
+


1


sinh2 bκ
+


1


sinh2 cκ


+ 2


(
cos θ1


sinh aκ sinh bκ
+


cos θ2


sinh aκ sinh cκ
+


cos(θ1 − θ2)


sinh bκ sin cκ


)
; (11)


in distinction to the previous case there is no need to exclude any values of
the spectral parameter κ.


One important conclusion of these considerations is that the spectrum
of H is absolutely continuous away of the �Dirichlet points�. This is a conse-
quence of the following claim.


Proposition 3.1. The solution of the equation det(M) = 0 regarded as a


function of (θ1, θ2) is non-constant on any open subset of (−π, π]2.


Proof. Let us denote F (θ1, θ2, k) = − ei(θ1+θ2)


4 det(M) and consider �rst the
positive-energy solutions, i.e., values k > 0 satisfying the condition sin ak 6= 0.
Obviously, a number k solves det(M) = 0 for a pair (θ1, θ2) ∈ (−π, π]2 if and
only if F (θ1, θ2, k) = 0. We use a reductio ad absurdum argument. Suppose
that the function k = k(θ1, θ2) is constant on an open subset J ⊂ (−π, π]2,
i.e., let F (θ1, θ2, k0) = 0 hold for a k0 > 0 and for every (θ1, θ2) ∈ J . Hence
in view of (9) and the de�nition of F we have


sin ak0 cos(θ1 − θ2) + sin ck0 cos θ1 + sin bk0 cos θ2 = const on J.


The trigonometric polynomial A cos(θ1−θ2)+C cos θ1 +B cos θ2 regarded as
a function of two variables (θ1, θ2) can be obviously constant on a non-empty
open subset of (−π, π]2 if and only if A = B = C = 0 which in our case
would mean sin ak0 = sin bk0 = sin ck0 = 0, however, this is excluded by the
assumption.
In case of negative energies −κ2 with κ > 0 we have instead a condition


sinh aκ0 cos(θ1 − θ2) + sinh cκ0 cos θ1 + sinh bκ0 cos θ2 = const on J,


which can never be satis�ed for κ > 0. �


At the same time, the above argument allows us to prove Proposition 2.2.
Indeed, in view of the periodicity the point spectrum has necessarily an in�-
nite multiplicity, corresponding to a ��at band�, i.e. a solution to the spectral
condition independent of (θ1, θ2). We have seen in Proposition 3.1 that this
can happen only if the energy is positive. We can also exclude the case when
all the edge lengths are commensurate as we already know that b


a ∈ Q and
c
a ∈ Q implies σp(H) 6= ∅. Let k2 > 0 and at least two of the lengths be in-
commensurate. Then sin ak, sin bk, and sin ck cannot vanish simultaneously.
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We choose a nonzero one and if needed renumber the edges in order to sat-
isfy the assumption sin ak 6= 0. Then Proposition 3.1 implies that k cannot
corrrespond to a ��at band�. �


Corollary 3.2. If b
a 6∈ Q and c


a 6∈ Q, the spectrum of H is purely absolutely


continuous.


Proof. By Proposition 2.2 the spectrum is purely continuous. By implicit-
function theorem any solution to the conditions (10) is smooth, even analytic,
hence singularly continuous spectrum is excluded. �


Let us add that if the edge lengths are commensurate, the operator may
have in�nitely degenerate eigenvalues, however, the implicit-function-theorem
argument still works and the spectrum is absolutely continuous away from
the �Dirichlet points�.


3.2. More about the spectral condition for E = k2 > 0


Consider again the positive part of the spectrum and examine the range of
the right-hand side of (10) for θ1, θ2 ∈ (−π, π]. The range is obviously an
interval. The maximum is found easily; using


cos θ1


sin ak sin bk
≤ 1


| sin ak sin bk|
and similar estimates for the other two θ-dependent terms, we get


max
θ1,θ2∈(−π,π]


{
1


sin2 ak
+


1


sin2 bk
+


1


sin2 ck
+ 2


(
cos θ1


sin ak sin bk


+
cos θ2


sin ak sin ck
+


cos(θ1 − θ2)


sin bk sin ck


)}
=


(
1


| sin ak|
+


1


| sin bk|
+


1


| sin ck|


)2


.


The maximum is obviously attained for θ1, θ2 chosen such that cos θ1 =
sgn(sin ak sin bk), cos θ2 = sgn(sin ak sin ck). On the other hand, the mini-
mum of the expression will be found using the following lemma which is not
di�cult to prove.


Lemma 3.3. Let f(θ1, θ2) = A cos(θ1−θ2)+B cos θ2+C cos θ1 for A,B,C ∈ R
such that ABC > 0. It holds


• if 1
|A| + 1


|B| + 1
|C| ≥ 2 max


{
1
|A| ,


1
|B| ,


1
|C|


}
, then


min
θ1,θ2∈(−π,π]


f(θ1, θ2) = −ABC
2


(
1


A2
+


1


B2
+


1


C2


)
;


• if 1
|A| + 1


|B| + 1
|C| ≤ 2 max


{
1
|A| ,


1
|B| ,


1
|C|


}
, then


min
θ1,θ2∈(−π,π]


f(θ1, θ2) = −(|A|+ |B|+ |C|) + 2 min{|A|, |B|, |C|} .


Let us apply the result on the right-hand side of (10). We need to set
A = sin bk sin ck, B = sin ak sin ck, C = sin ak sin bk. Then the condition


1
|A| + 1


|B| + 1
|C| ≥ 2 max


{
1
|A| ,


1
|B| ,


1
|C|


}
can be shown to be equivalent to
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1
| sin ak| + 1


| sin bk| + 1
| sin ck| ≥ 2 max


{
1


| sin ak| ,
1


| sin bk| ,
1


| sin ck|


}
(and similarly for


the opposite sign). When we substitute the minima of f found in Lemma 3.3
into the right-hand side of (10), we get


• zero if 1
| sin ak| + 1


| sin bk| + 1
| sin ck| ≥ 2 max


{
1


| sin ak| ,
1


| sin bk| ,
1


| sin ck|


}
;


•
(


2 max
{


1
| sin ak| ,


1
| sin bk| ,


1
| sin ck|


}
− 1
| sin ak| −


1
| sin bk| −


1
| sin ck|


)2


otherwise.


The results on the minimum and maximum allow us to estimate the left-
hand side of (10) from below and above; taking the square roots we get the
condition


max


{
0, 2 max


{
1


| sin ak|
,


1


| sin bk|
,


1


| sin ck|


}
−
(


1


| sin ak|
+


1


| sin bk|


+
1


| sin ck|


)}
≤
∣∣∣cotg ak + cotg bk + cotg ck +


α


k


∣∣∣
≤ 1


| sin ak|
+


1


| sin bk|
+


1


| sin ck|
.


The �rst term at the left-hand side is obviously non-negative, hence we arrive
at the conclusion which can be stated as two gap conditions:


• Condition GC1: σ(H) has a gap if∣∣∣cotg ak + cotg bk + cotg ck +
α


k


∣∣∣ > 1


| sin ak|
+


1


| sin bk|
+


1


| sin ck|
; (12)


• Condition GC2: σ(H) has a gap if


2 max


{
1


| sin ak|
,


1


| sin bk|
,


1


| sin ck|


}
−
(


1


| sin ak|
+


1


| sin bk|
+


1


| sin ck|


)
>
∣∣∣cotg ak + cotg bk + cotg ck +


α


k


∣∣∣ . (13)


We will consider them separately.


3.3. Gap condition GC1


Observation 3.4. If the gap condition GC1 (12) is satis�ed, then


sgn(cotg ak) = sgn(cotg bk) = sgn(cotg ck) = sgn(α) ∨ k < |α| .


Proof. We employ reductio ad absurdum. Let k ≥ |α| and, for instance,
sgn(cotg ak) = − sgn(α). We have∣∣∣cotg ak + cotg bk + cotg ck +


α


k


∣∣∣ ≤ | cotg bk|+ | cotg ck|+
∣∣∣cotg ak +


α


k


∣∣∣ .
Since cotg ak and α have opposite signs and | cotg x| ≤ 1


| sin x| for any admis-


sible x ∈ R, it holds∣∣∣cotg ak +
α


k


∣∣∣ ≤ max


{
| cotg ak|, |α|


k


}
≤ max {| cotg ak|, 1} ≤ 1


| sin ak|
.


Hence∣∣∣cotg ak + cotg bk + cotg ck +
α


k


∣∣∣ ≤ 1


| sin ak|
+


1


| sin bk|
+


1


| sin ck|
,
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i.e., the gap condition GC1 (12) is violated. �


Let ‖ · ‖ be the nearest-integer function on R, that is, ‖x‖ is the nearest
integer to x ∈ R. In the following we will need the function the value of which
represents the di�erence between a given number and the nearest integer, i.e.
x 7→ x− ‖x‖. For the sake of brevity, we introduce the symbol


{x} := x− ‖x‖ ; (14)


it holds obviously {x} ∈ [−1/2, 1/2] for any x ∈ R .


Corollary 3.5. For k ≥ |α|, the gap condition (12) is satis�ed if and only if


sgn(cotg ak) = sgn(cotg bk) = sgn(cotg ck) = sgn(α) and∣∣∣∣tg({akπ
}
π


2


)∣∣∣∣+


∣∣∣∣tg({bkπ
}
π


2


)∣∣∣∣+


∣∣∣∣tg({ckπ
}
π


2


)∣∣∣∣ < |α|k ,


where {·} is the function de�ned by (14).


Proof. Suppose that k ≥ |α| and (12) holds. It follows from Observation 3.4
that condition (12) implies sgn(cotg ak) = sgn(cotg bk) = sgn(cotg ck) =
sgn(α). The inequality (12) is thus equivalent to sgn(cotg ak) = sgn(cotg bk) =
sgn(cotg ck) = sgn(α) together with


| cotg ak|+ | cotg bk|+ | cotg ck|+ |α|
k
>


1


| sin ak|
+


1


| sin bk|
+


1


| sin ck|
. (15)


For any x ∈ R, it holds


1


| sinx|
− | cotg x| = 1− | cosx|


| sinx|
=


{
1−cos x
| sin x| =


∣∣tg x
2


∣∣ for cosx > 0


1+cos x
| sin x| =


∣∣cotg x
2


∣∣ for cosx < 0


}


= min
{∣∣∣tg x


2


∣∣∣ , ∣∣∣cotg
x


2


∣∣∣} =


∣∣∣∣tg({x2 · 2


π


}
π


2


)∣∣∣∣ =
∣∣∣tg ({x


π


} π
2


)∣∣∣ .
Consequently, (15) can be rewritten as∣∣∣∣tg({akπ


}
π


2


)∣∣∣∣+


∣∣∣∣tg({bkπ
}
π


2


)∣∣∣∣+


∣∣∣∣tg({ckπ
}
π


2


)∣∣∣∣ < |α|k .


To conclude, the last inequality together with the condition sgn(cotg ak) =
sgn(cotg bk) = sgn(cotg ck) = sgn(α) is equivalent to gap condition (12), as
we have set up to prove. �


Observation 3.6. Local minima of the function


F (k) :=


∣∣∣∣tg({akπ
}
π


2


)∣∣∣∣+


∣∣∣∣tg({bkπ
}
π


2


)∣∣∣∣+


∣∣∣∣tg({ckπ
}
π


2


)∣∣∣∣
for k > 0 occur at the points mπ


a , mπb , mπc with m ∈ N.


An immediate consequence, in combination with Corollary 3.5, is that the
spectrum has open gaps for any α 6= 0 when the lattice edges are commensu-
rate. If at least two of them are not commensurate, existence of gaps due the
condition GC1 depend on how fast the minima of F (k) decrease as k → ∞;
we will discuss it in more detail in the next section.
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3.4. Gap condition GC2


Obviously, condition GC2 can be satis�ed only if 1
| sin `1k| >


1
| sin `2k| +


1
| sin `3k|


holds for a certain choice {`1, `2, `3} = {a, b, c}. We begin with the following
auxiliary result.


Lemma 3.7. If x1, x2, . . . , xN are all greater or equal to one and they satisfy


x1 > x2 + · · ·+ xN , then


x1 −
N∑
i=2


xi <
√
x2


1 − 1−
N∑
i=2


√
x2
i − 1 .


Proof. We prove the statement by induction in N . To begin with, we prove
for N = 2 and any x1 > x2 ≥ 1 the implication


x1 > x2 ⇒ x1 − x2 <
√
x2


1 − 1−
√
x2


2 − 1 .


We rewrite this statement as x1 −
√
x2


1 − 1 < x2 −
√
x2


2 − 1, which is equiv-
alent to


1


x1 +
√
x2


1 − 1
<


1


x2 +
√
x2


2 − 1
,


and this is obviously valid under the assumption x1 > x2. Next we assume
that the claim holds true for an N ≥ 2, and we want to demonstrate for any
x1, x2, . . . , xN , xN+1 ≥ 1 the implication


x1 > x2 + · · ·+ xN+1 ⇒ x1 −
N+1∑
i=2


xi <
√
x2


1 − 1−
N+1∑
i=2


√
x2
i − 1 .


We set xN + xN+1 = y. The induction hypothesis applied on the N -tuple
x1, . . . , xN−1, y implies that x1 − x2 − · · · − xN−1 − (xN + xN+1) is less than√


x2
1 − 1−


N−1∑
i=2


√
x2
i − 1−


√
(xN + xN+1)2 − 1 ;


thus it su�ces to check for any xN , xN+1 ≥ 1 the inequality√
(xN + xN+1)2 − 1 >


√
x2
N − 1 +


√
x2
N+1 − 1 ,


which is a straightforward task. �


Corollary 3.8. If 1
| sin `1k| >


1
| sin `2k| + 1


| sin `3k| and α cotg `1k ≥ 0, then


1


| sin `1k|
− 1


| sin `2k|
− 1


| sin `3k|
≤
∣∣∣cotg `1k + cotg `2k + cotg `3 +


α


k


∣∣∣ .
Proof. In view of the assumption α cotg `1k ≥ 0 we have∣∣∣cotg `1k + cotg `2k + cotg `3 +


α


k


∣∣∣ ≥ ∣∣∣cotg `1k +
α


k


∣∣∣− | cotg `2k|


−| cotg `3k| ≥ | cotg `1k| − | cotg `2k| − | cotg `3| ;
thus it su�ces to prove


1


| sin `1k|
− 1


| sin `2k|
− 1


| sin `3k|
≤ | cotg `1k| − | cotg `2k| − | cotg `3k| .
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This is, however, a straightforward consequence of Lemma 3.7, it is enough
to set N = 3, x1 = 1


| sin `1k| , x2 = 1
| sin `2k| and x3 = 1


| sin `3k| . �


To sum up, the condition GC2 can give rise to an open gap only if the


greatest element of the set
{


1
| sin ak| ,


1
| sin bk| ,


1
| sin ck|


}
is greater than the sum


of the other two and the sign of the corresponding cotangent is opposite to
the sign of α. In particular, condition GC2 gives rise to no open gaps in the
Kirchho� case, α = 0.


3.5. Negative spectrum


Let us �nally discuss brie�y the negative spectrum of H, which is obviously
nonempty if and only if α < 0. Spectral condition (11) can be rephrased into
two gap conditions, similarly as it has been done in Section 3.2 for E > 0.
Speci�cally, the gap conditions for E = −κ2 acquire the following form:∣∣∣coth aκ+ coth bκ+ coth cκ+


α


κ


∣∣∣ > 1


sinh aκ
+


1


sin bκ
+


1


sin cκ
, (16)∣∣∣coth aκ+ coth bκ+ coth cκ+


α


κ


∣∣∣ < 2


sinh `minκ
− 1


sinh aκ
− 1


sinh bκ
− 1


sinh cκ
,


(17)
where `min := min{a, b, c}. One can describe circumstances under which the
spectrum has an open gap in its negative part.


Proposition 3.9. The negative part of σ(H) contains a gap adjacent to zero


exactly in the following two cases:


• |α| > 2
a + 2


b + 2
c ,


• 2
`min


> 1
a + 1


b + 1
c and 2


a + 2
b + 2


c −
2


`min
< |α| < 2


`min
.


Proof. We begin with condition (16) and compare the asymptotic behavior
of the two sides in the limit κ↘ 0. Up to higher-order term we have∣∣∣∣coth aκ+ coth bκ+ coth cκ− |α|


κ


∣∣∣∣ ≈ 1


κ


∣∣∣∣1a +
1


b
+


1


c
− |α|


∣∣∣∣ ,
1


| sinh aκ|
+


1


| sin bκ|
+


1


| sin cκ|
≈ 1


κ


(
1


a
+


1


b
+


1


c


)
,


hence the �rst gap condition can be for small values of κ satis�ed provided∣∣ 1
a + 1


b + 1
c − |α|


∣∣ > 1
a + 1


b + 1
c , which is true if and only if |α| > 2


a + 2
b + 2


c .
Let us proceed to (17). In the regime κ↘ 0 we have


2


sinh `minκ
− 1


sinh aκ
− 1


sinh bκ
− 1


sinh cκ
≈ 1


κ


(
2


`min
− 1


a
− 1


b
− 1


c


)
,


therefore the condition acquires for small values of κ the form∣∣∣∣1a +
1


b
+


1


c
− |α|


∣∣∣∣ < 2


`min
− 1


a
− 1


b
− 1


c
.


This inequality can be satis�ed only if 2
`min


> 1
a + 1


b + 1
c , and under this


condition it is valid i� 2
a + 2


b + 2
c −


2
`min


< |α| < 2
`min


. �
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4. The case b = c


The spectral picture with respect to all four parameters of the model is rather
complex. In order to simplify the discussion, we focus from now on at the
case when the lattice can be stretched in one direction only assuming b = c.
The above gap conditions acquire then the following form,


• Condition GC1: σ(H) has a gap if∣∣∣cotg ak + 2 cotg bk +
α


k


∣∣∣ > 1


| sin ak|
+


2


| sin bk|
; (18)


• Condition GC2: σ(H) has a gap if


1


| sin ak|
− 2


| sin bk|
>
∣∣∣cotg ak + 2 cotg bk +


α


k


∣∣∣ ; (19)


note that (19) cannot be satis�ed if | sin bk| < | sin ak|.


4.1. Gap condition GC1 for b = c


According to Corollary 3.5, the gap condition is equivalent to the conditions


sgn(cotg ak) = sgn(cotg bk) = sgn(α) and F (k) < |α|
k , where


F (k) =


∣∣∣∣tg({akπ
}
π


2


)∣∣∣∣+ 2


∣∣∣∣tg({bkπ
}
π


2


)∣∣∣∣
with {·} de�ned by (14). To state the next result, we have to introduce two
classes of irrational numbers. A θ ∈ R is called badly approximable if there


exists a constant γ > 0 such that
∣∣∣θ − p


q


∣∣∣ > γ
q2 holds for all p, q ∈ N. Irra-


tional numbers that do not have this property will be called, following [2],
Last admissible [6]. Thus a θ ∈ R\Q is Last admissible if there exist increas-


ing integer sequences {pn}∞n=1, {qn}
∞
n=1 such that limn→∞ q2


n


∣∣∣θ − pn
qn


∣∣∣ = 0.


Another way to characterize them is through the continued fraction represen-
tation: a number θ = [a0; a1, a2, . . . ] belongs to the class of Last admissible
numbers if the coe�cient sequence {aj} is unbounded.


Theorem 4.1. Let θ = a
b .


(i) If θ ∈ Q, then the gap condition GC1 generates in�nitely many gaps in


the spectrum of H for any α 6= 0.
(ii) If θ in a Last admissible irrational number, then the gap condition GC1


generates in�nitely many gaps for any α 6= 0.
(iii) Let θ be a badly approximable irrational number. There is a positive α0


such that the condition GC1 generates no gaps provided 0 ≤ |α| ≤ α0.


On the other hand, if the coupling constant satis�es |α| > 4π√
5


min{ 2
a ,


1
b},


there are in�nitely many gaps.


Proof. (i) If θ is rational, then there are obviously in�nitely many positive
integers m such that am, bm are even numbers, and therefore, F (k) = 0
holds for k = mπ. Moreover, if k = mπ + δ for a su�ciently small δ > 0,


it holds F (k + sgn(α) · δ) < |α|
k and sgn(cotg ak) = sgn(cotg bk) = sgn(α).


Corollary 3.5 then implies the existence of in�nitely many gaps.
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(ii) If θ is Last admissible, then there exist increasing integer sequences


{pn}∞n=1, {qn}
∞
n=1 such that limn→∞ q2


n


∣∣∣θ − pn
qn


∣∣∣ = 0. Moreover, one can �nd


sequences having, in addition, the property θ − pn
qn


> 0 or θ − pn
qn


< 0,


respectively. Let us choose the sequences such that sgn
(
θ − pn


qn


)
= sgn(α),


and set kn = qnπ
b . Obviously, sgn(cotg(akn)) = sgn(


{
a
b qn
}


). It holds{a
b
qn


}
= θqn − ‖θqn‖ = qn


(
θ − ‖θqn‖


qn


)
= qn


(
θ − pn


qn


)
, (20)


where we have used the fact that pn is equal to ‖θqn‖, which immediately fol-


lows from limn→∞ q2
n


∣∣∣θ − pn
qn


∣∣∣ = 0. Consequently, the equality sgn(cotg(ak)) =


sgn(α) holds for k = kn, as well as for k in a certain neighbourhood of kn.
Furthermore, (20) implies that


qn lim
k→ qnπ


b


F (k) = qn


∣∣∣tg ({a
b
qn


} π
2


)∣∣∣ < 4qn


∣∣∣{a
b
qn


}∣∣∣ = 4q2
n


∣∣∣∣θ − pn
qn


∣∣∣∣→ 0


holds as n→∞. At the same time,


qn lim
k→ qnπ


b


|α|
k


=
|α|b
π


> 0 for all n ∈ N .


Comparing the two limits, we see that for any n ∈ N there exists a neigh-


bourhood of kn on which it holds F (k) < |α|
k . If we choose the right neigh-


bourhood for α > 0 and the left neighbourhood for α < 0, the remaining
condition sgn(cotg bk) = sgn(α) will be satis�ed there as well. To sum up, we
have found in�ntely many points kn with certain neighbourhoods on which
the gap condition (18) is satis�ed. In other words, the spectrum of the Hamil-


tonian has in�nitely many gaps located at certain integer multiples of π
2


b2 . In
the same way one can check the existence of neighbourhoods of a sequence
of points qnπ


a where the gap condition is satis�ed.
(iii) When θ is badly approximable, there exists, by de�nition, a constant


γ > 0 such that
∣∣∣θ − p


q


∣∣∣ > γ
q2 holds for all p, q ∈ N. This yields


F
(mπ
b


)
=
∣∣∣tg ({a


b
m
} π


2


)∣∣∣ > ∣∣∣{a
b
m
}∣∣∣ π


2
= |θm− ‖θm‖| π


2


= m


∣∣∣∣θ − ‖θm‖m


∣∣∣∣ π2 > m
γ


m2


π


2
=
γπ


2m
,


and consequently, F
(
mπ
b


)
> |α|


(
mπ
b


)−1
holds if |α| ≤ γπ2


2b , i.e. the condi-
tion (18) is violated in this case in all the local minima mπ


b of F .
It remains to show that the gap condition is violated in the local minima


of F at the points mπa as well. It is a well known fact that a number θ is badly
approximable if and only if 1/θ is badly approximable. Moreover, if γ > 0


is the minimal constant such that
∣∣∣θ − p


q


∣∣∣ > γ
q2 holds for all p, q ∈ N, then


γ is at the same time the minimal constant such that
∣∣∣ 1θ − q


p


∣∣∣ > γ
p2 for all
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q, p ∈ N. Hence we obtain, similarly as above,


F
(mπ
a


)
= 2


∣∣∣∣tg({ bam
}
π


2


)∣∣∣∣ > 2


∣∣∣∣{ bam
}∣∣∣∣ π2 > 2m


γ


m2


π


2
=
γπ


m
.


Thus F
(
mπ
a


)
> |α|


(
mπ
a


)−1
holds if |α| ≤ γπ2


a , i.e. the gap condition GC1
is violated at the local minima mπ


a of F as well. To sum up, for any α such


that 0 < |α| < γπ2 min{ 1
a ,


1
2b} all the local minima of F satisfy F (k) > |α|


k ,
in other words, the condition GC1 (18) is violated everywhere for k > 0.


On the other hand, by the Hurwitz extension of the Dirichlet theorem [7,
Chap. II] for any irrational θ there are increasing integer sequences {pn}∞n=1


and {qn}∞n=1 such that
∣∣∣θ − pn


qn


∣∣∣ < 1√
5q2n


holds for all n ∈ N. In addition, one


can �nd such sequences with the property θ − pn
qn


> 0 or θ − pn
qn


< 0 for all


n ∈ N, respectively. This allows us to assume that sgn
(
θ − pn


qn


)
= sgn(α),


and setting kn := qnπ
b , we obtain


F (kn) =
∣∣∣tg ({a


b
qn


} π
2


)∣∣∣ .
Since {x} ∈ [−1/2, 1/2] holds for any x ∈ R by de�nition, we infer that∣∣{a


bm
}
π
2


∣∣ ≤ π
4 . Furthermore, since | tg x| ≤ 4


π |x| holds for any |x| ≤
π
4 , we


get


F (kn) < 2
∣∣∣{a
b
qn


}∣∣∣ = 2qn


∣∣∣∣θ − ‖θqn‖qn


∣∣∣∣ = 4qn


∣∣∣∣θ − pn
qn


∣∣∣∣ < 2qn
1√
5q2
n


=
2√
5qn


.


At the same time, we have
|α|
kn


=
|α|b
qnπ


,


and consequently, |α| > 2π√
5b


implies existence of neighbourhoods of qnπ
b on


which the gap condition is satis�ed. In a similar way one can prove that
for |α| > 4π√


5a
there are neighbourhoods of qnπa on which the condition GC1


is satis�ed. To conclude, the spectrum of H has in�nitely many open gaps
generated by the condition (18) provided |α| > 2π√


5
min{ 2


a ,
1
b}. �


4.2. Gap condition GC2 for b = c


As we have indicated, the �lower� gap condition acquires now the form (19).


Lemma 4.2. If k > |α| and the condition (19) is satis�ed, then necessarily
1


| sin ak| >
2


| sin bk| , α cotg ak < 0 and cotg ak cotg bk < 0.


Proof. Inequality (19) implies 1
| sin ak|−


2
| sin bk| > 0, which gives the �rst claim.


The second claim, α cotg ak < 0, follows from Corollary 3.8. It remains to
show that cotg ak cotg bk < 0. Note that 1


| sin ak| >
2


| sin bk| implies | sin ak| < 1
2 ,


hence ak ∈
(
mπ − π


6 ,mπ + π
6


)
for an m ∈ N, and therefore | cotg ak| >


√
3.


We use again reductio ad absurdum and suppose that cotg ak cotg bk ≥
0. Then for any k > |α| we have, with regard to | cotg ak| >


√
3,∣∣∣cotg ak + 2 cotg bk +


α


k


∣∣∣ ≥ | cotg ak|+ 2| cotg bk| − |α|
k
,
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and since − |α|k > −1, we get∣∣∣cotg ak + 2 cotg bk +
α


k


∣∣∣− 1


| sin ak|
+


2


| sin bk|


> 2


(
1


| sin bk|
+ | cotg bk|


)
−
(


1


| sin ak|
− | cotg ak|


)
− 1 .


It is easy to check that 1
| sin x| + | cotg x| ≥ 1 and 1


| sin x| − | cotg x| ≤ 1 for all


x ∈ R, hence∣∣∣cotg ak + 2 cotg bk +
α


k


∣∣∣− 1


| sin ak|
+


2


| sin bk|
> 0 ,


which contradicts the inequality (19). �


Corollary 4.3. For each k > |α| the gap condition (19) is satis�ed if and only


if 1
| sin ak| >


2
| sin bk| , cotg ak cotg bk < 0, α cotg ak < 0, and


∣∣∣G(k)− |α|k
∣∣∣ <


1
| sin ak| −


2
| sin bk| , where


G(k) = | cotg ak| − 2| cotg bk| . (21)


Proof. With regard to Lemma 4.2, the gap condition (19) for a �xed k > |α|
requires cotg ak cotg bk < 0, α cotg ak < 0. Consequently, the gap condition
for k > |α| is satis�ed if and only if cotg ak cotg bk < 0, α cotg ak < 0, and∣∣∣∣| cotg ak| − 2| cotg bk| − |α|


k


∣∣∣∣ < 1


| sin ak|
− 2


| sin bk|
, (22)


which concludes the argument. �


Before we pass to analysis of the gaps generated by the condition GC2,
we prove a lemma that will be useful in dealing with rational ratio a


b and
with a


b being a badly approximable irrational number.


Lemma 4.4. Let θ = a
b .


(i) If θ ∈ Q, then there exists a c > 0 such that for all k > 0 it holds


cotg ak cotg bk < 0 ∧ | sin bk| ≥ 2| sin ak| ⇒ G(k) ≥ c .


(ii) If θ is a badly approximable irrational number, then there exists a c > 0
such that for all k > 0 it holds


cotg ak cotg bk < 0 ∧ | sin bk| ≥ 2| sin ak| ⇒ G(k) >
c


k
.


Proof. Our aim is to estimate the function G(k) = | cotg ak|−2| cotg bk| from
below subject to the condition cotg ak cotg bk < 0 ∧ | sin bk| ≥ 2| sin ak|.


The function G(k) attains local minima for | sin ak| = 1 and tends to
−∞ for sin bk = 0. Since both | sin ak| = 1 and sin bk = 0 contradict the
condition | sin bk| ≥ 2| sin ak|, minimal values of G(k) in the regions given by
cotg ak cotg bk < 0 ∧ | sin bk| ≥ 2| sin ak| are attained for | sin bk| = 2| sin ak|.
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The equality | sin bk| = 2| sin ak| gives


| cotg ak| − 2| cotg bk| =
√


1− sin2 ak


| sin ak|
− 2


√
1− sin2 bk


| sin bk|


=


√
1− sin2 ak


| sin ak|
−
√


1− 4 sin2 ak


| sin ak|


=
3| sin ak|√


1− sin2 ak +
√


1− 4 sin2 ak
≥ 3| sin ak|


2
,


hence G(k) ≥ 3
2 | sin ak|.


Let m ∈ N be chosen such that mπ is the integer multiple of π closest to
ak, i.e., |ak−mπ| ≤ π


2 . In the same way we introduce n ∈ N such that nπ is the
integer multiple of π closest to bk. Obviously, the condition cotg ak ·cotg bk <
0 implies (ak −mπ) · (bk − nπ) < 0.


It holds trivially | sin bk| ≤ |bk − nπ|. The condition | sin bk| = 2| sin ak|
implies | sin ak| ≤ 1


2 , hence |ak −mπ| ≤
π
6 . Since |x| ≤


π
6 ⇒ | sinx| ≥


3
π |x|,


we have | sin ak| = | sin(ak −mπ)| ≥ 3
π |ak −mπ|.


With regard to the estimates of | sin ak| and | sin bk| obtained above, it
is easy to see that the quantity | sin ak| for k solving the equation | sin bk| =
2| sin ak| is necessarily greater or equal to the quantity 3


π |ak − mπ| for k
solving the equation |bk − nπ| = 2 · 3


π |ak −mπ|. Let us �nd such a k. The


condition (ak−mπ) · (bk− nπ) < 0 together with |bk− nπ| = 2 · 3
π |ak−mπ|


gives the equation bk−nπ = −2· 3π (ak−mπ). Its solution reads k′ = 6m+πn
6a+πb π.


Therefore, cotg ak cotg bk < 0 ∧ | sin bk| ≥ 2| sin ak| implies


G(k) ≥ 3


2
· 3


π
|ak′ −mπ| = 9


2π


∣∣∣∣a6m+ πn


6a+ πb
π −mπ


∣∣∣∣ =
9π


2
· |an− bm|


6a+ πb
. (23)


(i) Let θ ∈ Q, i.e., a = pL, b = qL for certain p, q ∈ N and L > 0. Then the
just obtained bound (23) gives


G(k) ≥ 9π


2
· |pLn− qLm|


6pL+ πqL
,


where L at the right-hand side can be obviously canceled. Note that the
expression pn− qm is necessarily nonzero: was it zero, then |ak′−mπ| would
hold in view of (23), contradicting thus the condition (ak−mπ)·(bk−nπ) < 0.
Sincem,n, p, q ∈ N by assumption, we have the trivial estimate |np−mq| ≥ 1.
To sum up,


cotg ak cotg bk < 0 ∧ | sin bk| ≥ 2| sin ak| ⇒ G(k) ≥ 9π


2
· 1


6p+ πq
,


which proves the �rst claim with c = 9π
2(6p+πq) .


(ii) Let θ be badly approximable. Then θ′ := 1/θ is badly approximable as
well, i.e. there exists a γ > 0 such that


∣∣θ′ − n
m


∣∣ > γ
m2 holds for all n,m ∈ N.
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Using the estimate (23) again, we obtain


G(k) ≥ 9π


2
· |an− bm|


6a+ πb
=


9π


2
am


∣∣ n
m −


b
a


∣∣
6a+ πb


=
9π


2


am


6a+ πb


∣∣∣θ′ − n


m


∣∣∣
>


9π


2


am


6a+ πb
· γ
m2


=
9π


2


γ


6a+ πb
· a
m
.


We already know that |ak − mπ| ≤ π
6 , hence k ≥


π
a


(
m− 1


6


)
≥ π


a ·
5m
6 . It


means that a
m ≥


5π
6 ·


1
k , which allows us to estimate kG(k) as follows,


kG(k) >
9π


2


γ


6a+ πb
· 5π


6
.


This yields the claim (ii) with c = 15π2γ
4(6a+πb) concluding thus the proof. �


Corollary 4.5. Let θ = a
b .


(i) If θ ∈ Q, then the condition (19) generates at most �nitely many gaps.


(ii) If θ is a badly approximable irrational, there exists a positive α0 such


that the condition (19) generates no gaps for 0 ≤ |α| ≤ α0.


Proof. According to Corollary 4.3, if k is a solution of (19), then 1
| sin ak| ≥


2
| sin bk| , cotg ak cotg bk < 0, and


∣∣∣G(k)− |α|k
∣∣∣ ≤ 1


| sin ak| −
2


| sin bk| .


(i) Let θ ∈ Q. With regard to Lemma 4.4, there exists a c > 0 such that


1


| sin ak|
>


2


| sin bk|
∧ cotg ak cotg bk < 0 ⇒ G(k) ≥ c


holds for all k > 0. Consequently, for k → ∞ we have G(k) > |α|
k . This


allows us to remove the absolute value at the left-hand side of the condition∣∣∣G(k)− |α|k
∣∣∣ ≤ 1


| sin ak| −
2


| sin bk| , which yields


2


(
1


| sin bk|
− | cotg bk|


)
−
(


1


| sin ak|
− | cotg ak|


)
≤ |α|


k
. (24)


One can see, similarly as in the proof of Lemma 4.4, that the left-hand side
of (24) attains its local minima with respect to the condition 1


| sin ak| ≥
2


| sin bk| ∧ cotg ak cotg bk < 0 at values k satisfying 1
| sin ak| = 2


| sin bk| . This


gives a necessary condition: Inequality (24) can be satis�ed only if


−2| cotg bk|+ | cotg ak| ≤ |α|
k
,


i.e., for G(k) ≤ |α|k . This is, however, impossible for k →∞, because |α|k → 0
and G(k) ≥ c > 0 due to the result of Lemma 4.4.


(ii) Let θ be badly approximable. In Lemma 4.4 we proved the existence of a
c > 0 such that for all k > 0,


1


| sin ak|
>


2


| sin bk|
∧ cotg ak cotg bk < 0 ⇒ G(k) >


c


k
.


In the rest of the proof we will demonstrate that one can set α0 := c.
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Let us consider an α obeying |α| ≤ α0 := c. For such α we have G(k) >
c
k ≥


|α|
k . Therefore, we can again remove the absolute value at the left-


hand side of
∣∣∣G(k)− |α|k


∣∣∣ ≤ 1
| sin ak| −


2
| sin bk| , and obtain the condition (24).


Since the left-hand side attains its minimum with respect to the condition
1


| sin ak| ≥
2


| sin bk| ∧ cotg ak cotg bk < 0 at k satisfying 1
| sin ak| = 2


| sin bk| , it


must hold G(k) ≤ |α|k . However, for |α| < α0 we have G(k) > |α|
k (see above),


i.e., the last inequality cannot be ful�lled. �


Theorem 4.6. Let θ = a
b .


(i) If θ is a Last admissible irrational number, then the condition (19) gen-
erates in�nitely many gaps for any α 6= 0.


(ii) If θ is a badly approximable irrational, the condition (19) generates


in�nitely many gaps provided |α| ≥ 4π√
5a
.


Proof. We have shown that condition (19) is equivalent to 1
| sin ak| >


2
| sin bk| ,


α cotg bk < 0, α cotg ak < 0, and G(k) < |α|
k for G given by equation (21), see


Corollary 4.3. In particular, in the proof of Lemma 4.2 we have demonstrated
that the system of conditions can be satis�ed only for ak ∈


(
mπ − π


6 ,mπ + π
6


)
,


i.e. for k in certain neighbourhoods of mπa .


(i) If θ is a Last admissible number, the same is true for θ′ := 1/θ. We
can proceed in a way similar to the proof of Theorem 4.1. There are inte-


ger sequences {pn}∞n=1 and {qn}∞n=1 such that limn→∞ q2
n


∣∣∣θ′ − pn
qn


∣∣∣ = 0 and


sgn
(
θ′ − pn


qn


)
= sgn(α). Since limk→ qnπ


a
G(k) =∞, it holds G(k)− |α|k > 0 in


su�ciently small neighbourhoods of qnπa . Therefore, in small neighbourhoods
of qnπa the condition (19) acquires the form


2


(
1


| sin bk|
− | cotg bk|


)
−
(


1


| sin ak|
− | cotg ak|


)
≤ |α|


k
; (25)


let us denote 2
(


1
| sin bk| − | cotg bk|


)
−
(


1
| sin ak| − | cotg ak|


)
=: W (k) for the


sake of brevity. Then


qn lim
k→ qnπ


a


W (k) = 2qn


(
1∣∣sin b
aqnπ


∣∣ −
∣∣∣∣cotg


b


a
qnπ


∣∣∣∣
)


= 2qn


∣∣∣∣tg({ baqn
}
π


2


)∣∣∣∣ .
Since


∣∣{ b
aqn
}
π
2


∣∣ ≤ π
4 according to the de�nition (14) and |x| ≤ | tg x| ≤ 4


π |x|
holds for |x| ≤ π


4 , we get


qn lim
k→ qnπ


a


W (k) < 4qn


∣∣∣∣{ baqn
}∣∣∣∣ = 4q2


n


∣∣∣∣θ′ − ‖θ′qn‖qn


∣∣∣∣ = 4q2
n


∣∣∣∣θ′ − pn
qn


∣∣∣∣→ 0


as n→∞. At the same time we have


qn lim
k→ qnπ


a


|α|
k


=
|α|a
π


= const. > 0 ,


and therefore inequality (25) is satis�ed on a certain neigbourhood of qnπa for
every n ∈ N. Let us check the remaining conditions from Corollary 4.3. We
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will show that α cotg bk > 0 and α cotg ak < 0. The equation α cotg bk > 0 is
satis�ed due to the choice of the sequence {qn}∞n=1. The equation α cotg ak <
0 can be satis�ed by choosing a left (if α > 0) or right (if α < 0) neigbhour-
hood of qnπa . To sum up, there are in�nitely many integers qn ∈ N such that
the gap condition (19) is satis�ed for k belonging to certain right or left
neighbourhood of qnπa for every n ∈ N.
(ii) Let θ be an irrational number and θ′ = 1/θ. We shall demonstrate


that if |α| ≥ π2
√


5a
, then there are in�nitely many q ∈ N such that k in


certain neighbourhoods of qπ
a satisfy the inequalities 1


| sin ak| >
2


| sin bk| and∣∣∣G(k)− |α|k
∣∣∣ < 1


| sin ak| −
2


| sin bk| together with the conditions α cotg bk > 0


and α cotg ak < 0. The �rst inequality is obviously valid for all k su�ciently
close to qπ


a with any q ∈ N. As for the second one, note that for k su�ciently


close to qπ
a it holds G(k) > |α|


k , therefore, we shall prove that


lim
k→ qπ


a


W (k) < lim
k→ qπ


a


|α|
k


for W (k) introduced in part (i) above. We have


lim
k→ qπ


a


W (k) = 2


(
1∣∣sin b
aqπ


∣∣ −
∣∣∣∣cotg


b


a
qπ


∣∣∣∣
)


= 2


∣∣∣∣tg({ baq
}
π


2


)∣∣∣∣ .
Similarly as in part (i), we estimate the right-hand side of the last equation
from above by 4


∣∣{ b
aq
}∣∣. For any irrational θ there are in�nitely many p, q ∈ N


such that
∣∣∣θ − p


q


∣∣∣ < 1√
5q2


; in particular, for in�nitely many q ∈ N it holds∣∣∣∣{ baq
}∣∣∣∣ = |θq − ‖θq‖| = q


∣∣∣∣θ − ‖θq‖q
∣∣∣∣ < q


1√
5q2


=
1√
5q
.


Consequently, for such q we have


lim
k→ qπ


a


W (k) <
4√
5q
.


On the other hand, limk→ qπ
a


|α|
k = |α|a


qπ , and therefore


lim
k→ qπ


a


W (k) < lim
k→ qπ


a


|α|
k
,


holds provided |α| ≥ 4π√
5a
. In other words, there are in�nitely many q ∈ N


such that the inequality G(k) < |α|
k is valid in a certain neighbourhood of qπa .


Let us proceed to the condition α cotg bk > 0. There are in�nitely
many q ∈ N such that


{
b
aq
}
> 0 and in�nitely many q ∈ N such that{


b
aq
}
< 0. Since sgn


(
cotg b qπa


)
= sgn


{
b
aq
}
, we conclude that inequality


(25) and α cotg bk > 0 can be satis�ed simultaneously in certain �Dirichlet
point� neighbourhoods for in�nitely many q ∈ N. Finally, the last condition
α cotg ak < 0 is obviously ful�lled in a su�ciently small left (if α > 0) or
right (if α < 0) neighbourhood of qπa for any q ∈ N. �
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5. Summary and open questions


We have analyzed the spectrum of the quantum graph Hamiltonian describing
a stretched hexagonal lattice with a δ-coupling in the vertices, with a par-
ticular attention to the case when the stretch is parallel to one of the edges.
In contrast to the case of a rectangular lattice [2, 3] we have two di�erent
conditions determining the spectral gaps. They have nevertheless common
features with respect to the number-theoretic properties of the lattice geom-
etry, in particular, the existence of a critical coupling strengths needed to
open spectral gaps in case of badly approximable edge lengths ratios.


Our results leave various questions open. An obvious one concerns the
general case where we know that there are in�nitely many open gaps for
commensurate edges and α 6= 0; once the commensurability hypothesis is
abandoned we expect number-theoretic e�ect similar to those we have seen
in the particular situation discussed in Sec. 4. In addition to that, how-
ever, one wonders whether there are other number theoretic spectral features
for |α| beyond the critical values similar to those observed in [3]. In con-
nection with Corollary 4.5(i) it would be also interesting to know whether
one can have situations with a �nite number of open gaps analogous to a
Bethe-Sommerfeld-type spectrum of usual periodic Schrödinger operators in
dimension two.
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