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Abstract


We study asymptotical behaviour of resonances for a quantum graph consisting of a finite internal part and external


leads placed into a magnetic field, in particular, the question whether their number follows the Weyl law. We prove


that the presence of a magnetic field cannot change a non-Weyl asymptotics into a Weyl one and vice versa. On the


other hand, we present examples demonstrating that for some non-Weyl graphs the “effective size” of the graph, and


therefore the resonance asymptotics, can be affected by the magnetic field.
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1. Introduction


Quantum graphs became object of intense interest in the last two decades, in part because of numerous possible


applications especially in solid-state physics, and also as a tool to study various properties of quantum dynamics. The


corresponding bibliography is huge, we limit ourselves to mentioning the proceedings volume [AGA08], in particular


the paper [Ku08] there, as a guide to further reading.


An often studied class of graphs are those consisting of a finite internal part to which some number of semiinfinite


leads is attached. Such graph typically exhibit a family of resonances; for the purpose of this letter the term resonance


means both true resonances1 corresponding to pole singularities in the open lower complex halfplane of energy as well


as eigenvalues of the graph Hamiltonian embedded in the continuous spectrum. A question which attracted attention


recently concerns the resonance behaviour at high energies. For most graphs of the described class the leading term


coefficient in this asymptotics is given by 2V/πwhereV denotes the sum of lengths of all internal edges, or “volume”


of the internal part. This is the usual Weyl law2 and we will therefore refer to this case as Weyl.


In a surprising observation, however, Davies and Pushnitski [DP10] demonstrated that there are situations when


this not true and a quantum graph has fewer resonances than the Weyl law would predict, in other words, the relevant


“size” of the graph entering the leading term of the asymptotics is smaller; we will refer to them as non-Weyl in the


following. It was shown in [DP10] that this happens if the the coupling at the graph vertices is the so-called Kirchhoff


one, and at least one vertex is balanced joining the same number of internal and external edges. In the subsequent


paper [DEL10] the claim was extended to graphs with general vertex couplings and a mechanism responsible for


“deleting” of a part of the internal edges was explained.


The question we address ourselves in the present letter is whether and how the high-energy resonance asymptotics


can be changed if the graph is placed into a magnetic field. The exact profile of the field is not important. Since the


particle is confined to the graph and behaves locally as a one-dimensional one it is only influenced by the component


of the vector potential tangent to the graph edge. Moreover, as we will show in the next section, it is only the fluxes


through all closed loops of the graph which are relevant for the resonance behaviour.
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1While there are various definitions of true resonances, in particular, as singularities of the scattering matrix, or as poles of analytically continued


resolvent, in the present context they were demonstrated to be equivalent [EL10] so the term can be used without further specifications.
2The factor two comes from a double-counting, recall that resonance poles appear in pairs coming from the symmetry k ↔ −k̄.
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2. Preliminaries


2.1. Quantum graphs in magnetic field


In this section we recall a few basic notions about metric graphs and magnetic Schrödinger operators on them.


Let Γ be a metric graph consisting of set of vertices {X j} and set of edges {E j} containing N finite edges and M


infinite leads. We equip it with a second order differential operator H acting as −d2/dx2 at the infinite leads and as


−(d/dx+ iA j(x))2 at the internal edges. Here A j is the tangent component of the vector potential corresponding to the


magnetic field; without loss of generality we may assume that it is zero on external leads because on a edge which is


not a part of a loop we can easily remove the vector potential by a gauge transformation.


The domain of the indicated Hamiltonian are functions in W2,2(Γ) which satisfy the coupling conditions


(U j − I)Ψ j + i(U j + I)(Ψ′j + iA jΨ j) = 0


at the vertexX j, whereΨ j and Ψ′
j
are the corresponding vectors of functional values and derivatives, respectively, and


A j is the diagonal matrix whose entries are limit values of the magnetic potential at the vertex for each internal edge


entering the vertex X j — at the beginning of the edge with positive sign, at its end with negative one — and zero for


terms corresponding to the halfline leads.


Writing the coupling condition for each vertex of Γ separately may not be practical for some purpose, especially


if the internal part consists of a larger number of edges. A useful alternative [Ku08, EL10] is to describe the coupling


on the whole graph using a single block diagonal (2N + M) × (2N + M) matrix U by the condition


(U − I)Ψ + i(U + I)(Ψ′ + iAΨ) = 0 ; (1)


one may think of a “flower-like” graph with all the vertices joined together. The topological structure of the original


graph Γ is now encoded in the block structure of the matrix U consisting of the blocks U j. In a similar way, the vectors


Ψ, Ψ′ and the matrix matrix A = diag (A1(0),−A1(l1), . . . , AN(0),−AN(lN), 0, . . . , 0) are constructed from Ψ j’s, Ψ′
j
’s


andA j’s, respectively. The self-adjointness of the Hamiltonian constructed in the described way was proved (with a


slightly different notation) in Thm. 2.1 of [KS03].


Using the local gauge transformation ψ j(x) 7→ ψ j(x)e−iχ j(x) with χ j(x)′ = A j(x) one can get rid of the explicit


dependence of coupling conditions on the magnetic field and arrive thus at the free Hamiltonian with the coupling


conditions given by a transformed unitary matrix,


(UA − I)Ψ + i(UA + I)Ψ′ = 0 , UA := FUF −1 (2)


with F = diag (1, exp (iΦ1), . . . , 1, exp (iΦN), 1, . . . , 1) containing magnetic fluxes Φ j =


∫ l j


0
A j(x) dx.


Treatment of graphs with external leads can be reduced to analysis of the internal part only. The way to do that is


to introduce the effective energy-dependent coupling matrix


Ũ(k) := U1 − (1 − k)U2[(1 − k)U4 − (k + 1)I]−1U3 , (3)


on the compact part of the graph obtained from Γ by “chopping off” the leads [EL10, DEL10]. In the defining relation


(3), the matrices Ui are the blocks of the original coupling matrix U =


(


U1 U2


U3 U4


)


, where the 2N × 2N matrix U1


corresponds to the coupling between the internal edges, the M × M matrix U4 describes the coupling between the


external edges and the rectangular matrices U2, U3 couple the two groups of edges. For a magnetic graph with the


coupling (2) the matrix UA can be similarly replaced by the effective coupling matrix ŨA(k) on the compact part of


the graph defined in the analogous way.


2.2. High-energy resonance asymptotics


The main object of our interest here is the resonance count at high energies, that is, the number of resonances in a


circle of radius R in the momentum plane centred at the origin, k = 0. According to [DP10, DEL10] this quantity has


the following behaviour


N(R) =
2


π
WR + O(1) , W ≤ V ,
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Figure 1: Graph with a balanced vertex connecting two leads with one internal edge


as R → ∞; the effective graph size W is bound from above by V, the sum of lengths of all the internal edges. If


those two quantities coincide,W = V, the resonances follows the Weyl asymptotics, otherwise we have a non-Weyl


situation. A criterion expressed in terms of the effective coupling matrix (3) was derived in [DEL10] which allows us


to tell when each of the two situations occurs.


Theorem 2.1. The graph has a non-Weyl asymptotics iff at least one eigenvalue of Ũ(k) is 1+k
1−k


or 1−k
1+k


.


3. Resonance asymptotics of magnetic graphs


Let us now pass to our main topic. First we observe that under unitary transformations which do not mix the


internal and external edges the distinction the non-Weyl asymptotics character is preserved.


Theorem 3.1. Let Γ be a quantum graph with N internal and M external edges which are coupled by the condition


(2) with a (2N + M) × (2N + M) unitary matrix U. Let further ΓV be a quantum graph obtained from Γ by replacing


the coupling matrix U by V−1UV where V =
(


V1 0
0 V2


)


is unitary block-diagonal matrix consisting of a 2N × 2N block


V1 and an M × M block V2. Then ΓV has a non-Weyl resonance asymptotics iff Γ does.


Proof. Let the matrix U consist of the blocks U1, U2, U3, U4 in the way described above. Then the coupling matrix of


the transformed graph ΓV consists respectively of the blocks V−1
1


U1V1, V−1
1


U2V2, V−1
2


U3V1, V−1
2


U4V2. Consequently,


we have ŨV (k) = V−1
1


U1V1 − (1 − k)V−1
1


U2V2[(1 − k)V−1
2


U4V2 − (k + 1)I]−1V−1
2


U3V1 = V−1
1


Ũ(k)V1 as the effective


energy-dependent coupling matrix for ΓV , and it has the same eigenvalues as Ũ(k). Hence, according to Theorem 2.1


the character of the asymptotics does not change.


Using the fact that the coupling-matrix transformation U 7→ UA defined by (2) belongs to the class covered by


Theorem 3.1 we arrive at the following conclusion.


Corollary 3.2. Let Γ be a quantum graph with Weyl resonance asymptotics. Then ΓA has also the Weyl asymptotics


for any profile of the magnetic field.


In other words, the magnetic field alone cannot switch a graph with non-Weyl asymptotics into one with Weyl


asymptotics and vice versa. On the other hand, as following example shows, the magnetic field can change the


effective size of a non-Weyl graph.


Example 3.3. Consider a graph consisting of one vertex connecting a loop of length l and two halflines, with Kirchhoff


coupling conditions at the vertex — cf. Fig. 1 — and place it into a magnetic field with constant value of tangent


component of the potential. According to [DP10] this graph has a non-Weyl asymptotics in the non-magnetic regime.


The resonance condition can be easily computed, e.g., by the method of external complex scaling [EL10]. Using the


Ansatz f (x) = e−ikA(aeikx
+ be−ikx) for the wavefunction on the loop one obtains the set of equations


ik[a − b − e−iAl(aeikl − be−ikl) + 2e−θ/2gθ(0)] = 0 ,


a + b = e−iAl(aeikl
+ be−ikl) = e−θ/2gθ(0) ,
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where gθ denotes the scaled function on the halfline. This leads to the resonance condition


−2 cosΦ + e−ikl
= 0 ,


where Φ = Al stands for the magnetic flux through the loop. One can see that for Φ = ±π/2 (modπ), that is, for odd


multiples of a quarter of the flux quantum 2π, the l-independent term disappears. By the results of [DP10, DEL10]


the effective size of the graph is then zero, i.e. there are finitely many resonances; it is straightforward to see that in


the present case there are no resonances at all.


The effective-coupling matrix is in this case equal to


ŨA(k) =
1


k + 1


(


−k eiΦ


e−iΦ −k


)


;


we notice that the resonances are absent when the sum of the off-diagonal elements vanishes.


The last observation can be generalized to any one-loop quantum graph, with or without a magnetic field.


Proposition 3.4. The effective size of a graph with a single internal edge is zero iff it is non-Weyl and its effective


coupling matrix Ũ(k) satisfies ũ12 + ũ21 = 0 .


Proof. According to [DEL10] the resonance condition is F(k) = 0 where


F(k) := det


{


1


2
[(Ũ − I) + k(Ũ + I)]


(


0 0


−i 1


)


eikl
+


1


2
[(Ũ − I) − k(Ũ + I)]


(


0 0


i 1


)


e−ikl
+ k(Ũ + I)


(


i 0


0 0


)


+ (Ũ − I)


(


0 1


0 0


)}


;


for the sake of brevity we dropped here the argument of Ũ. Since the graph is supposed to be non-Weyl, the term


with eikl in the determinant vanishes, which means that Ũ has an eigenvalue equal to 1−k
1+k


. To obtain a graph with zero


effective size one needs to cancel also the term without the exponentials for which the combination of first two terms


in the last displayed equation,


−ikũ12(ũ22 − 1) + ikũ12(ũ22 + 1) = 2ikũ12 ,


and the last two ones,


ik[(ũ11 + 1)ũ21 + ũ21(ũ11 − 1)] = 2ikũ21 ,


are relevant, hence a necessary and sufficient condition for finiteness of the resonance family is ũ12 + ũ21 = 0.


This leads us directly to the following conclusion.


Theorem 3.5. For any non-Weyl quantum graph with one internal edge and |ũ12| = |ũ21| there is a magnetic field such


that the graph under its influence has at most finite number of resonances.


Proof. Under the unitary transformation (2) the effective coupling matrix changes to
(


ũ11 eiΦũ12


e−iΦ ũ21 ũ22


)


. Adjusting the


phase shift determined by the magnetic flux through the loop one can satisfy the condition of the previous proposition


and ensure thus that the effective size of the corresponding magnetic graph is zero.
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