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Abstract


We study the linear stability problem of the stationary solution ψ∗ =
− cos y for the Euler equation on a 2-dimensional flat torus of sides 2πL
and 2π. We show that ψ∗ is stable if L ∈ (0, 1) and that exponentially
unstable modes occur in a right neighborhood of L = n for any integer n.
As a corollary, we gain exponentially instability for any L large enough
and an unbounded growth of the number of unstable modes as L diverges.
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1 Introduction


Given L > 0, let T2
L be the 2-dimensional torus of sides 2πL and 2π,


T2
L := {(x, y) : x ∈ R/2πLZ, y ∈ R/2πZ} .


We consider the Euler equation on T2
L, written in terms of the stream function


ψ ∈ C1(R+;W 2,2(T2
L; R)),


∂∆ψ
∂t


+ 〈J∇ψ,∇∆ψ〉 = 0, (1.1)


with J the antisymmetric matrix


J =
(


0 1
−1 0


)
.


As it is well known, this equation admits the following two independent first
integrals,


I1 :=
∫


T2
L


dxdy |∇ψ|2, I2 :=
∫


T2
L


dx dy (∆ψ)2. (1.2)
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Any regular function on T2
L depending only on the y or on the x variable


is a stationary solution to (1.1). More generally, any function φ such that
∆φ is functionally dependent on φ is a stationary solution. This is obviously
verified by the eigenfunctions of the Laplacian. In particular, in this paper we
are interested in the stability problem of the stationary solution ψ∗ := − cos y.
This old problem was firstly posed by Arnol’d, see Example 2 in [2, Appendix 2]
or Example 4.6 in [3]. More specifically, the question is to analyze the stability
of the stationary solution ψ∗ as L crosses the critical value L = 1.


We rewrite (1.1) in terms of the shifted stream function Ψ := ψ + cos y,


∂∆Ψ
∂t


+ sin y
∂


∂x
(Ψ + ∆Ψ) + 〈J∇Ψ,∇∆Ψ〉 = 0. (1.3)


By disregarding the nonlinear terms in (1.3) we obtain the linear equation,


∂∆Ψ
∂t


+ sin y
∂


∂x
(Ψ + ∆Ψ) = 0. (1.4)


According to Arnol’d, the stationary solution Ψ∗ = 0 is unstable [resp. stable]
for L > 1 [resp. 0 < L ≤ 1], and the proof of instability can be achieved by
means of continued fractions techniques, firstly applied by Meshalkin and Sinai
in [7] in the case of the Navier-Stokes flow. Previous announcement of this result
was given in the report [4] by Arnol’d and Meshalkin.


Few years after the Meshalkin-Sinai paper, V.I. Yudovich [8] studied with
the same techniques the bifurcation phenomenon occurring when there is a loss
of stability of the laminar flow of a viscous incompressible fluid. In recent years,
following Arnol’d suggestion of using continued fractions, Friedlander at al. [6]
studied the linear instability of the stationary solution ψ(m) = − 1


m cosmy,
m ∈ N, to (1.1). The instability property of ψ(m) relies on the existence of
roots with positive real part of an infinite algebraic system of complex variable,
with coefficients depending on L. Each root with positive real part determines
the exponential growth of an unstable mode. In the particular case m = 1,
real roots exist for L > 1. Moreover, numerical calculations indicate that there
exists exactly one real root for each L1. More general results for m > 1 can be
found in the quoted papers.


We begin Section 2 by briefly discussing the problem of the linear sta-
bility of ψ∗ for L ≤ 1. The main part of the section is devoted to give a
new proof of the exponential instability of ψ∗ when L > 1. Our strategy re-
lies on proving the existence of 2π-periodic solutions to a second order non
autonomous linear differential equation (the Raleigh equation), whose coeffi-
cients depend on two parameters (ω, ε) ∈ C × R. We translate the problem
into a functional system which is solved by a perturbative approach in the
cone K :=


{
ω ∈ C : 0 < <ω < 1


2 , |=ω| ≤ |<ω|
}


, obtaining a unique solution
ω = ω(ε) defined in a right neighborhood of ε = 0. This function ensures


1Indeed, in [7] it is proven that in the case of non zero viscosity the analogous equation
has only real roots.
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the existence of periodic solutions for the corresponding one parameter differ-
ential equation. Moreover, <ω(ε) gives the rate of the exponential growth of
the unstable modes of the linearized equation (1.4). In our opinion, beyond the
instability result, this perturbative analysis is of some interest by itself.


To conclude, we notice that <ω(ε) = O(ε), =ω(ε) = o(ε). We are not able
to prove that =ω(ε) ≡ 0, but the numerical result in [6] strongly support this
conclusion.


2 The linearized equation


Quite obviously, Eq. (1.4) admits the first integrals


I :=
1


(2π)2L


∫
T2


L


dxdy
[
(∆Ψ)2 − |∇Ψ|2


]
(2.1)


and
Ik2 :=


∫
T2


L


dx dy eik2y∆Ψ, k2 ∈ Z. (2.2)


We emphasize that, for any L ≤ 1, the first integral I is a non-negative but not
positive-definite functional. Therefore, also the linear stability for L ≤ 1 is not
a straightforward property. Writing Ψ in Fourier expansion,


Ψ(x, y) =
∑
k∈Z2


Ψk1,k2ei( k1
L x+k2y),


Eq. (1.4) translates into the following infinite system of O.D.E. for the modes
Ψk1,k2 , [(


k1


L


)2


+ k2
2


]
Ψ̇k1,k2 =


k1


2L


{[(
k1


L


)2


+ k2
2 + 2k2


]
Ψk1,k2+1


−


[(
k1


L


)2


+ k2
2 − 2k2


]
Ψk1,k2−1


}
. (2.3)


Notice that system (2.3) splits into an infinite set of independent subsystems
Sk1 , k1 ∈ Z. The integrals I and Ik2 , written in terms of the Fourier coefficients,
read


I =
∑


(k1,k2)∈Z2


[(
k1


L


)2


+ k2
2


][(
k1


L


)2


+ k2
2 − 1


]
|Ψk1,k2 |


2
, (2.4)


Ik2 = −k2
2 Ψ0,k2 , k2 ∈ Z. (2.5)


The first integral (2.4) is given by the sum
∑
k1∈Z Ik1 of the following first


integrals for the subsystems Sk1 ,


Ik1 :=
∑
k2∈Z


[(
k1


L


)2


+ k2
2


][(
k1


L


)2


+ k2
2 − 1


]
|Ψk1,k2 |


2
, k1 ∈ Z. (2.6)
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Each subsystem Sk1 also admits two further first integrals (possibly formal),


H+
k1


:=
∑
k2∈Z


[(
k1


L


)2


+ k2
2


]
Ψk1,k2 , k1 ∈ Z, (2.7)


H−k1 :=
∑
k2∈Z


(−1)k2
[(


k1


L


)2


+ k2
2


]
Ψk1,k2 , k1 ∈ Z, (2.8)


which are obtained by evaluating the linear equation (1.4) at y = 0 and y = π.
We now discuss the stability problem of the zero solution to (1.4) for different


values of the parameter L.


Theorem 2.1 If 0 < L < 1 the zero solution to (1.4) is stable.


Proof. By (2.4), the conservation of I guarantees that all the Fourier coeffi-
cients Ψk1,k2 are controlled except the coefficient Ψ0,1, which is, however, a first
integral, see (2.5). �


Remark 2.2 Of course, this result does not imply the stability of the zero
solution for the nonlinear equation (1.3), because Ik2 is not conserved by this
evolution.


The stability properties in the case L = 1 are still an open problem for the
linear equation (1.4) and, a fortiori, for the nonlinear equation (1.3). Here we
only give an idea on the difficulties for the linear case. Integral (2.6) does not
give a control on the mode Ψ1,0 and we are left with the study of the subsystem
S1, which is given now by the equation


Ψ̇1,0 =
1
2


(Ψ1,1 −Ψ1,−1) ,


coupled with the two subsystems S±1 defined by


(1 + k2
2)Ψ̇1,k2 =


1
2
[
(k2 + 1)2Ψ1,k2+1 − (k2 − 1)2Ψ1,k2−1


]
,


with k2 ≥ 1 for S+
1 and k2 ≤ −1 for S−1 respectively. We note that S±1 admit


the first integrals
I±1 =


∑
k2∈N


k2
2(1 + k2


2) |Ψ1,±k2 |2,


which give a control on the sequences {a±k2 ; k2 ∈ N}, a±k2 = k2
2 |Ψ1,±k2 |, in `2.


However, the first integrals H±1 defined in (2.7)-(2.8), which could control also
the mode Ψ1,0, are finite only if {a±k2 ; k2 ∈ N} are sequences in `1.


Now, we consider the case L > 1.


Theorem 2.3 The zero solution of Eq. (1.4) is exponentially unstable for L
belonging to a right neighborhood of L = 1. Moreover, there exists a number
L0 ≥ 1 such that the zero solution is unstable for all L > L0.
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Theorem 2.3 is a straightforward consequence of the following main theorem.


Theorem 2.4 The set N of positive integers is a bifurcation set. More precisely,
there exist ε0 > 0, functions ω± ∈ C1([0, ε0); C) with <ω±(ε) > 0 for all ε ∈
(0, ε0), and a solution to (1.4) of the form


Ψ±(x, y, t) = e
k


Lk(ε) (ix±ω±(ε)t)
f±(y, ε)


where f±(·, ε) ∈ C2(S1; C) and Lk(ε) := k(1 + ε), k ∈ N.


Remark 2.5 We emphasize that by Theorem 2.4 the number of unstable modes
for the zero solution is diverging as L→∞. Note in fact that, letting n = n(L)
be the largest positive integer such that L


[L]−n < 1 + ε0, we have n(L) → ∞
as L → ∞, and for each k = [L] − n, . . . , [L] there exists εk ∈ (0, ε0) such
that k(1 + εk) = L. There are therefore n + 1 unstable modes. This growth
of unstable modes is the analogous to that one for the Navier-Stokes equation.
Indeed, the dimension of the unstable manifold of the Kolmogorov flow is equal
to 2[L], see [5].


Proof of Theorem 2.4. We consider the case of unstable modes. Given ε ∈ (0, 1)
and ω ∈ C, a function of the form


Ψ(x, y, t) = e
1


1+ε (ix+ωt)f(y)


is a solution to (1.4) if and only if f(y) is a 2π-periodic solution of the ordinary
differential equation,


d2f


dy2
− iω + ε(2 + ε) sin y


(1 + ε)2(iω − sin y)
f = 0. (2.9)


Our strategy is to prove, by a perturbative method, that this solution does
exist at least for small ε and ω. It is not restrictive to assume f(0) = 1. Let
f(y, ω, β, ε), β ∈ C, be the solution to (2.9) with f(0) = 1 and f ′(0) = β.
Clearly f(y, ω, β, ε) solves the integral equation,


f(y) = 1 + βy +
∫ y


0


dτ (y − τ)
iω + ε(2 + ε) sin τ


(1 + ε)2(iω − sin τ)
f(τ). (2.10)


By imposing periodic boundary conditions we obtain the following system of
equations in the variables (ω, β, ε),


∫ 2π


0


dτ G(τ, ω, ε) f(τ, ω, β, ε) = 0,


∫ 2π


0


dτ τ G(τ, ω, ε) f(τ, ω, β, ε) = β,


(2.11)


where


G(τ, ω, ε) :=
iω + ε(2 + ε) sin τ


2π(1 + ε)2(iω − sin τ)
. (2.12)
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Our purpose is to solve system (2.11) with respect to (ω, β), getting functions
ω = ω+(ε), β = β(ε) (defined in a right neighborhood of ε = 0). Setting


R(y, ω, β, ε) := f(y, ω, β, ε)− 1− βy, (2.13)


we rewrite (2.11) as follows, E0(ω, ε) + E1(ω, ε)β +A0(ω, β, ε) = 0,


E1(ω, ε) + E2(ω, ε)β +A1(ω, β, ε) = β,
(2.14)


where


En(ω, ε) =
∫ 2π


0


dτ τnG(τ, ω, ε), n = 0, 1, 2,


An(ω, β, ε) =
∫ 2π


0


dτ τnG(τ, ω, ε)R(τ, ω, β, ε), n = 0, 1. (2.15)


We notice that


E0(ω, 0) =
iω
2π


∫ 2π


0


dτ
iω − sin τ


= 0 if <ω = 0 and |=ω| < 1.


Due to this degeneracy in (2.14)1, the standard implicit function theorem does
not apply. To overcome this difficulty we instead exploit a fixed point argu-
ment in a suitable cone. Let K := {ω ∈ C : <ω > 0, |=ω| ≤ |<ω|} and define
K1/2 :=


{
ω ∈ K : |ω| ≤ 1


2


}
. The following two lemmata will be proved in the


Appendix.


Lemma 2.6 For any ω ∈ K1/2,


E0(ω, ε) = ω − 2ε+O2(ω, ε),


E1(ω, ε) = iω logω−1 +O1(ω, ε),


E2(ω, ε) = 2πiω logω−1 +O1(ω, ε),


where Ok(ω, ε) denotes a regular function of order k in K1/2 × R+.


Lemma 2.7 The functions An(ω, β, ε), n = 0, 1, are continuously differentiable
in K × C × [0, 1]. Moreover, there exists a constant C0 > 0 such that, for any
(ω, β) ∈ K1/2 × C and ε ∈ [0, 1],


|An(ω, β, ε)| ≤ C0 (1 + |β|)
(
ε+ |ω| log |ω|−1


)2
,∣∣∣∣∂An∂ω


(ω, β, ε)
∣∣∣∣ ≤ C0 (1 + |β|)(ε+ |ω| log |ω|−1) log |ω|−1,∣∣∣∣∂An∂β
(ω, β, ε)


∣∣∣∣ ≤ C0


(
ε+ |ω| log |ω|−1


)2
.


6







Coming back to sistem (2.14), by plugging the second equation into the first
one, we can rewrite the latter in the form


ω = Tβ,ε(ω), (2.16)


where


Tβ,ε(ω) := ω − E0(ω, ε)− E1(ω, ε)2 − E1(ω, ε)E2(ω, ε)β


− E1(ω, ε)A1(ω, β, ε)−A0(ω, β, ε).
(2.17)


By the above lemmata, there exists a constant C̄ > 0 such that, for any ω ∈
K1/2, |β| ≤ 1, and ε ∈ [0, 1],∣∣<Tβ,ε(ω)− 2ε


∣∣ ≤ C̄ (ε+ |ω| log |ω|−1
)2
, (2.18)∣∣=Tβ,ε(ω)


∣∣ ≤ C̄ (ε+ |ω| log |ω|−1
)2
, (2.19)∣∣∣∣∂Tβ,ε(ω)


∂ω


∣∣∣∣ ≤ C̄ (ε+ |ω| log |ω|−1) log |ω|−1, (2.20)∣∣∣∣∂Tβ,ε(ω)
∂β


∣∣∣∣ ≤ C̄ (ε+ |ω| log |ω|−1)2. (2.21)


By inequalities (2.18), (2.19), and (2.20), there exists ε′0 > 0 such that, for
any |β| ≤ 1 and ε ∈ (0, ε′0), the compact set Sε := {ω ∈ K : ε ≤ <ω ≤ 3ε} is
invariant under the map Tβ,ε and Tβ,ε is a contraction on Sε. Therefore, the
fixed point equation (2.16) can be solved for any |β| ≤ 1 and ε ∈ (0, ε′0), getting
ω = ω̄(β, ε) with ε ≤ <ω̄(β, ε) ≤ 3ε. Moreover, by (2.20) and (2.21), for some
constant C∗ > 0, ∣∣∣∣∂ω̄∂β (β, ε)


∣∣∣∣ ≤ C∗(ε log ε−1)2. (2.22)


Plugging ω = ω̄(β, ε) into the second equation of system (2.14), the latter
assume the form


β = Qε(β). (2.23)


By the above lemmata and (2.22), there exists ε0 ∈ (0, ε′0] such that, for any
ε ∈ (0, ε0) the unit disk {β ∈ C : |β| ≤ 1} is invariant under the map Qε and Qε
is a contraction on it. Therefore, the fixed point equation (2.23) can be solved
for ε ∈ (0, ε0), getting β = β(ε). The claim of the theorem now follows with
ω+(ε) := ω̄(β(ε), ε). The proof for the stable modes is identical, by working in
the negative cone. �


Appendix


Proof of Lemma 2.6. We have


En(ω, ε) = − ω


2πi
In(ω)− (2π)nε(2 + ε)


(n+ 1)(1 + ε)2
,
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where


In(ω) =
∫ 2π


0


dτ
τn


iω − sin τ
.


Therefore, it is sufficient to evaluate In(ω) for |ω| ≤ 1
2 , |=ω| ≤ |<ω| and <ω > 0.


Under this assumption, there exists K0 > 0 such that the function F (z) =
zn (iω − sin z)−1 has a unique pole z0 in the complex domain


DK := {z ∈ C : <z ∈ [0, 2π],=z ∈ [−K, 0]},


for any K > K0. Moreover


z0 = π + =ω − i<ω +O3(ω).


Therefore, denoting with ΓK the boundary of DK , by the Residue Theorem we
have


1
2πi


∮
ΓK


dz
zn


iω − sin z
= − zn0


cos z0
= πn +O1(ω) ∀K > K0.


On the other hand,


lim
K→∞


1
2πi


∮
ΓK


dz
zn


iω − sin z
= − 1


2πi
In(ω) + Cn(ω),


with


Cn(ω) =





0 if n = 0,


−i
∫ ∞


0


dσ
1


ω + sinhσ
if n = 1,


−2πi
∫ ∞


0


dσ
1


ω + sinhσ
− 2


∫ ∞
0


dσ
σ


ω + sinhσ
if n = 2,


where ∫ ∞
0


dσ
1


ω + sinhσ
=


1√
1 + ω2


log


(
1 + ω +


√
1 + ω2


)2
2ω


and


sup
ω∈K1/2


∣∣∣∣∫ ∞
0


dσ
σ


ω + sinhσ


∣∣∣∣ <∞, sup
ω∈K1/2


∣∣∣∣ω ∂


∂ω


[∫ ∞
0


dσ
σ


ω + sinhσ


]∣∣∣∣ <∞.
The claim of the lemma follows immediately from the previous computations.
�


Proof of Lemma 2.7. We remark that the solution to (2.10) is regular with
respect to the parameters (ω, β, ε) for ω ∈ K\{0}, the singularities being located
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at (y, ω) = (0, 0) and (y, ω) = (π, 0). Recalling (2.12), the function R(y, ω, β, ε)
defined in (2.13) satisfies the integral equation,


R(y, ω, β, ε) = Q(y, ω, β, ε) + 2π
∫ y


0


dτ (y − τ)G(τ, ω, ε)R(τ, ω, β, ε), (A.1)


where
Q(y, ω, β, ε) = 2π


∫ y


0


dτ (y − τ)(1 + βτ)G(τ, ω, ε).


For any y ∈ [0, 2π], (ω, β) ∈ K1/2 × C, and ε ∈ [0, 1], we have,


|Q(y, ω, β, ε)| ≤ 2π(1 + 2π|β|)
∫ 2π


0


dτ
[
ε(2 + ε)
(1 + ε)2


+
|ω|


|iω − sin τ |


]
≤ 2π(1 + 2π|β|)


∫ 2π


0


dτ


[
ε+


2<ω√
(<ω)2 + (=ω + sin τ)2


]
≤ C1(1 + |β|) (ε+ |ω| log |ω|−1),


|G(y, ω, ε)| ≤ ε+
<ω


π
√


(<ω)2 + (=ω + sin y)2
≤ C1, (A.2)


where we used that |ω| ≤ 2<ω ≤ 2|ω| for ω ∈ K, and C1 is a suitable positive
constant. Then, by the Gronwall lemma, for some C2 > 0,


|R(y, ω, β, ε)| ≤ C2 (1 + |β|) (ε+ |ω| log |ω|−1) (A.3)


for any y ∈ [0, 2π], (ω, β) ∈ K1/2 × C, and ε ∈ [0, 1].


Analogously, we next evaluate the derivatives of R(y, ω, β, ε) with respect to
(ω, β). By (A.1),


∂R


∂ω
(y, ω, β, ε) = Q1(y, ω, β, ε) + 2π


∫ y


0


dτ (y − τ)G(τ, ω, ε)
∂R


∂ω
(τ, ω, β, ε),


∂R


∂β
(y, ω, β, ε) = Q2(y, ω, β, ε) + 2π


∫ y


0


dτ (y − τ)G(τ, ω, ε)
∂R


∂β
(τ, ω, β, ε),


with


Q1(y, ω, β, ε) = 2π
∫ y


0


dτ (y − τ)
[
1 + βτ +R(τ, ω, β, ε)


] ∂G
∂ω


(τ, ω, ε),


Q2(y, ω, β, ε) = 2π
∫ y


0


dτ (y − τ) τ G(τ, ω, ε).


We observe that, for any y ∈ [0, 2π], (ω, β) ∈ K1/2 × C, and ε ∈ [0, 1],∣∣∣∣∂G∂ω (τ, ω, ε)
∣∣∣∣ ≤ 1


π
√


(<ω)2 + (=ω + sin y)2
+


<ω
π [(<ω)2 + (=ω + sin y)2]


. (A.4)
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Then, there exists C3 > 0 such that, for any y ∈ [0, 2π], (ω, β) ∈ K1/2 × C, and
ε ∈ [0, 1],


|Q1(y, ω, β, ε)| ≤ C3 (1 + |β|) log |ω|−1,


|Q2(y, ω, β, ε)| ≤ C3 (ε+ |ω| log |ω|−1),


whence, by the Gronwall lemma, for some C4 > 0,∣∣∣∣∂R∂ω (y, ω, β, ε)
∣∣∣∣ ≤ C4 (1 + |β|) log |ω|−1, (A.5)∣∣∣∣∂R∂β (y, ω, β, ε)
∣∣∣∣ ≤ C4 (ε+ |ω| log |ω|−1). (A.6)


The claim of the lemma now follows by the definition (2.15) and the estimates
(A.2), (A.3), (A.4), (A.5), and (A.6). �


References
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