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1 What is Euler’s group of a complex integer?


The ringZC of the complex integer numbers contains for each complex integerz= x+ iy
(x∈ Z, y∈ Z) the idealzZC of the elements divisible byz.


The quotient ring (formed by the residues moduloz∈ ZC) consists of|z|2 = x2 + y2


elements:
Zz = ZC/(zZC).


The invertible elements of the quotient ring form (commutative, multiplicative)Euler’s
group of complex integer z


Γ (z) =
{


r ∈ Zz : ∃w∈ Zz | rw = 1
}


.


The number of elements of this group is Euler’s function’s value,ϕ(z).
The present paper describes these groups, the complex integerzbeing a power of a prime


complex integer.
The prime complex integers are subdivided into three types.
I. The real prime number 2 is not prime from the complex point of view, having smaller


divisors:
2= (1+ i)(1− i).
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Therefore, the even prime number 2 is replaced in the complexcase by four complex prime
numbers


(±1± i).


II. The real prime number 3 remains prime from the complex point of view. Every real
prime numberr = 4k+3 is replaced in the complex case by four complex prime numbers


±r, ±ir.


III. The real prime number 5 is no longer prime from the complex point of view:


5= (±2± i)(±2∓ i) = (±1±2i)(±1∓2i).


Every real prime numberr = 4k+1 is replaced in the complex case by eight complex prime
numbers


(±p± iq), (±q± ip),


wherep2+q2 = r .
Euler’s groups of powers of complex prime numbers are given in the following list.
I. z= (1+ i)n.


Γ (z)≃ Z4×Z2a−2 ×Z2a−1, n= 2a, a> 6,


Γ (z)≃ Z4×Z2a−1 ×Z2a−1, n= 2a+1, a> 6.


In both the cases Euler’s function has the valueϕ(z) = 2n−1.
II. z= (4k+3)n, 4k+3 being a real prime number.


Γ (z)≃ Zu× (Zv)
2, where u= (4k+3)2−1, v= (4k+3)n−1.


Euler’s function has the valueϕ(z) = (4k+ 3)2n − (4k+ 3)2n−2 = 8(k+ 1)(2k+ 1)(4k+
3)2n−2. In the case 4k+ 3 = 3 one getsϕ


(


(3+ i0)n
)


= 8 · 9n−1, for 4k+ 3 = 7 one gets
ϕ
(


(7+ i0)n
)


= 48·49n−1.
III. z= (p+ iq)m, the numbern= p2+q2 = 4k+1 being a real prime.


Γ (z)≃ Z(n−1)nm−1, ϕ
(


(p+ iq)m)= ϕ(nm) = (n−1)nm−1.


The proofs of these results are different in the three cases I, II and III. The case II has
been studied in [1], where the proof is given for the prime 4k+3 = 3 with all the details
(other primes of this form, like 7 and so on, behave similarly).


The proofs for the case I are contained below (in§ 2 for n= 2a and in§ 3 for n= 2a+1).
The proofs for the case III are given below in§ 4.
For the powerszn = (1+ i)n, Euler’s groupsΓ (zn) for small evenn, calculated explicitly


(being long for the large values ofn), provide the following list:


n 2 4 6 8 10 12
Γ (zn) Z2 Z2×Z4 Z2× (Z4)


2 (Z4)
2×Z8 Z4×Z8×Z16 Z4×Z16×Z32


Theorem 1 Euler’s groupΓ (zn), where n= 2a> 6, is isomorphic to the direct product of
three cyclical groups


Γ (zn)≃ Z4×Z2p ×Z2q,


where p= a−2, q= a−1.


The list of the valueszn = (1+ i)n starts from
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n 1 2 3 4 5 6 7 8


zn 1+ i 2i −2+2i −4 −4−4i −8i 8−8i 16
|zn|2 2 4 8 16 32 64 128 256
ϕ(zn) 1 2 4 8 16 32 64 128


The fourth line contains the values of Euler’s function


ϕ(zn) =
∣


∣Γ (zn)
∣


∣,


it is the “number of the residues modulozn, which are relatively prime withzn”, that is the
number of the invertible elements of the ringZzn.


Lemma 1 A residue r= x+ iy ∈ Zzn modulo zn = (1+ i)n is invertible if and only if the
integer x+y is odd.


Proof Consider the product
x+ iy = (1+ i)(u+ iv)


(wherex= u−v, y= u+v). If the integerx+y is even, there exist integers


u= (x+y)/2, v= (y−x)/2.


In this case the elementz= x+ iy is not invertible, since


zw= (1+ i)(u+ iv)w 6≡ 1
(


mod(1+ i)
)


.


Whenx+y is odd, we find the representation


z= 1+ tz1, t = u+ iv,


whereu= (x−1+y)/2, v= (y+1−x)/2. This representation proves thatz is invertible in
Zzn, since


w= z−1 = 1− (tz1)+(tz1)
2− (tz1)


3+ · · · .
This geometrical progression is finite in the ringZzn, wherezn


1 = 0. �


The Lemma provides the values of Euler’s functionϕ at the complex pointszn:


ϕ(zn) =
∣


∣Zzn


∣


∣


/


2= |zn|2/2= 2n−1.


Therefore, the commutative groupΓ (zn) is of order
∣


∣Γ (zn)
∣


∣= 2n−1. Consequently, its rep-
resentation in the form of a product of cyclical groups is


Γ (zn)≃ (Z2)
a1 × (Z4)


a2 × (Z8)
a3 ×·· · ,


the integeras being the multiplicity of the multiplierZ2s:
∣


∣Γ (zn)
∣


∣= 2a1+2a2+3a3+···.


We have thus proved


Lemma 2 The multiplicities of the cyclical multipliers of Euler’s group Γ (zn) satisfy the
relation


a1+2a2+3a3+ · · ·= n−1.
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2 The case of the even powers of the smallest complex prime integer 1 +i


We start from counting the solutions of each of the followingequations


w= 1, w2 = 1, w4 = 1, w8 = 1, . . .


for the elementsw∈ Γ (z2a) of Euler’s group of(1+ i)2a.
For a cyclical groupZ2r these numbers of the solutions form the sequence


{


1, 2, 22, 23, . . . , 2r} .


It follows that for the product groupZ2p ×Z2q, whereq = p+ s, the numbers of the
solutions form the sequence


{


1, 4, 42, . . . , 4p; 4p ·2, 4p ·22, . . . , 4p ·2s}


(the multiplier 4 being addedp times and the multiplier 2 being addeds times).
Similarly, for three multipliers


Z2p ×Z2q ×Z2r


(wherep6 q< r , q= p+s, r = q+ t) the sequence of the numbers of the solutions takes
the form


{


1, 8, 82, . . . , 8p; 8p ·4, 8p ·42, . . . , 8p ·4s; 8p ·4s ·2, . . . , 8p ·4s ·2t} .


The products of more multipliers provide similar sequences. This reasoning yields the
following conclusion:


Lemma 3 The number of the square roots of1 in the group


Γ ≃ (Z2)
a1 × (Z4)


a2 ×·· ·× (Z2h)ah


equals
2a1+a2+···+ah.


The number of the rootsw of equationw2 = 1 in Euler’s groupΓ (zn), wherezn =
(1+ i)n, can be easily computed explicitly.


Lemma 4 The number of the square roots w of1 in Euler’s groupΓ (zn), where zn=(1+ i)n,
n= 2a> 6, equals8.


Proof Two rootsw = 1 andw = −1 are obvious. Whenw is a root, the shifted version
w′ = w+2a−1t is also a root:


(w′)2 = w2+2·w2a−1t +22a−2t2 ≡ w2 (mod 2a).


Choosingt = 0, 1, i, 1+ i, we deduce from the rootw= 1 four shifted versionsw′, and from
the rootw=−1 we deduce four more shifted roots.


We prove now that there exist no other square rootsw= x+ iy of 1 in our Euler’s group.
Indeed, we find


w2 = x2−y2+2ixy,
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and therefore the complex congruencew2 ≡ 1 (mod 2a) implies two real congruences


x2−y2 ≡ 1 (mod 2a), 2xy≡ 0 (mod 2a).


The first congruence shows thatx andy are different modulo 2. Considering the residues
modulo 4, we see thatx is odd,y being even:


x= 2A+1, y= 2B.


The second congruence shows that


(2A+1)B≡ 0 (mod 2a−2),


implying thatB= 2a−2c, y= 2a−1c.
Now the congruencex2−y2 ≡ 1 (mod 2a) provides the condition


4A2+4A−4B2 ≡ 0 (mod 2a),


A2+A≡ 0 (mod 2a−2).


This congruence implies the divisibility by 2a−2 either ofA or of A+1:


eitherA= 2a−2g or A= 2a−2g−1,


and therefore
eitherx= 2a−1g+1 orx= 2a−1g−1.


To get all the possible values ofx (mod2a), it suffices to chooseg= 0 or 1, providing
totally 4 values.


In each of these 4 casesy= 2a−1c (c being 0 or 1), providing the 4·2= 8 rootsw of the
equationw2 = 1. We have thus proved that this equation has no other solutions in Euler’s
groupΓ (zn). �


Lemma 4 together with Lemma 3 imply


Corollary 1 Euler’s groupΓ (zn), zn = (1+ i)n (where n= 2a> 6), has3 cyclical multipli-
ersZ2s, their multiplicities as satisfying the two conditions


{


a1+a2+ · · ·= 3,


a1+2a2+3a3+ · · ·= n−1.


Study now the degree 4 roots of 1 in our Euler’s groupΓ (zn) (wherezn = (1+ i)n,
n= 2a> 6).


Lemma 5 The number of the roots of degree4 from 1 in this Euler group equals64.


Proof The 8 square rootsw of 1 all have one of the following two forms:


w∈ {1+cξ , −1+cξ} ,


whereξ = 2a−1, c∈ {0, 1, i, 1+ i}.
For the casec= 0 the square roots of these valuesw are provided, first, by the evident


roots √
w∈ {1, −1} ,


√
w∈ {i, −i} .
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Each of these 4 values provides (being shifted byc′ξ , which shift does not change the value
of the square modulo 2a) a quadruple of roots. This way we get 16 roots of degree 4 from1
(their squares being 1 and−1).


To move from
√


w to
√


w+cξ , note that


w+cξ = w(1+c′′ξ ), wherec′′ = c/w.


The Newton binomial formula provides


(w+cξ )1/2 = w1/2


(


1+
c′′ξ
2


+
1
2


(


−1
2


)


2
(c′′ξ )2+ · · ·


)


.


The denominator in the term containing(c′′ξ )k equals 2kk!. The number of the factors 2 in
the prime multipliers decomposition of the integerk! equals


j(k) = [k/2]+ [k/4]+ · · ·6 k/2+k/4+ · · · < k:


k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j(k) 1 1 3 3 4 4 7 7 8 8 10 10 11 11 15


Therefore, the summand of the binomial series


(c′′2a−1)k


2kk!


is divisible by 2(a−1)k−k−k = 2(a−3)k, and thus this summand equals 0 modulo 2a−2 (for
sufficiently largek). Thus, the binomial series has a finite number of terms, and we get (for
every of the 4 valuesc= 0, 1, i, 1+ i) an octagon of the square roots (similarly to the case
c= 0 considered above).


These computations provide 8·8= 64 roots of degree 4 from 1 inΓ (zn) (proving also
that there are no others). �


Comparing Lemma 5 which we have thus proved with the sequenceof the numbers of
roots (mentioned above, see the text preceding Lemma 3) we deduce (from the numbers
(1, 8, 64) of the roots of degrees(1, 2, 4)) that the minimal multiplier isZ2p, wherep> 2.
The presence of the multiplierZ4 is implied by the following reasoning: otherwise each root
of degree 4 from 1 were a square, while the equation(x+ iy)2 ≡ i (mod2q) is unsolvable,
the product 2xy being even.


Therefore (forn= 2a> 6) we get the decomposition


Γ (zn)≃ Z4×Z2q ×Z2r ,


where 26 q6 r , implying the relation


2+q+ r = n−1, q+ r = 2a−3.


As we will prove below,q= a−2, r = a−1. The proof of these equalities starts from
the following fact.


Lemma 6 For every element z of the group of EulerΓ (zn) (where n= 2a> 6), there holds


the relation z2
k
= 1 for every k> a.
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Proof The representationz= 1+ tz1 (explained above, in the proof of Lemma 1) implies
for z∈ Γ (zn) the relation


z2 = 1+2tz1+ t22i = 1+2t1.


Therefore, there hold also the relations


z4 = 1+4t1+4t2
1 = 1+4t2,


z8 = 1+8t2+16t2
2 = 1+8t3,


and so on till
z2s


= 1+2sts.


Knowing that 2a = 0 in the quotient ringZz2a, we findz2a
= 1. �


Lemma 6 implies that in the above factorization of the Euler group into the cyclical
ones, the numbersq andr do not exceeda. Therefore, the relationq+ r = 2a−3 might hold
only for the two cases:


either(q= a−3, r = a) or (q= a−2, r = a−1).


We will prove now that the first case is impossible. To see this, consider the real Euler
groupΓ (2a). It is proved in my book [2] thatΓ (2a)≃Z2a−2 ×Z2. The elements of the form
1+4c∈ Γ (2a) form in this real Euler group a cyclical subgroup of order 2a−2.


If for the complex Euler group it were


Γ (z2a)≃ Z4×Z2q ×Z2r ,


where(q = a−3, r = a), then the above cyclical real subgroup would lie inZ2a, and its
elements would be squares.


Consider, however, its element 5. If inΓ (z2a) there were the relation


5≡ (x+ iy)2 (mod 2a),


one would have the real relations


x2−y2 ≡ 5 (mod 2a), 2xy≡ 0 (mod 2a).


The first relation implies (considering the residues modulo4) thatx is odd,y being even:


x= 2A+1, y= 2B.


The congruences take the form


4A2+4A−4B2 ≡ 4 (mod2a), (2A+1)B≡ 0 (mod2a−2).


Therefore, one would have


A2+A≡ 1 (mod 2a−2), B≡ 0 (mod2a−2).


The productA(A+1) being always even, the first congruence is impossible, excluding the
caser = a.


Thus,(q= a−2, r = a−1), proving Theorem 1. �
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3 The odd powers of the smallest complex prime number 1 +i


This sequence of complex integers starts from the terms{z1, z3, . . .}:


a 0 1 2 3 4 5
z2a+1 1+ i 2i −2 −4−4i −8i +8 16+16i 32i −32


ϕ(z2a+1) 1 4 16 64 256 1024
Γ (z2a+1) {1} Z4 Z4× (Z2)


2 (Z4)
3


Z4× (Z8)
2


Z4× (Z16)
2


The fundamental domain for the quotient ring


Zz2a+1 = ZC/(z2a+1ZC)


may be chosen to be the square with sides


(z2a+1, iz2a+1) = (2a+ i 2a, −2a+ i 2a).


The area of this domain equals 22a+1. Therefore the quotient ring consists of
∣


∣Zz2a+1


∣


∣= 22a+1


elements.
The invertible elementsx+ iy are exactly those, for which the sumsx+y are odd (the


proof is similar to that of Lemma 1 in§ 1). The area of the elementary square of the lattice
of the invertible elements equals 2. Therefore the number ofthe invertible elements equals


∣


∣Γ (z2a+1)
∣


∣= ϕ(z2a+1) = 22a = 4a.


In the casea = 1 one hasz3 = 2i − 2. The groupΓ (z3) is therefore formed by the 4
residues{1, −1, i, −i}:


Γ (z3)≃ Z4.


In the casea= 2, wherez5 =−4−4i, the groupΓ (z5) consists of the 16 residues


x+ iy : (0< x+y< 8, 0< y−x< 8),


the integersx andy being different modulo 2:


{1, 3, 5, 7, i, 3i, 5i, 7i, ±1+2i, ±2+3i, ±2+5i, ±1+6i} .


In their group, there hold the relations


12 = 32 = 52 = 72 = (±1+2i)2 = (±1+6i)2 = 1,


i2 = (3i)2 = (5i)2 = (7i)2 = (±2+3i)2 = (±2+5i)2 =−1= 7.


The number of the elements of this commutative group being equal to 24 = 16, it is the
product of the cyclical groupsZ2b:


Γ (z5)≃ (Z2)
s1 × (Z4)


s2 × (Z8)
s3 ×·· · ,


whence 2s1+2s2+3s3+··· = 24, and therefore


s1+2s2+3s3+ · · ·= 4.
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The number of the square roots from 1 in this group being equalto 8:


2s1+s2+s3+··· = 8, s1+s2+s3+ · · ·= 3.


Therefore, there hold the relations


s2+2s3 = 1, s3 = 0, s2 = 1, s1 = 2.


We have thus proved the isomorphism


Γ (z5)≃ (Z2)
2×Z4.


The calculation of the next groupsΓ (z2a+1) might be performed similarly, but it might
also be replaced by the following


Theorem 2 Euler’s groupΓ (z2a+1), where a> 3, is isomorphic to the product of three
cyclical groups,


Γ
(


(1+ i)2a+1)≃ Z4× (Z2a−1)2.


Proof Reasoning as above, we get the relation


Γ = Γ
(


(1+ i)2a+1)≃ (Z2)
s1 × (Z4)


s2 ×·· · ,


whence the identity


2
∑
r
(rsr )


= 22a.


The number of the square roots from 1 in groupΓ equals 2
∑
r


sr
(each multiplierZ2r


contributing 2 elements of the product-root, being encounteredsr times).


Lemma 7 For each a> 2 the number of the square roots from1 in the complex Euler group
Γ
(


(1+ i)2a+1
)


equals8.


Proof It is easy to find 8 roots: one starts fromz= 1, and starting from a rootz of equation
z2 = 1 one finds more roots, shifting the known root by the halfperiods:


z′ = z+c, where c= 2a−1(i ±1).


Indeed,
(z′)2 = z2+2cz+c2,


the terms 2c= 2a(i ±1) andc2 = 2a−2(i ±1)2a(i ±1) belonging to the ideal(1+ i)2a+1ZC


generated additively by 2a(i ±1), whena> 2. The elements 2a+1 andi 2a+1 belong to this
ideal.


Each rootz=±1 of equationz2 = 1 generates 4 shifted roots


z′ = z+2a−1[u(i −1)+v(i +1)
]


,


where(u,v) ∈
{


(0,0), (0,1), (1,0), (1,1)
}


.
There are no other square roots of 1 in Euler’s groupΓ


(


(1+ i)2a+1
)


. Indeed, denote
such a root byz= x+ iy. The complex congruence


z2 = 1+2a[α(i −1)+β (i +1)
]


means the pair of real congruences,


x2−y2 = 1+2a(β −α), 2xy= 2a(α +β ). (∗)
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The first congruence implies thatx andy are different modulo 2. Studying the residues
modulo 4, we see thatx is odd,y being even:


x= 2A+1, y= 2B.


The congruences(∗) take now the form


4(A2+A−B2) = 2a(β −α), 4B(2A+1) = 2a(α +β ).


Thus,B is divisible by 2a−2, and therefore 4B2 is divisible by 22a−2, being thus divisible by
2a:


A2+A= 2a−2D, B= 2a−2C.


The first congruence means that


eitherA= 2a−2P or A= 2a−2Q−1,


and therefore
eitherx= 2a−1P+1 orx= 2a−1Q−1.


We obtain therefore forx 8 possible values (inside one fundamental domain for the factor-
ization modulo 2a(i ±1)).


For y= 2B the divisibility conditionB= 2a−2C provides (in this fundamental domain)
at most 2 values, and thus one gets 16 possible pairs(x, y).


For each of these pairs one calculates (using(∗)) the values of the parameters(β −
α , β +α). These values are different modulo 2 in 8 cases from 16, whichis impossible for
any integer values ofα andβ .


There remain 8 cases (providing exactly the 8 shifts of the rootsz=±1 studied above).
Lemma 7 is therefore proved. �


Corollary 2 Euler’s groupΓ (zn), where n= 2a+ 1 > 5, has3 cyclical multipliersZ2s,
whose multiplicities as satisfy the two relations


{


a1+a2+ · · ·= 3,


a1+2a2+3a3+ · · ·= 2a.


To find these multiplicities, calculate the roots of degree 4from 1 in Euler’s group
Γ
(


(1+ i)2a+1
)


, wherea> 2.


Lemma 8 The number of the solutions of equation z4 = 1 in Euler’s groupΓ
(


(1+ i)2a+1
)


equals64.


Proof All the 8 square rootsw from 1, calculated above, are of the forms


w∈ {1+cξ , −1+cξ} ,


whereξ = 2a−1 andc∈ {0, 1, i, 1+ i}.
For c= 0 one finds immediately the roots


√
w∈ {±1},


√
w∈ {±i}.


Each of these four roots provides (by the shifts atc′ξ , which do not change the squares,
modulo(1+ i)2a+1) a quadruple of roots of equationz4 = 1.
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Thus we construct 16 roots of degree 4 from 1 inΓ
(


(1+ i)2a+1
)


, whose squares are 1
or−1.


To move from
√


w to
√


w+cξ , ξ being 2a−1, represent the sum as the product


w+cξ = w(1+c′′ξ ), wherec′′ = c/w.


The Newton binomial formula has the form


(w+cξ )1/2 = w1/2(1+c′′ξ/2− (c′′ξ )2/8+ · · ·
)


.


The degreek term


(c′′ξ )k


2kk!


is divisible by a power of 2, which is growing withk. Therefore, the binomial series is a
finite polynomial, providing (for eachc ∈ {0, 1, i, 1+ i}) eight shifted roots (similarly to
the situation forc= 0 described above).


These calculations provide 8· 8 = 64 roots of degree 4 from 1 in Euler’s groupΓ =
Γ
(


(1+ i)2a+1
)


, proving also that there exist no other roots. �


The resulting numbers (1, 8, and 64) of the roots from 1 of degrees (1, 2, and 4) inΓ
show that the lowest multiplier in the decomposition of group Γ into the cyclical ones is of
the formZ2p, p> 2.


In fact p= 2, otherwise each root of degree 4 from 1 were a square, while the congruence


(x+ iy)2 ≡ i
(


mod(1+ i)2a+1)


has no solutions, the integer 2xy being even.
Therefore, we have (fora> 2) the representation


Γ
(


(1+ i)2a+1)≃ Z4×Z2q ×Z2r , 26 q6 r,


whence 2+q+ r = 2a, q+ r = 2a−2.
We will prove below thatq= r = a−1.


Lemma 9 For each element z of Euler’s groupΓ
(


(1+ i)2a+1
)


(where a> 2) there holds


the relation z2
k
= 1 (for every k> a).


Proof The relationz= 1+ tz1 (wherez1 = 1+ i), discussed in the above proof of Lemma 1,
provides, successively, the corollaries


z2 = 1+2tz1+ t22i = 1+2t1,


z4 = 1+4t1+4t2
1 = 1+4t2,


z8 = 1+8t2+16t2
2 = 1+8t3, . . . ,


z2s
= 1+2sts.


The relation 2a = 0 in the quotient ringZ(1+i)2a+1 implies the relationz2a
= 1, proving


Lemma 9. �
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This Lemma implies that in the preceding decomposition (just before the Lemma) of
Euler’s groupΓ


(


(1+ i)2a+1
)


into the cyclical multipliers, the numbersq andr do not exceed
a. The relationq+ r = 2a−2 can be only realized in the two casesq6 r :


(q= r = a−1), (q= a−2, r = a).


We will prove below that the second case never happens.
Consider the multiplicative group of the invertible real residues modulo 2a+1,


Γ (2a+1) =
{


1, 3, . . . , 2a+1−1
}


.


This group is isomorphic to the product of two cyclical groups


Γ (2a+1)≃ Z2×Z2a−1,


as it is proved in the book [2]. Moreover, it is proved there that one may choose as the
generator of the second cyclical multiplier the element 5.


The above real Euler group forms a natural subgroup of our complex Euler’s group:


Γ (2a+1) ⊂ Γ
(


(1+ i)2a+1).


The complex group’s isomorphism to the product


Z4×Z2q ×Z2r (q= a−2, r = a)


would provide the projection of the subgroup


Z2a−1 ⊂ Γ (2a+1)


with no nontrivial kernel to the multiplierZ2a, sending the generator 5∈ Γ (2a+1) to a full
square


5= (x+ iy)2 ∈ Γ
(


(1+ i)2a+1).


However, the corresponding congruences
{


x2−y2 = 5+2a(β −α),


2xy= 2a(β +α)


lead to the conclusions that (as above)


x= 2A+1, y= 2B,


4(A2+A−B2) = 5+2a(β −α),


4B(2A+1) = 2a(β +α),


implying the congruence
A2+A≡ 5 (mod 2a).


But the productA(A+1) is even, making the preceding congruence impossible. There-
fore,(q, r) = (a−1, a−1), and we obtain (fora> 3) the required isomorphism


Γ
(


(1+ i)2a+1)≃ Z4×Z2a−1 ×Z2a−1


of Theorem 2. �
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4 Prime complex divisors of the real primesn = 4k + 1


ExampleThe real prime numbern= 5 is not a complex prime number, since


5= (2+ i)(2− i).


Every real prime numbern= 4k+1 has a similar representation


n= p2+q2 = (p+ iq)(p− iq),


being a product of two complex prime integers,p± iq ∈ ZC.


The complex Euler groups of the powers ofp± iq are calculated below.


Theorem 3 Complex Euler’s group


Γ
(


(p+ iq)m)


is cyclical, its order being equal to the value of the real Euler functionϕ at point nm:


Γ
(


(p+ iq)m)≃ Zϕ(nm) = Z(n−1)nm−1


(provided that n= p2+q2 is a prime integer, equal to1 modulo4).


Proof The proof starts from the following elementary fact.


Lemma 10 If the odd number n= p2+q2 is prime and(p+ iq)m=P+ iQ, then the integers
P and Q are relatively prime.


Example 1For (n= 5, p= 2, q= 1) one gets, for instance, the following values ofP
andQ:


m 1 2 3 4 5 6
P 2 3 2 −7 −38 −117
Q 1 4 11 24 41 44


Example 2For (n= 10, p= 3, q= 1) one gets, for instance, the following values ofP
andQ:


m 1 2 3 4
P 3 8 18 28
Q 1 6 26 96


The integersP and Q here are not relatively prime (n = 10 being not an odd prime
number).


Proof of Lemma 10If there were a largest common divisord > 1 of two integersP and
Q, the obvious relation


P2+Q2 = (p2+q2)m = nm


would imply thatd2 is divisible by the prime numbern, and hence the integersP andQ
would be divisible byn.


This divisibility is, however, impossible for the following reason.


Lemma 11 If p2+q2 = n, then there holds the congruence


(p+ iq)m ≡ (2p)m−1(p+ iq) (modn).
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Proof For m= 2 it is obvious:


(p+ iq)2 = p2−q2+2ipq= 2p2−n+2ipq≡ 2p(p+ iq) (modn).


If the congruence holds form= k, then one gets inductively


(p+ iq)k+1 ≡ (2p)k−1(p+ iq)(p+ iq)≡ (2p)k(p+ iq) (modn),


and therefore the congruence of Lemma 11 holds for all valuesof m. �


Applying Lemma 11 to the numberP+ iQ = (p+ iq)m, we conclude that


P+ iQ ≡ (2p)m−1(p+ iq) (modn).


The right-hand side is not divisible by the prime numbern (the divisibility of p by the prime
n would imply the divisibility of q2, and hence ofq, by this primen, and then the sum
p2+q2 = n would be divisible byn2).


We have proved thatP andQ cannot be both divisible byn, and hence the largest com-
mon divisord of integersP andQ is d = 1, which proves Lemma 10. �


Consider now the quotient ring


Z(p+iq)m = ZC


/(


(p+ iq)m
ZC


)


.


The denominator lattice is generated by the sides of the square


P+ iQ = (p+ iq)m, i(P+ iQ) =−Q+ iP.


The area of this square equals(p2+q2)m = nm, and thus the quotient ring consists ofnm


elements.
Consider now the natural embeddingZ ⊂ ZC of the ring of real integer numbers as of a


subring of the ring of the complex integers.


Lemma 12 The intersection
Z ∩ (p+ iq)m


ZC


is exactly the ideal of the real integers that are divisible by nm.


Proof Consider an intersection point


α(P+ iQ)+β (−Q+ iP) = γ + i 0


(with real integersα , β , γ).
The second of these congruences


αP−βQ= γ , αQ+βP= 0


implies that(α = Pλ , β = −Qλ ) for some real integerλ (the numbersP and Q being
relatively prime, according to Lemma 10).


The first congruence takes the form


γ = (P2+Q2)λ = nmλ ,


proving that the intersection point belongs tonm
Z.


For λ = 1 we get the intersection point


γ = P2+Q2 = nm,


proving Lemma 12. �
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Lemma 13 A pointγ ∈ Z, that is relatively prime to nm, defines an invertible element in the
quotient ringZ(p+iq)m. There are no other invertible elements in this quotient ring.


Proof The inclusionZ →֒ ZC induces the isomorphic mapping between thenm-elements
quotient rings,


Znm → ZC


/(


(p+ iq)m
ZC


)


,


according to Lemma 12.
The invertible elements are sent by this isomorphism to the invertible elements, and


therefore this isomorphism induces an isomorphism of the real Euler group and the complex
one,


Γ (nm) ≃ Γ
(


(p+ iq)m),


provided thatp2+q2 = n is an odd prime number. �


This isomorphism proves Theorem 3 (see Fig. 1). �


7 8


13 14 15 16


19 20 21 22 23 24
(2+i)2i(2+i)2


1 2 3 4 5 6


9 10 11 12


17


0


18


Fig. 1 The isomorphism between the real and complex Euler groups,Γ (25)≃ Γ
(


(2+ i)2
)


. Due to technical
reasons, a box around the lowest zero is not drawn.
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