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Abstract


We give examples of analytic circle maps with singularities of break type with


the same rotation number and the same size of the break for which no conjugacy is


Lipschitz continuous. In the second part of the paper, we discuss a class of rotation


numbers for which a conjugacy is C1-smooth, although the numbers can be strongly


non-Diophantine (Liouville). For the rotation numbers in this class, we construct


examples of analytic circle maps with breaks, for which the conjugacy is not C1+α


smooth, for any α > 0.


1 Introduction


This paper concerns the rigidity of circle maps with break singularities. These are
orientation-preserving homeomorphisms of the circle T1 = R\Z, which are Cr-smooth
outside a single point where the derivative has a jump discontinuity. Circle maps with
breaks were introduced about 20 years ago as an interesting example of a one-dimensional
dynamical system with rich and non-trivial renormalization behavior. Usually, non-trivial
renormalizations are related to the presence of critical points, like in the case of critical
circle maps. It turns out that points of break can cause behavior very similar to that of
critical points. Such a �criticality� manifests itself through non-trivial scalings, compli-
cated structure of the renormalization horseshoe, prevalence of rational rotation numbers,
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2 Examples of non-rigidity


etc. At the same time, renormalization analysis of maps with breaks is simpler than in
the critical case. A full renormalization theory can be constructed in this case, which is
still an open problem for critical circle maps with non-analytic critical points. The sim-
pli�cation is related to the fact that the renormalized maps converge to a two-parameter
family of linear-fractional (Möbius) maps. It is fair to say that maps with breaks form a
class of maps which is situated in between circle di�eomorphisms on one side, and critical
circle maps on the other.


Rigidity theory for smooth di�eomorphisms is the subject of classical Hermann the-
ory [8, 20, 9, 17, 13]. Precise statements will be formulated below. Here, we simply point
out that rigidity results for circle di�eomorphisms depend strongly on the Diophantine
properties of the rotation numbers. Rigidity, in this case, refers to a statement about the
smoothness of the conjugacy between a circle di�eomorphism with a Diophantine rotation
number and the corresponding rigid rotation. On the other side, Arnol'd [1] has shown
that such a conjugacy can be singular for Liouville numbers, even in the analytic case.
Interestingly, the presence of critical points makes the situation more rigid. It was shown
in [12] that C1 rigidity of analytic critical circle maps holds for all irrational rotation num-
bers. Namely, two analytic critical circle maps with the same order of the critical point
and the same irrational rotation number can be conjugated C1-smoothly to each other.
Since maps with breaks exhibit behavior similar to the critical one in many respects, it
seemed plausible that a similar �robust� rigidity result holds in this case as well. This
conjecture found a partial con�rmation in [12], which suggested that for a certain class of
strongly non-Diophantine rotation numbers, the conjugacy is C1-smooth, provided that
the sizes of the breaks are the same. However, as we show in this paper, robust rigidity
does not hold for maps with breaks. On the contrary, we show that for certain irrational
rotation numbers, the conjugacy is not even Lipschitz continuous. We also show that the
conjugacy that maps one break point into another can be as �bad� as possible. Note that
a similar result holds in the di�eomorphism case (see Theorem 3.6 below).


Another motivation for circle maps with breaks is related to generalized interval ex-
change transformations [16]. Such transformations were introduced very recently and
analysis of their ergodic and rigidity properties is currently underway. The idea of this
generalization is to replace the a�ne interval exchange with nonlinear transformations
mapping corresponding subintervals into their images. It is well known that a rigid ro-
tation can be seen as an exchange transformation of two intervals. In this sense, a circle
homeomorphism can be viewed as a generalized interval exchange transformation of two
intervals. Imagine, now, that the maps for both subintervals are smooth. While matching
of endpoints is a natural requirement, matching of the derivatives at the end points is
rather arti�cial. Hence, a natural generalized interval exchange of two intervals is in fact
a circle homeomorphism with two points of break. Since both break points belong to one
trajectory, one can piecewise smoothly conjugate such a homeomorphism to a map with
one break point. This connection indicates that our results are related to the problem
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of rigidity for the generalized interval exchange transformations. However, it is a very
special case. Indeed, Denjoy theory [4] holds in the case of circle homeomorphisms with
breaks, which is not true in general. Note, �nally, that circle maps with many break
points can be considered as generalized interval exchanges of the corresponding number
of intervals.


We proceed with precise de�nitions and formulation of the main results. Any orien-
tation preserving circle homeomorphism T : T1 → T1 with a break is de�ned uniquely by
a function T : R→ R that satis�es


(i) T is continuous and strictly increasing on R, with T (0) ∈ [0, 1),


(ii) T (x+ 1) = T (x) + 1, for every x ∈ R,
(iii) there exists a point xbr ∈ [0, 1) such that T (x) ∈ Cr, r ∈ [1,∞) ∪ {∞, ω}, on


[xbr, xbr + 1], and there exists C > 0 such that T ′(x) > C > 0, for every x ∈
[xbr, xbr + 1],


(iv) the one sided derivatives T ′−(xbr) and T ′+(xbr) at xbr are such that for some c ∈
R+\{1}, √


T ′−(xbr)


T ′+(xbr)
= c.


Such a value c will be called the size of the break.


Remark 1 The analytic case Cω corresponds to functions T whose restrictions to the
interval [xbr, xbr + 1], denoted by T |[xbr,xbr+1], have analytic extension on a complex disc
containing [xbr, xbr + 1].


The space of all such Cr circle homeomorphisms with a break of size c will be denoted
by Brc , and the space of corresponding lifts by Arc. Size of the break plays essentially the
same role as the order of the critical point (see below). Namely, it is a smooth invariant,
i.e. a smooth conjugacy does not change it. It is easy to see that only maps with breaks
which are of the same size have a chance to be smoothly conjugate to each other.


For any orientation-preserving circle homeomorphism T , there exists a unique rotation
number ρ. It has been known since Poincaré that if any two orientation-preserving circle
homeomorphisms T and T̃ have the same irrational rotation number, then they are topo-
logically semi-conjugate to each other, i.e. there is a continuous circle map ϕ : T1 → T1,
such that T ◦ ϕ = ϕ ◦ T̃ . Denjoy theory [4] asserts that in the case of Cr-smooth circle
homeomorphisms with breaks, for r ≥ 2 (like in the case of di�eomorphisms, this condi-
tion can be slightly weakened), ϕ is actually a homeomorphism. In this case, ϕ is referred
to as the (topological) conjugacy. The phenomenon that a conjugacy between two circle
maps, which is just a continuous map a priori, in some cases possesses a certain degree of
regularity is referred to as rigidity.







4 Examples of non-rigidity


We present �rst well-known rigidity results for circle di�eomorphisms. Arnol'd proved
that if an analytic circle di�eomorphism is close enough to a rigid rotation and its rotation
number satis�es a certain Diophantine condition, then the conjugacy to the rotation is in
fact analytic [1]. Arnol'd also conjectured a global result: there exists a subset of Lebesgue
measure 1 in (0, 1), such that any C∞ di�eomorphism with rotation number in this set is
C∞ conjugate to a rotation. This was proved by Herman [8]. The result of Herman [8],
as well as the later extensions by Yoccoz [20], Katznelson and Orstein [9], Sinai and
Khanin [17], and Khanin and Teplinsky [13], also applies to the �nite di�erentiability
case. In the case of low smoothness, one can prove [17, 13] that a C2+α-smooth circle
di�eomorphism is C1+α−β conjugated to a rotation if the rotation number ρ satis�es the
Diophantine condition with exponent β < α (i.e. there exists C > 0 and β ≥ 0 such
that |ρ − p/q| > C/q2+β, for every rational p/q). In [1], Arnol'd also gave examples
of analytic circle di�eomorphisms without periodic orbits but whose rotation numbers
are well-approximable by rational numbers (Liouville numbers) for which the invariant
measure is singular with respect to Lebesgue measure.


The main result of this paper is the following.


Theorem 1.1 There exist two analytic circle maps with a break Tρ, T̃ρ ∈ Bωc , with the
same irrational rotation number ρ, and the same size of the break c 6= 1, such that no
topological conjugacy ϕ, that satis�es


ϕ−1 ◦ Tρ ◦ ϕ = T̃ρ, (1.1)


is Lipschitz continuous.


Remark 2 The rotation number ρ of the maps in Theorem 1.1 belongs to a class of
irrational numbers ρ ∈ (0, 1) whose odd-numbered entries k2n−1 in the continued fraction
expansion of ρ = [k1, k2, . . . ], in the case 0 < c < 1, or even-numbered entries k2n, in the
case c > 1, grow su�ciently fast with n ∈ N.


Remark 3 In particular, Theorem 1.1 provides examples of analytic circle maps with
breaks, with the same rotation number and the same size of the break, for which C1-
smooth conjugacy does not exist.


This result stands in contrast to the case of critical circle maps, that is circle home-
omorphisms which are Cr-smooth everywhere and have a single point x0 where the �rst
derivative vanishes. Near the critical point x0 the derivative behaves as |x−x0|α−1, where
α > 1 is the order of the critical point. Yoccoz showed that any two analytic critical
circle maps with the same irrational rotation number and the same order of the critical
point are topologically conjugate to each other [21]. It has been conjectured that in the
case of critical circle maps with the same order of the critical point, topological conju-
gacy implies C1-conjugacy. That is, the rigidity of critical circle maps does not depend
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on the Diophantine properties of their rotation number. In [12], this property has been
called robust rigidity. So far the conjecture has been proved only in the case of analytic
critical circle maps. It fact, Khanin and Teplinsky [12] showed that the robust rigidity
conjecture holds for all orders of the critical point, assuming that the renormalizations of
such maps (see below) approach each other exponentially fast. At present, convergence
of renormalizations is known only in the case when the order of critical circle maps is
an odd integer larger than 1. De Faria and de Melo proved the exponential convergence
of renormalizations for C∞-smooth critical circle maps and rotation numbers of bounded
type [6, 7]. In the case of analytic critical circle maps, this result has been extended to
all rotation numbers by Yampolsky [19]. De Faria and de Melo also proved that, for a set
of Lebesgue measure 1 in (0, 1), in the case of C∞-smooth critical circle maps with odd
integer order of the critical point, the conjugacy is, in fact, C1+α, for some α > 0. They
also showed that C1+α rigidity of C∞-smooth critical circle maps cannot be extended to
all Diophantine rotation numbers. Examples of analytic critical circle maps with the same
order of the critical point and the same irrational rotation number which are not C1+α


conjugated to each other for any α > 0 have been constructed by Avila [2]. Here, we also
extend the parabolic renormalization method developed in [2] and prove a similar result
for the case of analytic circle maps with breaks. More precisely, we prove the following.


Theorem 1.2 There exist Tρ, T̃ρ ∈ Bωc with the size of the break c and the same irrational
rotation number ρ ∈ (0, 1), with bounded odd-numbered entries k2n−1 in the continued
fraction expansion of ρ, in the case 0 < c < 1, or even-numbered entries k2n, in the case
c > 1, such that the topological conjugacy ϕ between them is not C1+α, for any α > 0.


Remark 4 A result similar to Theorem 1.2 has been obtained independently by Dzhalilov
and Teplinsky [5, 18]. Both proofs rely on Avila's construction [2] which requires only a
minor modi�cation in the break case.


The methods of proofs of Theorem 1.1 and Theorem 1.2 are very di�erent. Both of
them, however, use renormalization ideology. It has been proved in [10] that the renor-
malizations of circle maps with breaks with the same size of the break and with the
same quadratic irrational rotation number approach each other exponentially fast. This
result has been extended to all rotation numbers in [14]. It particular, this implies that
renormalizations of circle maps with breaks approach a family of linear fractional maps,
which is invariant under renormalizations. Within this family the renormalization oper-
ator maps convex maps into concave and vice versa. The same property is shared by
renormalizations of circle maps with breaks which are not fractional linear, after su�-
ciently many renormalization steps. It turns out that in the case 0 < c < 1, the concave
renormalization maps correspond to even renormalization steps n, while convex renor-
malization maps correspond to odd n. For c > 1, the situation is the opposite. This
explains why the behavior is very di�erent, in the limit when kn+1 → ∞, for even and
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-1 0


a)


-1 0


b)


Figure 1: The graph of a renormalized map fn for su�ciently large n and large kn+1: a) Case


0 < c < 1 and n even, or c > 1 and n odd; b) Case 0 < c < 1 and n odd, or c > 1 and n even.


odd n. The graphs of renormalized maps fn, de�ned with the marked point being the
break point (see Section 2), for su�ciently large n and kn+1, look like the graphs shown
in Figure 1. Roughly speaking, a subsequence of renormalizations with concave graphs
which in the limit n→∞ approach the diagonal very fast at the end points (Figure 1a) is
characteristic of examples with the absence of rigidity that we construct in Theorem 1.1.
In fact, this type of behavior is the only obstacle to C1 rigidity. On the other hand, a
subsequence of renormalizations with convex graphs which almost touch the diagonal at a
point inside the interval (−1, 0) (Figure 1b) provides examples of C1-rigid maps for which
rigidity cannot be extended to C1+α-smoothness as in Theorem 1.2.


The paper is organized as follows. In Section 2, we introduce the general renormaliza-
tion setting for circle homeomorphisms. In Section 3, we prove Theorem 1.1. Section 4,
contains a discussion of parabolic renormalization method of circle maps with breaks and
the proof of Theorem 1.2.


2 General settings


2.1 Renormalization of orientation-preserving circle homeomor-


phisms


For every orientation-preserving homeomorphism T of the circle T1 = R\Z there is a
unique rotation number ρ, given by the x-independent limit ρ = limn→∞ T n(x)/n mod 1,
for any lift T of T to R. The particular renormalization that we use in this paper is closely
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related to the continued fraction expansion of the rotation number ρ ∈ (0, 1], i.e.


ρ =
1


k1 + 1
k2+


1
k3+...


, (2.1)


that we write as ρ = [k1, k2, k3, . . . ]. The sequence of integers kn, called partial quo-
tients, is in�nite if and only if ρ is irrational. Every irrational ρ de�nes uniquely the
sequence of partial quotients. Conversely, every in�nite sequence of partial quotients de-
�nes uniquely an irrational number ρ as the limit of the sequence of rational convergents
pn/qn = [k1, k2, . . . , kn]. It is well-known that this sequence forms the sequence of best
rational approximates of ρ, i.e. there are no rational numbers with denominators smaller
or equal to qn, that are closer to ρ than pn/qn. The (rational) convergents can also be
de�ned recursively as pn = knpn−1 + pn−2 and qn = knqn−1 + qn−2, starting with p0 = 0,
q0 = 1, p−1 = 1, q−1 = 0.


To de�ne the renormalizations, we start with a marked point x0 ∈ T1, and consider
the marked trajectory xi = T ix0, with i ≥ 0. The subsequence xqn , n ≥ 0, indexed by the
denominators of the sequence of rational convergents of the rotation number ρ, will be
called the sequence of dynamical convergents. We de�ne xq−1 = x0−1. The combinatorial
equivalence of all circle homeomorphisms with the same irrational rotation number implies
that the order of the dynamical convergents of T is the same as the order of the dynamical
convergents for the pure rotation Tρ : x 7→ x + ρ. The well-known arithmetic properties
of the rational convergents now imply that dynamical convergents alternate their order
in the following way:


xq−1 < xq1 < xq3 < · · · < x0 < · · · < xq2 < xq0 . (2.2)


The interval [xqn , x0], for n odd, and [x0, xqn ], for n even, will be denoted by ∆
(n)
0 , and


called the n-th renormalization segments. We will also de�ne ∆̄
(n)
0 = ∆


(n)
0 ∪ ∆


(n+1)
0 . In


addition to the property (2.2), we also have the following important property: the only


points of the trajectory {xi : 0 < i ≤ qn+1} that belong to ∆
(n)
0 are {xqn+iqn+1 : 0 ≤ i ≤


kn+2}.
We will use the notation ∆


(n)
i , to denote the n-th renormalization segment associated


to the marked point xi.


The consecutive images of ∆
(n−1)
0 and ∆


(n)
0 cover the whole circle without overlapping


beyond the end points, thus forming the n-th dynamical partition of T1,


Pn = {T i∆(n−1)
0 : 0 ≤ i < qn} ∪ {T i∆(n)


0 : 0 ≤ i < qn−1}. (2.3)


The iterates of T qn and T qn−1 restricted to ∆
(n−1)
0 and ∆


(n)
0 , respectively, are the two


continuous components of the �rst return map for T on the interval ∆̄
(n)
0 .
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The n-th renormalization of an orientation-preserving homeomorphism T of the circle
T1, with rotation number ρ = [k1, k2, k3, . . . ], with respect to the marked point x0 ∈ T1,
is a function fn : [−1, 0] → R obtained from T qn , by rescaling the coordinates. More
precisely, if τn is the a�ne change of coordinates that maps xn−1 to −1 and x0 to 0, then


fn = τn ◦ T qn ◦ τ−1n . (2.4)


If we identify x0 with zero, then τn is exactly a multiplication by (−1)n/|∆(n−1)
0 |. Here


and in what follows, we use | · | to denote the length of an interval. De�nition (2.4) is
valid for all n ≥ 0 if and only if ρ is irrational; otherwise, n must be less than the length
of the continued fraction expansion of ρ or can be equal to it if xqn−1 6= x0.


2.2 Modulus of continuity


A continuous real function ω : [0,∞) → [0,∞) is called a modulus of continuity if it
is decreasing and it vanishes at 0, i.e. if it satis�es


lim
x→0


ω(x) = ω(0) = 0. (2.5)


We say that a function ϕ : T1 → T1, is uniformly continuous with the modulus of
continuity ω, if


|ϕ(x)− ϕ(y)| ≤ ω(|x− y|), (2.6)


for all x, y ∈ T1. For points on the circle the distance |x− y| will be given by the minimal
distance between their lifts to R. We say that a circle homeomorphism ϕ : T1 → T1


(which is a topological conjugacy between two circle maps) admits ω as the modulus
of continuity if both ϕ and the inverse ϕ−1 are uniformly continuous with modulus of
continuity Cω, for some C > 0.


If the homeomorphism admits ω(t) = t as the modulus of continuity, it is said to be
Lipschitz continuous; if ω(t) = tα, for some α ∈ (0, 1), the homeomorphism is said to be
Hölder continuous with exponent α.


Note that for real-valued functions f and g of real variables we will say that f is of
the order of g, and write f = O(g), if there exists a constant C1 > 1, such that


C−11 |g(·)| ≤ |f(·)| ≤ C1|g(·)|, (2.7)


everywhere.
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3 A non-rigidity result


3.1 A lemma on the derivatives for rational rotation numbers


Let T ∈ Bωc , with the break point located at xbr, that satis�es T (xbr) = xbr. Consider
the one parameter family Ta = T + a of circle maps with a break in Bωc . The rotation
number ρ of the maps in this family depends continuously on the parameter a. For
every rational rotation number p/q ∈ Q, there is a (mode-locking) interval [a


(1)
p/q, a


(2)
p/q] of


parameter values corresponding to p/q. If p/q has a su�ciently long continued fraction
expansion, then the following properties hold. When the parameter value a is equal to
a
(1)
p/q, in the case c > 1, or a


(2)
p/q, in the case 0 < c < 1, the map Ta has a single periodic


orbit of the type (p, q), i.e. a lift Ta : R → R of Ta satis�es T qa (xbr) = xbr + p, and the
break point xbr belongs to the periodic orbit. Let us denote that unique value of the
parameter a by ap/q. When the parameter value a equals the other end point (a


(2)
p/q, in


the case c > 1; a
(1)
p/q, in the case 0 < c < 1), the map Ta has a single periodic orbit of the


type (p, q), which is neutral. Obviously, the break point xbr does not belong to it. For all
other values of the parameter inside the mode-locking interval, the map has two periodic
orbits of type (p, q), one stable and one unstable [15].


Lemma 3.1 There exist two analytic circle maps T, T̃ ∈ Bωc , with break points at xbr and
x̃br, respectively, such that the following is true for the corresponding families Ta = T + a
and T̃ã = T̃ + ã, with parameters a, ã ∈ R. For every p ∈ Z+ and q ∈ N relatively prime,
such that 0 ≤ p


q
< 1, if ap/q, ãp/q are values of parameters such that the corresponding


break point is a periodic point of type (p, q), then


q−1∏
i=0


(
Tap/q


)′
+


(xap/q ,i) 6=
q−1∏
i=0


(
T̃ãp/q


)′
+


(x̃ãp/q ,i) . (3.1)


Here xa,i = T ia(xbr), x̃ã,i = T̃ iã(x̃br), and the subscript �+� stands for the right derivative.


Proof. Let us order all rational numbers in [0, 1), starting with zero, and denote the
corresponding sequence by pn/qn, n ∈ N. We will �rst choose two analytic circle maps T
and T̃ , with the same size of the break c, such that the corresponding lifts T : R→ R and
T̃ : R → R have �xed points at the integer points (and only at these points) and have
breaks at these points. We will now �x the latter map and modify the former, if necessary,
in a sequence of steps, in order to produce a sequence of maps T (n) (with corresponding
lifts T (n)), n ∈ N, satisfying the condition (3.1) with p/q = pk/qk, for 1 ≤ k ≤ n. We
will construct this sequence inductively. The map T (1) = T satis�es the condition (3.1)
for p1/q1 = 0/1, by our choice of T and T̃ . Assume that the map T (n) satis�es the
condition (3.1) with p/q = pk/qk, for 1 ≤ k ≤ n, i.e. that the claim is valid for all pk/qk
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for 1 ≤ k ≤ n, by taking T = T (n). We will show that the claim is valid for all pk/qk, for
1 ≤ k ≤ n+ 1, for some map T = T (n+1), that we will construct now.


In the following, the parameter values apk/qk associated to the map T = T (n), will


be denoted by apk/qk(n). To simplify the notation, denote T (n)
apk/qk (n)


= T (n)
k and the


corresponding orbit (T (n)
k )i(xbr) = xi(n, k), 0 ≤ i < qk. If the condition (3.1) is satis�ed


for T = T (n) and p/q = pn+1/qn+1, then T
(n+1) = T (n). Now, let Pn : [0, 1]→ R be de�ned


by


Pn(x) = x(x− 1)(Ax+B)Qn(x), Qn(x) =


qn+1−1∏
i=1


(x− xi)2, (3.2)


for x ∈ [0, 1], where xi = {(T (n)
n+1)


i(0)}, A = c2δn/Q(1)− B and B = −δn/Q(0), for some
δn > 0. Here, {x} = x− [x] is the fractional part of a number x ∈ R. Since 0 < xi < 1 for
1 ≤ i ≤ qn+1−1, we have Q(0), Q(1) > 0, and A and B are well-de�ned. The function Pn
satis�es the conditions Pn(0) = Pn(1) = 0, (Pn)′+(0) = δn, (Pn)′−(1) = c2δn, Pn(xi) = 0,
and P ′n(xi) = 0, for all 1 ≤ i ≤ qn+1−1. Notice, that if δn > 0 is chosen su�ciently small,
then the supremum norm ‖Pn‖ < C, for some constant C > 0, independent of n.


Let us now extend Pn periodically to obtain a function vn : R → R, de�ned by
vn(x) = Pn(x), for x ∈ [0, 1], and vn(x + 1) = vn(x), otherwise. If the condition (3.1) is
not satis�ed for T = T (n) and p/q = pn+1/qn+1, then T (n+1) = T (n)+εnvn. For su�ciently
small εn > 0, due to the continuity of the maps εn 7→ apk/qk(n+1) and εn 7→ xi(n+1, k), the
conditions (3.1) corresponding to T = T (n+1) and p/q = pk/qk are satis�ed for 1 ≤ k ≤ n.


By construction, the map T
(n+1)
n+1 has the same periodic orbit of type (pn+1, qn+1) as T


(n)
n+1,


and the one-sided derivatives at the break point have changed. Thus, the condition (3.1)
corresponding to T = T (n+1) is now satis�ed for p/q = pn+1/qn+1.


Let ∣∣∣∣((T
(k)
k )qk


)′
+


(xbr)−
(


(T̃ãpk/qk )qk
)′
+


(x̃br)


∣∣∣∣ = γk > 0, (3.3)


for all k ∈ N. If εn > 0 is chosen su�ciently small, then∣∣∣∣((T
(n+1)
k )qk


)′
+


(xbr)−
(


(T
(n)
k )qk


)′
+


(xbr)


∣∣∣∣ < γk
2n+1


, (3.4)


for all integer n ≥ k.


For a su�ciently fast decreasing sequence εn, the sequence of restrictions T (n)|[0,1]
of functions T (n) to [0, 1] converges uniformly to T (∞)|[0,1], which can be analytically
extended to a disc containing [0, 1]. This limit de�nes an analytic circle map T (∞) with a
break. Due to estimate (3.4), we obtain∣∣∣∣((T


(∞)
k )qk


)′
+


(xbr)−
(


(T
(k)
k )qk


)′
+


(xbr)


∣∣∣∣ < ∞∑
n=k


γk
2n+1


=
γk
2k
. (3.5)
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Together with (3.3), this implies∣∣∣∣((T
(∞)
k )qk


)′
+


(xbr)−
(


(T̃ãpk/qk )qk
)′
+


(x̃br)


∣∣∣∣ > γk
2
, (3.6)


for all k ∈ N. QED


3.2 Distribution of iterates of the renormalized maps


Let T ∈ Brc , for r ≥ 2, and let x0 ∈ T1. To prove Theorem 1.1 we will need an estimate
of the distribution of iterates of the renormalized maps. The following proposition is an
immediate consequence of the Denjoy lemma [4]. It is also valid in the di�eomorphism
case.


Proposition 3.2 For any T ∈ Brc , with r ≥ 2, we have


|∆(n)
qn−1
| = O(|∆(n)


qn+1−qn|) = O(|∆(n)
0 |), (3.7)


for every n ∈ N.


Proof. The fact that |∆(n)
qn−1| = O(|∆(n)


0 |) follows from the fact that the former interval


is the image of the latter under T qn−1 . We further have |∆(n)
qn+1−qn| = O(|∆(n)


qn+1|) since the
former interval is the preimage of the latter under T qn . For the same reason, |∆(n+1)


0 | =


O(|∆(n+1)
qn |). Taking into account that |∆(n)


qn+1| = |∆(n+1)
0 | + |∆(n)


0 | − |∆
(n+1)
qn |, we have


|∆(n)
qn+1| = O(|∆(n)


0 |). Here, we have also used that ∆
(n+1)
qn ⊂ ∆


(n)
0 . The second equality


now follows directly. QED


In the following propositions, fn is the n-th renormalization of T ∈ Brc , de�ned by the
marked point x0 = xbr.


Proposition 3.3 (fn)′−(0)/(fn)′+(−1) = c2n + o(1), when kn+1 → ∞, where cn = c for n
even and cn = c−1 for n odd.


Proof. Since (fn)′+(−1) = (T qn)′+(xqn−1) and (fn)′−(0) = (T qn)′−(x0), in the limit kn+1 →
∞, x0 and xqn−1 belong to the same periodic orbit of T , and we have


(fn)′−(0)


(fn)′+(−1)
=


(T qn)′−(x0)


(T qn)′+(xqn−1)
→


(T qn)′−(x0)


(T qn)′+(x0)
= c2n (3.8)


Since the orientation for n even is the same as the original one, we have c2n = c2. In the
case of odd n the orientation changes, which implies c2n = 1/c2. QED







12 Examples of non-rigidity


Proposition 3.4 Let 0 < ε < 1/2 and let n1 and n2 be the numbers of elements of the set
{f jn(−1) : j = 1, . . . , kn+1} that belong to the intervals I1 = [−1,−1 + ε] and I2 = [−ε, 0],
respectively. If b1 = (fn)′+(−1) and b2 = (fn)′−(0), then, for su�ciently large even n, if
0 < c < 1, and odd n if c > 1, we have, for large kn+1,


n1 = σkn+1 +O(ln kn+1),


n2 = (1− σ)kn+1 +O(ln kn+1),
(3.9)


where σ = ln b2
ln b−1


1 +ln b2
. Also, for any κ > 0 and su�ciently large kn+1 (depending on κ),


O(b
−(σ+κ)kn+1


1 ) ≤ |fn(−1) + 1| ≤ O(b
−(σ−κ)kn+1


1 ). (3.10)


Proof. Let us consider two subintervals of [−1, 0]: I1(kn+1) = [−1,−1 + 1/kn+1] and
I2(kn+1) = [fkn+1


n (−1) − 1/kn+1, f
kn+1
n (−1)]. Let the number of points in {f jn(−1) : j =


1, . . . , kn+1}, that belong to these two intervals be denoted by m1 and m2, respectively.
Then, m1 + m2 = kn+1 + O(ln kn+1), since the number of points outside of the union of
these two intervals is of the order of ln kn+1. If b1 = (fn)′+(−1) and b2 = (fn)′−(0), and
M = max


x∈[−1,0]
|f ′′n(x)|, then


O(b−m1
1 ) ≤ |fn(−1) + 1| ≤ O


(
b−m1
1


(
1− M


b1kn+1


)−m1
)
,


O(bm2
2 ) ≤ |fkn+1


n (−1)− fkn+1−1
n (−1)| ≤ O


(
bm2
2


(
1 +


2M


b2kn+1


)m2
)
,


(3.11)


where the last inequality is obtained under the assumption |fkn+1
n (−1)| < 1/kn+1. Here,


we have also used the fact that for su�ciently large even n, if 0 < c < 1, and odd n, if
c > 1, the renormalizations are concave downwards. It follows from Proposition 3.2 that
|fn(−1)+1| = O(|fkn+1


n (−1)−fkn+1−1
n (−1)|). Since both m1,m2 < kn+1, this implies that


b−m1
1 = O(bm2


2 ). Therefore,


m1 =
ln b2


ln b−11 + ln b2
kn+1 +O(ln kn+1)


m2 =
ln b−11


ln b−11 + ln b2
kn+1 +O(ln kn+1)


(3.12)


The �rst inequality in (3.11) also show that |fkn+1
n (−1)| < O(b−m1


1 ) < 1/kn+1, for m1 >
C1kn+1, C1 > 0, and su�ciently large kn+1. The claim now follows from the fact that
the number of points of {f jn(−1) : j = 1, . . . , kn+1}, in the intervals I1\I1(kn+1) and
I2\I2(kn+1) is of the order of ln kn+1.


The estimate (3.10) follows from the �rst inequalities in (3.11) and (3.12). QED
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3.3 The proof of Theorem 1.1


Let ω : [0,∞) → [0,∞) be a modulus of continuity. We would like to construct
two analytic circle maps with the same irrational rotation number and the same size of
the break for which no conjugacy admits ω as the modulus of continuity. We begin by
considering the conjugacy that maps the break point of one of the maps into the break
point of the other.


Lemma 3.5 Let sm be any sequence of positive numbers diverging to in�nity. Then, there
exists a sequence of natural numbers `m diverging to in�nity, an N ∈ N, and two analytic
circle maps Tρ and T̃ρ in Bωc , with the same irrational rotation number


ρ = [1̄(N), `1, 1, `2, 1, `3 . . . ],


and with a break of size c 6= 1, located at xbr = x0 and x̃br = x̃0, respectively, such that
the following holds. For all m ≥ 0, there exists j ∈ N, 1 ≤ j ≤ `m+1, such that for
n = N + 2m,


max


{
|∆(n)


qn−1+jqn
|


ω(|∆̃(n)
qn−1+jqn


|)
,
|∆̃(n)


qn−1+jqn
|


ω(|∆(n)
qn−1+jqn


|)


}
> sm. (3.13)


Here, 1̄(N) stands for a N digit string 1, . . . , 1. If 0 < c < 1, then N is even. If c > 1,
then N is odd.


Proof. Let T and T̃ be two maps whose existence is guaranteed in Lemma 3.1. Consider
the families of maps Ta and T̃ã. It is well known [15] that one can choose N large enough


such that for all m ∈ N ∪ {0}, the graphs of the n-th renormalizations f
(m)
n and f̃


(m)
n


(de�ned with marked points x0 and x̃0 being the corresponding break points xbr and
x̃br), n = N + 2m, of the maps Tm and T̃m, in these families, with parameter values
corresponding to rational rotation numbers ρN,m = [1̄(N), `1, 1, `2, 1, . . . , `m, 1], and the
break point belonging to the periodic orbit, are concave downwards. It follows from
Lemma 3.1 that |(f (m)


n )′+(−1) − (f̃
(m)
n )′+(−1)| = γ(n) > 0. Here, we have also used the


fact that (f
(m)
n )′+(−1) = (T qnm )′+(xbr) and (f̃


(m)
n )′+(−1) = (T̃ qnm )′+(x̃br).


Now, let Tρ and T̃ρ be the corresponding maps in the families Ta and T̃ã, with the
irrational rotation number ρ = [1̄(N), `1, 1, `2, 1, . . . , `m, 1, . . .]. For any given m, and


su�ciently large `m+1, the n = N + 2m-th renormalizations fn and f̃n of Tρ and T̃ρ
are also concave downwards and satisfy the estimate |b1 − b̃1| > γ(n)/2 > 0, where
b1 = (fn)′+(−1) and b̃1 = (f̃n)′+(−1). Note that the last estimate holds uniformly in the
future `j, j > m+ 1, provided that `m+1 is large enough.


To be speci�c, assume, without loss of generality, that b1 − b̃1 > γ(n)/2 > 0. Let
ε(n) > 0 be given and let the corresponding numbers of points from Proposition 3.4 for
fn and f̃n in the interval [−1,−1 + ε(n)] be denoted by n1 and ñ1, respectively.
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From Proposition 3.4 and Proposition 3.3, we obtain


ñ1 − n1 =


(
ln b̃2


ln(c2n + o(1))
− ln b2


ln(c2n + o(1))


)
`m+1 +O(ln `m+1), (3.14)


and therefore


ñ1 − n1 =
ln(b̃2/b2)


ln c2n
`m+1 + o(`m+1) =


ln(b̃1/b1)


ln c2n
`m+1 + o(`m+1). (3.15)


We further obtain


ñ1 − n1 >
ln
(


1 + γ(n)


2b̃1


)
| ln c2|


`m+1 + o(`m+1) >
γ(n)


4b̃1| ln c2|
`m+1 + o(`m+1), (3.16)


for γ(n) < 2b̃1. This inequality gives us that, for su�ciently small ε(n) > 0, and su�-
ciently large `m+1, we have n1 < ñ1, and that the di�erence ñ1 − n1 is of the order of
`m+1.


Recall now that


|∆(n)
qn−1+jqn


| = |f jn(−1)− f j−1n (−1)||∆(n−1)
0 |. (3.17)


For su�ciently small ε(n) > 0, there exists b > 1 such that f̃ ′n(x) > b, for x ∈
(−1,−1 + ε(n)]. Therefore, using the monotonicity of ω, we have


|∆(n)
qn−1+n1qn|


ω(|∆̃(n)
qn−1+n1qn|)


≥ |fn1
n (−1)− fn1−1


n (−1)||∆(n−1)
0 |


ω(|f̃ ñ1
n (−1)− f̃ ñ1−1


n (−1)||∆̃(n−1)
0 |b−(ñ1−n1))


. (3.18)


Now, by the de�nition of n1 and ñ1, and properties of geometric progressions, the lengths
|fn1
n (−1)− fn1−1


n (−1)| and |f̃ ñ1
n (−1)− f̃ ñ1−1


n (−1)| are of the order of ε(n).


The estimates above, together with the fact that for �xed N,m and `i, i = 1, . . . ,m,
|∆(n−1)


0 | and |∆̃(n−1)
0 | can be bounded uniformly in `m+1, imply that for every sm > 0 and


for su�ciently large `m+1, we have


|∆(n)
qn−1+n1qn|


ω(|∆̃(n)
qn−1+n1qn |)


≥ sm. (3.19)


Here, we have also used that ω(|x|)→ 0, as |x| → 0. The claim follows, since the sequence
`m can be constructed inductively in m. QED
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Remark 5 Lemma 3.5 shows that for the constructed maps Tρ and T̃ρ in Bωc , the conju-
gacy that maps the break point of one of the maps into the break point of the other does
not admit ω as the modulus of continuity. In particular, this implies that for these two
maps there is no conjugacy which is C1-smooth.


To prove Theorem 1.1, we also need to consider conjugacies that map the break point
of one of the maps into an arbitrary point of the circle. In the following, we will consider
renormalizations and renormalization segments in the situations when the marked point
x0 of a map T can be di�erent from the break point of the considered map. We emphasize
this by explicitly including x0 in the notation.


Proof of Theorem 1.1. As in the proof of Lemma 3.5, we start with two maps T and
T̃ whose existence is guaranteed by Lemma 3.1, and consider the corresponding families
of maps Ta and T̃ã. We will also use the notation from the proof of Lemma 3.5. As stated
in the proof of Lemma 3.5, one can choose N large enough such that for all m ∈ N∪ {0},
the graphs of the n-th renormalizations f


(m)
n and f̃


(m)
n are concave downwards. Moreover,


if N is large enough, then for any point x0 ∈ T1 and all m ∈ N ∪ {0}, there exists


a point z
(m)
n such that the graph of the n-th renormalization f


(m)
n (x0) of Tm, de�ned


with the marked point x0, is concave downwards in [−1, z
(m)
n ] and [z


(m)
n , 0]. If x0 is


a point on the orbit of xbr under Tm, then z
(m)
n = −1; otherwise, z


(m)
n is a point in


the interior of the interval [−1, 0]. In fact, z
(m)
n is just the renormalization of a point


of the trajectory T im, 0 ≤ i < qn, which belongs to the corresponding interval. Since


(f
(m)
n (x0))


′
+(z


(m)
n ) = (T qnm )′+(xbr) and (f̃


(m)
n )′+(−1) = (T̃ qnm )′+(x̃br), Lemma 3.1 implies,


|(f (m)
n (x0))


′
+(z


(m)
n )− (f̃


(m)
n )′+(−1)| = γ(n) > 0.


We choose now the maps Tρ and T̃ρ in the families Ta and T̃ã, with the irrational
rotation number ρ = [1̄(N), `1, 1, `2, 1, . . . , `m, 1, . . .]. For any �xed m, and su�ciently
large `m+1, the n = N + 2m-th renormalizations fn and f̃n of Tρ and T̃ρ are also concave
downwards. Moreover, for any x0 ∈ T1, there exists zn ∈ [−1, 0) such that the graph
of the n-th renormalization fn(x0) of Tρ, de�ned with the marked point x0, is concave
downwards in the intervals [−1, zn] and [zn, 0]. Here, zn is the unique point in (−1, 0)
where the derivative of fn(x0) has a break, if such a point exists; otherwise, zn = −1.


For a given m and n = N + 2m, we choose a small ε(n) > 0 and consider three cases:


(i) −ε(n) < z
(m)
n ≤ 0, (ii) −1 ≤ z


(m)
n < −1 + ε(n), and (iii) −1 + ε(n) ≤ z


(m)
n ≤ −ε(n).


In case (i), we �rst assume (f
(m)
n (x0))


′
+(z


(m)
n ) − (f̃


(m)
n )′+(−1) = γ(n). Therefore, we


have (f
(m)
n (x0))


′
+(−1) − (f̃


(m)
n )′+(−1) > 3γ(n)/4, if ε(n) is small enough. Furthermore, if


`m+1 is su�ciently large, we have the estimate b1− b̃1 > γ(n)/2, where b1 = (fn(x0))
′
+(−1)


and b̃1 = (f̃n)′+(−1), uniformly in `j, for j > m+ 1. Moreover, if ε(n) is su�ciently small,


then there exists b > 1 such that f̃ ′n(x) > b for x ∈ [−1,−1 + ε(n)]. This estimate is also
uniform in `j for j > m + 1, if `m+1 has been chosen su�ciently large. The number of
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points n1 and ñ1 of {fn(x0)
j(−1) : j = 1, . . . , `m+1} and {(f̃n)j(−1) : j = 1, . . . , `m+1} in


the interval [−1,−1 + ε(n)] can now be estimated using Propositions 3.2�3.4. Notice that
ñ1 is the same as in the proof of Lemma 3.5, while n1 is now smaller or equal to that of
the proof of Lemma 3.5, which will be here denoted by n0


1. Since we still have the same
lower bound on ñ1−n1, we can apply the same arguments as in Lemma 3.5, to show that
for any given sm > 0 and su�ciently large `m+1,


|∆(n)
qn−1+n1qn(x0)|
|∆̃(n)


qn−1+n1qn|
≥ sm, (3.20)


uniformly in `j, with j > m+ 1.


Consider now the case (f̃
(m)
n )′+(−1) − (f


(m)
n (x0))


′
+(z


(m)
n ) = γ(n). If n1 ≤ ñ1, then, for


any sm > 0 and for su�ciently small ε(n), there exists b̃ ∈ (b̃1 − γ(n)/4, b̃1), such that


|∆(n)
qn−1(x0)|
|∆̃(n)


qn−1|
≥ b−n1


1 |fn(x0)
n1(−1)− fn(x0)


n1−1(−1)||∆(n−1)
0 (x0)|


b̃−ñ1|fn(x0)ñ1(−1)− fn(x0)ñ1−1(−1)||∆̃(n−1)
0 |


≥ sm, (3.21)


for su�ciently large `m+1. Here, we have also used the fact that all of the quantities
involved, other than n1 and ñ1, are bounded uniformly in `m+1. If, on the other hand,
n1 > ñ1, then


|∆(n)
qn−1(x0)|
|∆̃(n)


qn−1|
≥
|∆(n)


qn−1+ñ1qn
(x0)|b−ñ1


1


|∆̃(n)
qn−1+ñ1qn


|b̃−ñ1


, (3.22)


and, therefore, if


|∆̃(n)
qn−1+ñ1qn


|


|∆(n)
qn−1+ñ1qn


(x0)|
< sm, (3.23)


then the right hand side of (3.22) is greater than or equal to sm, provided that `m+1 is
chosen su�ciently large.


Similar arguments can be applied in case (ii). The only di�erence is that now one has
to iterate backwards fn(x0) and f̃n starting from [fn(x0)


−1(0), 0] and [f̃−1n (0), 0].


Finally, in case (iii), we notice that there exists δ(n) > 0 such that |f (m)
n (x0)(−1) −


(−1)| > δ(n). Furthermore, if `m+1 is su�ciently large, then |fn(x0)(−1)−(−1)| > δ(n)/2,
uniformly in `j, for j > m+ 1. Since, by Proposition 3.4,


|∆̃(n)
qn−1
| ≤ O(b̃


−(σ−κ)`m+1


1 )|∆̃(n−1)
0 |, (3.24)


we immediately obtain for any sm > 0, and `m+1 su�ciently large,


|∆(n)
qn−1(x0)|
|∆̃(n)


qn−1|
≥ |fn(x0)(−1) + 1||∆(n−1)


0 (x0)|
O(b̃


−(σ−κ)`n+1


1 |∆̃(n−1)
0 |)


≥ δ(n) minx0∈T1 |∆(n−1)
0 (x0)|


2O(b̃
−(σ−κ)`n+1


1 |∆̃(n−1)
0 |)


≥ sm. (3.25)







K. Khanin and S. Koci¢ 17


Now, we can choose `m+1 large enough such that all of the above conditions are
satis�ed. This inductive procedure for `m+1 provides the construction of the rotation
number ρ. It is easy to see that for the two constructed maps Tρ and T̃ρ, no topological
conjugacy between them is Lipshitz continuous. QED


3.4 A non-rigidity result for smooth di�eomorphisms


In this section, we construct examples of smooth (i.e. analytic) circle di�eomorphisms
with irrational rotation numbers for which the conjugacy to the rigid rotation can be as
�bad� as possible. Theorem 3.6 below is well-understood by the experts. We give a simple
proof here for completeness of the presentation. Another reason for its inclusion is that
we were not able to �nd any reference for such a result. We focus on the modulus of
continuity of the conjugacy and do not discuss the singularity of the invariant measure.


Consider a circle di�eomorphism T , and the corresponding family Ta = T + a. As
before, denote [a


(1)
p/q, a


(2)
p/q] the mode-locking interval associated to an arbitrary rational


rotation number 0 ≤ p/q < 1. Let us call a di�eomorphism T �regular� if for all p/q, the
maps T q


a
(1)
p/q


and T q
a
(2)
p/q


are not the identity maps. In other words, we require that not all


points of the circle are periodic points for T
a
(i)
p/q


, i = 1, 2.


Theorem 3.6 Let T be a �regular� circle di�eomorphism. Then, for any modulus of
continuity ω, there exists an irrational rotation number ρ such that the map Taρ has no
conjugacy with the rigid rotation Rρ : x 7→ x + ρ which admits ω as the modulus of
continuity.


Proof. Let sn, n ∈ N, be any positive sequence diverging to in�nity. As in the previous
section, we construct the sequence of partial quotients kn inductively in n ∈ N. For a given
n, consider the rational rotation number pn/qn = [k1, . . . , kn] and the corresponding map
Tn = T


a
(i)
pn/qn


, where i = 1 if n is odd and i = 2 if n is even. Let xn ∈ T1 be any point on the


circle which does not belong to a periodic orbit of Tn. Then, there exists δ(n) > 0, such
that the length of the interval [xn, T


qn
n xn] is bounded below by δ(n). Therefore, if kn+1 is


chosen large enough, then the interval ∆n = [xn, T
qn
ρ xn] satis�es bound |∆n| ≥ δ(n)/2 > 0,


uniformly in kj for j > n+ 1. Here, Tρ = Taρ , and ρ is an irrational number whose �rst n
partial quotients agree with those of pn/qn. If ϕ : T1 → T1 is any conjugacy between the


rigid rotation Rρ and Tρ, then the length of the corresponding interval ∆̃n = ϕ−1(∆n),


|∆̃n| = |qnρ− pn| → 0 as kn+1 →∞.


Therefore, if kn+1 is chosen large enough, then


|∆n|
ω(|∆̃n|)


≥ δ(n)


2ω(|qnρ− pn|)
≥ sn, (3.26)
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uniformly in kj for j > n+ 1. The claim follows. QED


4 Examples of non-C1+α rigidity


The proof of Theorem 1.2 can be obtained by extending the parabolic renormalization
scheme of Avila from the case of critical circle maps considered in [2] to the case of circle
maps with breaks. Since the proofs are almost the same, we will just describe the method
and direct the reader for further details to [2].


We will consider the set A of irrational rotation numbers ρ ∈ (0, 1), with bounded odd-
numbered entries k2n−1 in the continued fraction expansion of ρ, in the case 0 < c < 1, or
bounded even-numbered entries k2n, in the case c > 1. As mentioned in the Introduction,
these are the rotation numbers for which the distance to the diagonal at the end points for
the concave renormalization graphs (see Figure 1b) is bounded. It follows from the analysis
conducted in [12, 14], that C1 rigidity holds in this case. However, as we show below within
set A, C1 rigidity cannot, in general, be extended to C1+α class of conjugacies, for some
α > 0.


We starts with all maps f : R → R, satisfying f(x + 1) = f(x) + 1, which are Cr


smooth outside the integer points at which the derivative has breaks of size c, and with
the unique �xed point p ∈ (−1, 0), such that f ′(p) = 1, and f ′′(p) > 0. For x ∈ (p, p+ 1),
we have fn(x) → p + 1 and f−n(x) → p, when n → ∞. We then consider the family of
translated maps fε = f + ε, ε ≥ 0. To de�ne the parabolic renormalization, let us �rst
de�ne the maps Φf,n,ε,+ and Φf,n,ε,− from (p, p+ 1) into R, by


Φf,n,ε,+(x) =
f ′′(p)n2


2
(fnε (x)− fnε (0)),


Φf,n,ε,−(x) =
f ′′(p)n2


2
(f−nε (x)− f−nε (0)). (4.1)


As n→∞, the sequences Φf,n,0,+ and Φf,n,0,− converge C1-uniformly on compact sets
to C1-homeomorphisms Φf,+ : (p, p+ 1)→ R and Φf,− : (p, p+ 1)→ R, with break points
in {f−j(0) : j = 0, 1, 2, . . .} and {f j(0) : j = 1, 2, . . .}, respectively. The sizes of the breaks
of the derivatives of Φf,+ and Φf,− at each of these points are c and c−1, respectively. The
homeomorphisms satisfy Φf,+(f(x))− Φf,+(x) = 1 and Φf,−(f(x))− Φf,−(x) = −1.


We de�ne the mapping R0(f) = Φf,+ ◦ Φ−1f,− : R → R, called the parabolic renormal-
ization of f . One can show that R0(f) is a lift of a C1 circle homeomorphism with a �xed
point at 0 and breaks of size c at {Φf,−(f j(0)) : j ∈ Z}. The latter observation follows
from


(R0(f))′(x) = Φ′f,+(Φ−1f,+(x))(Φ−1f,−)′(x) =
Φ′f,+(Φ−1f,+(x))


Φ′f,−(Φ−1f,−(x))
. (4.2)
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Let H be the set of all C1-di�eomorphisms h : R→ R, with h(x+1) = h(x), h(0) = 0,
endowed with the natural topology. Let K be a compact subset of H.


Lemma 4.1 Let f0, g0 ∈ Aωc , with rational rotation numbers p
q
∈ Q, and a parabolic


periodic orbit. There exist sequences of maps fn, gn ∈ Aωc , such that fn → f0 and gn → g0
as n→∞, and for each n, fn and gn have the same irrational rotation number and there
is no h ∈ K such that h ◦ fn = gn ◦ h.


The proof of this Lemma is similar to the proof of Theorem 2.1 of [2]. It is based on
the fact that arbitrarily close to a map f ∈ Aωc , with a rational rotation number and a
parabolic periodic orbit, one can �nd a map g ∈ Aωc , whose parabolic renormalization
di�ers from that for f .


Recall now that the set of all h ∈ H which are C1+α-smooth for some α > 0 can be
written as the union of a nested sequence of compact sets Kn ⊂ Kn+1. Let us endow Aωc
with a complete metric d, compatible with natural topology.


Lemma 4.2 Let f, g ∈ Aωc , with rotation number ρ(f) = ρ(g) ∈ A. For every ε > 0
and k > 0, there exists f̂ , ĝ such that ρ(f̂) = ρ(ĝ) ∈ A, d(f, f̂), d(g, ĝ) < ε and if
d(f̃ , f̂), d(g̃, ĝ) < δ then k!ρ(f̃) /∈ Z and there is no h ∈ Kk such that h ◦ f̃ = g̃ ◦ h.


This proof follows easily from Lemma 4.1 and is similar to the proof of Lemma 3.1
in [2]. One �rst chooses two maps in Aωc with the same rational rotation number and
parabolic periodic orbit, close to f and g, respectively; then, one constructs two maps
f̃ , g̃ ∈ Aωc with the same irrational rotation number in A, close to f and g, respectively,
such that there is no h ∈ Kk which conjugates f̃ and g̃.


Proof of Theorem 1.2. The proof of Theorem 1.2 follows from the proof of the main
theorem of [2]. We �rst use Lemma 4.2 to construct inductively a sequence of maps
fn, gn ∈ Aωc with the same irrational rotation numbers in A, such that there is no h ∈ Kn
such that h◦f̃n = g̃n◦h. The desired maps are constructed as the limits of these sequences,
i.e. f = limn→∞ fn and g = limn→∞ gn. Clearly, they have the same irrational rotation
number in A and the conjugating homeomorphism hf,g 6∈ Kn, for n ∈ N ∪ {0}, and is
therefore not C1+α, for any α > 0. QED


Remark 6 As it has been explained above, C1 rigidity holds for rotation numbers from
the set A. This set has zero Lebesgue measure, but as we prove in a separate publica-
tion [11], C1 rigidity can be extended to Lebesgue almost all rotation numbers.
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