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1. Introduction


Let us consider the problem


−∆u + V (x)u− au = f, (1.1)


with u ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant andV (x)
is a real valued function decaying to0 at infinity. If a ≥ 0, then the origin belongs
to the essential spectrum of the operatorA : E → F corresponding to the left side
of problem (1.1). Consequently, the operator fails to satisfy the Fredholm property.
Its image is not closed, ford > 1 the dimensions of its kernel and the codimension
of its image are not finite. In the present article we will study certain properties
of such operators. Let us note that elliptic equations containing operators without
Fredholm property were studied extensively in recent years(see [17], [18], [19],
[20], [21], [22], [23], [24], also [5]) along with their potential applications to the
theory of reaction-diffusion equations (see [7], [8]). Problems of that type arise
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also in the theory of embedded solitons of Nonlinear Schrödinger like equations
(see e.g. [13], also [24]). In the particular case ofa = 0 the operatorA satisfies the
Fredholm property in certain properly chosen weighted spaces (see [1], [2], [3], [4],
[5]). However, the case ofa 6= 0 is significantly different and the method developed
in these works cannot be applied.


One of the crucial questions concerning equations involving operators without
Fredholm property is their solvability. We will investigate the problem as follows.
Supposefn is a sequence of functions in the image of the operatorA, such that
fn → f in L2(Rd) asn → ∞. Letun be a sequence of functions fromH2(Rd) such
that


Aun = fn, n ∈ N.


Due to the fact that the operatorA is non Fredholm, the sequenceun may not
be convergent. Let us call a sequenceun such thatAun → f a solution in the
sense of sequences of equationAu = f (see [16]). If this sequence converges to
a functionu0 in the norm of the spaceE, thenu0 is a solution of this equation.
Solution in the sense of sequences is equivalent in this sense to the usual solution.
However, in the case of operators without Fredholm propertythis convergence may
not hold or it can occur in a certain weaker sense. In this case, a solution in the
sense of sequences may not imply the existence of the usual solution. In the present
article we determine sufficient conditions of equivalence of solutions in the sense
of sequences to the usual solutions. In the other words, the conditions on sequences
fn under which the corresponding sequencesun are strongly convergent.


In the first part of the work we consider the equation


−∆xu+ V (x)u−∆yu+ U(y)u− au = f(x, y), x, y ∈ R
3, (1.2)


wherea ≥ 0 is a constant and the right side is square integrable. Here∆x and∆y are
the standard three dimensional Laplacians acting onx andy variables respectively.
The potential functionsV (x) andU(y) here are assumed to be shallow and short-
range and precise assumptions on their behavior will be formulated below. The
problem analogous to (1.2) involving a single non Fredholm Schrödinger operator
in its left side was studied recently in the context of the solvability in the sense of
sequences in [25]. Note that for each of the operators−∆x+V (x) and−∆y+U(y)
on L2(R3) the essential spectrum fills the nonnegative semi-axis[0, ∞) (see e.g.
[10]) such that the inverse of the whole operator in the left side of (1.2) fromL2(R6)
to H2(R6) is not bounded. We write down the corresponding sequence of iterated
equations withn ∈ N anda ≥ 0 as


−∆xun + V (x)un −∆yun + U(y)un − aun = fn(x, y), x, y ∈ R
3, (1.3)


with their right sides convergent to the right side of (1.2) inL2(R6) asn → ∞. The
inner product of two functions is denoted as


(f(x), g(x))L2(Rd) :=


∫


Rd


f(x)ḡ(x)dx, d ∈ N
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with a slight abuse of notations when these functions are notsquare integrable.
Indeed, whenf(x) ∈ L1(Rd) and g(x) ∈ L∞(Rd), then evidently the integral
above is well defined, like for example in the case of functions involved in the
orthogonality relations of Theorems 2 and 3 below. In the space ofd dimensions
for a certainA(x) = (A1(x), ..., Ad(x)), the inner product(f(x), A(x))L2(Rd) is the
vector with the coordinates


∫


Rd


f(x)Āk(x)dx, 1 ≤ k ≤ d.


Let us consider the standard spaceH2(Rd) equipped with the norm


‖u‖2H2(Rd) := ‖u‖2L2(Rd) + ‖∆u‖2L2(Rd), d ∈ N. (1.4)


The sphere of radiusr > 0 in Rd centered at the origin will be designated asSd
r .


Let us use the hat symbol to denote the standard Fourier transform


f̂(p) :=
1


(2π)
d
2


∫


Rd


f(x)e−ipxdx, p ∈ R
d, d ∈ N. (1.5)


In the second part of the article we will study the problem


−∆xu−∆yu+ U(y)u− au = φ(x, y), x ∈ R
d, y ∈ R


3, d ∈ N, (1.6)


with the right side square integrable and the constanta ≥ 0. Here∆x and∆y are
the standard Laplace operators acting on the variablesx andy respectively. The
corresponding sequence of iterated equations forn ∈ N will be given by


−∆xun −∆yun + U(y)un − aun = φn(x, y), x ∈ R
d, y ∈ R


3, a ≥ 0, (1.7)


with their right sides converging to the right side of (1.6) in L2(Rd+3) asn →
∞. We formulate the technical conditions on the scalar potentials involved in the
equations above. They will be analogous to those stated in Assumption 1.1 of [18]
(see also [19], [20]).


Assumption 1.The potential functionsV (x), U(y) : R3 → R satisfy the bound


|V (x)| ≤ C


1 + |x|3.5+δ
, |U(y)| ≤ C


1 + |y|3.5+δ


with someδ > 0 andx, y ∈ R3 a.e. such that


4
1


9


9


8
(4π)−


2


3‖V ‖
1


9


L∞(R3)‖V ‖
8


9


L
4
3 (R3)


< 1, (1.8)
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4
1


9


9


8
(4π)−


2


3‖U‖
1


9


L∞(R3)‖U‖
8


9


L
4
3 (R3)


< 1 (1.9)


and √
cHLS‖V ‖


L
3
2 (R3)


< 4π,
√
cHLS‖U‖


L
3
2 (R3)


< 4π.


Here and belowC denotes a finite positive constant andcHLS given on p.98 of [12]
is the constant in the Hardy-Littlewood-Sobolev inequality


∣∣∣
∫


R3


∫


R3


f1(x)f1(y)


|x− y|2 dxdy
∣∣∣ ≤ cHLS‖f1‖2


L
3
2 (R3)


, f1 ∈ L
3


2 (R3).


By virtue of Lemma 2.3 of [18], under Assumption 1 above on ourpotential
functions, the operators−∆x + V (x) and−∆y + U(y) considered onL2(R3) are
self-adjoint and unitarily equivalent to−∆x and−∆y respectively via the wave
operators (see [11], [15])


Ω±
V := s− limt→∓∞eit(−∆x+V (x))eit∆x , Ω±


U := s− limt→∓∞eit(−∆y+U(y))eit∆y ,


with the limits here understood in the strongL2 sense (see e.g. [14] p.34, [6] p.90).
Therefore the operators−∆x + V (x) and−∆y +U(y) onL2(R3) possess only the
essential spectra:σess(−∆x + V (x)) = [0, ∞) andσess(−∆y + U(y)) = [0, ∞).
The functions of the continuous spectrum satisfy


[−∆x + V (x)]ϕk(x) = k2ϕk(x), k ∈ R
3, (1.10)


[−∆y + U(y)]ηq(y) = q2ηq(y), q ∈ R
3, (1.11)


in the integral formulation the Lippmann-Schwinger equations for the perturbed
plane waves (see e.g. [14] p.98)


ϕk(x) =
eikx


(2π)
3


2


− 1


4π


∫


R3


ei|k||x−y|


|x− y| (V ϕk)(y)dy. (1.12)


ηq(y) =
eiqy


(2π)
3


2


− 1


4π


∫


R3


ei|q||y−z|


|y − z| (Uηq)(z)dz, (1.13)


and the orthogonality conditions


(ϕk(x), ϕl(x))L2(R3) = δ(k − l), k, l ∈ R
3, (1.14)


(ηq(y), ηm(y))L2(R3) = δ(q −m), q,m ∈ R
3. (1.15)


In particular, when the vectorsk, q = 0, we haveϕ0(x) andη0(y). By virtue of
the Spectral theorem, the products ofϕk(x) andηq(y) form a complete system in
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L2(R6). We denote the generalized Fourier transform with respect to these products
using the double tilde symbol as


˜̃
f(k, q) := (f(x, y), ϕk(x)ηq(y))L2(R6), k, q ∈ R


3. (1.16)


Clearly, (1.16) is a unitary transform onL2(R6), which can be easily seen via or-
thogonality relations (1.14) and (1.15). We designate the integral operators involved
in (1.12) and (1.13) as


(Qϕ)(x) := − 1


4π


∫


R3


ei|k||x−y|


|x− y| (V ϕ)(y)dy, ϕ ∈ L∞(R3),


(Pη)(y) := − 1


4π


∫


R3


ei|q||y−z|


|y − z| (Uη)(z)dz, η ∈ L∞(R3),


and considerQ,P : L∞(R3) → L∞(R3). Under Assumption 1, by virtue of
Lemma 2.1 of [18] the operator norms‖Q‖∞ < 1 and ‖P‖∞ < 1 , in fact
they are bounded above by the left sides of inequalities (1.8) and (1.9) respectively,
which are quantities independent ofk andq, expressed in terms of the corresponding
Lp(R3) norms of the scalar potential functionsV (x) andU(y). In the context of the
studies of equations (1.6) and (1.7), we will be using products of Fourier harmon-


ics
eikx


(2π)
d
2


, k ∈ R
d and perturbed plane wavesηq(y) forming a complete system in


L2(Rd+3), such that the generalized Fourier transform with respect to these products
is given by


˜̂
f(k, q) := (f(x, y),


eikx


(2π)
d
2


ηq(y))L2(Rd+3), k ∈ R
d, q ∈ R


3. (1.17)


Obviously, (1.17) is a unitary transform onL2(Rd+3), which can be trivially ob-
tained via orthogonality relation (1.15). We formulate ourmain statements.


Theorem 2. Let Assumption 1 hold,x, y ∈ R3, n ∈ N andfn(x, y) ∈ L2(R6),
such thatfn(x, y) → f(x, y) in L2(R6) asn → ∞. Assume also that|x|fn(x, y) ∈
L1(R6) and|y|fn(x, y) ∈ L1(R6), such that


|x|fn(x, y) → |x|f(x, y), |y|fn(x, y) → |y|f(x, y)


in L1(R6) asn → ∞.
a) Whena > 0 let the orthogonality relations


(fn(x, y), ϕk(x)ηq(y))L2(R6) = 0, (k, q) ∈ S6√
a a.e. (1.18)


hold for all n ∈ N. Then equations (1.2) and (1.3) have unique solutionsu(x, y) ∈
H2(R6) and un(x, y) ∈ H2(R6) respectively, such thatun(x, y) → u(x, y) in
H2(R6) asn → ∞.
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b) Whena = 0 let un(x, y) ∈ H2(R6) be the unique solution of problem (1.3),
n ∈ N and equation (1.2) possesses a unique solutionu(x, y) ∈ H2(R6). Then
un(x, y) → u(x, y) in H2(R6) asn → ∞.


Note that according to the part b) of Theorem 3 of [19] (see also [21]) for
our case b) whena = 0 the orthogonality conditions are not needed as distinct
from case a). Similarly in the case b) of the theorem below we do not require any
orthogonality relations when thex dimension of the problem is at least two (see
Theorem 6 of [19], also [21]).


Theorem 3. Let Assumption 1 hold for the potential functionU(y), y ∈ R3,
x ∈ Rd, d ≥ 1, n ∈ N andφn(x, y) ∈ L2(Rd+3), such thatφn(x, y) → φ(x, y) in
L2(Rd+3) asn → ∞. Suppose as well that


|x|φn(x, y) ∈ L1(Rd+3), |y|φn(x, y) ∈ L1(Rd+3),


such that
|x|φn(x, y) → |x|φ(x, y), |y|φn(x, y) → |y|φ(x, y)


in L1(Rd+3) asn → ∞.
a) Whena > 0 let the orthogonality conditions


(φn(x, y),
eikx


(2π)
d
2


ηq(y))L2(Rd+3) = 0, (k, q) ∈ Sd+3√
a


a.e. (1.19)


be valid for all n ∈ N. Then equations (1.6) and (1.7) admit unique solutions
u(x, y) ∈ H2(Rd+3) andun(x, y) ∈ H2(Rd+3) respectively, such thatun(x, y) →
u(x, y) in H2(Rd+3) asn → ∞.


b) Whena = 0 and the dimensiond = 1 let the orthogonality relations


(φn(x, y), η0(y))L2(R4) = 0 (1.20)


hold for all n ∈ N and no orthogonality conditions are assumed in dimensions
d ≥ 2. Then problems (1.6) and (1.7) possess unique solutionsu(x, y) ∈ H2(Rd+3)
andun(x, y) ∈ H2(Rd+3) respectively, such thatun(x, y) → u(x, y) in H2(Rd+3)
asn → ∞.


Note that (1.18), (1.19) and (1.20) are the orthogonality conditions involving
the functions of the continuous spectrum of our Schrödinger operators, as distinct
from the Limiting Absorption Principle in which one needs toorthogonalize to the
standard Fourier harmonics (see e.g. Lemma 2.3 and Proposition 2.4 of [9]). We
proceed with proving our first main result.
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2. Solvability in the sense of sequences in six dimensions


Proof of Theorem 2.Four our equations (1.2) and (1.3) the solvability inL2(R6)
follows from Theorem 3 of [19]. Since their right sides are square integrable and
the scalar potentialsV (x) andU(y) involved there are bounded as assumed, we will
have the existence of their unique solutions inH2(R6) as well.


Let us first start with the case b) of the theorem when the constanta = 0, such
that by means of the part b) of Theorem 3 of [19] the orthogonality conditions are
not needed here. Then letun(x, y) ∈ H2(R6), n ∈ N andu(x, y) ∈ H2(R6) be the
unique solutions of problems (1.3) and (1.2) respectively.


By applying the generalized Fourier transform (1.16) to both sides of problems
(1.2) and (1.3) withk, q ∈ R3 we arrive at


˜̃u(k, q) =
˜̃
f(k, q)


k2 + q2
, ˜̃un(k, q) =


˜̃
fn(k, q)


k2 + q2
, n ∈ N.


Let us write their difference as


˜̃un(k, q)− ˜̃u(k, q) =
˜̃
fn(k, q)− ˜̃


f(k, q)


k2 + q2
χ{(k,q)∈R6:k2+q2≤1}+


+
˜̃
fn(k, q)− ˜̃


f(k, q)


k2 + q2
χ{(k,q)∈R6:k2+q2>1}. (2.21)


Here and belowχA will denote the characteristic function of a setA ⊆ Rd andAc


will stand for the complement of this set. Evidently the second term in the right


side of (2.21) can be estimated from above in the absolute value by | ˜̃fn(k, q) −
˜̃
f(k, q)| and therefore, in theL2(R6) norm by‖fn − f‖L2(R6) → 0, n → ∞ as
assumed. By means of our assumptions and via the Schwarz inequality we have
fn(x, y) ∈ L1(R6), n ∈ N. We estimate the norm from above using again the
Schwarz inequality as


‖fn − f‖L1(R6) ≤
√∫


x2+y2≤1


|fn(x, y)− f(x, y)|2dxdy
√∫


x2+y2≤1


dxdy+


+


∫


x2+y2>1


|fn(x, y)− f(x, y)|
√
x2 + y2dxdy ≤ C‖fn − f‖L2(R6)+


+‖|x|fn − |x|f‖L1(R6) + ‖|y|fn − |y|f‖L1(R6) → 0, n → ∞
due to the assumptions of the theorem. Hence


fn(x, y) → f(x, y) in L1(R6), n → ∞. (2.22)
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Let us express


˜̃
fn(k, q) =


˜̃
fn(0) +


∫ √
k2+q2


0


∂
˜̃
fn


∂s
(s, ω)ds,


˜̃
f(k, q) = ˜̃


f(0) +


∫ √
k2+q2


0


∂
˜̃
f


∂s
(s, ω)ds.


Here and belowω denotes the angle variables on the sphere. This enables us to
write the first term in the right side of (2.21) as


˜̃
fn(0)− ˜̃


f(0)


k2 + q2
χ{(k,q)∈R6:k2+q2≤1}+


+


∫√k2+q2


0
∂
∂s
[
˜̃
fn(s, ω)− ˜̃


f(s, ω)]ds


k2 + q2
χ{(k,q)∈R6:k2+q2≤1}. (2.23)


By means of Corollary 2.2 of [18] (see also [19]) under our assumptions fork, q ∈
R3 we haveϕk(x), ηq(y) ∈ L∞(R3) due to the inequalities


‖ϕk(x)‖L∞(R3) ≤
1


1− ‖Q‖∞
1


(2π)
3


2


, ‖ηq(y)‖L∞(R3) ≤
1


1− ‖P‖∞
1


(2π)
3


2


.


(2.24)
This enables us to estimate from above in the absolute value the first term in (2.23)
by


1


(2π)3
1


1− ‖Q‖∞
1


1− ‖P‖∞
‖fn − f‖L1(R6)


χ{(k,q)∈R6:k2+q2≤1}
k2 + q2


,


which clearly yields the upper bound for it in theL2(R6) norm by


C
1


1− ‖Q‖∞
1


1− ‖P‖∞
‖fn − f‖L1(R6) → 0, n → ∞


by virtue of (2.22) under our assumptions. Then we estimate from above in the
absolute value the second term in (2.23) as


‖(∇k +∇q)[
˜̃
fn(k, q)− ˜̃


f(k, q)]‖L∞(R6)


χ{(k,q)∈R6:k2+q2≤1}√
k2 + q2


,


which gives us the upper bound for it in theL2(R6) norm as


C‖(∇k +∇q)[
˜̃
fn(k, q)− ˜̃


f(k, q)]‖L∞(R6) → 0, n → ∞


due to the part a) of Lemma 5 below. Here and further down notations∇k and∇q


stand for the gradients taken with respect tok andq variables respectively. Hence


‖un − u‖L2(R6) = ‖˜̃un(k, q)− ˜̃u(k, q)‖L2(R6) → 0, n → ∞.
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By means of the part a) of Lemma 4 below,un(x, y) → u(x, y) in H2(R6) as
n → ∞, which completes the proof of part b) of the theorem.


Then we turn our attention to establishing the results of thepart a) of the the-
orem whena > 0, such that orthogonality conditions (1.18) hold. By means of
part a) of Theorem 3 of [19], equation (1.3) admits a unique solution un(x, y) ∈
H2(R6), n ∈ N. For(k, q) ∈ S6√


a
a.e., using (2.24) we easily estimate


|(f(x, y), ϕk(x)ηq(y))L2(R6)| = |(f(x, y)− fn(x, y), ϕk(x)ηq(y))L2(R6)|


from above by


1


(2π)3
1


1− ‖Q‖∞
1


1− ‖P‖∞
‖fn − f‖L1(R6) → 0, n → ∞


by means of (2.22). Hence in the limit the orthogonality relation


(f(x, y), ϕk(x)ηq(y))L2(R6) = 0, (k, q) ∈ S6√
a a.e. (2.25)


is valid. By virtue of the part a) of Theorem 3 of [19], the limiting problem (1.2)
has a unique solutionu(x, y) ∈ H2(R6) whena > 0. Let us apply the generalized
Fourier transform (1.16) to both sides of equations (1.2) and (1.3). We easily arrive
at


˜̃u(k, q) =
˜̃
f(k, q)


k2 + q2 − a
, ˜̃un(k, q) =


˜̃
fn(k, q)


k2 + q2 − a
, n ∈ N.


For technical purposes, let us introduce a layer in the spaceof six dimensions as


Aσ := {(k, q) ∈ R
6 |


√
a− σ ≤


√
k2 + q2 ≤


√
a+ σ}, 0 < σ <


√
a


and express the differencẽ̃u(k, q)− ˜̃un(k, q) as


˜̃
f(k, q)− ˜̃


fn(k, q)


k2 + q2 − a
χAσ


+
˜̃
f(k, q)− ˜̃


fn(k, q)


k2 + q2 − a
χAc


σ
. (2.26)


The second term in (2.26) can be trivially estimated from above in the absolute
value by


| ˜̃f(k, q)− ˜̃
fn(k, q)|√


aσ
χAc


σ
,


which yields the following upper bound on it in theL2(R6) norm


‖ ˜̃f(k, q)− ˜̃
fn(k, q)‖L2(R6)√
aσ


=
‖f − fn‖L2(R6)√


aσ
→ 0, n → ∞


according to one of the assumptions of the theorem. We will use the identities


˜̃
fn(k, q) =


˜̃
fn(


√
a, ω) +


∫ √
k2+q2


√
a


∂
˜̃
fn


∂s
(s, ω)ds,
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˜̃
f(k, q) =


˜̃
f(
√
a, ω) +


∫ √
k2+q2


√
a


∂
˜̃
f


∂s
(s, ω)ds.


Note that by virtue of orthogonality conditions (1.18) and (2.25), the first terms in


the right sides of the formulas abovẽ̃fn(
√
a, ω) and ˜̃


f(
√
a, ω) vanish for(k, q) ∈


S6√
a


a.e. This enables us to estimate from above in the absolute value the first term
in (2.26) by


‖(∇k +∇q)[
˜̃
f(k, q)− ˜̃


fn(k, q)]‖L∞(R6)√
a


χAσ
,


which clearly implies the upper bound on it in theL2(R6) norm given by


C‖(∇k +∇q)[
˜̃
f(k, q)− ˜̃


fn(k, q)]‖L∞(R6) → 0, n → ∞


according to the part a) of Lemma 5 below. Thus, we arrive at


‖u− un‖L2(R6) = ‖˜̃u(k, q)− ˜̃un(k, q)‖L2(R6) → 0, n → ∞,


such thatun(x, y) → u(x, y) in L2(R6) asn → ∞. By virtue of the part a) of
Lemma 4 below, we obtainun(x, y) → u(x, y) in H2(R6) as n → ∞, which
completes the proof of the part a) of the theorem.


3. Solvability in the sense of sequences in d+3 dimensions


Proof of Theorem 3.For our problems (1.6) and (1.7) the solvability inL2(Rd+3)
stems from Theorem 6 of [19]. Due to the fact that the right sides of these equations
belong toL2(Rd+3) and the potential functionU(y) is bounded as assumed, we will
have then the existence of their unique solutions inH2(Rd+3).


The conditions of our theorem along with the Schwarz inequality imply that
φn(x, y) ∈ L1(Rd+3). We use the Schwarz inequality again to obtain the upper
bound for the norm‖φn − φ‖L1(Rd+3) as


√∫


x2+y2≤1


|φn(x, y)− φ(x, y)|2dxdy
√∫


x2+y2≤1


dxdy+


+


∫


x2+y2>1


√
x2 + y2|φn(x, y)− φ(x, y)|dxdy ≤ C‖φn − φ‖L2(Rd+3)+


+‖|x|φn − |x|φ‖L1(Rd+3) + ‖|y|φn − |y|φ‖L1(Rd+3) → 0, n → ∞
by virtue of the assumptions of our theorem. Thus ford ≥ 1


φn(x, y) → φ(x, y) in L1(Rd+3), n → ∞. (3.27)
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First we start with the case b) of the theorem, such that the constanta = 0. When
the dimensiond = 1, we have the orthogonality condition (1.20) which according
to the part b) of Theorem 6 of [19] guarantees us the existenceof a unique solution
un(x, y) ∈ H2(R4) of problem (1.7) withn ∈ N. Using (2.24), we estimate from
above


|(φ(x, y), η0(y))L2(R4)| = |(φ(x, y)− φn(x, y), η0(y))L2(R4)|
as


1


(2π)
3


2


1


1− ‖P‖∞
‖φn − φ‖L1(R4) → 0, n → ∞


via (3.27), such that in the limit we have the orthogonality relation


(φ(x, y), η0(y))L2(R4) = 0. (3.28)


Then by virtue of the part b) of Theorem 6 of [19] under our assumptions, the
limiting equation (1.6) admits a unique solutionu(x, y) ∈ H2(R4) as well.


In higher dimensionsd ≥ 2 according to the part c) of Theorem 6 of [19], no
orthogonality conditions are needed, such that under our conditions problems (1.6)
and (1.7) possess unique solutionsu(x, y) ∈ H2(Rd+3) andun(x, y) ∈ H2(Rd+3)
respectively. Let us apply the generalized Fourier transform (1.17) to both sides of
(1.6) and (1.7) to obtain


˜̂u(k, q) =
˜̂
φ(k, q)


k2 + q2
, ˜̂un(k, q) =


˜̂
φn(k, q)


k2 + q2
, n ∈ N.


We write the differencẽ̂un(k, q)− ˜̂u(k, q) as


˜̂
φn(k, q)− ˜̂


φ(k, q)


k2 + q2
χ{(k,q)∈Rd+3:k2+q2≤1} +


˜̂
φn(k, q)− ˜̂


φ(k, q)


k2 + q2
χ{(k,q)∈Rd+3:k2+q2>1}.


(3.29)
Clearly, the second term in (3.29) can be easily estimated from above in the absolute


value by| ˜̂φn(k, q)− ˜̂
φ(k, q)| and therefore in theL2(Rd+3) norm by


‖ ˜̂φn(k, q)− ˜̂
φ(k, q)‖L2(Rd+3) = ‖φn − φ‖L2(Rd+3) → 0, n → ∞


due to one of the assumptions of our theorem. Let us express


˜̂
φ(k, q) =


˜̂
φ(0) +


∫ √
k2+q2


0


∂
˜̂
φ


∂s
(s, ω)ds,


˜̂
φn(k, q) =


˜̂
φn(0) +


∫ √
k2+q2


0


∂
˜̂
φn


∂s
(s, ω)ds,
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which enables us to write the first term in (3.29) as


˜̂
φn(0)− ˜̂


φ(0)


k2 + q2
χ{(k,q)∈Rd+3:k2+q2≤1}+


+


∫√k2+q2


0
∂
∂s
[
˜̂
φn(s, ω)− ˜̂


φ(s, ω)]ds


k2 + q2
χ{(k,q)∈Rd+3:k2+q2≤1}. (3.30)


We easily estimate the second term in (3.30) from above in theabsolute value by


‖(∇k +∇q)[
˜̂
φn(k, q)− ˜̂


φ(k, q)]‖L∞(Rd+3)


χ{(k,q)∈Rd+3:k2+q2≤1}√
k2 + q2


,


which trivially implies the upper bound for it in theL2(Rd+3) norm as


C‖(∇k +∇q)[
˜̂
φn(k, q)− ˜̂


φ(k, q)]‖L∞(Rd+3) → 0, n → ∞


by virtue of the part b) of Lemma 5 below. To investigate the first term in (3.30),
we recall that forn ∈ N


˜̂
φn(0) =


1


(2π)
d
2


(φn(x, y), η0(y))L2(Rd+3),
˜̂
φ(0) =


1


(2π)
d
2


(φ(x, y), η0(y))L2(Rd+3).


(3.31)


Hence when the dimensiond = 1, we have˜̂φn(0) = 0, n ∈ N and ˜̂
φ(0) = 0 by


virtue of orthogonality relations (1.20) and (3.28) respectively, such that the first
term in (3.30) then vanishes. For higher dimensionsd ≥ 2, using (3.31) and (2.24),
we estimate the first term in (3.30) from above in the absolutevalue by


1


(2π)
d+3


2


1


1− ‖P‖∞
‖φn − φ‖L1(Rd+3)


χ{(k,q)∈Rd+3:k2+q2≤1}
k2 + q2


,


which gives us the upper bound for it in theL2(Rd+3) norm as


C
1


1− ‖P‖∞
‖φn − φ‖L1(Rd+3) → 0, n → ∞


due to (3.27). Therefore, whena = 0, we have


‖un(x, y)− u(x, y)‖L2(Rd+3) = ‖˜̂un(k, q)− ˜̂u(k, q)‖L2(Rd+3) → 0, n → ∞,


By means of the part b) of Lemma 4 belowun(x, y) → u(x, y) in H2(Rd+3) as
n → ∞, which completes the proof of the part b) of the theorem.


We conclude the argument with establishing the results of the part a), when the
constanta > 0. Orthogonality conditions (1.19) via the part a) of Theorem6 of [19]
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imply that problem (1.7) admits a unique solutionun(x, y) ∈ H2(Rd+3), n ∈ N.
For (k, q) ∈ Sd+3√


a
a.e., using (2.24), we estimate the expression


∣∣∣∣∣(φ(x, y),
eikx


(2π)
d
2


ηq(y))L2(Rd+3)


∣∣∣∣∣ =
∣∣∣∣∣(φ(x, y)− φn(x, y),


eikx


(2π)
d
2


ηq(y))L2(Rd+3)


∣∣∣∣∣


from above by


1


(2π)
d+3


2


1


1− ‖P‖∞
‖φ− φn‖L1(Rd+3) → 0, n → ∞


by means of (3.27). Thus we arrive at the orthogonality relation


(φ(x, y),
eikx


(2π)
d
2


ηq(y))L2(Rd+3) = 0, (k, q) ∈ Sd+3√
a


a.e., (3.32)


which by virtue of the part a) of Theorem 6 of [19] gives us thatproblem (1.6)
possesses a unique solutionu(x, y) ∈ H2(Rd+3). By applying the generalized
Fourier transform (1.17) to both sides of equations (1.6) and (1.7), we arrive at


˜̂u(k, q) =
˜̂
φ(k, q)


k2 + q2 − a
, ˜̂un(k, q) =


˜̂
φn(k, q)


k2 + q2 − a
, n ∈ N.


Let us introduce as a technical tool a spherical layer in the space ofd+3 dimensions,
namely


Bσ := {(k, q) ∈ R
d+3 |


√
a− σ ≤


√
k2 + q2 ≤


√
a+ σ}, 0 < σ <


√
a.


Then we can write the differencễun(k, q)− ˜̂u(k, q) as


˜̂
φn(k, q)− ˜̂


φ(k, q)


k2 + q2 − a
χBσ


+
˜̂
φn(k, q)− ˜̂


φ(k, q)


k2 + q2 − a
χBc


σ
. (3.33)


The second term in (3.33) can be easily estimated from above in the absolute


value by
| ˜̂φn(k, q)− ˜̂


φ(k, q)|√
aσ


, which clearly gives us the upper bound for it in the


L2(Rd+3) norm as


1√
aσ


‖φn − φ‖L2(Rd+3) → 0, n → ∞


as assumed in our theorem. For the purpose of investigating the first term in (3.33),
we will rely on the identities


˜̂
φ(k, q) =


˜̂
φ(
√
a, ω) +


∫ √
k2+q2


√
a


∂
˜̂
φ


∂s
(s, ω)ds,
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˜̂
φn(k, q) =


˜̂
φn(


√
a, ω) +


∫ √
k2+q2


√
a


∂
˜̂
φn


∂s
(s, ω)ds, n ∈ N.


Orthogonality relations (1.19) and (3.32) imply that˜̂
φn(


√
a, ω) and ˜̂


φ(
√
a, ω) van-


ish. Therefore, the first term in (3.33) can be estimated fromabove in the absolute
value by


‖(∇k +∇q)(
˜̂
φn(k, q)− ˜̂


φ(k, q))‖L∞(Rd+3)


χBσ√
a
,


which gives us the upper bound for it in theL2(Rd+3) norm as


C‖(∇k +∇q)(
˜̂
φn(k, q)− ˜̂


φ(k, q))‖L∞(Rd+3) → 0, n → ∞


by means of the part b) of Lemma 5 below. Thus, whena > 0, we have


‖un(x, y)− u(x, y)‖L2(Rd+3) = ‖˜̂un(k, q)− ˜̂u(k, q)‖L2(Rd+3) → 0, n → ∞,


such that via the part b) of Lemma 4 belowun(x, y) → u(x, y) in H2(Rd+3), n →
∞, which completes the proof of the part a) of the theorem.


4. Auxiliary results


The trivial lemma below helps us to conclude the proofs of Theorems 2 and 3 by
telling that it is sufficient to prove the convergence inL2 of the solutions of the
studied equations asn → ∞.


Lemma 4. a) Let the conditions of Theorem 2 hold, such thatu(x, y), un(x, y) ∈
H2(R6) with n ∈ N are the unique solutions of equations (1.2) and (1.3) respec-
tively andun(x, y) → u(x, y) in L2(R6) asn → ∞. Thenun(x, y) → u(x, y) in
H2(R6) asn → ∞.


b) Let the assumptions of Theorem 3 be valid, such thatu(x, y), un(x, y) ∈
H2(Rd+3) with n ∈ N and d ∈ N are the unique solutions of equations (1.6)
and (1.7) respectively andun(x, y) → u(x, y) in L2(Rd+3) as n → ∞. Then
un(x, y) → u(x, y) in H2(Rd+3) asn → ∞.


Proof. a) Equations (1.2) and (1.3) witha ≥ 0 along with the assumptions of
Theorem 2 yield that the norm‖(∆x +∆y)(un − u)‖L2(R6) is bounded above by


‖fn − f‖L2(R6) + (‖V ‖L∞(R3) + ‖U‖L∞(R3) + a)‖un − u‖L2(R6) → 0, n → ∞.


By virtue of definition (1.4) we obtainun(x, y) → u(x, y) in H2(R6) asn → ∞.


b) From equations (1.6) and (1.7) fora ≥ 0 under the conditions of Theorem 3
we derive the estimate from above for the norm‖(∆x+∆y)(un−u)‖L2(Rd+3) given
by


‖φn − φ‖L2(Rd+3) + (a+ ‖U‖L∞(R3))‖un − u‖L2(Rd+3) → 0, n → ∞.


14







Thus, definition (1.4) implies thatun(x, y) → u(x, y) in H2(Rd+3) asn → ∞.


TheL∞(R6) andL∞(Rd+3) norms studied in the following lemma are finite by
virtue of Lemmas 11 and 12 of [19] respectively. We go furtherby showing that
they converge to zero.


Lemma 5. a) Let the assumptions of Theorem 2 be valid. Then


‖(∇k +∇q)[
˜̃
fn(k, q)− ˜̃


f(k, q)]‖L∞(R6) → 0, n → ∞.


b) Let the conditions of Theorem 3 hold. Then we have


‖(∇k +∇q)[
˜̂
φn(k, q)− ˜̂


φ(k, q)]‖L∞(Rd+3) → 0, n → ∞.


Proof. To prove the part a) of the lemma, we need to estimate the quantity


(∇k +∇q)[
˜̃
fn(k, q)− ˜̃


f(k, q)] = (fn(x, y)− f(x, y), ηq(y)∇kϕk(x))L2(R6)+


+(fn(x, y)− f(x, y), ϕk(x)∇qηq(y))L2(R6). (4.34)


By means of the Lippmann-Schwinger equations (1.12) and (1.13), we have


∇kϕk(x) =
eikx


(2π)
3


2


ix+ (I −Q)−1Q
eikx


(2π)
3


2


ix+ (I −Q)−1(∇kQ)(I −Q)−1 eikx


(2π)
3


2


,


∇qηq(y) =
eiqy


(2π)
3


2


iy + (I − P )−1P
eiqy


(2π)
3


2


iy + (I − P )−1(∇qP )(I − P )−1 eiqy


(2π)
3


2


.


Here the operators∇kQ, ∇qP : L∞(R3) → L∞(R3;C3) have the integral kernels


∇kQ(x, y, k) := − i


4π
ei|k||x−y| k


|k|V (y), ∇qP (y, z, q) := − i


4π
ei|q||y−z| q


|q|U(z)


respectively. Obviously, for the operator norms we have thefollowing inequalities


‖∇kQ‖∞ ≤ 1


4π
‖V ‖L1(R3) < ∞, ‖∇qP‖∞ ≤ 1


4π
‖U‖L1(R3) < ∞ (4.35)


by means of the rate of decay of the scalar potentialsV (x) andU(y) given precisely
in Assumption 1. Thus, in order to establish the convergenceto zero asn → ∞ of
theL∞(R6) norm of the expression (4.34), we will need to estimate the six terms
given below. The first one is


T1,n(k, q) :=


(
fn(x, y)− f(x, y),


eikx


(2π)
3


2


ixηq(y)


)


L2(R6)


, k, q ∈ R
3.
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We easily obtain via (2.24) that


|T1,n(k, q)| ≤
1


(2π)3
1


1− ‖P‖∞
‖|x|fn − |x|f‖L1(R6),


such that‖T1,n(k, q)‖L∞(R6) → 0, n → ∞ by virtue of the assumptions of Theorem
2. The second term which we need to estimate is given by


T2,n(k, q) :=


(
fn(x, y)− f(x, y), (I −Q)−1Q


eikx


(2π)
3


2


ixηq(y)


)


L2(R6)


, k, q ∈ R
3.


Evidently, we can find the upper bound for it in the absolute value as


1


1− ‖Q‖∞
1


1− ‖P‖∞
{C‖V (x)x‖L∞(R3) + C‖V (x)x‖


L
4
3 (R3)


}‖fn − f‖L1(R6),


such that the norm‖T2,n(k, q)‖L∞(R6) → 0 asn → ∞ by means of the assumptions
of Theorem 2 and (2.22). Note that in the argument above we used the upper bound
for the norm‖Qeikxx‖L∞(R3) obtained in the proof of Lemma 2.4 of [18] along
with (2.24). The third term we need to investigate is


T3,n(k, q) :=


(
fn(x, y)− f(x, y), (I −Q)−1(∇kQ)(I −Q)−1 eikx


(2π)
3


2


ηq(y)


)


L2(R6)


,


with k, q ∈ R3. By virtue of (4.35) along with (2.24), we easily derive the inequality


|T3,n(k, q)| ≤
1


4π(2π)3
‖V ‖L1(R3)


(1− ‖P‖∞)(1− ‖Q‖∞)2
‖fn − f‖L1(R6),


such that the norm‖T3,n(k, q)‖L∞(R6) → 0 asn → ∞ by means of the conditions
of Theorem 2 and (2.22). Let us take a look at the fourth term, which is


R1,n(k, q) :=


(
fn(x, y)− f(x, y), ϕk(x)


eiqy


(2π)
3


2


iy


)


L2(R6)


,


wherek, q ∈ R
3. Using (2.24), we obtain the upper bound


|R1,n(k, q)| ≤
1


(2π)3
1


1− ‖Q‖∞
‖|y|fn − |y|f‖L1(R6).


Hence‖R1,n(k, q)‖L∞(R6) → 0, n → ∞ via the assumptions of Theorem 2. The
fifth term to be estimated is given by


R2,n(k, q) :=


(
fn(x, y)− f(x, y), ϕk(x)(I −P )−1P


eiqy


(2π)
3


2


iy


)


L2(R6)


, k, q ∈ R
3.
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Evidently, via (2.24) it can be bounded from above in the absolute value by


1


1− ‖Q‖∞
1


1− ‖P‖∞
{C‖U(y)y‖L∞(R3) + C‖U(y)y‖


L
4
3 (R3)


}‖fn − f‖L1(R6),


such that‖R2,n(k, q)‖L∞(R6) → 0 asn → ∞ by virtue of the conditions of Theorem
2 and (2.22). We used the estimate from above for the norm‖Peiqyy‖L∞(R3) derived
in the proof of Lemma 11 of [19]. Finally, it remains to investigate


R3,n(k, q) :=


(
fn(x, y)− f(x, y), ϕk(x)(I − P )−1(∇qP )(I − P )−1 eiqy


(2π)
3


2


)


L2(R6)


with k, q ∈ R3. Bounds (2.24) and (4.35) imply


|R3,n(k, q)| ≤
1


4π(2π)3
‖U‖L1(R3)


(1− ‖Q‖∞)(1− ‖P‖∞)2
‖fn − f‖L1(R6).


Thus, the assumptions of Theorem 2 along with (2.22) yield‖R3,n(k, q)‖L∞(R6) →
0 asn → ∞, which completes the proof of the part a) of the lemma. Then weturn
our attention to establishing the result of the part b).


Obviously, fork ∈ R
d andq ∈ R


3, we write(∇k +∇q)
˜̂
φ(k, q) as


(
φ(x, y),


eikx


(2π)
d
2


ixηq(y)


)


L2(Rd+3)


+


(
φ(x, y),


eikx


(2π)
d
2


∇qηq(y)


)


L2(Rd+3)


and(∇k +∇q)
˜̂
φn(k, q) as


(
φn(x, y),


eikx


(2π)
d
2


ixηq(y)


)


L2(Rd+3)


+


(
φn(x, y),


eikx


(2π)
d
2


∇qηq(y)


)


L2(Rd+3)


.


Therefore, to conclude the proof of the lemma it remains to investigate the four
terms given below. The first one is


M1,n(k, q) :=


(
φn(x, y)− φ(x, y),


eikx


(2π)
d
2


ixηq(y)


)


L2(Rd+3)


, k ∈ R
d, q ∈ R


3,


such that via (2.24)


|M1,n(k, q)| ≤
1


(2π)
d+3


2


1


1− ‖P‖∞
‖|x|φn − |x|φ‖L1(Rd+3).


Hence‖M1,n(k, q)‖L∞(Rd+3) → 0, n → ∞ due to the assumptions of Theorem 3.
The second expression is given by


M2,n(k, q) :=


(
φn(x, y)− φ(x, y),


eikx


(2π)
d
2


eiqy


(2π)
3


2


iy


)


L2(Rd+3)


, k ∈ R
d, q ∈ R


3.
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Hence


|M2,n(k, q)| ≤
1


(2π)
d+3


2


‖|y|φn − |y|φ‖L1(Rd+3)


and therefore,‖M2,n(k, q)‖L∞(Rd+3) → 0, n → ∞ by virtue of one of the con-
ditions of Theorem 3. The third term to be estimated fork ∈ Rd, q ∈ R3 will
be


M3,n(k, q) :=


(
φn(x, y)− φ(x, y),


eikx


(2π)
d
2


(I − P )−1P
eiqy


(2π)
3


2


iy


)


L2(Rd+3)


.


It can be bounded above in the absolute value by by


1


1− ‖P‖∞
{C‖U(y)y‖L∞(R3) + C‖U(y)y‖


L
4
3 (R3)


}‖φn − φ‖L1(Rd+3),


such that the norm‖M3,n(k, q)‖L∞(Rd+3) → 0 asn → ∞ by means of the assump-
tions of Theorem 3 and (3.27). When obtaining the estimate above, we relied on
the upper bound for the norm‖Peiqyy‖L∞(R3) derived in the proof of Lemma 11 of
[19]. Finally, we considerM4,n(k, q), defined fork ∈ Rd, q ∈ R3 as


(
φn(x, y)− φ(x, y),


eikx


(2π)
d
2


(I − P )−1(∇qP )(I − P )−1 eiqy


(2π)
3


2


)


L2(Rd+3)


,


such that via (4.35)


|M4,n(k, q)| ≤
C


(1− ‖P‖∞)2
‖U‖L1(R3)‖φn − φ‖L1(Rd+3)


and‖M4,n(k, q)‖L∞(Rd+3) → 0 asn → ∞ due to the conditions of Theorem 3 and
(3.27), which completes the proof of the part b) of the lemma.
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