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Abstract


We define a Banach space M1 of models for fermions or quantum
spins in the lattice with long range interactions and explicit the structure
of (generalized) equilibrium states for any m ∈ M1. In particular, we
give a first answer to an old open problem in mathematical physics –
first addressed by Ginibre in 1968 within a different context – about the
validity of the so–called Bogoliubov approximation on the level of states.
Depending on the model m ∈ M1, our method provides a systematic
way to study all its correlation functions and can thus be used to analyze
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1. Introduction


States are the positive and normalized linear functionals on a ∗–algebra U and


forms a convex set E. This set is weak∗–compact in the case where U is a


C∗–algebra and it is even metrizable if U is separable, cf. [1, Theorem 3.16].


The structure of the set E of states is then satisfactorily described by Choquet


theorem [2, 3]: Any state has a unique decomposition as an integral on extreme


states of E.
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Special subsets Ω ⊂ E of states on U are of particular importance in


statistical physics, for instance, if U is the observable (C∗–) algebra of Fermi


or quantum spin systems on a lattice Zd (d ≥ 1). In this case, one of the


main issues is to understand the limit l → ∞ of sequences of (local) Gibbs


equilibrium states


ρl (·) =
Trace


(
· e−βUl


)
Trace (e−βUl)


defined, for all β > 0 and l ∈ N, from self–adjoint operators Ul ∈ U . In


quantum statistical mechanics, β > 0 is the inverse temperature, Ul represents


the energy observable of particles enclosed in a finite box Λl ⊂ Zd, and the limit


l → ∞ is such that Λl ↗ Zd (thermodynamic limit). As E is weak∗–compact,


any sequence of states ρl ∈ E converges – along a subsequence – towards a


so–called equilibrium state ω ∈ E as l → ∞. An explicit characterization of


the limit state ω ∈ E is a rather difficult issue in most interesting cases.


Taking Ul from local (i.e., short range) translation invariant interactions


Φ and by conveniently choosing boundary conditions, the limit state ω ∈ E is


found to be a solution of a variational problem on the (convex and weak∗–


compact) set E1 ⊂ E of translation invariant states, i.e., it minimizes a


weak∗–lower semi–continuous functional fΦ on E1. This result is standard


for quantum spin systems, see e.g. [4, Chapter II] or [5, Section 6.2]. fΦ and


its minimizers are called, respectively, the free–energy density functional and


equilibrium states of the system under consideration.


Fermion systems on a lattice correspond to choose the C∗–algebra U as the


inductive limit of the net of complex Clifford algebras UΛ, Λ ⊂ Zd, |Λ| < ∞,


generated by the elements1 ax,s and a+x,s satisfying the so–called canonical


anti–commutation relations (CAR) for x ∈ Λ and s ∈ S. Here, the finite set


S corresponds to the internal degrees of freedom (spin) of particles. Quantum


spin systems on a lattice are described by infinite tensor products of finite


dimensional C∗–algebras attached to each site x ∈ Zd. As a consequence, in


contrast to lattice quantum spins, elements A ∈ UΛ and B ∈ UΛ′ in disjoint


regions of the lattice (Λ ∩ Λ′ = ∅) do not generally commute with each other.


A study of equilibrium states of lattice fermions similar to the one for lattice


quantum spins is hence more involved and was only2 performed in 2004 by


Araki and Moriya [8]. In particular, the limit state ω ∈ E is again a minimizer


of a weak∗–lower semi–continuous functional fΦ on E1.


All these results [4, 5, 8] use Banach spaces of local interactions. Unfortu-


nately, these Banach spaces are too small to include all physically interesting


1ax,s and a+
x,s are the annihilation and creation operators of a particle at lattice position


x.
2There are some results on the level of the pressure [6, 7] by using the quantum spin


representation of fermion systems for a specific class of models
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systems. Indeed, physically speaking, local interaction means that the inter-


action between particles is short range, i.e., it has to decrease sufficiently fast


as the inter–particle distance increases. Nevertheless, long range interactions


are also fundamental as they explain important physical phenomena like con-


ventional superconductivity.


In this paper, we construct a Banach space M1 of translation invariant


Fermi models including a class of long range interactions on the lattice. We


restrict our analysis on translation invariant Fermi systems, but we emphasize


that all our studies can also be performed for quantum spins3 as well as for


(not necessarily translation invariant, but only) periodically invariant systems.


Then we generalize4 some previous results of [4, 5, 8] to the larger space M1.


By conveniently choosing boundary conditions, we show, in particular, that


the sequence of Gibbs states ρl ∈ E defined from any m ∈ M1 converges


along a subsequence to a minimizer of the Γ–regularization Γ(f ♯m) of the so–


called free energy density functional f ♯m. Note that f ♯m is affine, but possibly


not weak∗–lower semi–continuous. Nevertheless, we prove that all weak∗–limit


points of any sequence {ρi}∞i=1 of its approximating minimizers5 belong to the


closed, convex, and weak∗–compact set Ω ♯
m of minimizers of Γ(f ♯m). Observe


that Γ(f ♯m) is the largest convex and weak∗–lower semi–continuous minorant


of f ♯m and its minimizers are called generalized equilibrium states. Minimizers


of f ♯m are (usual) equilibrium states and form a subset of Ω ♯
m.


If the long range component of the interaction is purely attractive then


Ω ♯
m is always a face of E1. However, in the general case, Ω ♯


m is only a subset


of a non–trivial face of E1. From Choquet theorem (see, e.g., [3, p. 14]), any


generalized equilibrium state ω ∈ Ω ♯
m of an arbitrary long range model m ∈ M1


has a decomposition in terms of extreme states of Ω ♯
m ⊂ E1. As E1 is known


to be a Choquet simplex, this decomposition is unique whenever Ω ♯
m is a face.


Additionally, extreme states are shown to be minimizers of an explicitly given


weak∗–lower semi–continuous (possibly neither convex nor concave) functional


gm. We also show that – exactly as in the case of local interactions – the set Ω ♯
m


of generalized equilibrium states can be identified with the set of all continuous


tangent functionals at the point m ∈ M1 of a convex and continuous functional


P♯
m, the so–called pressure, on the Banach space M1.


Note that non–uniqueness of generalized equilibrium states corresponds


to the existence of phase transitions for the considered model. Physically


important phase transitions are those for which the minimizers of Γ(f ♯m) break


initial symmetries of the system. This case is called spontaneous symmetry


3In fact, quantum spin systems are easier to analyze than fermion systems.
4In [8] the authors use a slightly different Banach space of local interactions, see Remark


2.26.
5It means that lim


i→∞
fm(ρi) = inf fm(E1)
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breaking. For concrete local interactions, such a phenomenon is usually difficult


to prove in the quantum case, whereas there are many explicit models m ∈ M1


where it can easily be seen, see, e.g., [9, 10].


Observe that, in general, the solutions of the variational problems given


in [4, 5, 8] for local interactions cannot be computed explicitly. The variational


problem


(1.1) P♯
m = − inf f ♯m(E1) = − inf Γ(f ♯m)(E1)


generalizing previous results on local interactions to any m ∈ M1 is, a priori,


even more difficult. We prove, however, that (1.1) can be explicitly analyzed


from variational problems with local interactions. This strong simplification is


related to an old open problem in mathematical physics – first addressed by


Ginibre [11, p. 28] in 1968 within a different context – about the validity of the


so–called Bogoliubov approximation on the level of states. Indeed, we give a


first answer to this problem in the special classM1 of modelsm by showing that


any extreme generalized equilibrium state ω ∈ Ω ♯
m is an equilibrium state of


an effective local interaction Φω. Such extreme generalized equilibrium states


satisfy Euler–Lagrange equations called gap equations in the Physics literature.


In fact, when the correlation functions of the effective local interaction Φω


turn out to be accessible, our method provides a systematic way to analyze,


at once, all correlation functions of the given long range model m ∈ M1.


Applications of our method include: A full analysis (postponed to separated


papers) of equilibrium states of BCS–type models, the explicit description


of models showing qualitatively the same density dependency of the critical


temperature observed in high–Tc superconductors [9, 10], etc.


One important consequence of the detailed analysis of the set Ω ♯
m of gen-


eralized equilibrium states is the fact that the thermodynamics of models


m ∈ M1 is governed by the following two–person zero–sum game: For any


model m, we define a functional


fextm : L2
− × C(L2


−, L
2
+) → R.


Here, L2
± are two orthogonal sub–spaces of a Hilbert space L2(A,C) and


C(L2
−, L


2
+) is the set of continuous maps from L2


− to L2
+. The set L2


− is seen


as the set of strategies of the “attractive” player with loss function fextm and


C(L2
−, L


2
+) is the set of strategies of the “repulsive” player with loss function


−fextm . This game has a non–cooperative equilibrium and the value of the game


is precisely −P♯
m. Moreover, for any m ∈ M1, equilibria of this game classify


extreme generalized equilibrium states in Ω ♯
m in the following sense: There is


a set {ea}a∈A of observables such that, for any extreme state ω̂ ∈ Ω ♯
m, there is


a non–cooperative equilibrium


(da,−, r+) ∈ L2
− × C(L2


−, L
2
+)
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with


ω̂ (ea) = da,− + r+ (da,−) ∈ L2(A,C).


Conversely, for each non–cooperative equilibrium


(da,−, r+) ∈ L2
− × C(L2


−, L
2
+),


there is a – not necessarily extreme – ω ∈ Ω ♯
m satisfying the above equation.


To conclude, this paper is organized as follows. In Section 2, we briefly


explain the mathematical framework of Fermi systems on a lattice. Then the


main results concerning the thermodynamic study of any m ∈ M1 are for-


mulated in Section 3. A discussion on previous results related to the ones


presented here is given in Section 4. In order to keep the main issues as trans-


parent as possible, we reduce the technical aspects to a minimum in Sections


2–4. Section 5 is an account on periodic boundary conditions which ensure the


weak∗–convergence as l → ∞ of the Gibbs equilibrium states ρl to a general-


ized equilibrium state ω ∈ Ω ♯
m. In Section 6 we describe in details the set of


periodic states. Up to Sections 6.3 and 6.6, this analysis is only an adaptation


of known results for quantum spin systems. Section 7 explains permutation


invariant models in relation with Størmer theorem [9, 12] for permutation in-


variant states on the CAR algebra because they are technically important for


the derivation of the variational problem (1.1) for the pressure. Sections 8–11


give the detailed proofs of the main theorems about the game theoretical is-


sues and generalized equilibrium states of long range models. In particular, we


analyze in details in Sections 10–11 the relation between the thermodynamics


of general long range models m ∈ M1 and effective local interactions Φω. This


is related to the so–called approximating Hamiltonian method used on the


level of the pressure in [13, 14, 15, 16]. We give in Section 12 a short review


on this subject as well as on Gibbs equilibrium states, compact convex sets,


Choquet simplices, tangent functionals, the Γ–regularization, the Legendre–


Fenchel transform, and on two–person zero–sum games. All the material in


Section 12, up to Lemma 12.32 and Theorems 12.37–12.38, can be found in


standard textbooks. These topics are concisely discussed here to make our re-


sults accessible to a wide audience, since various fields of theoretical physics and


mathematics are concerned (non–linear analysis, game theory, convex analysis,


and statistical mechanics).


2. Fermi Systems on Lattices


2.1. Local fermion algebras


Let L := Zd be the d–dimensional cubic lattice and H be a finite dimensional


Hilbert space with orthonormal basis {es}s∈S .
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Notation 2.1. Here, we use the convention that L stands for Zd as seen


as a set (lattice), whereas with Zd the abelian group (Zd,+) is meant.


Remark 2.2 (Lattices L).


The lattice L is taken to be a cubic one because it is technically easier, but this


choice is not necessary for our proofs.


For any set M , we define Pf (M) to be the set of all finite subsets of M .


In the special case where M = L we use below the sequence of cubic boxes


(2.2) Λl := {x ∈ L : |xi| ≤ l, i = 1, . . . , d} ∈ Pf (L)


of the lattice L with volume |Λl| = (2l + 1)d for l ∈ N.


Remark 2.3 (Van Hove nets).


The sequence {Λl}l∈N is used to define the thermodynamic limit. It is a tech-


nically convenient choice, but it is not necessary in our proofs. The minimal


requirement on any net {Λi}i∈I of finite boxes is that the volume |∂Λi| of the
boundaries6 ∂Λi ⊂ Λi ∈ Pf (L) must be negligible with respect to (w.r.t.) the


volume |Λi| of Λi at “large” i ∈ I, i.e., lim
I
{|∂Λi|/|Λi|} = 0. Such families


{Λi}i∈I of subsets are known as Van Hove nets, see, e.g., [8].


For any Λ ∈ Pf (L), let UΛ be the complex Clifford algebra with identity


1 and generators {ax,s, a+x,s}x∈Λ,s∈S satisfying the so–called canonical anti–


commutation relations (CAR):


(2.3)



ax,sax′,s′ + ax′,s′ax,s = 0,


a+x,sa
+
x′,s′ + a+x′,s′a


+
x,s = 0,


ax,sa
+
x′,s′ + a+x′,s′ax,s = δx,x′δs,s′1.


The set UΛ is a C∗–algebra because it is isomorphic to the algebra B(
∧


HΛ)


of all bounded linear operators on the fermion Fock space
∧


HΛ, where


HΛ :=
⊕
x∈Λ


Hx.


For any Λ ∈ Pf (L), UΛ is called the local fermion (field) algebras of the lattice


L. Indeed, in quantum statistical mechanics a+x,s = (ax,s)
∗ and ax,s are inter-


preted, respectively, as the creation and annihilation of a fermion with spin


s ∈ S at the position x ∈ L of the lattice, and the CAR (2.3) implement the


Pauli principle.


For any Λ ⊂ Λ′ ⊂ Λ′′ ∈ Pf (L), there are canonical inclusions jΛ,Λ′ : UΛ →
UΛ′ satisfying jΛ′,Λ′′ ◦ jΛ,Λ′ = jΛ,Λ′′ and jΛ,Λ′(ax,s) = ax,s for any x ∈ Λ and


6By fixing m ≥ 1, the boundary ∂Λ of any Λ ⊂ Γ is defined by ∂Λ := {x ∈ Λ : ∃y ∈
Γ\Λ with d(x, y) ≤ m}, see (2.14) below for the definition of the metric d(x, y).
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s ∈ S. The inductive limit of local algebras {UΛ}Λ∈Pf (L) is the C
∗–algebra U ,


called the fermion (field) algebra (also known as the CAR algebra). A dense


subset of U is given by the ∗–algebra


U0 :=
∪


Λ∈Pf (L)


UΛ


of local elements, which implies the separability of U as UΛ is a finite dimen-


sional space for any Λ ∈ Pf (L).


Remark 2.4 (Quantum spin systems).


For quantum spin systems, U would be the infinite tensor product of finite


dimensional C∗–algebras attached to each site x ∈ Zd. All results of this papers


hold in this case, but we concentrate our attention on fermion algebras as they


are more difficult to handle because of the non–commutativity of its elements


on different lattice sites.


For any fixed θ ∈ R/(2πZ), the condition


(2.4) σθ(ax,s) = e−iθax,s


defines a unique automorphism σθ of the algebra U . A special role is played by


σπ. Elements A,B ∈ U satisfying σπ(A) = A and σπ(B) = −B are respectively


called even and odd, whereas elements A ∈ U satisfying σθ(A) = A for any


θ ∈ [0, 2π) are called gauge invariant. The set


(2.5) U+ := {A ∈ U : A− σπ(A) = 0} ⊂ U


of all even elements and the set


(2.6) U◦ :=
∩


θ∈R/(2πZ)


{A ∈ U : A = σθ(A)} ⊂ U+


of all gauge invariant elements are ∗–algebras. By continuity of σθ, it follows


that U+ and U◦ are closed and hence C∗–algebras, respectively called sub–


algebra of even elements and fermion observable algebra.


Remark 2.5 (Gauge invariant projection).


By density of the ∗–algebra U0 of local elements, for any A ∈ U , the map


θ 7→ σθ(A) is continuous. Thus, for any A ∈ U , the Riemann integral


σ◦(A) :=
1


2π


∫ 2π


0
σθ(A) dθ


defines a linear map σ◦ : U → U◦, which is a projection on the fermion ob-


servable algebra U◦, i.e., σ◦ ◦ σ◦ = σ◦.


Notation 2.6 (Gauge invariant objects).


Any symbol with a circle ◦ as an exponent (as for instance σ◦) is, by definition,


an object related to gauge invariance.
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2.2. States of Fermi systems on lattices


As U is a Banach space, by Corollary 12.9, its dual U∗ is a locally convex real


space7 with respect to (w.r.t.) the weak∗–topology, which is Hausdorff. More-


over, as U is separable, by Theorem 12.10, the weak∗–topology is metrizable


on any weak∗–compact subset of U∗ as, for instance, on the weak∗–compact


convex set E ⊂ U∗ of all states on U .
States are linear functionals ρ ∈ U∗ which are positive, i.e., for all A ∈ U ,


ρ(A∗A) ≥ 0, and normalized, i.e., ρ(1) = 1. Equivalently, ρ ∈ U∗ is a state iff


ρ(1) = 1 and ∥ρ∥ = 1 which clearly means that E is a subset of the unit ball


of U∗. Note that any ρ ∈ E is continuous and Hermitian, i.e., for all A ∈ U ,
ρ(A∗) = ρ(A), and defines by restriction a state on the sub–algebras U+, U◦,


and UΛ. For any Λ ∈ Pf (L), we use ρΛ and EΛ to denote, respectively, the


restriction of any ρ ∈ E on the local sub–algebra UΛ and the set of all states


ρΛ on UΛ.


Notation 2.7 (States).


The letters ρ, ϱ, and ω are exclusively reserved to denote states.


Invariant states under the action of groups G play a crucial role in the


sequel. In the special case where G = (Zd,+), the condition


(2.7) αx(ay,s) = ay+x,s , ∀y ∈ Zd, ∀s ∈ S,


defines a homomorphism x 7→ αx from Zd to the group of ∗–automorphisms of


U . In other words, the family of ∗–automorphisms {αx}x∈L represents here the


action of the group of lattice translations on U . Consider now the sub–groups


G = (ℓ⃗.Zd,+) ⊂ (Zd,+) with


ℓ⃗.Zd := ℓ1Z× · · · × ℓdZ


for ℓ⃗ ∈ Nd. Any state ρ ∈ E satisfying ρ◦αx = ρ for all x ∈ ℓ⃗.Zd is called ℓ⃗.Zd–


invariant on U or ℓ⃗–periodic. The set of all ℓ⃗.Zd–invariant states is denoted


by


(2.8) E
ℓ⃗
:=


∩
x∈ℓ⃗.Zd, A∈U


{ρ ∈ U∗ : ρ(1) = 1, ρ(A∗A) ≥ 0 with ρ = ρ ◦ αx}.


Note that E1 := E(1,··· ,1) corresponds to the set of all translation invariant (t.i.)


states. The ℓ⃗–periodicity of states yields a crucial property (see Corollary 6.3):


Lemma 2.8 (ℓ⃗–periodic states are even).


Any ℓ⃗.Zd–invariant state ρ is even, i.e., ρ = ρ ◦ σπ with the automorphism σπ
defined by (2.4) for θ = π.


7We use here Rudin’s definition, see Definition 12.7.
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In other words, all ℓ⃗.Zd–invariant states ρ ∈ E
ℓ⃗
must be the zero functional on


the sub–space of odd elements of U . This symmetry property is a necessary


ingredient to study thermodynamics of Fermi systems.


The set E
ℓ⃗
is clearly convex and weak∗–compact. So, Krein–Milman the-


orem (Theorem 12.11) tells us that it is the weak∗–closure of the convex hull


of the (non–empty) set E
ℓ⃗
of its extreme points. (Here, E1 := E(1,··· ,1) is the set


of extreme points of the set E1 of t.i. states.) Since E
ℓ⃗
is also metrizable (The-


orem 12.10), from Choquet theorem (Theorem 12.18), each state ρ ∈ E
ℓ⃗
has a


decomposition in terms of extreme states ρ̂ ∈ E
ℓ⃗
of E


ℓ⃗
. This decomposition is


unique and norm preserving by Lemma 6.4.


Theorem 2.9 (Ergodic decomposition of states in E
ℓ⃗
).


For any ρ ∈ E
ℓ⃗
, there is a unique probability measure µρ on E


ℓ⃗
such that


µρ(Eℓ⃗) = 1 and ρ =


∫
Eℓ⃗


dµρ(ρ̂) ρ̂.


Furthermore, the map ρ 7→ µρ is an isometry in the norm of linear functionals,


i.e., ∥ρ− ρ′∥ = ∥µρ − µ′ρ∥ for any ρ, ρ′ ∈ E1.


Remark 2.10 (Barycenters).


The integral written in Theorem 2.9 only means here that ρ ∈ E
ℓ⃗
is the (unique)


barycenter of the probability measure, i.e., the normalized positive Borel regular


measure, µρ ∈M+
1 (E


ℓ⃗
) on E


ℓ⃗
, see Definition 12.15 and Theorem 12.16.


Notation 2.11 (Extreme states).


Extreme points of E
ℓ⃗
are written as ρ̂ ∈ E


ℓ⃗
or sometime ω̂ ∈ E


ℓ⃗
.


The uniqueness of the probability measure µρ given in Theorem 2.9 im-


plies, by Theorem 12.22, that E
ℓ⃗
is a (Choquet) simplex (see Definition 12.21),


which is in fact a consequence of Lemma 2.8 together with the asymptotic


abelianess (6.12) of the even sub–algebra U+ (2.5), see [17, Corollary 4.3.11.].


Observe also that the simplex E
ℓ⃗
has a fairly complicated geometrical struc-


ture: For any ℓ⃗ ∈ Nd, E
ℓ⃗
is a weak∗–dense Gδ subset in E


ℓ⃗
, see Corollary 6.6.


In fact, up to an affine homeomorphism the set E
ℓ⃗
is the Poulsen simplex, see


Theorem 12.26:


Theorem 2.12 (E
ℓ⃗
and the Poulsen simplex).


The Choquet simplices {E
ℓ⃗
}
ℓ⃗∈Nd are all affinely homeomorphic to the Poulsen


simplex, i.e., E
ℓ⃗
is unique up to an affine homeomorphism.


Note that the simplex E
ℓ⃗
can also be seen as a simplexoid, i.e., a compact


convex set in which all closed proper faces are simplices. An example of a


closed face of E
ℓ⃗
, for any ℓ⃗ ∈ Nd, is given by the Bauer simplex EΠ ⊂ E


ℓ⃗
of


permutation invariant states described in Section 7.1.
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Remark 2.13 (Gauge invariant t.i. states).


An important subset of E1 is the convex and weak∗–compact set


E◦
1 := {ρ ∈ E1 : ρ = ρ ◦ σ◦} ⊂ E1


of translation and gauge invariant states, cf. Remark 2.5. States describing


physical systems generally belong to E◦
1 which is again the Poulsen simplex (up


to an affine homeomorphism). This can be proven by identifying E◦
1 with the


set of all t.i. states on U◦ (2.6) which is an asymptotically abelian C∗–algebra.


The result of Theorem 2.12 is standard in statistical mechanics, in par-


ticular for lattice quantum spin systems [17, p. 405–406, 464]. It means that


the complicated geometrical structure of the simplices E
ℓ⃗
is, in a sense, uni-


versal and in fact, physically natural. Indeed, the set E
ℓ⃗
of extreme points


of E
ℓ⃗
can be characterized through a (physically natural) condition related to


space–averaging as follows.


For any A ∈ U , L ∈ N and ℓ⃗ ∈ Nd, let A
L,ℓ⃗


∈ U be defined by the


space–average


(2.9) A
L,ℓ⃗


:=
1


|ΛL ∩ ℓ⃗.Zd|


∑
x∈ΛL∩ℓ⃗.Zd


αx(A).


By definition, AL := A
L,ℓ⃗


for ℓ⃗ = (1, · · · , 1). This sequence {A
L,ℓ⃗


}L∈N of


operators in U defines space–averaging functionals:


Definition 2.14 (Space–averaging functionals).


For any A ∈ U and ℓ⃗ ∈ Nd, the (ℓ⃗–) space–averaging functional is the map


ρ 7→ ∆
A,ℓ⃗


(ρ) := lim
L→∞


ρ(A∗
L,ℓ⃗
A


L,ℓ⃗
)


from E
ℓ⃗
to R. Here, ∆A := ∆A,(1,··· ,1).


The functional ∆
A,ℓ⃗


is well–defined, for all A ∈ U and ℓ⃗ ∈ Nd, and we give in


Section 2.3 a complete description of ∆A. This map is pivotal as it is used to


define ergodic states in the following way:


Definition 2.15 (Ergodic states).


A ℓ⃗–periodic state ρ̂ ∈ E
ℓ⃗
is (ℓ⃗–) ergodic iff, for all A ∈ U , ∆


A,ℓ⃗
(ρ̂) = |ρ̂(A)|2.


The equality in this definition says that space fluctuations of measures on


a system described by a ℓ⃗.Zd–invariant state ρ̂ are small when it is ergodic:


For any observable A, we are able to determine ρ̂(A) through space–averaging


over the sub–lattice ΛL ∩ ℓ⃗.Zd at large L. We can view this result as a non–


commutative version of law of large numbers.


The unique decomposition expressed in Theorem 2.9 of any ρ ∈ E
ℓ⃗
in


terms of extreme states ρ̂ ∈ E
ℓ⃗
of E


ℓ⃗
is also called the ergodic decomposition.
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Indeed, we prove in Section 6.2 that any ergodic state is an extreme state in


E
ℓ⃗
and conversely, see Lemmata 6.5 and 6.8 together with Corollary 6.9.


Theorem 2.16 (Extremality = Ergodicity).


Any extreme state ρ̂ ∈ E
ℓ⃗
of E


ℓ⃗
is ergodic and conversely. Additionally, any


extreme state ρ̂ ∈ E
ℓ⃗
is strongly clustering, i.e., for all A,B ∈ U ,


lim
L→∞


1


|ΛL ∩ ℓ⃗.Zd|


∑
y∈ΛL∩ℓ⃗.Zd


ρ̂ (αx(A)αy(B)) = ρ̂(A)ρ̂(B)


uniformly in x ∈ ℓ⃗.Zd.


Observe that a strongly clustering state ρ ∈ E
ℓ⃗
is not necessarily strongly


mixing which means that


(2.10) lim
|x|→∞


ρ (Aαx(B)) = ρ(A)ρ(B)


for all A,B ∈ U . The converse is trivial: Any strongly mixing state satisfies


the ergodicity property.


Remark 2.17 (Gauge invariant states and ergodicity).


From Remark 2.13, a state ρ̂ ∈ E◦
1 is extreme in E◦


1 iff ρ̂ ∈ E◦
1 is ergodic w.r.t.


the sub–algebra U◦ ⊂ U , i.e., for all A ∈ U◦,


lim
L→∞


1


|ΛL|2
∑


x,y∈ΛL


ρ̂(αx(A
∗)αy(A)) = |ρ̂(A)|2.


2.3. The space–averaging functional ∆A


The set of translation invariant (t.i.) states E1 := E(1,··· ,1) and the space–


averaging functional ∆A := ∆A,(1,··· ,1) play a central role below as we con-


centrate our attention on the thermodynamics of translation invariant (t.i.)


Fermi systems. However, our analysis can easily be generalized to the (ℓ⃗–)


space–averaging functional ∆
A,ℓ⃗


for any ℓ⃗ ∈ Nd, see Definition 2.14.


First, by Lemma 6.10, the space–averaging functional ∆A is well–defined


for all ℓ⃗–periodic states ρ ∈ E
ℓ⃗
at any ℓ⃗ ∈ Nd. In this case,


(2.11) ρ 7→ ∆A (ρ) := lim
L→∞


ρ (A∗
LAL) ∈


[
|ρ(A


ℓ⃗
)|2, ∥A∥2


]
,


with


(2.12) A
ℓ⃗
:=


1


ℓ1 · · · ℓd


∑
x=(x1,··· ,xd), xi∈{0,··· ,ℓi−1}


αx(A)


for any ℓ⃗ ∈ Nd.


As explained in the previous section, extremality of t.i. states can be


characterized by means of the space–averaging functional ∆A. Indeed, the set
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of t.i. states ρ ∈ E1 which fulfil ∆A (ρ) = |ρ(A)|2 for any A ∈ U , i.e., the set


of ergodic states (Definition 2.15), is the set E1 of extreme states of E1, see


Theorem 2.16. Nevertheless, this functional has never gained much attention


before beyond the fact that it can be used to characterize extremality of states.


It turns out that other properties of the space–averaging functional are also


crucial in the analysis of thermodynamic effects of long range interactions. Its


basic properties – proven in Lemmata 6.11 and 6.12 – are listed in the following


theorem:


Theorem 2.18 (Properties of the functional ∆A on E
ℓ⃗
).


(i) At fixed A ∈ U , the map ρ 7→ ∆A(ρ) from E
ℓ⃗
to R+


0 is a weak∗–upper semi–


continuous affine functional. It is also t.i., i.e., for all x ∈ Zd and ρ ∈ E
ℓ⃗
,


∆A(ρ ◦ αx) = ∆A(ρ).


(ii) At fixed ρ ∈ E
ℓ⃗
and for all A,B ∈ U ,


|∆A (ρ)−∆B (ρ) | ≤ (∥A∥+ ∥B∥)∥A−B∥,


i.e., the map A 7→ ∆A (ρ) from U to R+
0 is locally Lipschitz continuous.


The affinity and the translation invariance of ∆A, as well as (ii), are


immediate consequences of its definition (see Lemmata 6.11 and 6.12). Its


weak∗–upper semi–continuity follows from the fact that ∆A is the infimum of


a family of weak∗–continuous functionals (see Lemmata 6.10 and 6.11).


Note that ∆A is not weak∗–continuous for all A ∈ U , even on the set


E1. Indeed, if ∆A is weak∗–continuous on E1 then ∆A (ρ) = |ρ(A)|2 for all


ρ ∈ E1 because of Theorem 2.16 and the weak∗–density of the set E1 in E1


(Corollary 6.6). Therefore, there is A ∈ U such that ∆A is not weak∗–upper


semi–continuous. Otherwise, any state ρ ∈ E1 would be ergodic and hence, an


extreme point of E1 by Theorem 2.16. A more detailed study on the weak∗–


continuity of the space–averaging functional ∆A on the set E1 of t.i. states is


given by the following theorem:


Theorem 2.19 (Properties of the map ρ 7→ ∆A (ρ) on E1 at fixed A ∈ U).
(i) ∆A is weak∗–continuous on E1 iff the affine map ρ 7→ |ρ(A)| from E1 to C
is a constant map.


(ii) ∆A is weak∗–discontinuous on a weak∗–dense subset of E1 unless ρ 7→
|ρ(A)| is a constant map from E1 to C.
(iii) ∆A is continuous on the Gδ weak∗–dense subset E1 of extreme states of


E1. In particular, the set of all states of E1 where ∆A is weak∗–discontinuous


is meager.


(iv) ∆A can be decomposed in terms of an integral on the set E1, i.e., for all


ρ ∈ E1,


∆A (ρ) =


∫
E1


dµρ (ρ̂) |ρ̂ (A)|2
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with the probability measure µρ defined by Theorem 2.9.


(v) Its Γ–regularization ΓE1
(∆A) on E1 is the weak∗–continuous convex map


ρ 7→ |ρ (A)|2.


Recall that the Γ–regularization of functionals is defined in Definition 12.27.


For more details, we recommend Section 12.5 as well as Corollary 12.30 in


Section 12.6.


The continuity properties (i)–(iii) result partially from Theorems 2.9 and


2.16, for more details see Proposition 6.13. The assertion (iv) is a direct con-


sequence of Theorem 2.18 (i) and Lemma 12.17 combined with Theorems 2.9


and 2.16. The last statement (v) is deduced from the density of the set E1 in


E1 (Corollary 6.6) together with Theorems 2.16 and standard arguments from


convex analysis, see Lemma 6.14.


Remark 2.20 (∆A and Jensen’s inequality).


The inequality ∆A(ρ) ≥ |ρ(A)|2 can directly be deduced from Theorem 2.19 (iv)


and Jensen’s inequality (Lemma 12.33) as µρ is a probability measure.


Remark 2.21 (Trivial space–averaging functional ∆A on E1).


If the affine map ρ 7→ |ρ(A)| from E1 to C is a constant map then from Theorem


2.19 (iv), ∆A (ρ) = |ρ(A)|2 for any ρ ∈ E1. An example of such trivial behavior


is given by choosing A = λ1+B − αx (B) for any λ ∈ C, B ∈ U , and x ∈ Zd.


Recall that the translation αx is the ∗–automorphism defined by (2.7).


2.4. Local interactions and internal energies


An interaction is defined via a family of even and self–adjoint local elements


ΦΛ and it is associated with internal energies as follows:


Definition 2.22 (Interactions and internal energies).


(i) An interaction is a family Φ = {ΦΛ}Λ∈Pf (L) of even and self–adjoint local


elements ΦΛ = Φ∗
Λ ∈ U+ ∩ UΛ with Φ∅ = 0.


(ii) For any Λ ∈ Pf (L), its internal energy is the local Hamiltonian


UΦ
Λ :=


∑
Λ′∈Pf (L), Λ′⊂Λ


ΦΛ′ ∈ U+ ∩ UΛ.


Notation 2.23 (Interactions).


The letters Φ and Ψ are exclusively reserved to denote interactions.


An interaction Φ is per definition translation invariant (t.i.) iff, for all


x ∈ Zd and Λ ∈ Pf (L), ΦΛ+x = αx(ΦΛ) with


(2.13) Λ + x := {x′ + x ∈ L : x′ ∈ Λ}.
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Another important symmetry of Fermi models, which appears together with


the translation invariance in most physically relevant situations, is the gauge


symmetry (or the particle number conservation). An interaction Φ is said to


be gauge invariant (i.e., Φ conserves the particle number) iff ΦΛ ∈ U◦ for all


Λ ∈ Pf (L), see (2.6).


Observe now that an interaction Φ may have finite range. This property


is defined via the usual metric d : L× L → [0,∞) defined by


(2.14) d(x, x′) :=
√


|x1 − x′1|2 + · · ·+ |xd − x′d|2


on the lattice L := Zd together with the function


(2.15) ø(Λ) := max
x,x′∈Λ


{d(x, x′)} for any Λ ∈ Pf (L).


Indeed, we say that the interaction Φ has finite range iff there is some R <∞
such that ø(Λ) > R implies ΦΛ = 0.


The set of all interactions can be endowed with a real vector space struc-


ture:


(λ1Φ+ λ2Ψ)Λ := λ1ΦΛ + λ2ΨΛ


for any interactions Φ, Ψ, and any real numbers λ1, λ2. So, we can define a


Banach space W1 of t.i. interactions by using a specific norm:


Definition 2.24 (Banach space W1 of t.i. interactions).


The real Banach space W1 is the set of all t.i. interactions Φ with finite norm


∥Φ∥W1
:=


∑
Λ∈Pf (L), 0∈Λ


|Λ|−1 ∥ΦΛ∥ <∞.


The norm ∥ · ∥W1
plays here an important role because its finiteness implies,


among other things, the existence of the pressure in the thermodynamic limit.


The set W f
1 of all finite range t.i. interactions is dense in W1. In particular, the


set W1 is a separable Banach space because, for all Λ ∈ Pf (L), local algebras


UΛ are finite dimensional.


By Corollary 12.9, its dual W∗
1 is a locally convex real space8 w.r.t. the


weak∗–topology. The weak∗–topology is Hausdorff and, by Theorem 12.10,


it is metrizable on any weak∗–compact subset of W∗
1 as, for instance, on the


weak∗–compact convex set E1 seen as as a subset of W∗
1 , see Section 6.5 for


more details.


Remark 2.25 (Generalizations of the norm ∥ · ∥W1
).


The norm in Definition 2.24 is only a specific example of the general class of


8We use here Rudin’s definition, see Definition 12.7.
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norms for t.i. interactions:


∥Φ∥κ :=
∑


Λ∈Pf (L), 0∈Λ


κ (|Λ|, ø(Λ)) ∥ΦΛ∥ with κ (x, y) > 0.


Remark 2.26 (Banach space of standard potentials).


In [8, Definition 5.10] the authors use another kind of norm for t.i. inter-


actions. Their norm is not equivalent to ∥ · ∥W1
and also defines a Banach


space of the so–called translation covariant potentials, see [8, Proposition 8.8.].


In fact, in contrast to the potentials of [8, Section 5.5] we cannot associate a


symmetric derivation9, as it is done in [8, Theorem 5.7], to all t.i. interactions


of W1. But no dynamical questions – as, for instance, the existence and char-


acterization of KMS–states done in [8] – are addressed in the present paper.


That is why we can use here weaker norms leading to more general classes of


t.i. local interactions than in [8].


2.5. Energy and entropy densities


As far as the thermodynamics of Fermi systems is concerned, there are two


other important functionals associated with any ℓ⃗–periodic state ρ ∈ E
ℓ⃗
on


U : The entropy density functional ρ 7→ s(ρ) and the energy density functional


ρ 7→ eΦ(ρ) w.r.t. to a local t.i. interaction Φ ∈ W1. We start with the entropy


density functional which is defined as follows:


Definition 2.27 (Entropy density functional s).


The entropy density functional s : E
ℓ⃗
→ R+


0 is defined by


s(ρ) := − lim
l→∞


{
1


|ΛL|
Trace


(
dρΛL


ln dρΛL


)}
,


where ρΛL
is the restriction of any ρ ∈ E


ℓ⃗
on the sub–algebra UΛL


and dρΛL
∈


UΛL
is the (uniquely defined) density matrix representing the state ρΛL


as a


trace:


ρΛL
(·) = Trace


(
· dρΛL


)
.


The entropy density is therefore given as the so–called von Neumann entropy


per unit volume in the thermodynamic limit, cf. Section 6.4. The functional s


is well–defined on the set E
ℓ⃗
of ℓ⃗.Zd–invariant states and it has the following


properties:


Lemma 2.28 (Properties of the entropy density functional s).


(i) The map ρ 7→ s(ρ) from E
ℓ⃗
to R+


0 is a weak∗–upper semi–continuous affine


9A symmetric derivation A 7→ δ(A) is a linear map satisfying δ(AB) = δ(A)B + Aδ(B)
and δ(A∗) = δ(A)∗ for any A,B ∈ Dδ with its domain Dδ being a dense ∗–sub-algebra of U .
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functional. It is also t.i., i.e., for all x ∈ Zd and ρ ∈ E
ℓ⃗
, s(ρ ◦ αx) = s(ρ).


(ii) For any t.i. state ρ ∈ E1, there is a sequence {ρ̂n}∞n=1 ⊂ E1 of ergodic


states converging in the weak∗–topology to ρ and such that


s(ρ) = lim
n→∞


s(ρ̂n).


(iii) The map ρ 7→ s(ρ) from E
ℓ⃗
to R+


0 is Lipschitz continuous in the norm


topology of states: For any ρ, ϱ ∈ E
ℓ⃗
,


|s(ρ)− s(ϱ)| ≤ C|S| ∥ρ− ϱ∥ with ∥ρ∥ := sup
A∈U , A=A∗, ∥A∥=1


|ρ(A)|.


Here, C|S| is a finite constant depending on the size |S| of the spin set S.


The assertions (i) and (iii) are two standard results, see, e.g., [8, Theorem 10.3.


and Corollary 10.5.]. The proof of (i) is shortly checked in Lemma 6.15 but we


omit the proof of (iii) which is only used in Remark 2.29. However, the second


one (ii) does not seem to have been observed before although it is not difficult


to prove, see Lemma 6.16. This property turns out to be crucial because it


allows us to go around the lack of weak∗–continuity of the entropy density


functional s. The map ρ 7→ s(ρ) is, indeed, not weak∗–continuous but only


norm continuous as expressed by (iii), see, e.g., [18, 19]. Note that (ii) uses


the fact that the set E1 of extreme states is a dense subset of E1 as explained


after Notation 2.11, see also Corollary 6.6.


Remark 2.29 (Boundedness of the entropy density functional s).


The third assertion (iii) of Lemma 2.28 is given for information as it is only


used in the paper to see that s(ρ) ∈
[
0, 2C|S|


]
for all ρ ∈ E1 because there


is ϱ ∈ E1 such that s(ϱ) = 0 and ∥ρ − ϱ∥ ≤ ∥ρ∥ + ∥ϱ∥ = 2. Similarly, for


quantum spin systems (cf. Remark 2.4) the entropy density functional belongs


to [0, D|S|] with D|S| <∞. In particular, it is still bounded from below.


The energy density is the thermodynamic limit of the internal energy UΦ
Λ


(Definition 2.22) per unit volume associated with any fixed local interaction


Φ ∈ W1:


Definition 2.30 (Energy density functional eΦ).


The energy density of any ℓ⃗–periodic state ρ ∈ E
ℓ⃗
w.r.t. a t.i. local interaction


Φ ∈ W1 is defined by


eΦ(ρ) := lim
L→∞


ρ
(
UΦ
ΛL


)
|ΛL|


<∞.


The existence of the energy density eΦ(ρ) can easily be checked for all Φ ∈ W1,


see Lemma 6.17. Actually, eΦ(ρ) = ρ(e
Φ,ℓ⃗


) with


(2.16) e
Φ,ℓ⃗


:=
1


ℓ1 · · · ℓd


∑
x=(x1,...,xd), xi∈{0,··· ,ℓi−1}


∑
Λ∈Pf (L), x∈Λ


ΦΛ


|Λ|
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for any Φ ∈ W1. Per definition, eΦ := eΦ,(1,1,...,1). The operator e
Φ,ℓ⃗


∈ U+ is


called the energy observable associated with the t.i. local interaction Φ ∈ W1


for the set E
ℓ⃗
of ℓ⃗–periodic states. Remark that e


Φ,ℓ⃗
∈ U+ results from the


fact that, for all Λ ∈ Pf (L), ΦΛ ∈ U+ ∩ UΛ and


(2.17) ∥e
Φ,ℓ⃗


∥ ≤ ∥Φ∥W1
<∞.


Observe additionally that


e
Φ,ℓ⃗


=
1


ℓ1 · · · ℓd


∑
x=(x1,...,xd), xi∈{0,··· ,ℓi−1}


αx(eΦ).


It is then straightforward to prove the following properties of the energy


density functional eΦ (see also [8, Theorem 9.5]):


Lemma 2.31 (Properties of the energy density functional eΦ).


(i) For any Φ ∈ W1, the map ρ 7→ eΦ(ρ) from E
ℓ⃗
to R is a weak∗–continuous


affine functional. It is also t.i., i.e., for all x ∈ Zd, eΦ(ρ ◦ αx) = eΦ(ρ).


(ii) At fixed ρ ∈ E
ℓ⃗
and for all Φ,Ψ ∈ W1,


|eΦ (ρ)− eΨ (ρ) | ≤ ∥Φ−Ψ∥W1
,


i.e., the linear map Φ 7→ eΦ (ρ) from W1 to R is Lipschitz continuous.


Note that the entropy density functional s and the energy density func-


tional eΦ define the so–called free–energy density functional fΦ:


Definition 2.32 (Free–energy density functional fΦ).


For β ∈ (0,∞], the free–energy density functional fΦ w.r.t. the t.i. interaction


Φ ∈ W1 is the map


ρ 7→ fΦ(ρ) := eΦ(ρ)− β−1s(ρ)


from E
ℓ⃗
to R.


From Lemmata 2.28 (i) and 2.31 (i), the functional fΦ is weak∗–lower semi–


continuous, t.i., and affine. Moreover, by Lemma 2.28 (ii), for any ρ ∈ E1, there


is a sequence {ρ̂n}∞n=1 ⊂ E1 of ergodic states converging in the weak∗–topology


to ρ and such that


(2.18) fΦ(ρ) = lim
n→∞


fΦ(ρ̂n).


Remark 2.33 (Temperature of Fermi systems).


All assertions in the sequel depend on the fixed positive parameter β > 0 which


is often omitted to simplify the notation. However, we keep it in all definitions


because β ∈ (0,∞] is interpreted in Physics as the inverse temperature of the


system. β = ∞ corresponds to the zero–temperature for which the (thermal)


entropy density disappears. In fact, the free–energy density corresponds to the


maximum energy which can be extracted from a thermodynamical system at


fixed temperature β−1.
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3. Fermi Systems with Long Range Interactions


3.1. Fermi systems with long range interactions


Let (A,A, a) be a separable measure space with A and a : A → R+
0 being


respectively some σ–algebra on A and some measure on A. The separabil-


ity of (A,A, a) means, per definition, that the space L2(A,C) := L2(A, a,C)
of square integrable complex valued functions on A is a separable Hilbert


space. This property is assumed here because, by Theorem 12.10 together


with Banach–Alaoglu theorem, it yields the metrizability of the weak topology


on any norm bounded subset B ⊂ L2(A,C), which is a useful property in the


sequel.


Then, as W1 is a Banach space (Definition 2.24), we can follow the con-


struction done in Section 12.3 for X = W1 to define the space L2 (A,W1) of


L2–interactions which in turn is used to define models with long interactions


as follows:


Definition 3.1 (Banach space M1 of long range models).


The set of long range models is given by


M1 := W1 × L2 (A,W1)× L2 (A,W1)


and is equipped with the semi–norm


∥m∥M1
= ∥Φ∥W1


+ ∥Φa∥2 + ∥Φ′
a∥2


for any m := (Φ, {Φa}a∈A, {Φ′
a}a∈A) ∈ M1. We identify in M1 models m1


and m2 whenever ∥m1 − m2∥M1
= 0, i.e., whenever m1 and m2 belong to the


same equivalence class of models. For convenience, we ignore the distinction


between models and their equivalence classes and see M1 as a Banach space of


long range models with norm ∥ · ∥M1
.


Notation 3.2 (Models).


The symbol m is exclusively reserved to denote elements of M1.


An important sub–space ofM1 is the setMf
1 of finite range models defined


as follows:


m := (Φ, {Φa}a∈A, {Φ′
a}a∈A) ∈ M1


has finite range iff Φ is finite range and {Φa}a∈A, {Φ′
a}a∈A are finite range


almost everywhere (a.e.). The sub–space Mf
1 of all finite range models is


dense in M1 because of Lebesgue’s dominated convergence theorem and the


density of set W f
1 of all finite range t.i. interactions in W1. Another dense10


10This follows from the density of step functions in L2 (A,W1).
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sub–space of M1 is given by the set Md
1 of discrete elements m, i.e., elements


for which the set


{Φa : a ∈ A} ∪
{
Φ′
a : a ∈ A


}
has a finite number of interactions. Therefore, the sub–spaceMdf


1 := Md
1∩Mf


1


is also clearly dense in M1. It is an important dense sub–space used to prove


Theorem 3.12 in Section 8.


Like t.i. local interactions Φ ∈ W1 (cf. Definition 2.22), any long range


model m ∈ M1 is associated with a family of internal energies as follows:


Definition 3.3 (Internal energy with long range interactions).


For any m ∈ M1 and l ∈ N, its internal energy in the box Λl is defined by


Ul := UΦ
Λl


+
1


|Λl|


∫
A
γa(U


Φa


Λl
+ iU


Φ′
a


Λl
)∗(UΦa


Λl
+ iU


Φ′
a


Λl
)da (a) ,


with γa ∈ {−1, 1} being a fixed measurable function.


The internal energy Ul is well–defined. Indeed, by continuity of the linear map


Φ 7→ UΦ
Λl
, for any m ∈ M1, the map a 7→ γaU


Φa


Λl
from A to UΛl


belongs to


L2 (A,UΛl
) (see Section 12.3 for the definition of the space Lp (A,UΛl


)). Then,


as U is a C∗–algebra, the map


a 7→ γa(U
Φa


Λl
+ iU


Φ′
a


Λl
)∗(UΦa


Λl
+ iU


Φ′
a


Λl
)


belongs to the space L1 (A,UΛl
) and m 7→ Ul is a well–defined functional from


the Banach space M1 to the C∗–algebra U . By (8.1), this map is even contin-


uous w.r.t. to the norms of M1 and U .
The long range character of Fermi models m ∈ M1 with local internal


energy Ul – as compared to the usual models defined from local interactions


Φ ∈ W1 only – can be seen as follows. For each fixed ϵ ∈ (0, 1), we define the


long range truncation of the internal energy UΦ
Λl


(Definition 2.22) associated


with the local part Φ of m by


UΦ
l,ϵ :=


∑
Λ∈Pf (L), Λ⊂Λl, ø(Λ)>ϵl


ΦΛ,


where the function ø(Λ) is the diameter of Λ ∈ Pf (L), see (2.15). Analogously,


the long range truncation of the internal energy (Ul−UΦ
Λl
) associated with the


long rang part of m is per definition equal to


Ul,ϵ : =
1


|Λl|
∑


Λ,Λ′∈Pf (L), Λ⊂Λl, Λ′⊂Λl, ø(Λ∪Λ′)>ϵl∫
A
γa(Φa,Λ + iΦ′


a,Λ)
∗(Φa,Λ′ + iΦ′


a,Λ′)da (a) .


Then, because Φ ∈ W1, one can generally check for any ϵ ∈ (0, 1) that


lim
l→∞


∥UΦ
l,ϵ∥


∥Ul,ϵ∥
= 0
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provided that m ̸= (Φ, 0, 0). In other words, the long range part (Ul − UΦ
Λl
)


of the internal energy Ul generally dominates the interaction at long distances


for large l ∈ N.
The aim of the paper is the study of the thermodynamic behavior of any


models m ∈ M1 with long range interactions. In the thermodynamic limit,


long range interactions act completely differently depending whether they are


positive long range interactions, i.e., long range repulsions, or negative long


range interactions, i.e., long range attractions. These two types of long range


interactions are defined via the negative and positive parts


(3.1) γa,± := 1/2(|γa| ± γa) ∈ {0, 1}


of the fixed measurable function


γa = γa,+ − γa,− ∈ {−1, 1}


as follows:


Definition 3.4 (Long range attractions and repulsions).


(−) The long range attractions of any m ∈ M1 are the L2–interactions


{Φa,− := γa,−Φa}a∈A ∈ L2 (A,W1) and {Φ′
a,− := γa,−Φ


′
a}a∈A ∈ L2 (A,W1) .


(+) The long range repulsions of any m ∈ M1 are the L2–interactions


{Φa,+ := γa,+Φa}a∈A ∈ L2 (A,W1) and {Φ′
a,+ := γa,+Φ


′
a}a∈A ∈ L2 (A,W1) .


It is important to observe that our class of models m ∈ M1 includes Fermi


systems


(Φ, {Φ1
a}a∈A, {Φ2


a}a∈A, {Φ3
a}a∈A, {Φ4


a}a∈A) ∈ M1 × L2 (A,W1)× L2 (A,W1)


with internal energies of the type


Vl := UΦ
Λl


+
1


|Λl|


∫
A
(U


Φ1
a


Λl
+ iU


Φ2
a


Λl
)∗(U


Φ3
a


Λl
+ iU


Φ4
a


Λl
)da (a) + h.c.


because


2 (A∗B +B∗A) = (A+B)∗ (A+B)− (A−B)∗ (A−B) .


In other words, such Fermi systems correspond to models m ∈ M1 with long


range attractions and repulsions together.


3.2. Free–energy densities and existence of thermodynamics


As for local interactions (see, e.g., [8, Theorem 11.4.]), the analysis of the


thermodynamics of long range Fermi systems in the grand–canonical ensemble


is related to an important functional associated with any ℓ⃗–periodic state ρ ∈
E


ℓ⃗
on U : The free–energy density functional f ♯m of the long range model


m := (Φ, {Φa}a∈A, {Φ′
a}a∈A) ∈ M1.
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This functional is the sum of the local free–energy density functional fΦ (Defini-


tion 2.32) and the long range energy densities defined from the space–averaging


functional ∆A (Definition 2.14) for A = eΦa
+ ieΦ′


a
, see (2.16). Using that


(3.2) ∆a,± (ρ) := γa,±∆eΦa+ieΦ′
a
(ρ) ∈ [0, ∥Φa∥2W1


+ ∥Φ′
a∥2W1


]


(cf. (2.11) and (2.17)) with γa,± ∈ {0, 1} being the negative and positive parts


(3.1) of the fixed measurable function γa ∈ {−1, 1}, we define the free–energy


density functional f ♯m as follows:


Definition 3.5 (Free–energy density functional f ♯m).


For β ∈ (0,∞], the free–energy density functional f ♯m w.r.t. any m ∈ M1 is


the map from E
ℓ⃗
to R defined by


ρ 7→ f ♯m (ρ) := ∥∆a,+ (ρ)∥1 − ∥∆a,− (ρ)∥1 + eΦ(ρ)− β−1s(ρ).


By Corollary 6.20 (i), this functional is well–defined on E
ℓ⃗
. It is also t.i.


and affine. Moreover, on the dense set E1 of extreme states of E1, i.e., on the


dense set of ergodic states (see Definition 2.15, Theorem 2.16 and Corollary


6.6), f ♯m equals the reduced free–energy density functional gm defined on E
ℓ⃗
as


follows:


Definition 3.6 (Reduced free–energy density functional gm).


For β ∈ (0,∞], the reduced free–energy density functional gm w.r.t. any m ∈
M1 is the map from E


ℓ⃗
to R defined by


ρ 7→ gm (ρ) := ∥γa,+ρ
(
eΦa


+ ieΦ′
a


)
∥22−∥γa,−ρ


(
eΦa


+ ieΦ′
a


)
∥22+eΦ(ρ)−β−1s(ρ).


This functional is an essential ingredient of the paper. By Corollary 6.20


(ii), it is well–defined and by using Lemmata 2.28 and 2.31 (i) as well as the


weak∗–continuity of the maps


(3.3) ρ 7→ ∥γa,±ρ
(
eΦa


+ ieΦ′
a


)
∥22 ∈ [0, ∥Φa∥22 + ∥Φ′


a∥22]


defined for all ρ ∈ E
ℓ⃗
(cf. (2.17)), it has the following properties11:


Lemma 3.7 (Properties of the reduced free–energy density functional gm).


(i) The map ρ 7→ gm (ρ) from E
ℓ⃗
to R is a weak∗–lower semi–continuous func-


tional.


(ii) For any t.i. state ρ ∈ E1, there is a sequence {ρ̂n}∞n=1 ⊂ E1 of ergodic


states converging in the weak∗–topology to ρ and such that


gm(ρ) = lim
n→∞


gm(ρ̂n).


11The proof of (i) uses the weak∗–continuity of ρ 7→ |γa,±ρ
(
eΦa + ieΦ′


a


)
|2, the inequality


|γa,±ρ
(
eΦa + ieΦ′


a


)
| ≤ ∥Φa∥2W1


+ ∥Φ′
a∥2W1


, and Lebesgue’s dominated convergence theorem
as m ∈ M1.
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However, since the maps (3.3) are generally not affine, the reduced free–


energy density functional gm has, in general, a geometrical drawback:


(−) gm is generally not convex provided that Φa,− ̸= 0 (a.e.) or Φ′
a,− ̸= 0


(a.e.), see Definition 3.4.


This does not occur (w.r.t. the set E1 of t.i. states) if the long range attractions


Φa,− and Φ′
a,− are trivial on E1, i.e., if


ρ 7→ |γa,−ρ(eΦa
+ ieΦ′


a
)|


is (a.e.) a constant map on E1, see Remark 2.21. The property (−) represents


a problem for our study because we are interested in the set of t.i. minimizers


of gm, see Theorem 3.12 (i) and Section 3.3.


By contrast, since by Lemmata 2.28 (i), 2.31 (i) and 6.19, the functionals


s, eΦ, and the maps


(3.4) ρ 7→ ∥∆a,± (ρ)∥1


are all affine, the free–energy density functional f ♯m is affine. In fact, by using


Theorem 2.9 and Lemma 12.17 on each functional s, eΦ, and (3.4), we can


decompose, for any t.i. state ρ ∈ E1, the free–energy density functional f ♯m in


terms of an integral on the set E1:


Lemma 3.8 (Properties of the free–energy density functional f ♯m).


(i) The map ρ 7→ f ♯m (ρ) from E
ℓ⃗
to R is an affine functional. It is also t.i.,


i.e., for all x ∈ Zd and ρ ∈ E
ℓ⃗
, f ♯m(ρ ◦ αx) = f ♯m(ρ).


(ii) The map ρ 7→ f ♯m (ρ) from E1 to R can be decomposed in terms of an


integral on the set E1 of extreme states of E1, i.e., for all ρ ∈ E1,


f ♯m (ρ) =


∫
E1


dµρ (ρ̂) gm (ρ̂) ,


with the probability measure µρ defined by Theorem 2.9.


However, since the maps (3.4) are generally not weak∗–continuous (see,


e.g., Theorem 2.19), the free–energy density functional f ♯m has, in general, a


topological drawback:


(+) f ♯m is generally not weak∗–lower semi–continuous on E1 provided that


Φa,+ ̸= 0 (a.e.) or Φ′
a,+ ̸= 0 (a.e.), see Definition 3.4.


This does not appear (w.r.t. the set E1 of t.i. states) if the long range repul-


sions Φa,+ and Φ′
a,+ are trivial on E1, i.e., if


ρ 7→ |γa,+ρ(eΦa
+ ieΦ′


a
)|







FERMI SYSTEMS WITH LONG RANGE INTERACTIONS 25


is (a.e.) a constant map on E1, see Theorem 2.19 (i) and Remark 2.21. The


problem (+) is serious for our study because we are interested in t.i. minimizers


of f ♯m, see Theorem 3.12 (i) and Section 3.3.


Neither the free–energy density functional f ♯m nor the reduced free–energy


density functional gm has the usual good properties to analyze their infimum


and minimizers over t.i. states. However, the corresponding variational prob-


lems coincide:


Lemma 3.9 (Minimum of the free–energy densities).


For any m ∈ M1,


inf
ρ∈E1


f ♯m(ρ) = inf
ρ̂∈E1


f ♯m (ρ̂) = inf
ρ̂∈E1


gm (ρ̂) = inf
ρ∈E1


gm (ρ) > −∞


with E1 being the dense set of extreme states of E1.


Proof. First, as m ∈ M1, note that all infima in this lemma are finite


because of Remark 2.29, (2.17), Lemma 2.31 (ii), (3.2), and (3.3).


Now, the maps (3.4) are both weak∗–upper semi–continuous affine func-


tionals (Lemma 6.19) and the map


(3.5) ρ 7→ −∥∆a,− (ρ)∥1 + eΦ(ρ)− β−1s(ρ)


from E1 to R is affine and weak∗–lower semi–continuous (cf. Lemmata 2.28


(i) and 2.31 (i)). Therefore, f ♯m is the sum of a concave weak∗–lower semi–


continuous functional and a concave weak∗–upper semi–continuous functional,


whereas E1 is weak∗–compact and convex. Applying Lemma 12.32, we obtain


that


inf
ρ∈E1


f ♯m(ρ) = inf
ρ̂∈E1


f ♯m (ρ̂) .


Since f ♯m = gm on E1, it remains to prove the equality


(3.6) inf
ρ∈E1


gm (ρ) = inf
ρ̂∈E1


gm (ρ̂) .


In fact, using the weak∗–lower semi–continuity of gm (Lemma 3.7 (i)), the


functional gm has, at least, one minimizer ω over E1 and by Lemma 3.7 (ii)


there is a sequence {ρ̂n}∞n=1 ⊂ E1 of ergodic states converging in the weak∗–


topology to ω with the property that gm(ρ̂n) converges to gm(ω) as n → ∞.


The latter yields Equality (3.6).


Remark 3.10 (Extension of the Bauer maximum principle).


Lemma 12.32 is an extension of the Bauer maximum principle (Lemma 12.31)


which does not seem to have been observed before. This lemma can be useful


to do similar studies for more general long range interactions as it is defined


in [20, 21] for quantum spin systems (see Remark 2.4).
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Lemma 3.9 might be surprising as no inequality between gm (ρ) and f ♯m (ρ)


is generally valid for all t.i. states ρ ∈ E1. In fact, it is a pivotal result


because the variational problems of Lemma 3.9 are found in the analysis of the


thermodynamics of all models m ∈ M1 at fixed inverse temperature β ∈ (0,∞)


in the grand–canonical ensemble.


Indeed, the first task on the thermodynamics of long range models is the


analysis of the thermodynamic limit l → ∞ of the finite volume pressure


(3.7) pl = pl,m :=
1


β|Λl|
lnTrace∧HΛ


(e−βUl)


associated with the internal energy Ul for β ∈ (0,∞) and any m ∈ M1, see


Definition 3.3. This limit defines a map m 7→ P♯
m from M1 to R:


Definition 3.11 (Pressure P♯
m).


For β ∈ (0,∞), the (infinite volume) pressure is the map from M1 to R defined


by


m 7→ P♯
m := lim


l→∞
{pl,m} .


The pressure P♯
m is well–defined for any m ∈ M1 and can be written as an


infimum of either the free–energy density functional f ♯m or the reduced free–


energy density functional gm over states (see Lemma 3.9):


Theorem 3.12 (Pressure P♯
m as a variational problem on states).


(i) For any m ∈ M1,


P♯
m = − inf


ρ∈E1


f ♯m(ρ) = − inf
ρ∈E1


gm (ρ) <∞.


(ii) The map m 7→ P♯
m from M1 to R is locally Lipschitz continuous.


The proof of this theorem uses many arguments and to simplify its under-


standing we break it in several Lemmata and postpone it until Section 8, see


Theorem 8.8. In fact, some arguments generalize those of [8, Theorem 11.4] to


non–standard potentials Φ ∈ W1 but others are new, in particular, the ones


related to the long range interaction


1


|Λl|


∫
A
γa(U


Φa


Λl
+ iU


Φ′
a


Λl
)∗(UΦa


Λl
+ iU


Φ′
a


Λl
)da (a) .


Note that one argument concerning the long range interaction uses permutation


invariant states described in Section 7. This method turns out to be similar


to the one used in [20, Theorem 3.4] and [21, Lemma 6.1] for quantum spin


systems (see Remark 2.4).


Indeed, for t.i. quantum spin systems with long range components, the


(infinite volume) pressure was recently proven to be given by a variational


problem over states in [20, 21]. In [20] the long range part of one–dimensional
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models has the form |ΛL|g (AL) with g being any real continuous function


(and with a stronger norm than ∥ · ∥W1
), whereas in [21] there is no restriction


on the dimension and the long range part is |ΛL|g (AL, BL) for some “non–


commutative polynomial” g. Here, AL and BL are space–averages (defined


similarly as in (2.9)) for (not necessarily commuting) self-adjoint operators A


and B of the quantum spin algebra described in Remark 2.4.


However, Theorem 3.12 for t.i. Fermi models with long range interactions


has not been obtained before. Note that a certain type of t.i. Fermi models


with long range components (e.g., reduced BCS models) has been analyzed in


[7] via the quantum spin representation of fermions, which we never use here


as it generally breaks the translation invariance of interactions of W1. Nev-


ertheless, because of the technical approach used in [7], the (infinite volume)


pressure is given in [7, II.2 Theorem] through two variational problems (∗) and
(∗∗) over states on a much larger algebra than the original observable algebra


of the model. By [7, II.2 Theorem and II.3 Proposition (1)], both variational


problems (∗) and (∗∗) have non–empty compact sets – respectively M∗ and


M∗∗ – of minimizers, but the link between them and Gibbs equilibrium states


is unclear. Moreover, by [7, II.3 Proposition (1)], extreme states of the convex


and compact set M∗ are constructed from minimizers of the second variational


problem (∗∗) which, as the authors wrote in [7, p. 642], “can pose a formidable


task”.


In fact, Theorem 3.12 (i) also gives the pressure as two variational prob-


lems. We prove in Theorem 3.21 (ii) that extreme states of the convex and


weak∗–compact set Ω ♯
m of all weak∗–limit points of approximating minimizers


of f ♯m over E1 (cf. Definition 3.15 and Lemma 3.16) are likewise minimizers


of the second variational problem, i.e., elements of the weak∗–compact set M̂m


defined below by (3.10), see also Lemma 3.19 (i). Meanwhile, the second vari-


ational problem can be analyzed and interpreted as a two–person zero–sum


game, see Section 3.6. In particular, in contrast to [7] and the sets M∗ and


M∗∗, M̂m can be explicitly characterized for all m ∈ M1, see Theorem 3.39,


whereas the set Ω ♯
m is related to Gibbs equilibrium states in the sense of The-


orem 3.29, see also Theorem 5.13. Before going into such results, we need first


to discuss the definitions and properties of the sets Ω ♯
m and M̂m in the next


subsection.


3.3. Generalized t.i. equilibrium states


We discuss now a special class of states: The (possibly generalized) equilib-


rium states which are supposed to describe physical systems at thermodynamic


equilibrium. These states are always defined in relation to a given interaction


which describes the energy density for a given state as well as the microscop-


ical dynamics. We define here (possibly generalized) equilibrium states via a
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variational principle (Definitions 3.13 and 3.15). However, this is not the only


reasonable way of defining equilibrium states. At fixed interaction they can


also be defined as tangent functionals to the corresponding pressure (Definition


3.27) or other conditions like: The local stability condition, the Gibbs condi-


tion, or the Kubo–Martin–Schwinger (KMS) condition. These definitions are


generally not equivalent to each other. For more details, see [8].


From Theorem 3.12 (i), the pressure P♯
m is given by the infimum of the


free–energy density functional f ♯m over t.i. states ρ ∈ E1. When m = (Φ, 0, 0) ∈
M1 the map


(3.8) ρ 7→ f ♯m (ρ) = fΦ (ρ) := eΦ(ρ)− β−1s(ρ)


is weak∗–lower semi–continuous and affine, see Lemmata 2.28 (i), 2.31 (i) and


Definition 2.32. In particular, it has minimizers in the set E1 of t.i. states.


The corresponding set MΦ of all t.i. minimizers is a (non–empty) closed face


of the Poulsen simplex E1. Then, similarly to what is done for translation


invariant quantum spin systems (see, e.g., [5, 22]), t.i. equilibrium states are


defined as follows:


Definition 3.13 (Set of t.i. equilibrium states).


For β ∈ (0,∞) and any m ∈ M1, the set M ♯
m of t.i. equilibrium states is the


set


M ♯
m :=


{
ω ∈ E1 : f ♯m (ω) = inf


ρ∈E1


f ♯m(ρ)


}
of all minimizers of the free–energy density functional f ♯m over the set E1.


The set M ♯
m is convex and in fact, a face by affinity of the free–energy density


functional f ♯m (Lemma 3.8 (i)):


Lemma 3.14 (Properties of non–empty sets M ♯
m).


If m ∈ M1 is such that M ♯
m is non–empty then M ♯


m is a (possibly not closed)


face of E1.


Nevertheless, M ♯
m is not necessarily weak∗–compact and depending on the


model m ∈ M1, it could even be empty. Indeed, the situation is more involved


in the case of long range models of M1 than for t.i. interactions of W1 as


f ♯m is generally not weak∗–lower semi–continuous: As explained above, if the


long range repulsions Φa,+ ̸= 0 or Φ′
a,+ ̸= 0 then the functional f ♯m is a sum of


the maps (3.4) (with +) and (3.5) which are, respectively, weak∗–upper and


weak∗–lower semi–continuous functionals, see Lemmata 2.28 (i), 2.31 (i) and


6.19. In particular, the existence of minimizers of f ♯m over E1 is unclear unless


Φa,+ = Φ′
a,+ = 0 (a.e.).
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Therefore, we shall consider any sequence {ρn}∞n=1 of approximating t.i.


minimizers, that is, any sequence {ρn}∞n=1 in E1 such that


(3.9) lim
n→∞


f ♯m(ρn) = inf
ρ∈E1


f ♯m(ρ).


Such sequences clearly exist and since E1 is sequentially weak∗–compact12, they


converge in the weak∗–topology – along subsequences – towards t.i. states


ω ∈ E1. Thus, generalized t.i. equilibrium states are naturally defined as


follows:


Definition 3.15 (Set of generalized t.i. equilibrium states).


For β ∈ (0,∞] and any m ∈ M1, the set Ω ♯
m of generalized t.i. equilibrium


states is the (non–empty) set


Ω ♯
m :=


{
ω ∈ E1 : ∃{ρn}∞n=1 ⊂ E1 with weak∗–limit point ω


such that lim
n→∞


f ♯m(ρn) = inf
ρ∈E1


f ♯m(ρ)
}


of all weak∗–limit points of approximating minimizers of the free–energy density


functional f ♯m over the set E1.


In contrast to the convex setM ♯
m which may be either empty or not weak∗–


compact, the set Ω ♯
m ⊂ E1 is always a (non–empty) weak∗–compact convex set:


Lemma 3.16 (Properties of the set Ω ♯
m for m ∈ M1).


The set Ω ♯
m is a (non–empty) convex and weak∗–compact subset of E1.


Proof. The convexity of the set Ω ♯
m results from the affinity of f ♯m. Since


E1 is a weak∗–compact subset of U∗, the weak∗–topology is metrizable on E1


(Theorem 12.10) and Ω ♯
m ⊂ E1 is weak∗–compact by Lemma 12.36.


Notation 3.17 (Generalized t.i. equilibrium states).


The letter ω is exclusively reserved to denote generalized t.i. equilibrium states.


Extreme points of Ω ♯
m are usually written as ω̂ ∈ E(Ω ♯


m) (cf. Theorem 12.11).


Obviously, M ♯
m ⊂ Ω ♯


m and for any Φ ∈ W1, i.e., m = (Φ, 0, 0) ∈ M1,


MΦ = ΩΦ. Conversely, ergodic generalized t.i. equilibrium states ω̂ ∈ Ω ♯
m ∩ E1


are always contained in M ♯
m:


Lemma 3.18 (Ergodic generalized t.i. equilibrium states are minimizers).


For any m ∈ M1, Ω
♯
m ∩ E1 = M ♯


m ∩ E1. In particular, if Ω ♯
m is a face then it is


the weak∗–closure of the non–empty set M ♯
m of minimizers of f ♯m over E1.


12E1 is sequentially weak∗–compact because it is weak∗–compact and metrizable in the
weak∗–topology (Theorem 12.10).
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Proof. Because of Definition 3.15, the proof is a direct consequence of


the continuity of the space–averaging functional ∆A at any ergodic state ρ ∈
E1 together with Lebesgue’s dominated convergence theorem and the weak∗–


lower semi–continuity of the (local) free–energy density functional fΦ (3.8), see


Theorem 2.19 (iii), Lemmata 2.28 (i) and 2.31 (i).


Additionally, if Ω ♯
m is a face then by affinity of f ♯m, any state of the convex


hull of Ω ♯
m ∩ E1 is a minimizer of f ♯m. By Krein–Milman theorem (Theorem


12.11), Ω ♯
m is contained in the weak∗–closure of the set of all minimizers of f ♯m.


On the other hand, as any minimizer of f ♯m is contained in the closed set Ω ♯
m,


the weak∗–closure of the set of all minimizers is obviously included in Ω ♯
m.


We observe now that Definition 3.15 is not the only natural way of defining


generalized t.i. equilibrium states. Indeed, Theorem 3.12 (i) says that the


pressure P♯
m is also given (up to a minus sign) by the infimum of the reduced


free–energy density functional gm over E1. The functional gm from Definition


3.6 is a weak∗–lower semi–continuous map (Lemma 3.7 (i)) and has only (usual)


minimizers in the set E1 as any sequence {ρn}∞n=1 ⊂ E1 of approximating t.i.


minimizers of gm converges to a minimizer of gm over E1. Minimizers of gm
over E1 form a non–empty set denoted by


(3.10) M̂m :=


{
ω ∈ E1 : gm (ω) = inf


ρ∈E1


gm(ρ)


}
.


This set is weak∗–compact and included in the set Ω ♯
m of generalized t.i. equi-


librium states:


Lemma 3.19 (Properties of the set M̂m for m ∈ M1).


(i) The set M̂m is a (non–empty) weak∗–compact subset of E1.


(ii) The weak∗–closed convex hull of M̂m is included in Ω ♯
m, i.e.,


co(M̂m) ⊂ Ω ♯
m.


Proof. The assertion (i) is a direct consequence of the weak∗–lower semi–


continuity of the functional gm (Lemma 3.7 (i)) together with the weak∗–


compacticity of E1. The second one results from Lemmata 3.7 (ii), 3.9 and 3.16.


Indeed, by Lemma 3.7 (ii), for any ω ∈ M̂m, there is a sequence {ρ̂n}∞n=1 ⊂ E1
of ergodic states converging in the weak∗–topology to ω with the property that


gm(ρ̂n) = f ♯m(ρ̂n) converges to gm(ω) as n → ∞. Since by Lemma 3.9, gm(ω)


is also the infimum of the functional f ♯m over E1, we obtain that ω ∈ Ω ♯
m, see


Definition 3.15. As a consequence, the second assertion (ii) holds because Ω ♯
m


is convex and weak∗–compact by Lemma 3.16.


Definition 3.15 seems to be a more reasonable way of defining generalized


t.i. equilibrium states. Indeed, M̂m is generally not convex because the func-


tional gm is generally not convex provided that Φa,− ̸= 0 (a.e.) or Φ′
a,− ̸= 0
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(a.e.). Hence, we have, in general, only one inclusion: M̂m ⊂ Ω ♯
m. In fact, we


show in Theorem 3.21 (i) that the weak∗–closed convex hull of M̂m equals Ω ♯
m.


The equality M̂m = Ω ♯
m holds for purely repulsive long range models for which


Φa,− = Φ′
a,− = 0 (a.e.), see Theorem 3.25 (+).


Remark 3.20 (Generalized t.i. ground states).


All results concerning generalized t.i. equilibrium states are performed at finite


temperature, i.e., at fixed β ∈ (0,∞). However, each weak∗–limit point ω of the


sequence of states ω(n) ∈ Ω ♯
mi


of models {mn}n∈N in M1 such that βn → ∞ and


mn → m ∈ M1 can be seen as a generalized t.i. ground state of m. An analysis


of generalized t.i. ground states is not performed here, but it essentially uses


the same kind of arguments as for Ω ♯
m, see, e.g., [9, Section 6.2].


3.4. Structure of the set Ω ♯
m of generalized t.i. equilibrium states


By Lemma 3.8 (i) recall that the free–energy density functional f ♯m is affine but


generally not weak∗–lower semi–continuous, even on the set E1 of t.i. states


as explained in Sections 3.2 and 3.3. The variational problem


P♯
m = − inf


ρ∈E1


f ♯m(ρ)


given in Theorem 3.12 (i) is, however, not as difficult as it may look like


provided it is attacked in the right way.


Indeed, since we are interested in global (possibly approximating) t.i. min-


imizers of f ♯m (cf. Definition 3.15), it is natural to introduce its Γ–regularization


ΓE1
(f ♯m) on E1, see Definition 12.27 in Section 12.5. Indeed, for all m ∈ M1,


inf
ρ∈E1


f ♯m(ρ) = inf
ρ∈E1


ΓE1
(f ♯m)(ρ),


see Theorem 12.37 (i). The functional ΓE1
(f ♯m) has the advantage to be a


weak∗–lower semi–continuous convex functional, see Section 12.5. As a con-


sequence, ΓE1
(f ♯m) has minimizer and only (usual) minimizers over the set E1


as any sequence of approximating t.i. minimizers of ΓE1
(f ♯m) automatically


converges to a minimizer of this functional over E1. In fact, the set of mini-


mizers of ΓE1
(f ♯m) coincides with the set Ω ♯


m of generalized minimizers of f ♯m,


see Lemma 3.16 and Theorem 12.37 (ii). Hence, we shall describe it in more


details.


The free–energy density functional f ♯m is the sum of maps (3.4) (with +)


and (3.5). From Theorem 2.19 (v), the Γ–regularization of ∆a,+ on E1 is the


weak∗–lower semi–continuous convex map


(3.11) ρ 7→ |γa,+ρ
(
eΦa


+ ieΦ′
a


)
|22,


(cf. (2.16)), whereas the Γ–regularization of the map (3.5) on E1 is itself be-


cause (3.5) is a weak∗–lower semi–continuous convex functional (cf. Corollary
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12.30). Therefore, we could try to replace the functional ∆a,+ in f ♯m by its Γ–


regularization (3.11). Doing this we denote by f ♭m the real functional defined


by


(3.12) f ♭m (ρ) := ∥γa,+ρ
(
eΦa


+ ieΦ′
a


)
∥22 − ∥∆a,− (ρ) ∥1 + eΦ(ρ)− β−1s(ρ)


for all ρ ∈ E1. However, we can not expect that the functional f ♭m is, in all


cases13, equal to the Γ–regularization ΓE1
(f ♯m) of f


♯
m because the Γ–regularization


Γ (h1 + h2) of the sum of two functionals h1 and h2 is generally not equal to


the sum Γ (h1) + Γ (h2).


In fact, the Γ–regularization ΓK(h) of any functional h is its largest lower


semi–continuous and convex minorant on K (Corollary 12.30) and as f ♭m is a


convex weak∗–lower semi–continuous functional (cf. Lemmata 2.28 (i), 2.31 (i)


and 6.19), we have the inequalities


(3.13) f ♭m (ρ) ≤ ΓE1
(f ♯m) (ρ) ≤ f ♯m (ρ)


for all ρ ∈ E1. The first inequality is generally strict. This can easily be seen


by using, for instance, any model m ∈ M1 such that


∥∆a,− (ρ)∥1 = ∥∆a,+ (ρ)∥1
for all ρ ∈ E1. As a consequence, the variational problem


(3.14) P♭
m := − inf


ρ∈E1


f ♭m(ρ)


is only a upper bound of the pressure P♯
m, i.e., P


♭
m ≥ P♯


m.


Nevertheless, P♭
m is still an interesting variational problem because it has


a direct interpretation in terms of the max–min variational problem F♭
m of


the thermodynamic game defined in Definition 3.35, see Theorem 3.36 (♭).


Moreover, as ∆A (ρ̂) = |ρ̂(A)|2 for any ergodic state ρ̂ ∈ E1 and A ∈ U , we
have that


f ♭m(ρ̂) = gm(ρ̂) = f ♯m(ρ̂)


for all extreme states ρ̂ ∈ E1. By (3.13), it follows that ΓE1
(f ♯m) coincides


on E1 with the explicit weak∗–lower semi–continuous functional gm defined in


Definition 3.6:


(3.15) ΓE1
(f ♯m)(ρ̂) = gm(ρ̂) = f ♭m(ρ̂) = f ♯m(ρ̂)


for any m ∈ M1 and all ρ̂ ∈ E1.
Since the set E1 of extreme points of E1 is dense (cf. Corollary 6.6),


Equality (3.15) is a strong property on the functional ΓE1
(f ♯m). Indeed, by


combining (3.15) with Lemma 2.28, Lemma 3.8, Corollary 12.30, Lemma 12.33,


and Theorem 12.37, we arrive at a fundamental characterization of the set Ω ♯
m


of generalized t.i. equilibrium states:


13In fact, f ♭
m = gm = ΓE1(f


♯
m) when Φa,− = 0 (a.e.), see proof of Theorem 3.21.
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Theorem 3.21 (Structure of the set Ω ♯
m for any m ∈ M1).


(i) The weak∗–compact and convex set Ω ♯
m is the weak∗–closed convex hull of


the weak∗–compact set M̂m (3.10), i.e.,


Ω ♯
m = co(M̂m).


(ii) The set E(Ω ♯
m) of extreme states of Ω ♯


m is included in M̂m, i.e.,


E(Ω ♯
m) ⊆ M̂m.


(iii) For any ω ∈ Ω ♯
m, there is a probability measure vω on Ω ♯


m such that


vω(E(Ω ♯
m)) = 1 and ω =


∫
E(Ω♯


m)
dvω(ω̂) ω̂.


Proof. We first prove that ΓE1
(f ♯m) = ΓE1


(gm) on E1. We start by showing


that ΓE1
(f ♯m) is a lower bound for ΓE1


(gm).


For any ρ ∈ E1, there is, by Lemma 3.7 (ii), a sequence {ρ̂n}∞n=1 ⊂ E1
of ergodic states converging in the weak∗–topology to ρ and such that gm(ρ̂n)


converges to gm(ρ). By (3.15), it follows that ΓE1
(f ♯m)(ρ̂n) also converges to


gm(ρ). Moreover, as ΓE1
(f ♯m) is weak


∗–lower semi–continuous on E1,


(3.16) ΓE1
(f ♯m)(ρ) ≤ lim


n→∞
ΓE1


(f ♯m)(ρ̂n) = gm(ρ)


for any ρ ∈ E1. Applying Corollary 12.30 we deduce from (3.16) that


(3.17) ΓE1
(f ♯m)(ρ) ≤ ΓE1


(gm)(ρ)


for all ρ ∈ E1. We show next the converse inequality.


Since the functional ΓE1
(gm) is convex, by using Theorem 2.9 together


with Jensen’s inequality (Lemma 12.33), Lemma 3.8 (ii), and Equality (3.15),


we obtain that


ΓE1
(gm)(ρ) ≤


∫
E1


dµρ(ρ̂)ΓE1
(gm)(ρ̂) = f ♯m(ρ)


for all ρ ∈ E1, which, by Corollary 12.30, implies the inequality


(3.18) ΓE1
(gm)(ρ) ≤ ΓE1


(f ♯m)(ρ)


for all ρ ∈ E1. Therefore, Inequalities (3.17) and (3.18) yield ΓE1
(gm) =


ΓE1
(f ♯m) on E1.


We apply now Theorem 12.37 to K = E1 and h = f ♯m to show that the


set of minimizers of ΓE1
(f ♯m) over E1 is the weak∗–closed convex hull of Ω ♯


m.


By Lemma 3.16, Ω ♯
m is a convex and weak∗–compact set. Hence, the set of


minimizers of ΓE1
(f ♯m) over E1 equals Ω ♯


m. Then, as ΓE1
(gm) = ΓE1


(f ♯m) on


E1, Ω
♯
m is also the set of minimizers of ΓE1


(gm) over E1 and by applying again


Theorem 12.37 (i)–(ii) and also Theorem 12.38 (i) to K = E1 and h = g♯m we


get the assertions (i)–(ii).
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The third statement (iii) is a consequence of Choquet theorem (see The-


orem 12.18) because the set Ω ♯
m is convex, weak∗–compact (Lemma 3.16), and


metrizable by Theorem 12.10. In particular, the equality


ω =


∫
E(Ω♯


m)
dvω(ω̂) ω̂


means, per definition, that ω ∈ Ω ♯
m is the barycenter of the probability measure,


i.e., the normalized positive Borel regular measure, vω on Ω ♯
m, see Definition


12.15 and Theorem 12.16.


Remark 3.22 (Minimization of real functionals).


Theorem 3.21 (i)–(ii) can be proven without Theorems 12.37–12.38 by using


Lemma 3.19 combined with Lanford III – Robinson theorem [23, Theorem 1]


(Theorem 12.46) and Lemma 3.9. However, Theorems 12.37–12.38 – which do


not seem to have been proven before – are very useful results to analyze varia-


tional problems with non–convex functionals on a compact convex set K. In-


deed, the minimization of any real functional h over K can be done in this case


by analyzing a variational problem related to a convex lower semi–continuous


functional ΓK (h) for which various methods are available.


Note that the integral representation (iii) in Theorem 3.21 may not be


unique, i.e., Ω ♯
m may not be a Choquet simplex (Definition 12.23) in contrast


to all sets E
ℓ⃗
for all ℓ⃗ ∈ Nd, see Theorems 2.9 and 2.12. In Theorem 3.46 we


give some special (but yet physically relevant) cases for which the sets Ω ♯
m are


simplices.


Remark 3.23 (Pure thermodynamic phases).


From Theorem 3.21, we have in Ω ♯
m a notion of pure and mixed thermodynamic


phases (equilibrium states) by identifying purity with extremality. If Ω ♯
m turns


out to be a face in E1 (see, e.g., Theorem 3.25 (−)) then purity corresponds


to ergodicity as E(Ω ♯
m) = Ω ♯


m ∩ E1 in this special case.


Remark 3.24 (Gauge invariant t.i. equilibrium states).


If the model m ∈ M1 is gauge invariant, which means that Ul ∈ U◦ (cf. (2.6)),


then the set Ω ♯,◦
β := Ω ♯


m ∩ E◦
1 of gauge invariant t.i. equilibrium states of m


is the weak∗–closed convex hull of the (non–empty) set M̂m ∩E◦
1 and its set of


extreme points equals


E(Ω ♯,◦
β ) = E(Ω ♯


m) ∩ E◦
1 ⊂ M̂m ∩ E◦


1 ,


cf. Remark 2.13. This follows by using Theorem 3.21 together with elementary


arguments. We omit the details.


We conclude now this subsection by analyzing some effects of negative and


repulsive long range interactions on the thermodynamics of models m ∈ M1,
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see Definition 3.4. In particular, we observe that long range attractions Φa,−
and Φ′


a,− have no important effect on the structure of the set Ω ♯
m of generalized


t.i. equilibrium states which is, for all purely local models (Φ, 0, 0) ∈ M1, a


(non–empty) closed face of E1. By contrast, long range repulsions Φa,+ and


Φ′
a,+ have generally a geometrical effect by possibly breaking the face structure


of the set Ω ♯
m of generalized t.i. equilibrium states. Indeed, we have the


following statements:


Theorem 3.25 (Ω ♯
m when Φa,+ = Φ′


a,+ = 0 or Φa,− = Φ′
a,− = 0).


(−) If Φa,+ = Φ′
a,+ = 0 (a.e.) then Pm := P♯


m = P♭
m and Ω ♯


m = M ♯
m is a closed


face of the Poulsen simplex E1.


(+) If Φa,− = Φ′
a,− = 0 (a.e.) then Pm := P♯


m = P♭
m and Ω ♯


m = M̂m is the set


of minimizers of the convex functional gm over E1, cf. (3.10).


Proof. In any case, f ♭m is weak∗–lower semi–continuous, see (3.12). If


Φa,+ = Φ′
a,+ = 0 (a.e.) then f ♭m = f ♯m = ΓE1


(f ♯m) is also affine, see Definition


3.5 and (3.13). Then the first assertion (−) is obvious.


If Φa,− = Φ′
a,− = 0 (a.e.) then f ♭m = gm and, by Theorem 3.12 (i),


Pm := P♯
m = P♭


m. Moreover, the weak∗–lower semi–continuous functional gm
becomes convex when Φa,− = Φ′


a,− = 0 (a.e.), see Definition 3.6 and (3.12).


As a consequence, the set M̂m of minimizers of f ♭m = gm over E1 is convex and


also weak∗–compact because of Lemma 3.19 (i). Then applying Theorem 3.21


(i) we arrive at the second assertion (+).


If Φa,− = Φ′
a,− = 0 (a.e.) then gm = f ♭m can be strictly convex. As a


consequence, its set M̂m of minimizers over E1 is, in general, not a face, see


Lemma 11.8 in Section 11.2. This geometrical effect can lead to a long range


order (LRO) implied by long range repulsions, see Section 3.8.


3.5. Gibbs states versus generalized equilibrium states


The Gibbs equilibrium state is defined in Definition 12.1 and equals the ex-


plicitly given state ρl := ρΛl,Ul
(12.2) because of Theorem 12.2, see Section


12.1. The physical relevance of such a finite volume equilibrium state is based


– among other things – on the minimum free energy principle and the sec-


ond law of thermodynamics as explained in Section 12.1: ρl is a finite volume


thermal state at equilibrium. In the same way, a generalized t.i. equilibrium


state ω ∈ Ω ♯
m represents an infinite volume thermal state at equilibrium. There


are, however, important differences between the finite volume system and its


thermodynamic limit:


• Non–uniqueness of generalized t.i. equilibrium states. The Gibbs equilib-


rium state is the unique minimizer in EΛ of the finite volume free–energy
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density (Theorem 12.2) but at infinite volume, ω ∈ Ω ♯
m may not be


unique, see, e.g., [9, Section 6.2]. Such a phenomenon is found in symme-


try broken quantum phases like the superconducting phase. Mathemati-


cally, it is related to the fact that we leave the Fock space representation


of models to go to a representation–free formulation of thermodynamic


phases. Doing so we take advantage of the non–uniqueness of the rep-


resentation of the C∗–algebra U , as stressed for instance in [24, 25, 26]


for the BCS model in infinite volume. This property is, indeed, neces-


sary to get non–unique generalized equilibrium states which imply phase


transitions.


• Space symmetry of generalized equilibrium states. The Gibbs equilibrium


state minimizes the finite volume free–energy density functional over the


set E of all states (Theorem 12.2). Observe that the Gibbs equilibrium


state may eventually not converge to a t.i. state in the thermodynamic


limit. By contrast, generalized t.i. equilibrium states ω ∈ Ω ♯
m are weak∗–


limit points of approximating minimizers of the free–energy density func-


tional f ♯m over the subset E1 ⊂ E of t.i. states (Theorem 3.12 (i)). Indeed,


the functional f ♯m is, a priori, only well–defined on the set E
ℓ⃗
(cf. Def-


inition 3.5). Therefore, it only makes sense to speak about generalized


ℓ⃗.Zd–invariant equilibrium states. The translation invariance property of


interactions in every model m ∈ M1 ensures the existence of generalized


t.i. equilibrium states (Ω ♯
m ̸= ∅), but it does not exclude the existence of


generalized ℓ⃗.Zd–invariant equilibrium states for ℓ⃗ ̸= (1, · · · , 1). In other


words, a t.i. (physical) system can lead to periodic (non–translation


invariant) structures. This phenomenon can be an explanation of the


appearance of periodic superconducting phases as observed recently, see,


e.g., [27, 28]. No comprehensive theory is available to explain such a phe-


nomenon and we will investigate this question in another paper by using


the present formalism, in particular the decomposition of generalized t.i.


equilibrium states w.r.t. generalized ℓ⃗.Zd–invariant equilibrium states.


Observe further that, by Theorem 8.8, there is a natural extension F♯
m


(8.7) of f ♯m on E such that


P♯
m = − inf


ρ∈E
F♯
m (ρ) = − inf


ρ∈Eℓ⃗


f ♯m(ρ) = − inf
ρ∈E1


f ♯m(ρ).


So, the first equality could be used to define non–periodic generalized


equilibrium states for long range systems.


Remark 3.26 (Generalized ℓ⃗.Zd–invariant equilibrium states).


Using periodically invariant interactions the set of generalized ℓ⃗.Zd–invariant


equilibrium states can be analyzed in the same way we study Ω ♯
m. In fact, we


restrict our analysis on t.i. Fermi systems, but all our studies can also be done


for models constructed from periodically invariant interactions.







FERMI SYSTEMS WITH LONG RANGE INTERACTIONS 37


The Gibbs equilibrium state ρl, seen as defined either on the local algebra


UΛl
or on the whole algebra U by periodically extending14 it (with period


(2l + 1) in each direction of the lattice L), should converge to a minimum of


the functional F♯
m (8.7) over E but it may not converge to a generalized t.i.


equilibrium state ω ∈ Ω ♯
m. By contrast, the space–averaged t.i. Gibbs state


(3.19) ρ̂l :=
1


|Λl|
∑
x∈Λl


ρl ◦ αx ∈ E1


constructed from ρl := ρΛl,Ul
(12.2) and the ∗–automorphisms {αx}x∈Zd de-


fined on U by (2.7) always converges in the weak∗–topology to a generalized


t.i. equilibrium state, see Theorem 3.29.


This can be seen by using a characterization of generalized t.i. equilibrium


states as tangent functionals to the pressure P♯
m. Indeed, by Definition 3.11,


the pressure P♯
m is a map from M1 to R and, as a consequence, it defines by


restriction a map


(3.20) Φ 7→ P♯
m (Φ) := P♯


m+(Φ,0,0)


from the real Banach space W1 of t.i. interactions to R at any fixed m ∈ M1.


By Theorem 3.12 (ii), the map Φ 7→ P♯
m (Φ) is (norm) continuous and also


convex because it is the supremum over the family {A(ρ)}ρ∈E1
of affine maps


Φ 7→ A(ρ) (Φ) := −∥∆a,+ (ρ) ∥1 + ∥∆a,− (ρ) ∥1 − eΦ(ρ) + β−1s(ρ)


from W1 to R. Therefore, by applying Theorem 12.47 we observe that the


pressure P♯
m has on each point Φ ∈ W1, at least, one continuous tangent linear


functional in W∗
1 , see Definition 12.43 in Section 12.6.


By a slight abuse of notation, note that the set E1 ⊂ U∗ of t.i. states can


be seen as included in W∗
1 . Indeed, the energy density functional eΦ defines


an affine weak∗–homeomorphism ρ 7→ T(ρ) from E1 to W∗
1 which is a norm–


isometry defined for any ρ ∈ E1 by the linear continuous map


Φ 7→ T(ρ) (Φ) := −eΦ(ρ)


from W1 to R. For more details, we recommend Section 6.5, in particular


Lemma 6.18. For convenience, we ignore the distinction between E1 ⊂ U∗ and


T (E1) ⊂ W∗
1 .


Using this view point, Theorem 3.12 (i) says that the map Φ 7→ P♯
m (Φ)


is the Legendre–Fenchel transform of the free–energy density functional f ♯m
extended over the whole space W∗


1 , i.e.,


(3.21) P♯
m (Φ) := P♯


m+(Φ,0,0) = (f ♯m)
∗(Φ),


14By the definition of interactions, ρl is an even state and hence, products of translates of
ρl are well–defined, see [8, Theorem 11.2.].
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see Definitions 12.28 and 12.40. Of course, the free–energy density functional


f ♯m is seen here as a map from E1 ⊂ W∗
1 to R. As a consequence, the pressure


P♯
m is the Legendre–Fenchel transform (f ♯m)


∗(0) of f ♯m at Φ = 0 and it is thus


natural to identify the set of all continuous tangent functionals to Φ 7→ P♯
m (Φ)


at 0 with a set of t.i. states:


Definition 3.27 (Set of tangent states to the pressure).


For β ∈ (0,∞) and any m ∈ M1, we define T ♯
m ⊂ E1 to be the set of t.i.


states which are continuous tangent functionals15 to the map Φ 7→ P♯
m (Φ) at


the point 0 ∈ W1.


Definitions 3.15 and 3.27 are, a priori, not equivalent to each other. In


the special case of purely local interactions Φ, i.e., when m = (Φ, 0, 0), it is


already known that


(3.22) MΦ := M ♯
m = Ω ♯


m = T ♯
m =: TΦ


for translation covariant potentials Φ, see Remark 2.26 and [8, Theorem 12.10.].


In fact, upon choosing h = f ♯m and K = E1 for which Ω(f ♯m, E1) = Ω ♯
m is


convex and weak∗–compact (Lemma 3.16), Corollary 12.48 says that the set


T ♯
m of all continuous tangent functionals equals the set Ω ♯


m of generalized t.i.


equilibrium states. In other words, Definitions 3.15 and 3.27 turn out to be


equivalent:


Theorem 3.28 (Generalized t.i. equilibrium states as tangent states).


For all m ∈ M1, T
♯
m = Ω ♯


m.


The equivalence of Definitions 3.15 and 3.27 – in the special case of local


models m = (Φ, 0, 0) – has been proven, for instance, in [8, Theorem 12.10.] or


in [5, Proof of Theorem 6.2.42.] for quantum spin systems by using two results


of convex analysis: Mazur theorem [29] and Lanford III – Robinson theorem


[23, Theorem 1], see Theorems 12.44 and 12.46. This method is standard, but


highly non trivial. In fact, as observed in [30, Theorem I.6.6], the approach of


Theorem 12.47, which uses the Legendre–Fenchel transform, is much easier.


Mazur theorem [29] (Theorem 12.44) has an interesting consequence on


the instability of coexisting thermodynamic phases. Indeed, thermodynamic


phases are identified here with generalized t.i. equilibrium states. From The-


orem 12.44 and Remark 12.45 combined with Theorem 3.28, the set of t.i.


interactions in W1 having exactly one generalized t.i. equilibrium state is


dense. Hence, coexistence of thermodynamic phases is unstable in the sense


that they can be destroyed by arbitrarily small (w.r.t. to the norm ∥ · ∥W1
)


perturbations of the local interaction Φ of m ∈ M1. This phenomenon is well–


15Recall that we identify ρ ∈ E1 with T (ρ) ∈ W∗
1 , cf. Lemma 6.18.
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known within the case of purely local models, see, e.g., [5, Observation 2, p.


303] for the case of quantum spin systems.


We are now in position to prove that the space–averaged t.i. Gibbs state


ρ̂l defined by (3.19) always converges in the weak∗–topology to a generalized


t.i. equilibrium state:


Theorem 3.29 (Weak∗–limit of space–averaged t.i. Gibbs states).


For any m ∈ M1, the weak∗–accumulation points of the sequence {ρ̂l}l∈N of


ergodic states ρ̂l ∈ E1 belong to the set Ω ♯
m of generalized t.i. equilibrium states.


Proof. Note that ρ̂l ∈ E1 is an ergodic state, see the proof of Corollary 6.6.


Because E1 is weak∗–compact and metrizable, the t.i. state ρ̂l converges in


the weak∗–topology – along a subsequence – towards ω ∈ E1. Therefore, since


by Theorem 3.28 T ♯
m = Ω ♯


m, we need to prove that ω ∈ T ♯
m is a continuous


tangent functionals to the map Φ 7→ P♯
m (Φ) (3.20) at the point 0 ∈ W1.


For any t.i. interaction Φ ∈ W1, we use Theorem 12.2 (passivity of Gibbs


states) to obtain the inequality


(3.23) pl,m+(Φ,0,0) − pl,m ≥ − 1


|Λl|
ρl
(
UΦ
Λl


)
.


If Φ ∈ W f
1 is a finite range interaction then Lemma 8.6 tells us that the mean


internal energy per volume ρl(U
Φ
Λl
)/|Λl| and the energy density eΦ(ρ̂l) converge


as l → ∞ to the same limit which is eΦ (ω) because of the weak∗–continuity of


eΦ (Lemma 2.31 (i)). Therefore, by combining (3.23) with Definition 3.11 and


Lemma 8.6 one gets that for all Φ ∈ W f
1 and m ∈ M1,


(3.24) P♯
m+(Φ,0,0) − P♯


m ≥ −eΦ (ω) .


By density of the space W f
1 in W1 together with the continuity of the maps


Φ 7→ eΦ (ρ) (Lemma 2.31 (ii)) and Φ 7→ P♯
m (Φ) (cf. (3.20) and Theorem 3.12


(ii)), we extend the inequality (3.24) to all t.i. interactions Φ ∈ W1, which


means that ω ∈ T ♯
m = Ω ♯


m (Theorem 3.28).


A sufficient condition to obtain the weak∗–convergence of the Gibbs equi-


librium state ρl is to have a permutation invariant model, see Section 7, in


particular Definition 7.6 and Corollary 7.9. In fact, the convergence or non–


convergence of the Gibbs equilibrium state ρl drastically depends on the bound-


ary conditions on the box Λl which can break the translation invariance of the


infinite volume system. If periodic boundary conditions (see Section 5) are im-


posed, i.e., the internal energy Ũl (Definition 5.7) is defined to be translation


invariant on the torus Λl, then the Gibbs equilibrium state ρ̃l := ρΛl,Ũl
(12.2)


with periodic boundary conditions and its space–average ρ̂l have the same


weak∗–limit point and ρ̃l converges in the weak∗–topology to a generalized t.i.


equilibrium state ω ∈ Ω ♯
m, see Theorem 5.13.
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We conclude now by another interesting consequence – already observed


by Israel [4, Theorem V.2.2.] for quantum spin systems with purely local


interactions – of Theorem 3.28. Indeed, we deduce from Theorem 3.28 that


any finite set of extreme t.i. states can be seen as a subset of Ω ♯
m for some


model m:


Corollary 3.30 (Generalized t.i. equilibrium ergodic states).


Let m ∈ M1 such that Ω ♯
m+(Φ,0,0) is a face for all Φ ∈ W1. Then, for any subset


{ω̂1, . . . , ω̂n} of E1, there is Φ ∈ W1 such that {ω̂1, . . . , ω̂n} ⊂ Ω ♯
m+(Φ,0,0).


Proof. The corollary follows from Bishop–Phelps’ theorem together with


Theorem 2.9. The arguments are exactly those of Israel. Therefore, for more


details, we recommend [4, Theorem V.2.2.].


Note that the assumption of Corollary 3.30 is satisfied, for instance, if the


long range part of the model m ∈ M1 is purely attractive, i.e., Φa,+ = 0 (a.e.),


see Theorem 3.25 (−).


3.6. Thermodynamics and game theory


Effects of the long range attractions Φa,−,Φ
′
a,− and repulsions Φa,+,Φ


′
a,+ de-


fined in Definition 3.4 are not symmetric w.r.t. thermodynamics as everything


depends on variational problems given by infima, see Theorem 3.12 (i). For


instance, the long range attractions Φa,− and Φ′
a,− only reinforce the weak∗–


lower semi–continuity of the free–energy density functional f ♯m. In particular,


if Φa,+ = Φ′
a,+ = 0 (a.e.) then Ω ♯


m is, as for models (Φ, 0, 0) ∈ M1, a (non–


empty) closed face of E1, see Theorem 3.25 (−). By contrast, the long range


range repulsions Φa,+ and Φ′
a,+ have a stronger effect. Indeed, Φa,+ and Φ′


a,+


generally break the weak∗–lower semi–continuity of the functional f ♯m on E1


which, by elementary arguments, yields, in general, to a non–affine functional


ΓE1
(f ♯m). As a consequence, Ω ♯


m is generally not anymore a closed face of E1,


see Theorem 3.25 (+) and Lemma 11.8 in Section 11.2.


To understand this in more details, we use the view point of game the-


ory and interpret in Definition 3.35 the long range attractions Φa,−,Φ
′
a,− and


repulsions Φa,+,Φ
′
a,+ of any model m ∈ M1 as attractive and repulsive play-


ers, respectively. This approach is strongly related with the validity of the


so–called Bogoliubov approximation. In the context of the analysis of the


thermodynamic pressure of models m ∈ Mdf
1 ⊂ M1 (cf. Section 3.1) with


discrete long range part, it is known as the approximating Hamiltonian method


[13, 14, 15, 16], see Sections 4.2 and 12.2. Beside our interpretation of thermo-


dynamics in terms of game theory, this method gives a natural way to compute,


from local interactions, the variational problems given in Theorem 3.12 (i) for


the pressure P♯
m.
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We show below that the pressure P♯
m can be studied for any models


m := (Φ, {Φa}a∈A, {Φ′
a}a∈A) ∈ M1


via a (Bogoliubov) min–max variational problem on the Hilbert space L2(A,C)
of square integrable functions, which is interpreted as the result of a two–


person zero–sum game. Our proof establishes, moreover, a clear link between


the Bogoliubov min–max principle for the pressure of long range models and


von Neumann min–max theorem. Functions ca ∈ L2(A,C) are related to


approximating interactions defined as follows:


Definition 3.31 (Approximating interactions).


Approximating interactions of any model m ∈ M1 are t.i. interactions defined,


for each ca ∈ L2(A,C), by


Φ(ca) = Φm(ca) := Φ + 2Re
{⟨


Φa + iΦ′
a, γaca


⟩}
∈ W1


with ⟨·, ·⟩ being the scalar product constructed in Section 12.3 for X = W1 and


γa ∈ {−1, 1} a fixed measurable function.


Then, by Definition 2.22, the internal energy U
Φ(ca)
Λl


associated with the


t.i. interaction Φ(ca) equals


(3.25) Ul(ca) := UΦ
Λl


+


∫
A
γa


{
ca(U


Φa


Λ + iU
Φ′


a


Λ )∗ + c̄a(U
Φa


Λ + iU
Φ′


a


Λ )
}
da (a) .


In particular, for any generalized t.i. equilibrium state ω ∈ Ω ♯
m and any ca ∈


L2(A,C),


|Λl|−1ω(Ul − Ul(ca)) + ∥ca,+∥22 − ∥ca,−∥22(3.26)


=


∫
A
γa


∣∣∣(|Λl|−1ω(UΦa


Λl
+ iU


Φ′
a


Λl
)− ca


)∣∣∣2 da (a)
with ca,± := γa,±ca, where γa,± ∈ {0, 1} are the negative and positive parts


(3.1) of the fixed measurable function γa. Upon choosing


(3.27) ca = da := |Λl|−1ω(UΦa


Λl
+ iU


Φ′
a


Λl
) + o(1) (a.e.)


we observe that the energy densities


|Λl|−1ω(Ul) and |Λl|−1ω(Ul(da))


only differ in the thermodynamic limit l → ∞ by the explicit constant


(∥da,−∥22 − ∥da,+∥22).


In particular, by using the Bogoliubov (convexity) inequality [31, Corollary


D.4], we can expect that the approximating interaction Φ(da) ∈ W1 highlights


the thermodynamic properties of models m ∈ M1.







42 J.-B. BRU AND W. DE SIQUEIRA PEDRA


Remark 3.32. Even if the order parameter da ∈ L2(A,C) is shown to be


generally not unique, these heuristic arguments are confirmed by Theorem 3.36


on the level of pressure, and by Theorems 3.39 on the level of states.


Therefore, in order to understand the variational problems on the set E1


given by Theorem 3.12 (i) and more particularly the set Ω ♯
m of generalized t.i.


equilibrium states (Definition 3.15), we introduce the concept of approximating


free–energy density functionals whose definition needs some preliminaries.


First, for any ca ∈ L2(A,C), the finite volume pressure


(3.28) pl (ca) :=
1


β|Λl|
lnTrace∧HΛ


(e−βUl(ca))


associated with the internal energy Ul (ca) (3.25) converges as l → ∞ to a


well–defined (infinite volume) pressure


(3.29) Pm (ca) = − inf
ρ∈E1


fm (ρ, ca)


given by a variational problem over t.i. states, see Theorem 3.12 (i) or Propo-


sition 9.1 in Section 9.1. In comparison with the pressure P♯
m for all m ∈


M1, Pm (ca) is, in practice, easier to compute because it is associated with


the (purely local) approximating interaction Φ(ca) (Definition 3.31). Indeed,


Pm (ca) is the pressure P(Φ(ca),0,0) and the free–energy density functional fΦ(ca)


(see Definition 2.32) is equal in this case to


(3.30) fm (ρ, ca) := 2Re
{⟨
eΦa


(ρ) + ieΦ′
a
(ρ), γaca


⟩}
+ eΦ(ρ)− β−1s(ρ)


for all ca ∈ L2(A,C) and ρ ∈ E1.


From Lemmata 2.28 (i) and 2.31 (i), the map ρ 7→ fm (ρ, ca) from E1 to R
is weak∗–lower semi–continuous and affine. This implies that the variational


problem (3.29) leading to the pressure Pm(ca) has a closed face of minimizers


(cf. Definition 3.13):


Lemma 3.33 (Equilibrium states of approximating interactions).


For any ca ∈ L2(A,C), the set MΦ(ca) = ΩΦ(ca) of t.i. equilibrium states of the


approximating interaction Φ(ca) is a (non–empty) closed face of the Poulsen


simplex E1.


For more details concerning the map (ρ, ca) 7→ fm (ρ, ca), see Proposition 9.1


in Section 9.1.


Second, we recall again that the thermodynamics of any model m ∈ M1


drastically depends on the sign of the coupling constant


γa = γa,+ − γa,− ∈ {−1, 1}, where γa,± := 1/2(|γa| ± γa),


see also (3.1). Thus, we define two Hilbert spaces corresponding respectively


to the long range repulsions Φa,+,Φ
′
a,+ and attractions Φa,−,Φ


′
a,− of any model
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m ∈ M1:


(3.31) L2
±(A,C) :=


{
ca,± ∈ L2(A,C) : ca,± = γa,±ca,±


}
.


Note that we obviously have the equality


L2(A,C) = L2
+(A,C)⊕ L2


−(A,C).


Then we define the approximating free–energy density functional fm as follows:


Definition 3.34 (Approximating free–energy density functional).


The approximating free–energy density functional is the map


fm : L2
−(A,C)× L2


+(A,C) → R


defined for any ca,± ∈ L2
±(A,C) by


fm (ca,−, ca,+) := −∥ca,+∥22 + ∥ca,−∥22 − Pm (ca,− + ca,+) .


This functional is analyzed in Lemma 10.1 and is used to define the (two–


person zero–sum) thermodynamic game with the so–called conservative values


F♭
m and F♯


m:


Definition 3.35 (Thermodynamic game).


The thermodynamic game is the two–person zero–sum game defined from the


functional fm with conservative values


F♭
m := sup


ca,+∈L2
+(A,C)


f♭m (ca,+) and F♯
m := inf


ca,−∈L2
−(A,C)


f♯m (ca,−) ,


where


f♭m (ca,+) := inf
ca,−∈L2


−(A,C)
fm (ca,−, ca,+) , f♯m (ca,−) := sup


ca,+∈L2
+(A,C)


fm (ca,−, ca,+) .


Any function ca,+ ∈ L2
+(A,C) (resp. ca,− ∈ L2


−(A,C)) is interpreted as a


strategy of the repulsive (resp. attractive) player. f♭m is the least gain functional


of the attractive player, whereas f♯m is called the worst loss functional of the


repulsive player. Minimizers (resp. maximizers), if there are any, of f♯m (resp.


f♭m) are the conservative strategies of the attractive (resp. repulsive) player.


For more details concerning two–person zero–sum games, see Section 12.7.


In Section 10.1, we prove that both optimization problems F♭
m and F♯


m are


finite and the two optimizations of fm (ca,−, ca,+) can be restricted to balls in


L2
±(A,C) of radius R <∞, see Lemma 10.4. Moreover, the sup and inf, both


in F♭
m and F♯


m, are attained, i.e., they are respectively a max and a min and


the sets


(3.32)
C♭
m :=


{
da,+ ∈ L2


+(A,C) : F♭
m = f♭m (da,+)


}
,


C♯
m :=


{
da,− ∈ L2


−(A,C) : F
♯
m = f♯m (da,−)


}
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of conservative strategies of the repulsive and attractive players, respectively,


are non–empty. In fact, by Lemma 10.4, the set C♭
m has exactly one element


da,+ if γa,+ ̸= 0 (a.e.), whereas C♯
m is non–empty, norm bounded, and weakly


compact.


The conservative values F♭
m and F♯


m of the thermodynamic game turn out


to be extremely useful to understand the thermodynamics of models m ∈ M1


as they have a direct interpretation in terms of variational problems over the


set E1. Indeed, we prove in Section 10.2 (cf. Lemmata 10.5 (i) and 10.7) the


following theorem:


Theorem 3.36 (Thermodynamics as a two–person zero–sum game).


(♭) P♭
m = −F♭


m with the pressure P♭
m defined, for m ∈ M1, by the minimization


of the functional f ♭m over E1, see (3.14).


(♯) P♯
m = −F♯


m with the pressure P♯
m given, for m ∈ M1, by the minimization


of the functional f ♯m over E1, see Definition 3.11 and Theorem 3.12 (i).


The proof of this theorem uses neither Ginibre inequalities [11, Eq. (2.10)]


nor the Bogoliubov (convexity) inequality [31, Corollary D.4] w.r.t. Ul and


Ul(ca) (3.25). In particular, we never use Equality (3.26). Consequently, the


proof given in this paper is essentially different from those of [13, 14, 15, 16].


Additionally, the equality P♭
m = −F♭


m is a new result and we do not need


additional assumptions as in [13, 14, 15, 16] when γa,+ ̸= 0 (a.e.), see Condition


(A4) and Theorem 12.3 in Section 12.2. Our proof uses, instead, Theorem 3.12


(i) together with a fine analysis of the corresponding variational problems over


the set E1.


It follows from Theorem 3.36 that Pm := P♯
m = P♭


m whenever either Φa,− =


0 (a.e.) or Φa,+ = 0 (a.e.), as explained in Theorem 3.25. However, in the


general case, one only has F♭
m ≤ F♯


m, i.e., P
♭
m ≥ P♯


m, see, e.g., (3.13). In fact,


generally, P♭
m > P♯


m, i.e., F
♭
m < F♯


m. This fact is, indeed, not surprising as a


sup and a inf do not generally commute.


As an example, take A = A∗ ∈ U0 and two ergodic states ω1, ω2 ∈ E1 such


that ω1(A) ̸= ω2(A). From Corollary 3.30, there is Φ ∈ W1 such that the t.i.


states ω1 and ω2 belong to the closed face ΩΦ = MΦ of t.i. equilibrium states


of the (local) model (Φ, 0, 0) ∈ M1. In other words, for any λ ∈ [0, 1], the


convex sum


λω1(A) + (1− λ)ω2(A)


is a minimizer of the free–energy density functional fΦ defined in Definition


2.32. Consequently, by using (6.17) (see Section 6.3) we obtain that


inf
ρ∈E1


fΦ (ρ)= inf
ρ∈E1


{∆A (ρ)−∆A (ρ) + fΦ (ρ)}


> inf
ρ∈E1


{
|ρ (A)|22 −∆A (ρ) + fΦ (ρ)


}
.
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Combined with Theorem 3.36 this strict inequality gives a trivial example


where P♭
m > P♯


m, i.e., F
♭
m < F♯


m, because, for any A = A∗ ∈ U0, there exists


a finite range interaction ΦA ∈ W1 satisfying ∥ΦA∥W1
= ∥A∥ and eΦA(ρ) =


ρ (eΦA) = ρ(A). Other less trivial examples can also be found by directly


showing that F♭
m < F♯


m. Use, for instance, the strong coupling BCS–Hubbard


Hamiltonian described in [9]. Therefore, in general, there is no saddle points


(Definition 12.49) in the thermodynamic game defined in Definition 3.35.


The non–existence of saddle points in the thermodynamic game is an im-


portant observation. It reflects the fact that repulsive and attractive long range


forces Φa,±,Φ
′
a,± (Definition 3.4) are not in “duality” in which concerns ther-


modynamics properties of a given long range model m ∈ W1. Indeed, the long


range attractions Φa,−,Φ
′
a,− and repulsions Φa,+,Φ


′
a,+ act on the thermody-


namics of m ∈ M1 as the attractive and repulsive players, respectively. Since


the result of the thermodynamic game is the conservative value F♯
m = −P♯


m,


the attractive player minimizes the functional f♯m (ca,−), i.e., he optimizes his


worse loss fm (ca,−, ca,+) without knowing the choice da,+ ∈ L2
+(A,C) of the


repulsive player. By contrast, the repulsive player determines his strategy after


having full information on the choice of the attractive player. In other words,


as in general F♭
m < F♯


m, there is a strong asymmetry between both players,


i.e., between the role of the two kinds of long range interactions Φa,−,Φ
′
a,− and


Φa,+,Φ
′
a,+.


The thermodynamic game of any given long range model m can be ex-


tended [33, Ch. 7, Section 7.2] to another two–person zero–sum game with


exchange of information which has the advantage to have, at least, one non–


cooperative equilibrium, also called saddle point in this context. This can be


seen as follows.


First, it is instructive to analyze the variational problems respectively


given by f♭m (ca,+) and f♯m (ca,−) at fixed ca,± ∈ L2
±(A,C). So, we introduced


their sets


(3.33)
C♭
m (ca,+) :=


{
da,− ∈ L2


−(A,C) : f♭m (ca,+) = fm (da,−, ca,+)
}
,


C♯
m (ca,−) :=


{
da,+ ∈ L2


+(A,C) : f
♯
m (ca,−) = fm (ca,−, da,+)


}
of, respectively, minimizers and maximizers for any ca,± ∈ L2


±(A,C). We prove


in Lemma 10.3 that, for all ca,+ ∈ L2
+(A,C), the set C♭


m (ca,+) is non–empty,


norm bounded, and weakly compact, whereas, for all ca,− ∈ L2
−(A,C), the


set C♯
m (ca,−) has exactly one element r+(ca,−) provided that γa,± ̸= 0 (a.e.).


Therefore, we would like to use Theorem 12.51 to extend the strategy set


L2
+(A,C) of the thermodynamic game to the set C


(
L2
−, L


2
+


)
of continuous


mappings from L2
−(A,C) to L2


+(A,C) with L2
−(A,C) and L2


+(A,C) equipped
with the weak and norm topologies, respectively.
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In this context C
(
L2
−, L


2
+


)
is called the set of continuous decision rules of


the repulsive player. If γa,± ̸= 0 (a.e.) then an important continuous decision


rule is given by the unique solution r+(ca,−) of the variational problem f♯m (ca,−),


see Lemma 10.3 (♯). Indeed, the map r+ from L2
−(A,C) to L2


+(A,C) defined


by


(3.34) r+ : ca,− 7→ r+ (ca,−) ∈ C♯
m (ca,−)


belongs to C
(
L2
−, L


2
+


)
because of Lemma 10.8. The functional r+ is called the


thermodynamic decision rule of the model m ∈ M1.


We define now, for any long range model m ∈ M1, a map fextm from


L2
−(A,C) to C(L2


−, L
2
+) by


fextm (ca,−, r̃+) := fm(ca,−, r̃+(ca,−))


for all r̃+ ∈ C(L2
−, L


2
+). This functional is called the loss–gain function of


the extended thermodynamic game of the model m. In contrast to the ther-


modynamic game defined in Definition 3.35, this extended game has the main


advantage to have, at least, one non–cooperative equilibrium:


Theorem 3.37 (Non–cooperative equilibrium of the extended game).


Let γa,+ ̸= 0 (a.e.). Then any da,− ∈ C♯
m and the map r+ ∈ C


(
L2
−, L


2
+


)
defined


by (3.34) form a saddle point of the extended thermodynamic game defined by


F♯
m = sup


r̃+∈C(L2
−,L2


+)


{
inf


ca,−∈L2
−(A,C)


fextm (ca,−, r̃+)


}


= inf
ca,−∈L2


−(A,C)


 sup
r̃+∈C(L2


−,L2
+)
fextm (ca,−, r̃+)


 .


Proof. The map r+ is well–defined because of Lemma 10.3 (♯) and, by


Lemma 10.8, it is continuous w.r.t. the weak topology in L2
−(A,C) and the


norm topology in L2
+(A,C), i.e., r+ ∈ C


(
L2
−, L


2
+


)
.


By Lemma 10.4 (♯), the non–empty set C♯
m ⊂ L2


−(A,C) of conservative


strategies of the attractive player (cf. (3.32)) is norm bounded and weakly


compact, whereas, by Lemma 10.3 (♯), the set C♯
m(ca,−) (cf. (3.33)) has exactly


one element r+(ca,−) at any fixed ca,− ∈ L2
−(A,C). As a consequence, the infi-


mum and supremum of F♯
m <∞ can be restricted to balls BR (0) in L2


±(A,C)
of radius R < ∞. Therefore, by using Lemma 10.1, we can apply Theorem


12.51 to get


(3.35) F♯
m = sup


r̃+∈C(L2
−,L2


+)


{
inf


ca,−∈L2
−(A,C)


fextm (ca,−, r̃+)


}
.
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The inf and sup in the r.h.s. of the last equality trivially commute, i.e.,


(3.36) F♯
m = inf


ca,−∈L2
−(A,C)


 sup
r̃+∈C(L2


−,L2
+)
fextm (ca,−, r̃+)


 ,


because


sup
r̃+∈C(L2


−,L2
+)
fextm (ca,−, r̃+) = fextm (ca,−, r+) = sup


ca,+∈L2
+(A,C)


fm (ca,−, ca,+) .


In particular, for any da,− ∈ C♯
m,


F♯
m = fextm (da,−, r+) = inf


ca,−∈L2
−(A,C)


fextm (ca,−, r+) = sup
r̃+∈C(L2


−,L2
+)
fextm (da,−, r̃+)


which combined with (3.35)–(3.36) implies that (da,−, r+) is a saddle point of


fextm .


Remark 3.38 (Thermodynamics as a three–person zero–sum game).


Since the pressure Pm (ca) in Definition 3.34 of the approximating free–energy


density fm equals the variational problem (3.29) over t.i. states, we could also


see the equality F♯
m = −P♯


m of Theorem 3.36 as the result of a three–person


zero–sum game. By (10.7) and (10.8), note that the infimum over t.i. states


and the supremum over L2
+(A,C) commute with each other, see the proof of


Lemma 10.5 for more details.


3.7. Gap equations and effective theories


The structure of the set Ω ♯
m of generalized t.i. equilibrium states (Definition


3.15) w.r.t. to the thermodynamic game can be now discussed in details. It


is based on Section 11.1 which gives a rigorous justification, on the level of


generalized t.i. equilibrium states, of the heuristics discussed in the beginning


of Section 3.6. In particular, we prove that Equality (3.27) must be satisfied


in the thermodynamic limit for any extreme point of Ω ♯
m.


More precisely, for all functions ca ∈ L2(A,C), we define the (possibly


empty) set


(3.37) Ω ♯
m (ca) :=


{
ω ∈ MΦ(ca) : γa(eΦa


(ω) + ieΦ′
a
(ω)) = ca (a.e.)


}
with MΦ(ca) being the closed face described in Lemma 3.33. Then we obtain


Euler–Lagrange equations for the approximating interactions (cf. Remark 3.42)


– also called gap equations in the Physics literature (cf. Remark 3.43) – which


say that any extreme point of Ω ♯
m must belong to a set


(3.38) Ω ♯
m (da,− + r+(da,−))


with da,− ∈ C♯
m, r+ ∈ C


(
L2
−, L


2
+


)
defined by (3.34), and where C♯


m is the non–


empty, norm bounded, and weakly compact set defined by (3.32), see Lemma


10.4 (♯). Indeed, we obtain the following statements:
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Theorem 3.39 (Gap equations for m ∈ M1– I).


(i) The set M̂m (3.10) of minimizers of the functional gm over E1 equals


M̂m = ∪
da,−∈C♯


m


Ω ♯
m (da,− + r+(da,−)) .


(ii) The set E(Ω ♯
m) of extreme points of Ω ♯


m is included in the union for all


da,− ∈ C♯
m of the sets of all extreme points of the non–empty, disjoint, convex


and weak∗–compact sets (3.38), i.e.,


E(Ω ♯
m) ⊆ ∪


da,−∈C♯
m


E
(
Ω ♯


m (da,− + r+(da,−))
)


Proof. The first assertion (i) corresponds to Theorem 11.4, see Section


11.1. By Corollary 11.3, we also observe that{
Ω ♯


m (da,− + r+(da,−))
}
da,−∈C♯


m


is a family of disjoint subsets of E1 which are all non–empty, convex, and


weak∗–compact. Using (i) and Theorem 3.21 (ii) we arrive at the second as-


sertion (ii) with the set


E
(
Ω ♯


m (da,− + r+(da,−))
)
̸= ∅


of all extreme points of (3.38) being non–empty for any da,− ∈ C♯
m because of


Theorem 12.11 (i).


Remark 3.40 (The set M̂m for purely repulsive/attractive models).


If Φa,− = 0 (a.e.) and Φa,+ ̸= 0 (a.e.) then Theorem 3.39 reads as follows:


M̂m = Ω ♯
m (da,+) with da,+ ∈ C♭


m defined by (3.32), see Lemma 11.2. In partic-


ular, E(Ω ♯
m) = E(Ω ♯


m (da,+)). If Φa,+ = 0 (a.e.) then Ω ♯
m = Mm = co(M̂m) is


a closed face. In particular,


E(Ω ♯
m) = ∪


da,−∈C♯
m


E
(
Ω ♯


m (da,− + r+(da,−))
)
.


Theorem 3.39 is less useful in this last situation.


Theorem 3.39 (ii) implies that, for any ω̂ ∈ E(Ω ♯
m), there is da,− ∈ C♯


m


satisfying the Euler–Lagrange equations (cf. Remark 3.42) – or gap equations


in Physics (cf. Remark 3.43) –


(3.39) da := da,− + r+(da,−) = γa(eΦa
(ω) + ieΦ′


a
(ω)) (a.e.).


Conversely, for any da,− ∈ C♯
m, there is some ω ∈ M̂m satisfying the Euler–


Lagrange equations but ω is not necessarily an extreme point of Ω ♯
m. Observe,


however, that if ω /∈ E(Ω ♯
m) then we have a strong constraint on the set C♯


m:
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Theorem 3.41 (Gap equations for m ∈ M1– II).


For any da,− ∈ C♯
m such that there exists ω ∈ E(Ω ♯


m(da,−+r+(da,−))) satisfying


ω /∈ E(Ω ♯
m), there is a probability measure νda,− on C♯


m not concentrated on da,−
such that (a.e.)


da,− =


∫
C♯
m


d̂a,− dνda,−(d̂a,−) and r+(da,−) =


∫
C♯
m


r+(d̂a,−) dνda,−(d̂a,−).


Proof. If


ω ∈ E
(
Ω ♯


m (da,− + r+(da,−))
)
⊂ M̂m ⊂ Ω ♯


m


and ω /∈ E(Ω ♯
m) then, by Theorem 3.21 (iii), there is a probability measure vω


on Ω ♯
m not concentrated on the convex weak∗–compact set Ω ♯


m (da,− + r+(da,−))


such that


(3.40) vω(E(Ω ♯
m)) = 1 and ω =


∫
E(Ω♯


m)
dvω(ω̂) ω̂.


Recall that eΦ is affine and weak∗–continuous (Lemma 2.31 (i)) and applying


(3.40) on the energy observable eΦa
+ ieΦ′


a
(cf. (2.16)) we obtain that


(3.41) da,− + r+(da,−) =


∫
E(Ω♯


m)
dvω(ω̂) γa(eΦa


(ω̂) + ieΦ′
a
(ω̂)) (a.e.)


because of Lemma 12.17. Hence, the theorem results from (3.39) and (3.41).


Because of this last theorem we expect the equality


(3.42) E(Ω ♯
m) = ∪


da,−∈C♯
m


E
(
Ω ♯


m (da,− + r+(da,−))
)


to hold not only for purely repulsive or purely attractive models (see Remark


3.40), but in a much larger class of long rang models. In fact, for most relevant


models coming from Physics, like BCS–type models, Equality (3.42) clearly


holds.


Remark 3.42 (Euler–Lagrange equations).


Equations (3.39) are Euler–Lagrange equations of the min–max variational


problem F♯
m defined in Definition 3.35. We observe, however, that the pressure


Pm (ca,− + ca,+) in Definition 3.34 is generally not Fréchet differentiable w.r.t.


to either ca,− or ca,+ as the variational problem (3.29) can have several t.i.


equilibrium states (cf. Lemma 3.30). In fact, Theorem 12.44 and Remark


12.45 only ensure the Fréchet differentiability of the convex and continuous


map ca 7→ Pm (ca) from L2(A,C) to R on a dense subset.


Remark 3.43 (Gap equations in Physics).


Equations (3.39) are also called gap equations by analogy with the Bardeen–


Cooper–Schrieffer (BCS) theory for conventional superconductors [34, 35, 36].
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Indeed, within this theory, the existence of a non–zero solution da,− ∈ C♯
m


implies a superconducting state as well as a gap in the spectrum of the effective


(approximating) BCS Hamiltonian. The equations satisfied by da,− are called


gap equations in the Physics literature because of this property.


Recall now that the integral representation (iii) in Theorem 3.21 may not


be unique, i.e., Ω ♯
m may not be a Choquet simplex (Definition 12.23) as one


may conjecture from Theorem 3.39 (ii). For models with purely attractive


long range interactions for which Φa,+ = Φ′
a,+ = 0 (a.e.), observe that Ω ♯


m


cannot generally be homeomorphic to the Poulsen simplex in contrast to all


sets {E
ℓ⃗
}
ℓ⃗∈Nd , see Theorem 2.12. Indeed, the Poulsen simplex has a dense set


of extreme points whereas we have the following assertion (cf. Theorems 3.21


(i), 12.37 (ii) and 12.38 (ii)):


Theorem 3.44 (Density of E(Ω ♯
m) yields convexity of M̂m).


If the compact set M̂m is not convex then E(Ω ♯
m) is not dense in Ω ♯


m.


Note that the convexity of M̂m is only a necessary condition to obtain a dense


set E(Ω ♯
m) of extreme points of Ω ♯


m in Ω ♯
m.


The convexity of the set M̂m can only be broken by the long range attrac-


tions Φa,− and Φ′
a,−, see discussions following Lemma 3.7. Note further that


sets of generalized t.i. equilibrium states are simplices for purely attractive


long range models (Φa,+ = Φ′
a,+ = 0 (a.e.)) as Ω ♯


m is a closed face of E1 in this


case, see Theorem 3.25 (−). Additionally, by using Theorem 3.39 Ω ♯
m is even


a Bauer simplex (Definition 12.24) if the following assumption holds:


Hypothesis 3.45.


For any da,− ∈ C♯
m, the set MΦ(da,−+r+(da,−)) of t.i. equilibrium states of the


approximating interaction Φ(da,− + r+(da,−)) contains exactly one state.


Theorem 3.46 (The set Ω ♯
m for m ∈ M1 as a simplex).


(−) If Φa,+ = 0 (a.e.) then the face Ω ♯
m is a Choquet simplex.


(∃!) Under Hypothesis 3.45 Ω ♯
m is a face and a Bauer simplex.


Proof. The first assertion is trivial. Indeed, by Theorem 2.9, the set E1


is a Choquet simplex and, by Theorem 12.22, its closed faces are Choquet


simplices. Then the assertion (−) results from Theorem 3.25 (−).


Assume now that Hypothesis 3.45 holds. Then, as


Ω ♯
Φ(da,−+r+(da,−)) = MΦ(da,−+r+(da,−))


is a face of E1 (Lemma 3.33), its unique element has to be ergodic and thus


extreme in Ω ♯
m. Hence, using Theorem 3.39, M̂m ⊂ E(Ω ♯


m). By Theorem 3.21


(ii), E(Ω ♯
m) ⊂ M̂m and hence, E(Ω ♯


m) = M̂m is a closed set as M̂m is weak∗–
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compact (cf. Lemma 3.19 (i)). In particular, because M̂m ⊂ E1, Ω ♯
m is a closed


face of E1 and it is thus a Bauer simplex.


If Ω ♯
m is a Bauer simplex (for instance if Hypothesis 3.45 holds) then, by


Theorem 12.25, the generalized t.i. equilibrium states of m can be – affinely


and homeomorphicaly – identified with states on the commutative C∗–algebra


C(E(Ω ♯
m)). For instance, Hypothesis 3.45 is satisfied if, for any da,− ∈ C♯


m, the


approximating interaction


Φ(da,− + r+(da,−)) ∈ W1


is either quadratic in the annihilation and creation operators ax,s, a
+
x′,s′ in any


dimension (d ≥ 1) or corresponds to a finite range one–dimensional (d = 1)


Fermi system. These conditions hold for many relevant models coming from


Physics, like BCS–type models.


This case has also a specific interpretation in terms of game theory as


C♯
m (3.32) is the set of conservative strategies of the attractive player of the


corresponding thermodynamic game defined by Definition 3.35:


Theorem 3.47 (Mixed conservative strategies of the attractive player).


For any m ∈ M1 satisfying Hypothesis 3.45, there is an affine homeomorphism


between Ω ♯
m and the set of states of the commutative C∗–algebra C(C♯


m) of con-


tinuous functions on the (weakly compact) set C♯
m. Here, the homeomorphism


concerns the weak∗–topologies in the sets Ω ♯
m and C(C♯


m).


Proof. This results is a direct consequence of Theorems 3.46 and 12.25


combined with Corollary 11.6.


This last result can be interpreted from the point of view of game theory


as follows. By Riesz–Markov theorem, the set of states on C(C♯
m) is the same


as the set of probability measures on the set C♯
m of conservative strategies of


the attractive player. As discussed above, the best the attractive player can


do – as she/he has no access to the choice of strategy of the repulsive one – is


to choose some conservative strategy in order to minimize her/his loss in the


game. She/he could also do this in a non–deterministic way. I.e., she/he deter-


mines with which probability distribution the different conservative strategies


have to be chosen. This kind of procedure is called mixed strategy in game


theory. Hence, the set of all generalized t.i. equilibrium states is – in the situ-


ation of Theorem 3.47 above – (even affinely) the same as the set of all mixed


conservative strategies of the attractive player of the thermodynamic game.


Now, we observe that Theorem 3.36 (♯) tell us that the conservative value


F♯
m for the thermodynamic game defined in Definition 3.35 leads to the pressure


P♯
m (up to a minus sign) for any model m ∈ M1. In other words, the approxi-


mating Hamiltonian method [13, 14, 15, 16] (see Section 12.2) extended to all


m ∈ M1 is still an efficient technique to obtain the pressure. On the other
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hand, the min–max variational problem F♯
m is related via (3.28) and (3.29) to


the family


{Φ(da,− + r+(da,−))}da,−∈C♯
m


of approximating interactions (Definition 3.31) with r+ ∈ C
(
L2
−, L


2
+


)
defined


by (3.34). Therefore, for any model m ∈ M1, one could, a priori, think that


the weak∗–closed convex hull of the union of the family


{MΦ(da,−+r+(da,−))}da,−∈C♯
m


of sets of t.i. equilibrium states (cf. Lemma 3.33) equals the set Ω ♯
m of general-


ized t.i. equilibrium states. This fact is generally wrong, i.e., the approximat-


ing Hamiltonian method does not generally lead to an effective local theory.


To explain this, we define more precisely the notion of theories as follows:


Definition 3.48 (Theory for m ∈ M1).


A theory for m ∈ M1 is any subset Tm ⊂ M1.


Of course, a good theory Tm for m ∈ M1 means that elements of Tm are


simplified models in comparison with m ∈ M1 and that it allows the complete


description of the set Ω ♯
m of generalized t.i. equilibrium states. This last


property corresponds to have an effective theory in the following sense:


Definition 3.49 (Effective theory).


A theory Tm for m ∈ M1 is said to be effective at β ∈ (0,∞) iff


co
(


∪
m̂∈Tm


Ω ♯
m̂


)
= Ω ♯


m and E(Ω ♯
m) ⊂ ∪


m̂∈Tm


Ω ♯
m̂.


The closure is taken in the weak∗–topology and co(M) denotes as usual the


convex hull of a set M ⊂ U∗.


The second condition in the above definition means that any pure generalized


equilibrium state of m should be a generalized t.i. equilibrium state of m̂ for


some m̂ ∈ Tm in the theory Tm. By Theorem 12.13 (ii) (Milman theorem), this


holds if the union ∪
m̂∈Tm


Ω ♯
m̂ is closed w.r.t. the weak∗–topology. This is the


case in the examples of effective theories discussed here. Two general classes


of theories are of particular importance w.r.t. models m ∈ M1: The repulsive


and local theories defined below.


Definition 3.50 (Repulsive theory).


For m ∈ M1, a theory Tm is said to be repulsive iff the subset Tm ⊂ M1 has


only models with purely repulsive long range interactions, i.e., models for which


Φa,− = Φ′
a,− = 0 (a.e.), see Definition 3.4.


An example of repulsive theory is given by using partially the approximating


Hamiltonian method: For any model m ∈ M1 and all ca,− ∈ L2
−(A,C), we
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define the approximating repulsive model


(3.43) m (ca,−) := (Φ (ca,−) , {Φa,+}a∈A, {Φ′
a,+}a∈A) ∈ M1.


Here, Φa,+ := γa,+Φa and Φ′
a,+ := γa,+Φ


′
a (cf. Definition 3.4), whereas Φ (ca,−)


is defined in Definition 3.31. Since m (ca,−) is a model with purely repulsive


long range interactions for all ca,− ∈ L2
−(A,C), it can be used to define a


repulsive theory as follows:


Definition 3.51 (The min repulsive theory).


At β ∈ (0,∞), the min repulsive theory for m ∈ M1 is the subset


T+
m := ∪


da,−∈C♯
m


m (da,−) ⊂ M1


with the set C♯
m of conservative strategies of the attractive player defined by


(3.32).


Observe that m (da,−) has a local (effective) interaction Φ(da,−) non–trivially


depending on the inverse temperature β > 0 of the system (cf. Remark 2.33).


In other words, the min repulsive theory T+
m is temperature–dependent.


Local theories are made of subsets of the real Banach space W1 of t.i.


interactions Φ, see Definition 2.24.


Definition 3.52 (Local theories).


A theory Tm for m ∈ M1 is said to be local iff Tm ⊂ W1, where W1 is seen as


a sub–space of M1.


The min–max variational problem F♯
m of the thermodynamic game defined by


Definition 3.35 leads to an important example of local theories: The min–max


local theory, which is also a temperature–dependent theory.


Definition 3.53 (The min–max local theory).


At β ∈ (0,∞), the min–max local theory for m ∈ M1 is the subset


T♯
m := ∪


da,−∈C♯
m


Φ(da,− + r+(da,−)) ⊂ W1,


where the set C♯
m is defined by (3.32) and the map r+ by (3.34).


To get an effective local theory Tm for a model m ∈ M1, the set Ω ♯
m of


generalized t.i. equilibrium states must be a face. It is a necessary condition


as the weak∗–closed convex hull of the union


∪
Φ∈Tm


ΩΦ = ∪
Φ∈Tm


MΦ


of faces in E1 is again a face in E1 if


co
(


∪
Φ∈Tm


Ω ♯
Φ


)
= Ω ♯


m and E(Ω ♯
m) ⊂ ∪


Φ∈Tm


Ω ♯
Φ.
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Indeed, for all Φ ∈ W1, the set MΦ = ΩΦ is a face by weak∗–lower semi–


continuity and affinity of the functional fΦ, see Lemmata 2.28 (i), 2.31 (i) and


Definition 2.32. Lemma 11.8 says that Ω ♯
m is generally not a face in E1. As a


consequence, we obtain the following result:


Theorem 3.54 (Breakdown of effective local theories).


At fixed β ∈ (0,∞), there are uncountably many m ∈ M1 with no effective


local theory.


In particular, the equality P♯
m = −F♯


m of Theorem 3.36 (♯) does not necessarily


imply that the min–max local theory T♯
m (Definition 3.53) is an effective theory,


see Definition 3.49. By contrast, the min repulsive theory (Definition 3.51) is


always an effective theory:


Theorem 3.55 (Effectiveness of the min repulsive theory T+
m).


T+
m is an effective repulsive theory for any m ∈ M1, i.e.,


co
(


∪
da,−∈C♯


m


Ω ♯
m(da,−)


)
= Ω ♯


m and E(Ω ♯
m) ⊂ ∪


da,−∈C♯
m


Ω ♯
m(da,−).


Proof. This follows from Lemmata 11.1 and 11.2 which yield in particular


the equality


Ω ♯
m(da,−) = Ω ♯


m (da,− + r+(da,−))


for all da,− ∈ C♯
m. See also Theorems 3.21 (i) and 3.39 (i).


Therefore, the breakdown of effective local theories results from long range


repulsions Φa,+,Φ
′
a,+ and not from long range attractions Φa,−,Φ


′
a,−, see Defi-


nition 3.4. This is another strong asymmetry between both long range interac-


tions. To illustrate this, observe that for models m with Φa,+ = Φ′
a,+ = 0 (a.e.),


the min repulsive and the min–max local theories are the same, i.e., T+
m = T♯


m,


see Definitions 3.51 and 3.53 together with Definition 3.31 and (3.43). In this


purely attractive case, for all da,− ∈ C♯
m, Ω


♯
m(da,−) = MΦ(da,−) is always a face


in E1 and so is the set Ω ♯
m by Theorem 3.55. In other words, if the long range


repulsions Φa,+ and Φ′
a,+ are switched off, there is always an effective local


theory.


In the general case, the min–max local theory T♯
m (Definition 3.53) is not


accurate enough. It means that the set Ω ♯
m of generalized t.i. equilibrium


states is only included in (but generally not equal to) the weak∗–closed convex


hull of the set


(3.44) M (T♯
m) := ∪


da,−∈C♯
m


M ♯
Φ(da,−+r+(da,−)).


This result is a simple corollary of Theorems 3.21 (i) and 3.39 (i):







FERMI SYSTEMS WITH LONG RANGE INTERACTIONS 55


Corollary 3.56 (Accuracy of the min–max local theory T♯
m).


For any m ∈ M1,


Ω ♯
m ⊆ co


(
M (T♯


m)
)
.


Indeed, by Theorems 3.21 (i) and 3.39 (i), Ω ♯
m is the weak∗–closed convex hull


of the set of states in M (T♯
m) satisfying the Euler–Lagrange equations (3.39).


Remark 3.57. If Ω ♯
m is not a face then there is, at least, one ergodic


state16 ω̂ ∈ M (T♯
m) ∩ E1 which does not satisfy the Euler–Lagrange equations


(3.39).


Remark 3.58 (Max attractive theory T−
m and max–min local theory T♭


m).


In the same way we define the min repulsive theory T+
m (Definition 3.51) and


the min–max local theory T♯
m (Definition 3.53), one could define the max at-


tractive theory T−
m and the max–min local theory T♭


m for any m ∈ M1. In the


same way we have Theorems 3.21, 3.39 and 3.55, such theories T−
m and T♭


m


shall be related to the (non–empty) set M ♭
m of minimizers of the functional f ♭m


over E1, see (3.12), (3.14) and Theorem 3.36 (♭).


3.8. Long range interactions and long range order (LRO)


The solution da ∈ L2(A,C) defined by (3.39) has a direct interpretation as


the mean energy density of long range interactions Φa and Φ′
a. Moreover, it is


related to the so–called long range order (LRO) property. In particular, models


with non–zero da,− ∈ C♯
m show an off diagonal long range order (ODLRO), a


property proposed by Yang [37] to define super–conducting phases. The latter


can be seen as a consequence of the following theorem:


Theorem 3.59 (Off diagonal long range order).


For any ca ∈ L2(A,C), let Aca :=
⟨
eΦa


+ ieΦ′
a
, γaca


⟩
. Then, for any ω ∈ Ω ♯


m,


∆Aca
(ω) := lim


L→∞


1


|ΛL|2
∑


x,y∈ΛL


ω
(
αx(A


∗
ca)αy(Aca)


)
satisfies the inequality


∆Aca
(ω) ≥ min


da,−∈C♯
m


{|⟨da,− + r+(da,−), γaca⟩|
2}.


Proof. By Definition 2.14, Remark 2.20, and Theorem 3.39 (ii), for any


extreme state ω̂ ∈ E(Ω ♯
m), there is da,− ∈ C♯


m such that


∆Aca
(ω̂) ≥ |ω̂ (Aca)|


2 = |⟨da, γaca⟩|
2


16Note that M (T♯
m)∩E1 ̸= ∅ because M (T♯


m) is a union of non–empty closed faces by (3.44),
see also Lemma 3.33.
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with da := da,−+r+(da,−). Then via Theorem 3.21 (iii) combined with Lemma


12.17 one gets the assertion.


Remark 3.60. By using similar arguments as above, if all extreme gen-


eralized t.i. equilibrium states ω̂ ∈ E(Ω ♯
m) are strongly mixing (see (2.10))


then


∆Aca
(ω) = lim


|y−x|→∞
ω
(
αx(A


∗
ca)αy(Aca)


)
≥ min


da,−∈C♯
m


{|⟨da,− + r+(da,−), γaca⟩|
2}


for all ω ∈ Ω ♯
m.


Theorem 3.59 implies ODLRO in the following sense. Take any gauge


invariant model m ∈ M1 – which means that Ul ∈ U◦ (cf. (2.6)) – such that


its set Ω ♯
m of generalized t.i. equilibrium states contains at least one state from


E(E◦
1), i.e., Ω


♯
m ∩ E(E◦


1) ̸= ∅. This is the case, for instance, if the long range


interactions of m are purely attractive (i.e., Φa,+ = Φ′
a,+ = 0 (a.e.)) as, in this


situation, Ω ♯,◦
m := Ω ♯


m ∩E◦
1 is a face in E◦


1 , see also Remark 3.24. Suppose that


ca is chosen such that17


σ◦(Aca) = 0 and min
da,−∈C♯


m


{|⟨da,− + r+(da,−), γaca⟩|
2} > 0,


see Remark 2.5. Choose now any gauge invariant t.i. equilibrium state ω̂ ∈
Ω ♯,◦


m , which is extreme in the set E◦
1 of t.i. and gauge invariant states (cf.


Remarks 2.13, 2.17, and 3.24). Then, by the assumptions, for all A◦ ∈ U◦ such


that ω̂(A◦) = 0,


lim
L→∞


1


|ΛL|2
∑


x,y∈ΛL


ω̂(αx(A
◦)∗αy(A


◦)) = |ω̂ (A◦)|2 = 0.


However,


lim
L→∞


1


|ΛL|2
∑


x,y∈ΛL


ω̂(αx(Aca)
∗αy(Aca)) > 0


in spite of the fact that ω̂(Aca) = ω̂ ◦ σ◦(Aca) = 0. Indeed, any quadratic


element A◦ = A1A2 ∈ U◦ with A1, A2 ∈ U◦ is called “diagonal”, whereas


elements of the form B◦ = B1B2 ∈ U◦ with B1, B2 ∈ U\U◦ – as, for instance,


the elements αx(Aca)
∗αy(Aca) considered above – are called “off–diagonal”


w.r.t. to the algebra U◦, see, e.g., [22, Section 5.2].


In the general case, the order parameter da,− is, a priori, not unique since


the non–empty set C♯
m (3.32) of conservative strategies of the attractive player


is only weakly compact, see Lemma 10.4 (♯). Non–uniqueness of solutions of


17Both assumption can easily be verified in various long range gauge invariant models, see,
e.g., [9].
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the min–max variational problem F♯
m of the thermodynamic game defined in


Definition 3.35 ensures the existence of a non–zero da,− ∈ C♯
m which should be


related to ODLRO as explained above. In particular, ODLRO w.r.t. elements


of the form Aca as defined above is usually related to long range attractions


Φa,−,Φ
′
a,− (Definition 3.4). As an example, we recommend to have a look on


the strong coupling BCS–Hubbard model analyzed in [9].


By contrast, the solution r+(da,−) ∈ C♯
m (da,−) of the variational problem


f♯m (da,−) defined in Definition 3.35 is always unique, see Lemma 10.3 (♯). In


particular, if the model m ∈ M1 has purely repulsive long range interactions,


i.e., Φa,− = Φ′
a,− = 0 (a.e.), then no first order phase transition (related to


observables of the form Aca) can appear. If, additionally, m is also gauge


invariant – which means that Ul ∈ U◦ – then


da,+ = ω(eΦa
+ ieΦ′


a
) = ω


(
σ◦(eΦa


+ ieΦ′
a
)
)


for all ω ∈ Ω ♯
m, see again (2.6) and Remark 2.5 for definitions of the set U◦ of


all gauge invariant elements and the gauge invariant projection σ◦ respectively.


In particular, for all a ∈ A such that σ◦(eΦa
+ ieΦ′


a
) = 0, the unique da,+ must


be zero.


However, the existence of a non–zero order parameter da,− is, a priori,


not necessary to get LRO. Take again some gauge invariant model m ∈ M1


with purely repulsive long range interactions (Φa,− = Φ′
a,− = 0 (a.e.)). In this


case, two different conclusions w.r.t. the LRO can be drawn depending on the


structure of its set Ω ♯
m of generalized t.i. equilibrium states (cf. Remark 3.40):


• Ω ♯
m is a face in E1, i.e., E(Ω ♯


m) = Ω ♯
m ∩ E1. Then, by the uniqueness


of solution da,+ of the variational problem f♯m (ca,−) (Definition 3.35)


combined with Theorem 2.19 (iv), and Theorem 3.39 (ii), we obtain that


(3.45) ∆Aca
(ω) := lim


L→∞


1


|ΛL|2
∑


x,y∈ΛL


ω(αx(Aca)
∗αy(Aca)) = |ω(Aca)|2


for all ω ∈ Ω ♯
m and with Aca ∈ U defined as above. In particular, the


condition σ◦(Aca) = 0 implies for ω ∈ Ω ♯,◦
m (cf. Remark 3.24) that


ω(Aca) = ω ◦ σ◦(Aca) = 0 and thus, ∆Aca
(ω) = 0. In other words, no


ODLRO w.r.t. elements of the form Aca can be observed.


• Ω ♯
m is not a face in E1, see Lemma 11.8 in Section 11.2. Then there is


an extreme generalized t.i. equilibrium states ω̂0 ∈ E(Ω ♯
m) which is not


ergodic. Since M (T♯
m) is a face of E1 (cf. Lemma 3.33 and (3.44)), by


Theorem 2.19 (iv) and Corollary 3.56, ω̂0 ∈ M (T♯
m) and


(3.46) ∆Aca
(ω̂0) =


∫
M (T♯


m)∩E1


dµω̂0
(ρ̂) |⟨γaca, eΦa


(ρ̂) + ieΦ′
a
(ρ̂)⟩|2.
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In particular, there is ca ∈ L2(A,C) and a non–ergodic state ω̂0 ∈ E(Ω ♯
m)


such that


∆Aca
(ω̂0) > 0.


The latter holds even if da,+ = 0, which implies that


|ω̂(Aca)|2 = |⟨da,+, γaca⟩|
2 = 0


for all ω̂ ∈ E(Ω ♯
m) and ca ∈ L2(A,C), see (3.39) and Lemma 10.3 (♯).


Indeed, assume that da,+ = 0 and ∆Aca
(ω̂0) = 0 for all ca ∈ L2(A,C).


By (3.46), this would imply for ρ̂ µω̂0
–a.e. that


eΦa
(ρ̂) + ieΦ′


a
(ρ̂) = 0 (a.e.),


i.e., ρ̂ ∈ M (T♯
m) ∩ E1 solves the Euler–Lagrange equations (3.39) and


thus ρ̂ ∈ Ω ♯
m. Since the measure µω̂0


is not concentrated on ω̂0 /∈ E1, this
would imply that ω̂0 is decomposable within Ω ♯


m contradicting the fact


that ω̂0 ∈ E(Ω ♯
m).


In other words, LRO w.r.t. elements of the form Aca may still be ob-


served. The existence of such a model (i.e., a model m such that da,+ = 0


and Ω ♯
m is not a face in E1) follows easily from the construction done in


Lemmata 11.7 and 11.8.


In conclusion, both long range interactions Φa,−,Φ
′
a,− and Φa,+,Φ


′
a,+ (Def-


inition 3.4) can produce a LRO, usually at high enough inverse tempera-


tures β > 0. Nevertheless, long range attractions Φa,−,Φ
′
a,− and repulsions


Φa,+,Φ
′
a,+ act in a completely different way. Long range attractions Φa,−,Φ


′
a,−


imply ODLRO by producing non–uniqueness of conservative strategies of the


attractive player (i.e. |C♯
m| > 1), whereas long range repulsions Φa,+,Φ


′
a,+


produce LRO by breaking the face structure of the set Ω ♯
m.


4. Concluding Remarks


In this section, we explain our achievements in the light of previous results. We


review – on a formal level – in Section 4.1 the original idea of the Bogoliubov


approximation, which was so successfully used in theoretical physics. Section


4.2 compares our results with the approximating Hamiltonian method defined


by Bogoliubov Jr., Brankov, Kurbatov, Tonchev, and Zagrebnov. In order to


be as short as possible we reduce the technical aspects to an absolute minimum


in all this section, hoping that it is still understandable.


4.1. The Bogoliubov approximation


Roughly speaking, the Bogoliubov approximation consists in replacing specific


operators appearing in the Hamiltonian of a given physical system by constants
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which are determined as solutions of some self-consistency equation or some


associated variational problem. One important issue is the way such substitu-


tions should be performed. To be successful, it depends much on the system


under consideration. In order to highlight this aspect, we discuss bellow three


different situations were Bogoliubov’s method is usually applied.


Within his celebrated microscopic theory of superfluidity [38] of Helium


4, Bogoliubov proposed in 1947 his famous “trick”, the so–called Bogoliubov


approximation, by observing the following:


(i) For the considered Hamiltonian modelling a Bose gas in weak interaction


inside a finite box Λ, the annihilation and creation operators18 b0 and b∗0
of bosons only appear in the form b0|Λ|−1/2 and b∗0|Λ|−1/2.


(ii) Because of the Canonical Commutation Relations (CCR), b0|Λ|−1/2 and


b∗0|Λ|−1/2 almost commute at large volume |Λ|.


(iii) The operators b0 and b∗0 are unbounded.


Based on (i)–(iii) Bogoliubov suggested that b0 (resp. b∗0) can be re-


placed by a complex number cΛ = O
(
|Λ|1/2


)
(resp. c̄Λ) to be determined


self–consistently. For a detailed description of the Bogoliubov theory of super-


fluidity, we recommend the review [31].


The Bogoliubov approximation in this precise situation was rigorously jus-


tified in 1968 by Ginibre [11] on the level of the grand–canonical pressure in


the thermodynamic limit. See also [39, 40]. Actually, the (infinite volume)


pressure is given through a supremum over complex numbers and the con-


stant c := cΛ|Λ|−1/2 in the substitution must be a solution of this variational


problem. Up to additional technical arguments this proof [11, 39] is based


on Laplace’s method together with the completeness of the family of coherent


vectors {|c⟩}c∈C whose elements satisfy b0|c⟩ = c|c⟩. In fact, in which concerns


the (infinite volume) pressure, the Bogoliubov approximation is exact for the


(stable) Bose gas even if the number nΛ of boson operators {bj}nΛ


j=1 replaced


by a constant is large, provided that nΛ = o(|Λ|), see [39]. Observe that the


validity of the Bogoliubov approximation on the level of the pressure has noth-


ing to do with the existence, or not, of a Bose condensation. However, this


approximation becomes useful when the expectation value of either b0 (resp.


b∗0) or b
∗
0b0 becomes macroscopic, i.e., in the case of a Bose condensation.


Remark 4.1. In the case considered above, the validity of the replacement


of operators by (possibly non zero) complex numbers depends on the unbound-


edness of boson operators, whose corresponding expectation value can possibly


18In Bogoliubov’s theory, b0 and b∗0 are the annihilation/creation operators w.r.t. the
constant function |Λ|−1/2 acting on the boson Fock space.
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become macroscopic (which means c ̸= 0). Observe that the same kind of argu-


ment cannot work for Fermi systems since the corresponding annihilation and


creation operators aj and a+j are bounded in norm.


Another kind of Bogoliubov approximation can be applied on a large class


of (superstable) Bose gases having the long range interaction λN2
Λ/|Λ| with λ >


0, see [41, 42]. Here, NΛ is the particle number operator inside a finite box Λ


acting on the boson Fock space. Its expectation value per unit volume is always


a finite number, i.e., the particle density, since it is a space–average. This


observation is not depending on the fact that NΛ is unbounded. It is therefore


natural to replace, in the long range interaction λN2
Λ/|Λ|, the term NΛ/|Λ|


by a positive real number ρ > 0 in order to get an effective approximating


model in the thermodynamic limit. This approximation is proven in [41] to be


exact on the level of the pressure provided that it is done in an appropriated


manner. Indeed, the (infinite volume) pressure, in this case, is the infimum


over strictly positive real parameters ρ of pressures of approximating models,


use ρ = (µ − α)/2λ in [41, Eq. (3.4)]. Observe that the constants replacing


operators in the corresponding Bogoliubov approximations must be a solution


of that variational problem, see [41, Theorem 4.1]. However, the approximating


model leading to this variational problem is derived by replacing λN2
Λ/|Λ| with


λ(2ρNΛ − |Λ|ρ2), i.e., one term λρNΛ for each choice of NΛ in λN2
Λ/|Λ|. See


again [41, Eq. (3.4)] with the choice ρ = (µ − α)/2λ > 0 because of [41,


Theorem 4.1]. This kind of Bogoliubov approximation could also be called a


Bogoliubov linearization.


A similar observation holds of course for our class of Fermi models, see


Definition 3.31 and Theorem 3.36 (♯). Indeed, our long range interaction (Def-


inition 3.3) is a sum of products


(UΦa


Λl
+ iU


Φ′
a


Λl
)∗(UΦa


Λl
+ iU


Φ′
a


Λl
),


where the expectation value of (UΦa


Λl
+ iU


Φ′
a


Λl
) per unit volume is always a finite


number (a mean energy density) as it is also a space–average. Similar to [41, 42]


for the real case, from our results the following replacement has to be done:


1


|Λl|
(UΦa


Λl
+ iU


Φ′
a


Λl
)∗(UΦa


Λl
+ iU


Φ′
a


Λl
)


−→ c̄a(U
Φa


Λl
+ iU


Φ′
a


Λl
) + (UΦa


Λl
+ iU


Φ′
a


Λl
)∗ca − |Λl| |ca|2, ca ∈ C.


The relative universality of this phenomenon comes – in the case of models


considered here – from the law of large numbers, whose representative in our


setting is von Neumann ergodic theorem (Theorem 6.2). It leads again to


an approximating model by appropriately replacing an operator by a complex


number.


All mathematical results on Bogoliubov approximations are only per-


formed on the level of the pressure and eventually quasi–means provided the
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pressure is known to be differentiable w.r.t. to suitable parameters. Some con-


jectures have been done on the level of states (see, e.g., [43, Definition 3.2]).


As far as we know, this paper is a first result describing the validity of the Bo-


goliubov approximation on the level of (generalized) equilibrium states. See,


e.g., Theorems 3.21 and 3.39.


Indeed, Ginibre [11, p. 28] addressed as an important open problem the


question of the validity of the Bogoliubov approximation (or Bogoliubov lin-


earization) in the thermodynamic limit on the level of (generalized) equilibrium


states. Theorems 3.21 and 3.39 give a first answer to this question, at least for


the class of models treated here. We prove that the Bogoliubov approximation


is in general not exact on the level of equilibrium states in the presence of non–


trivial long range repulsions Φa,+,Φ
′
a,+ ̸= 0 (a.e.), see Definition 3.4, Theorem


3.54 and Corollary 3.56. This is so in spite of the fact that the Bogoliubov


approximation is exact for any long range model on the level of the pressure.


In the situation where the long range component of the interaction is purely


attractive, i.e., when Φa,+ = Φ′
a,+ = 0 (a.e.), the Bogoliubov approximation


turns out to be always exact also on the level of generalized t.i. equilibrium


states as the min repulsive and the min–max local theories are the same, i.e.,


T+
m = T♯


m, see Definitions 3.51 and 3.53 together with Theorem 3.55.


4.2. Comparison with the approximating Hamiltonian method


The Bogoliubov approximation was already used for Fermi systems on lattices


in 1957 to derive the celebrated Bardeen–Cooper–Schrieffer (BCS) theory for


conventional type I superconductors [34, 35, 36]. The authors were of course


inspired by Bogoliubov and his revolutionary paper [38]. A rigorous justifica-


tion of this theory was given on the level of ground states by Bogoliubov in


1960 [44]. Then a method for analyzing the Bogoliubov approximation in a


systematic way – on the level of the pressure – was introduced by Bogoliubov


Jr. in 1966 [13, 32] and by Brankov, Kurbatov, Tonchev, Zagrebnov during the


seventies and eighties [14, 15, 16]. This method is known in the literature as the


approximating Hamiltonian method and leads – on the class of Hamiltonians it


applies – to a rigorous proof of the exactness of the Bogoliubov approximation


on the level of the pressure, provided it is done in an appropriated manner, see


discussions in Section 4.1 about Bogoliubov linearization. For more details, we


recommend [15] as well as Section 12.2.


The class of lattice models on which the approximating Hamiltonian method


is applied belongs to the sub–space Md
1 ⊂ M1 of Fermi (or quantum spin) sys-


tems with discrete long range part, see Section 12.2. Within our framework, it


means that there is a finite family of interactions {Φ} ∪ {Φk,Φ
′
k}Nk=1 defining


m (cf. Section 3.1). Observe that in [15] the Hamiltonian HΛ (see (12.3)) can


describe particles on lattices or on Rd as its local part TΛ could be unbounded.
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However, restricted to models of M1, our result is more general – even on the


level of the pressure – in many aspects: We prove that the ergodicity condi-


tion (A4) formulated in Section 12.2 and needed in [15] is, by far, unnecessary


(cf. Remark 12.5). Moreover, by inspection of explicit examples and using the


triangle inequality of the operator norm, the commutator inequalities (A3) are


very unlikely to hold – in general – for all models of M1 (cf. Remark 12.6).


Technically and conceptually speaking, our study is performed in a different


framework not included in [15] and allows any Fermi systems m ∈ M1.


Additionally, the method discussed here gives new and deeper results on


the level of states. In contrast to the approximating Hamiltonian method,


which can be applied for the pressure and eventually quasi–means only, our


method leads to a natural notion of (generalized) equilibrium and ground states


and, depending on the model m ∈ M1, it allows the direct analysis of all


correlation functions. This is the main and crucial difference between the


approximating Hamiltonian method and our approach using the structure of


sets of states.


5. Periodic Boundary Conditions and Gibbs Equilib-
rium States


We have shown in Theorem 3.12 (i) that the pressure of Fermi systems with


long range interactions is given in the thermodynamic limit by two different


variational problems on the set E1 of t.i. states. We also present in Sections


3.4 and 3.7 a detailed study of generalized t.i. equilibrium states. The weak∗–


convergence of Gibbs equilibrium states (cf. Section 12.1) to generalized t.i.


equilibrium states is, a priori, not clear. In fact, Gibbs equilibrium states do


not generally converge to a generalized t.i. equilibrium state, see Section 3.5.


This depends on boundary conditions.


We introduce periodic boundary conditions and show in this particular


case that the Gibbs equilibrium state does converge in the weak∗–topology


towards a generalized t.i. equilibrium state, see Section 5.4 (Theorem 5.13).


On the level of the pressure, periodic boundary conditions are “universal” in


the sense that, for any m ∈ M1, the thermodynamic limit of the pressure (3.7)


can be studied via models with periodic boundary conditions, see Section 5.3


(Theorem 5.11). Note that it is convenient to use interaction kernels to use


internal energies with periodic boundary conditions as defined in Section 5.1.


Fermi systems with periodic boundary conditions are then defined in Section


5.2 by means of such interaction kernels.


Notation 5.1 (Periodic boundary conditions).


Any symbol with a tilde on the top (as for instance p̃) is, by definition, an


object related to periodic boundary conditions.
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5.1. Interaction kernels


It is useful to describe interactions in terms of interaction kernels. This requires


some preliminary definitions.


Let XL = {+,−} × S × L, where we recall that L := Zd and S is a finite


set defining a finite dimensional Hilbert space H of spins with orthonormal


basis {es}s∈S . Elements of XL are written as X = (ν, s, x) and we define


X̄ := (ν̄, s, x) with the convention +̄ := − and −̄ := +. Then interaction


kernels are defined as follows:


Definition 5.2 (Interaction kernels).


An interaction kernel is a family φ = {φn}n∈N0
of anti–symmetric functions


φn : Xn
L → C satisfying φn = 0 for n /∈ 2N0 as well as the self–adjointness


property: For any X1, . . . , Xn ∈ XL,


φn(X1, . . . , Xn) = φn(X̄n, . . . , X̄1).


The set of all interaction kernels is denoted by K.


Notation 5.3 (Interaction kernel).


The letter φ is exclusively reserved to denote interaction kernels.


Note that any φ ∈ K can be associated with an interaction Φ (φ) (Definition


2.22) with


ΦΛ (φ)=
∑


{Xi=(νi,si,xi)∈XL}n
i=1,{x1,...,xn}=Λ


φn(X1, . . . , Xn) : a
ν1
x1,s1 . . . a


νn
xn,sn :


=
∑


{Xi=(νi,si,xi)∈XL}n
i=1,{x1,...,xn}=Λ


φn(X1, . . . , Xn) : a(X1) . . . a(Xn) :(5.1)


Here,


a−x,s := ax,s and a(X) := aνx,s


for X = (ν, s, x). The notation


(5.2) : aν1
x1,s1 . . . a


νn
xn,sn : := (−1)ςa


νς(1)


xς(1),sς(1) . . . a
νς(n)


xς(n),sς(n)


stands for the normal ordered product defined via any permutation ς of the set


{1, . . . , n} moving all creation operators in the product a
νς(1)


xς(1),sς(1) . . . a
νς(n)


xς(n),sς(n)


to the left of all annihilation operators. This permutation is of course not


unique. The operator defined by the normal ordering is nevertheless uniquely


defined because of the factor (−1)ς in (5.2) and because of the CAR (2.3).


We use below the following convention: For any interaction kernel φ,


Φ = Φ(φ) is always an interaction as an operator valued map on Pf (L) which


is formally written as


(5.3) Φ(φ) =:
∑


X1,...,Xn∈XL


φn(X1, . . . , Xn) : a(X1) . . . a(Xn) : .
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The map φ 7→ Φ(φ) is not injective and hence, the choice of kernels {φn} for


a given interaction Φ is not unique. Note that (5.3) is only a formal notation


since infinite sums over all L do not appear in the definition of interactions,


see (5.1). We can now transpose all properties of interactions Φ in terms of


interaction kernels φ ∈ K.


First, we say that the interaction kernel φ has finite range iff there is a


positive real number dmax such that d(x, x′) > dmax (cf. (2.14)) implies


φn


(
(ν1, s1, x) ,


(
ν2, s2, x


′) , X3, . . . , Xn


)
= 0


for any integer n ≥ 2, any (ν1, s1), (ν2, s2) ∈ {+,−}× S, and all X3, . . . , Xn ∈
XL. Because of the CAR (2.3) we can assume without loss of generality that,


for any finite range interaction φ, there is N ∈ N such that φn = 0 for all n ≥
N . Clearly, if the interaction kernel φ is finite range then the corresponding


interaction Φ = Φ(φ) is also finite range.


An interaction kernel φ ∈ K is translation invariant (t.i.) iff αx(φ) = φ


for any x ∈ Zd. Here, αx is action of the group of lattice translations on the


set K defined by


αx(φ)n((ν1, s1, x1), . . . , (νn, sn, xn)) := φn((ν1, s1, x1−x), . . . , (νn, sn, xn−x)).


Note that the notation αx is also used to define via (2.7) the action of the


group of lattice translations on U . If the interaction kernel φ is t.i. then the


interaction Φ = Φ(φ) is obviously translation invariant.


Additionally, the gauge invariance of interactions Φ is translated in terms


of interaction kernels φ ∈ K via the following property: For any n ∈ 2N and


X1 = (x1, s1, ν1), . . . , Xn = (xn, sn, νn) ∈ XL,


|{k : νk = +}| ̸= |{k : νk = −}| implies φn(X1, . . . , Xn) = 0.


Here, |X | denotes the size (or cardinality) of a finite set X .


To conclude, we introduce ℓ1–type norms in the case of t.i. interaction


kernels. Observe that usual ℓ1–norms would have no meaning for t.i. functions


as it would be either infinite or zero. Indeed, we define the norm ∥ · ∥1,∞ on


the space of t.i. anti–symmetric functions fn on Xn
L to be


∥fn∥1,∞ := max
X1∈XL


∑
X2,...,Xn∈XL


|fn (X1, . . . , Xn)| .


Then via this norm we can mimic on interaction kernels φ norms of the form


∥ · ∥κ introduced for t.i. interactions in Remark 2.25.


Definition 5.4 (The Banach space K1 of t.i. interaction kernels).


The real Banach space K1 is the set of all t.i. interaction kernels φ with finite


norm


∥φ∥K1
:= |φ0|+


∞∑
n=1


n∥φn∥1,∞ <∞.







FERMI SYSTEMS WITH LONG RANGE INTERACTIONS 65


Note that the set of finite range interaction kernels is dense in K1. In particular,


K1 is separable. One can also verify the following relations between the norms


∥ · ∥W1
and ∥ · ∥K1


:


Lemma 5.5 (Relationship between K1 and W1 ).


(i) For all φ ∈ K1, ∥Φ(φ)∥W1
≤ 2|S| ∥φ∥K1


with the size |S| ∈ N of the finite


set S being the dimension of the Hilbert space H of spins.


(ii) The set {Φ(φ) : φ ∈ K1} of t.i. interactions formally defined by (5.3) is


dense in W1.


A typical example of an interaction Φ(φ) ∈ W1 defined via an interaction


kernel φ ∈ K1 which is gauge invariant is the Hubbard model ΦHubb defined


as follows: S = {↑, ↓} (because electrons have spin 1/2) and


ΦHubb : = t
∑


x,y∈L,d(x,y)=1,s∈S


a+x,say,s + t′
∑


x,y∈L,d(x,y)=
√
2,s∈S


a+x,say,s


−µ
∑


(x,s)∈L×S


a+x,sax,s + λ
∑
x∈L


a+x,↑a
+
x,↓ax,↓ax,↑.


Here, d(x, y) is the metric defined by (2.14) and so, the real parameters t, t′, µ


and λ are respectively the nearest neighbor hopping amplitude, the next–to–


nearest neighbor hopping amplitude, the chemical potential and the interaction


between pairs of particles of different spins at the same site.


5.2. Periodic boundary conditions


We are now in position to introduce for any t.i. interaction kernel φ ∈ K1 an


interaction Φ̃l = Φ̃l(φ) with periodic boundary conditions:


Definition 5.6 (Periodic interactions).


For any t.i. interaction kernel φ ∈ K1 and each l ∈ N, we define the interaction
Φ̃l = Φ̃l(φ) with periodic boundary conditions as follows:


Φ̃l,Λ : = 1{Λ⊂Λl}
∑


{Xi=(νi,si,xi)∈XL}n
i=1,{x1,...,xn}=Λ ∑


x′
2,...,x


′
n∈L, ξl(x


′
i)=xi


φn(X1, X
′
2 . . . , X


′
n) : a(X1)a(X2) · · · a(Xn) :



with X ′


i := (νi, si, x
′
i), the normal ordered product : a(X1) · · · a(Xn) : defined


by (5.2), and XL := {+,−} × S × L. Here, the map ξl : L → Λl (cf. (2.2)) is


defined, for the jth coordinate, by ξl(x)j = xj mod 2l + 1 with j = 1, . . . , d.


Since φ ∈ K1, observe that the operator Φ̃l,Λ is clearly bounded, i.e., ∥Φ̃l,Λ∥ <
∞ for all l ∈ N and all Λ ∈ Pf (L). The subset Λl ⊂ L can be seen within this
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context as the torus Zd/((2l+1)Z)d. Therefore, we say that the interaction Φ̃l,Λ


fulfills periodic boundary conditions because it is invariant w.r.t. translations


in its corresponding torus: For all x ∈ Zd and all Λ ⊂ Λl,


Φ̃l,ξl(Λ+x) = α̃l,x(Φ̃l,Λ).


Here, the torus translation automorphisms α̃l,x : UΛl
→ UΛl


, l ∈ N, x ∈ Zd are


defined – uniquely – by the condition


α̃l,x(ay) = αξl(x+y)


for all y ∈ Λl.


Then we construct from the Banach space K1 of interaction kernels the


space


(5.4) N1 := K1 × L2 (A,K1)× L2 (A,K1)


of (kernel) models as explained in Section 12.3 and define internal energies


with periodic boundary conditions as follows:


Definition 5.7 (Internal energy with periodic boundary conditions).


For any n := (φ, {φa}a∈A, {φ′
a}a∈A) ∈ N1 and any l ∈ N, the internal energy


Ũl in the box Λl with periodic boundary conditions is defined to be


Ũl := U Φ̃l


Λl
+


1


|Λl|


∫
A
γa(U


Φ̃l,a


Λl
+ iU


Φ̃′
l,a


Λl
)∗(U


Φ̃l,a


Λl
+ iU


Φ̃′
l,a


Λl
)da (a) ,


where γa ∈ {−1, 1} is a measurable function and with Φ̃l = Φ̃l (φ), Φ̃l,a =


Φ̃l(φa), and Φ̃′
l,a = Φ̃l(φ


′
a) for any a ∈ A.


Notation 5.8 (Model kernels).


The symbol n is exclusively reserved to denote elements of N1.


Re-expressing objects in terms of interactions with periodic boundary condi-


tions has the advantage that the notion of translation invariance is locally


preserved. This implies, among other things, the translation invariance of the


thermodynamic limit of Gibbs equilibrium states (Definition 12.1). It is an


essential property to obtain a generalized t.i. equilibrium state in the thermo-


dynamic limit.


Remark 5.9. Any n = (φ, {φa}a∈A, {φ′
a}a∈A) ∈ N1 is identified with the


long range model (Φ(φ), {Φ(φa)}a∈A, {Φ(φ′
a)}a∈A) ∈ M1 for a given γa.


5.3. Pressure and periodic boundary conditions


Periodic boundary conditions are very particular and idealized in which con-


cerns the represented physical situations. Dirichlet–like or von Neumann–like


boundary conditions are – physically speaking – more natural. In spite of that,
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they are extensively used in theoretical or mathematical physics because they


allow for the use of Fourier analysis, making computations much easier. In fact,


we show the “universality” of periodic boundary conditions on the level of the


pressure. This means that, for any m ∈ M1, the thermodynamic limit of the


pressure (3.7) can be studied via models with periodic boundary conditions,


see Definition 5.7.


Indeed, observe first that periodic boundary conditions do not change the


internal energy per volume associated with any t.i. interaction kernel φ ∈ K1:


Lemma 5.10 (Internal energy and periodic boundary conditions).


For any φ ∈ K1,


lim
l→∞


1


|Λl|
∥UΦ(φ)


Λl
− U Φ̃l


Λl
∥ = 0


with UΦ
Λ , Φ(φ), and Φ̃l respectively defined by Definition 2.22, (5.1) (see also


(5.3)) and Definition 5.6.


Proof. For any Λ ∈ Pf (L), let Λc := L\Λ be its complement and we


denote by


d̂(x,Λ) := min
x′∈Λ


{
d(x, x′)


}
the distance between any point x ∈ Zd and the set Λ ∈ Pf (L). The latter is


constructed via the metric d(x, x′) defined by (2.14). It follows from Definitions


2.22 and 5.6 together with Equality (5.1) that


∥UΦ(φ)
Λl


− U Φ̃l


Λl
∥≤


∑
{Xi∈XL}n


i=1, x1∈Λl, {x2,...,xn}∩Λc
l ̸=∅


n|φn(X1, . . . , Xn)|


≤
∑


{Xi∈XL}n
i=1, x1∈Λl, {x2,...,xn}∩Λc


l ̸=∅


(
1{d̂(x1,Λc


l )≤
√
l}n|φn(X1, . . . , Xn)|


+1{d̂(x1,Λc
l )>


√
l}n|φn(X1, . . . , Xn)|


)
.(5.5)


We observe that


(5.6)


lim
l→∞


1


|Λl|
∑


{Xi∈XL}n
i=1, x1∈Λl, {x2,...,xn}∩Λc


l ̸=∅


1{d̂(x1,Λc
l )≤


√
l}n|φn(X1, . . . , Xn)| = 0


as ∥φ∥K1
< ∞. Moreover, since, by translation invariance of the interaction


kernel φ,


1


|Λl|
∑


{Xi∈XL}n
i=1, x1∈Λl, {x2,...,xn}∩Λc


l ̸=∅


1{d̂(x1,Λc
l )>


√
l}n|φn(X1, . . . , Xn)|


≤
∑


{Xi∈XL}n
i=2


∑
(ν,s)∈{+,−}×S


1{min{|x2|,...,|xn|}>
√
l}n|φn(X̃,X2, . . . , Xn)|
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with X̃ := (ν, s, 0), we use again ∥φ∥K1
< ∞ and Lebesgue’s dominated con-


vergence theorem to obtain that


(5.7)


lim
l→∞


1


|Λl|
∑


{Xi∈XL}n
i=1, x1∈Λl, {x2,...,xn}∩Λc


l ̸=∅


1{d̂(x1,Λc
l )>


√
l}n|φn(X1, . . . , Xn)| = 0.


Therefore, the lemma follows from Inequality (5.5) together with the limits


(5.6) and (5.7).


To show now that the pressure (3.7) can be studied via models with pe-


riodic boundary conditions, we need some preliminary definitions. First, for


any n ∈ N1 and l ∈ N, let


(5.8) p̃l = p̃l,n :=
1


β|Λl|
lnTrace∧HΛ


(e−βŨl)


be the pressure associated with the internal energy Ũl (Definition 5.7). Then


we extend the map φ 7→ Φ(φ) (cf. (5.3)) to a map n 7→ m(n) from N1 to M1.


To simplify the notation let


(5.9) n 7→ m(n) 7→ f ♯
m(n) =: f ♯n.


f ♯m is seen below as map from M1 to the set FE1
of affine functionals on E1


(see Definition 3.5 and Lemma 3.8 (i)), whereas f ♯n is seen as a map from N1 to


FE1
via (5.9). In the same way we have introduced the dense sub–spaces Mf


1,


Md
1 , and Mdf


1 in Section 3.1, we finally define the dense sub–spaces N f
1 and


N d
1 of N1 to be, respectively, the sets of finite range n and discrete elements


n, see Section 5.1 and (5.4). So, N df
1 := N d


1 ∩ N f
1 is the (dense) sub–space of


finite range discrete elements n.


We are now in position to give the main theorem of this subsection about


the “universality” of periodic boundary conditions w.r.t. the pressure of long


range Fermi systems.


Theorem 5.11 (Reduction to periodic boundary conditions).


For any m ∈ Mdf
1 , there exists n ∈ N df


1 such that:


(i) lim
l→∞


{p̃l,n − pl,m} = 0; (ii) f ♯m = f ♯n.


Proof. For any finite range interaction Φ ∈ W1, the energy observable


eΦ ∈ U+ defined by (2.16) belongs to the set U0 of local elements and thus,


there is a finite range interaction kernel φ(Φ) such that


(5.10) eΦ = eΦ(φ(Φ)) and ∥UΦ
Λl


− U
Φ(φ(Φ))
Λl


∥ ≤ O(|∂Λl|) = O(ld−1)
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with ∂Λl being the boundary19 of the cubic box Λl. Therefore, for any finite


range discrete model


m := {Φ} ∪ {Φk,Φ
′
k}Nk=1 ∈ Mdf


1 ,


there exists


n := {φ(Φ)} ∪ {φ(Φk), φ(Φ
′
k)}Nk=1 ∈ N df


1


satisfying (5.10) for each interaction Φ, Φk, and Φ′
k. Any n ∈ N1 defines an


internal energy Ũl with periodic boundary conditions. So, the first statement


(i) of the lemma is a consequence of the bound


(5.11) | ln(Trace∧HΛ
(eA))− ln(Trace∧HΛ


(eB))| ≤ ∥A−B∥


combined with Lemma 5.10 for any t.i. interaction kernel φ ∈ K1. The second


statement (ii) is a direct consequence of (5.10).


Remark 5.12. Note that the restriction m ∈ Mdf
1 in this last theorem is


unimportant, see Corollary 8.3.


5.4. Gibbs and generalized t.i. equilibrium states


Periodic boundary conditions are, on the level of the pressure, universal in


the sense described by Theorem 5.11. However, it is important to note that


periodic boundary conditions do not yield a complete thermodynamic descrip-


tion of long range Fermi systems on the level of equilibrium states. As shown


below (Theorem 5.13), any weak∗–convergent sequence of Gibbs equilibrium


states (Definition 12.1) of long range Fermi systems with periodic boundary


conditions converges to a generalized t.i. equilibrium state. The convergence


of arbitrary convergent sequences ρl of (local) Gibbs equilibrium states of t.i.


long range models m ∈ M1 (defined by ρl := ρΛl,Ul
(12.2)) towards a (infinite


volume) generalized t.i. equilibrium state is, a priori, not clear and could in


fact be even wrong in some cases (depending on boundary conditions). To-


gether with Theorem 5.11, this means that the infimum over the set E of all


states given in Theorem 8.8 (i) could also be attained by a sequence of approx-


imating minimizers (cf. (3.9)) with weak∗–limit points not in E1 as explained


in Section 3.5.


Therefore, we study now the convergence of (local) Gibbs equilibrium


states only for the particular case of periodic boundary conditions, i.e., the


convergence of the states ρ̃l := ρΛl,Ũl
(12.2). Note that this state ρ̃l is as usual


seen as defined either on the local algebra UΛl
or on the whole algebra U by


periodically extending it (with period (2l + 1) in each direction of the lattice


19By fixing m ≥ 1 the boundary ∂Λ of any Λ ⊂ Γ is defined by ∂Λ := {x ∈ Λ : ∃y ∈
Γ\Λ with d(x, y) ≤ m}, see (2.14) for the definition of the metric d(x, y).
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L). Observe here that, by the definition of interaction kernels, ρ̃l is an even


state and hence products of translates of ρ̃l are well–defined (cf. [8, Theorem


11.2.]). The Gibbs equilibrium state ρ̃l is generally not translation invariant.


We construct the space–averaged t.i. Gibbs state ρ̂l ∈ E1 from ρ̃l as it is done


in (3.19), that is,


ρ̂l :=
1


|Λl|
∑
x∈Λl


ρ̃l ◦ αx,


where we recall that the ∗–automorphisms {αx}x∈Zd defined by (2.7) are the


action of the group of lattice translations on U . Then, from Theorems 3.12 (i)


and 3.28, we prove the convergence of local states ρ̃l and ρ̂l towards the same


generalized t.i. equilibrium state:


Theorem 5.13 (Weak∗–limit of Gibbs equilibrium states).


For any n ∈ N1, the states ρ̃l and ρ̂l converge in the weak∗–topology along


any convergent subsequence towards the same generalized t.i. equilibrium state


ω ∈ Ω ♯
n.


Proof. By weak∗–compactness of E1, the space–averaged t.i. Gibbs state


ρ̂l converges in the weak∗–topology along a subsequence towards ω ∈ E1. By


translation invariance of ρ̃l in the torus Λl, it is also easy to see that the


sequences of states ρ̃l and ρ̂l have the same weak∗–limit points. Then, since


Theorem 3.28 says that T ♯
m = Ω ♯


m for all m ∈ M1, we show that ω ∈ T ♯
n in the


same way we prove Theorem 3.29 because of Lemma 5.10, Theorem 5.11, and


the density of the sets N df
1 and {Φ(φ)}φ∈K1


respectively in N1 and W1. We


omit the details.


6. The Set Eℓ⃗ of ℓ⃗.Z
d–Invariant States


In this section, we study in details the structure of the convex and weak∗–


compact sets E
ℓ⃗
of ℓ⃗.Zd–invariant states defined by (2.8) for any ℓ⃗ ∈ Nd. The


set E
ℓ⃗
of extreme points of E


ℓ⃗
is intimately related with a property of ergodicity


(Definition 2.15). For ℓ⃗ = (1, · · · , 1), the ergodicity of states is characterized


via the space–averaging functional ∆A defined for any A ∈ U in Definition


2.14.


We discuss in Section 6.2 the main structural properties of the set E
ℓ⃗
and


analyze the map ∆A in Section 6.3. The properties of the entropy density


functional s defined in Definition 2.27 are discussed in Section 6.4. In Section


6.5 we analyze the energy density functional eΦ defined, for any t.i. interaction


Φ ∈ W1, in Definition 2.30. By means of the energy density eΦ, each ℓ⃗–periodic


state ρ ∈ E
ℓ⃗
defines a continuous linear functional T (ρ) ∈ W∗


1 on the Banach


space W1 (Definition 2.24). The map ρ 7→ T (ρ) restricted to the set E1 of t.i.
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states is injective. This allows the identification of states of E1 with functionals


of W∗
1 .


Note that some important statements presented here are standard (see,


e.g., Theorems 6.1 and 6.2). They are given in Section 6.1 for completeness. We


start with a preliminary discussion about the Gelfand–Naimark–Segal (GNS)


representation of G–invariant states [17, Corollary 2.3.17] and then about von


Neumann ergodic theorem [17, Proposition 4.3.4].


6.1. GNS representation and von Neumann ergodic theorem


Any state ρ ∈ E has a GNS representation [17, Theorem 2.3.16]: For any


ρ ∈ E, there exist a Hilbert space Hρ, a representation πρ : U → B(Hρ) from


U to the set B(Hρ) of bounded operators on Hρ, and a cyclic vector Ωρ ∈ Hρ


w.r.t. πρ(U) such that, for all A ∈ U ,


ρ(A) = ⟨Ωρ, πρ(A)Ωρ⟩.


The representation πρ is faithful if ρ is faithful, that is, if ρ(A∗A) = 0 implies


A = 0. The triple (Hρ, πρ,Ωρ) is unique up to unitary equivalence.


Assume now the existence of a group homomorphism g 7→ αg from G to


the group of ∗–automorphisms of U . The state ρ is G–invariant iff ρ ◦ αg = ρ


for any g ∈ G. The GNS representation of such a G–invariant state ρ carries


this symmetry through a uniquely defined family of unitary operators, see [17,


Corollary 2.3.17]:


Theorem 6.1 (GNS representation of G–invariant states).


Let ρ be a G–invariant state with GNS representation (Hρ, πρ,Ωρ). Then


there is a uniquely defined family of unitary operators {Ug}g∈G in B(Hρ)


with invariant vector Ωρ, i.e., Ωρ = UgΩρ for any g ∈ G, and such that


πρ(αg(A)) = Ugπρ(A)U
∗
g for any g ∈ G and A ∈ U .


Since we study the set E
ℓ⃗
(2.8) of ℓ⃗–periodic states, the special cases we


are interested in are G = (ℓ⃗.Zd,+) for all ℓ⃗ ∈ Nd. The group homomorphism


g 7→ αg from G to the group of ∗–automorphisms of U corresponds, in this


case, to the group {αx}x∈Zd (2.7) of lattice translations on U . Within this


framework, an essential ingredient of our analysis is von Neumann ergodic


theorem [17, Proposition 4.3.4] which is a representative of the law of large


numbers:


Theorem 6.2 (von Neumann ergodic theorem).


Let x 7→ Ux be a representation of the abelian group (ℓ⃗.Zd,+) by unitary oper-


ators on a Hilbert space H and the set


I :=
∩


x∈ℓ⃗.Zd


{ψ ∈ H : ψ = Ux(ψ)}
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be the closed sub–space of all invariant vectors. For any L ∈ N, define the


contraction


P (L) :=
1


|ΛL ∩ ℓ⃗.Zd|


∑
x∈ΛL∩ℓ⃗.Zd


Ux ∈ B(H)


and denote the orthogonal projection on I by P . Then, for all L ∈ N, PP (L) =


P (L)P = P and the operator P (L) converges strongly to P as L→ ∞.


Proof. The proof of this statement is standard, see, e.g., [4, Theorem


IV.2.2 ]. It is given here for completeness. Note that the property PP (L) =


P (L)P = P is, in general, not explicitly given in the versions of von Neumann


ergodic theorem found in textbooks.


Without loss of generality, assume that ℓ⃗ = (1, · · · , 1). For any i ∈
{1, . . . , d}, let us consider the unitary operators Ui := U(δi,1,...,δi,d) with δi,j = 0


for any i ̸= j and δi,i = 1. Since Zd is abelian, the normal operators Ui for


i ∈ {1, . . . , d} commute with each other. Their joint spectrum is contained in


the d–dimensional torus


Td := {(z1, . . . , zd) ∈ Cd : |zi| = 1, i = 1, . . . , d}


and the spectral theorem ensures the existence of a projection–valued measure


dP on the torus Td such that


(6.1) P (L) =


∫
Td


fL(z1, . . . , zd)dP (z1, . . . , zd)


for any L ∈ N, where


fL(z1, . . . , zd) :=
1


|ΛL|
∑


(x1,...,xd)∈ΛL


zx1


1 · · · zxd


d .


Observe that fL converges point–wise as L→ ∞ to the characteristic function


of the set {(1, . . . , 1)} ⊂ Td, i.e.,


(6.2)


f∞(z1, . . . , zd) := lim
L→∞


fL(z1, . . . , zd) =


{
1 if (z1, . . . , zd) = (1, . . . , 1).


0 else.


Hence, from (6.1), the operator P (L) converges strongly to


(6.3) P (∞) :=


∫
Td


f∞(z1, . . . , zd)dP (z1, . . . , zd).


Note that the operator P (∞) is an orthogonal projection because of (6.2)–(6.3).


Additionally, I ⊂ P (∞)(H) per definition and P (∞)(H) ⊂ I by using (6.1)–(6.3)


combined with Ux+y = UyUx for any x, y ∈ Zd. Therefore, P (∞) = P and from


(6.3) together with fLf∞ = f∞ we deduce that PP (L) = P (L)P = P for any


L ∈ N.
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For any ρ ∈ E
ℓ⃗
with GNS representation (Hρ, πρ,Ωρ), we define Pρ to be


the strong limit of contractions P (L) defined in Theorem 6.2 w.r.t. the unitary


operators {Ux}x∈ℓ⃗·Zd on the Hilbert space Hρ of Theorem 6.1 for G = (ℓ⃗.Zd,+).


By using the projection Pρ and the equality Ωρ = PρΩρ, it is then easy to check


that all ℓ⃗–periodic states ρ ∈ E
ℓ⃗
are even (see, e.g., [5, Example 5.2.21]):


Corollary 6.3 (ℓ⃗–periodic states are even).


Let ρ ∈ E
ℓ⃗
with GNS representation (Hρ, πρ,Ωρ). Then, for all odd elements


A ∈ U , Pρπρ(A)Pρ = 0.


Proof. Since ρ is ℓ⃗–periodic, by Theorem 6.1, there are unitary opera-


tors {Ux}x∈ℓ⃗.Zd acting on Hρ and defining a representation of (ℓ⃗.Zd,+) such


that UxΩρ = Ωρ and πρ(αx(A)) = Uxπρ(A)U
∗
x for all x ∈ ℓ⃗.Zd. The ∗–


automorphism αx is defined by (2.7). If A ∈ U is odd, i.e., σπ(A) = −A (cf.


(2.4)), then


lim
|x|→∞


(A∗αx(A) + αx(A)A
∗) = 0.


Consequently, by using Theorem 6.2 and observing that UxPρ = PρUx = Pρ,


for any x ∈ ℓ⃗ · Zd,


(Pρπρ(A)
∗Pρ)(Pρπρ(A)Pρ) + (Pρπρ(A)Pρ)(Pρπρ(A)


∗Pρ) = 0.


Both terms on the l.h.s. of the last equality are positive. Therefore, if A ∈ U
is odd then Pρπρ(A)Pρ = 0.


The set E
ℓ⃗
is clearly convex, weak∗–compact, and also metrizable, by


Theorem 12.10. By using Choquet theorem (Theorem 12.18), each state ρ ∈ E
ℓ⃗


has a decomposition in terms of states in the (non–empty) set E
ℓ⃗
of extreme


points of E
ℓ⃗
. The Choquet decomposition is, generally, not unique. However,


in the particular case of the convex set E
ℓ⃗
the uniqueness of this decomposition


follows from von Neumann ergodic theorem (Theorem 6.2):


Lemma 6.4 (Uniqueness of the Choquet decomposition in E
ℓ⃗
).


For any ρ ∈ E
ℓ⃗
, the probability measure µρ given by Theorem 12.18 is unique


and norm preserving in the sense that ∥ρ−ρ′∥ = ∥µρ−µρ′∥ for any ρ, ρ′ ∈ E
ℓ⃗
.


Here, ∥ρ − ρ′∥ and ∥µρ − µρ′∥ stand for the norms of (ρ − ρ′) and (µρ − µρ′)


seen as linear functionals.


Proof. Observe that the map ρ 7→ µρ is norm preserving, by [4, Theorem


IV.4.1]. See also [4, Corollary IV.4.2] for the special case of spin systems.


To prove the uniqueness of µρ, we adapt here the proof given in [4, Theorem


IV.3.3] for quantum spin systems to our case of Fermi systems. For all A ∈ U ,
let the (affine) weak∗–continuous map


ρ 7→ Â(ρ) := ρ(A)
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from the set E
ℓ⃗
to C. The family {Â}A∈U of continuous functionals separates


states, i.e., for all ρ, ρ′ ∈ E
ℓ⃗
with ρ ̸= ρ′, there is A ∈ U such that Â(ρ) ̸= Â(ρ′).


Thus, by the Stone–Weierstrass theorem, the uniqueness of the probability


measure µρ of Theorem 12.18 is equivalent to the uniqueness of the complex


numbers


(6.4) µρ(Â1 · · · Â1) =


∫
Eℓ⃗


dµρ(ρ̂) ρ̂(A1) · · · ρ̂(An), A1, . . . , An ∈ U , n ∈ N.


By von Neumann ergodic theorem (Theorem 6.2), for any ρ ∈ E
ℓ⃗
, A1, . . . , An ∈


U and n ∈ N,


lim
L→∞


ρ
(
(A1)L,ℓ⃗ · · · (An)L,ℓ⃗


)
= ⟨Ωρ, πρ(A1)Pρπρ(A1)Pρ · · ·Pρπρ(A1)Ωρ⟩.


Recall that A
L,ℓ⃗


is defined by (2.9) for any A ∈ U , L ∈ N, and any ℓ⃗ ∈ Nd. By


Lemma 6.8 below, the projection Pρ is one–dimensional with ran Pρ = CΩρ


whenever ρ ∈ E
ℓ⃗
is extreme in E


ℓ⃗
. In particular, for all extreme states ρ̂ ∈ E


ℓ⃗
and all A1, . . . , An ∈ U , n ∈ N,


ρ̂(A1) · · · ρ̂(An) = lim
L→∞


ρ̂
(
(A1)L,ℓ⃗ · · · (An)L,ℓ⃗


)
.


Hence, as µρ(Eℓ⃗
\E


ℓ⃗
) = 0 (Theorem 12.18), by using (6.4) together with Lebesgue’s


dominated convergence, it follows that, for any A1, . . . , An ∈ U with n ∈ N,
the complex number


µρ(Â1 · · · Â1)= lim
L→∞


∫
Eℓ⃗


dµρ (ρ̂) ρ̂
(
(A1)L,ℓ⃗ · · · (An)L,ℓ⃗


)
= lim


L→∞
ρ
(
(A1)L,ℓ⃗ · · · (An)L,ℓ⃗


)
is uniquely determined.


As a consequence, the set E
ℓ⃗
is a (Choquet) simplex, see Definition 12.21 and


Theorem 12.22.


6.2. The set Eℓ⃗ of extreme states of Eℓ⃗


We want to prove next that all extreme states are ergodic w.r.t. the space–


average (2.9) (Definition 2.15) and conversely. The fact that all ergodic states


are extreme is not difficult to verify:


Lemma 6.5 (Ergodicity implies extremality).


Any ergodic state ρ ∈ E
ℓ⃗
is extreme in E


ℓ⃗
, i.e., ρ ∈ E


ℓ⃗
.


Proof. If ρ /∈ E
ℓ⃗
is not extreme, there are two states ρ1, ρ2 ∈ E


ℓ⃗
with


ρ = 1
2ρ1 +


1
2ρ2 and ρ1(A) ̸= ρ2(A) for some A = A∗ ∈ U . Then


(6.5) |ρ(A)|2 < 1


2
|ρ1(A)|2 +


1


2
|ρ2(A)|2.
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For all ℓ⃗ ∈ Nd and any state ρ ∈ E
ℓ⃗
with GNS representation (Hρ, πρ,Ωρ), by


Theorem 6.1 for G = (ℓ⃗.Zd,+) and Theorem 6.2, we get


(6.6) ∆
A,ℓ⃗


(ρ) := lim
L→∞


ρ(A∗
L,ℓ⃗
A


L,ℓ⃗
) = lim


L→∞
∥P (L)


ρ πρ(A)Ωρ∥2 = ∥Pρπρ(A)Ωρ∥2.


Using Cauchy–Schwarz inequality together with PρΩρ = Ωρ (Theorem 6.2),


|ρ(A)|2 = |⟨Ωρ, Pρπρ(A)Ωρ⟩|2 ≤ ∥Pρπρ(A)Ωρ∥2 = ∆
A,ℓ⃗


(ρ)


for any state ρ ∈ E
ℓ⃗
. Applying the last inequality to states ρ1 and ρ2 we


conclude from (6.5) that


|ρ(A)|2 < 1


2
∆


A,ℓ⃗
(ρ1) +


1


2
∆


A,ℓ⃗
(ρ2) = ∆


A,ℓ⃗
(ρ) .


It follows that ρ /∈ E
ℓ⃗
is not ergodic.


The last lemma is elementary, but it implies an essential topological prop-


erty of the set E
ℓ⃗
of extreme points of the convex and weak∗–compact set E


ℓ⃗
:


Corollary 6.6 (Density of the set E
ℓ⃗
of extreme points of E


ℓ⃗
).


For any ℓ⃗ ∈ Nd, the set E
ℓ⃗
is a Gδ weak∗–dense subset of E


ℓ⃗
.


Proof. The proof of this lemma is a slight adaptation of the proof of [4,


Lemma IV.3.2.] for quantum spin systems to the case of even states over the


fermion algebra U . It is a pivotal proof in the sequel.


The set E
ℓ⃗
of extreme points of E


ℓ⃗
is a Gδ set, by Theorem 12.13 (i), as E


ℓ⃗
is metrizable. Thus, it suffices to prove that E


ℓ⃗
is dense in E


ℓ⃗
. For any ρ ∈ E


ℓ⃗
,


we define the state ρ̃n to be the restriction ρΛn
∈ EΛn


on the box


(6.7) Λ
n,ℓ⃗


:=
{
x = (x1, · · · , xd) ∈ Zd : |xi| ≤ nℓi


}
seen as a (2n + 1)ℓ⃗–periodic state. This is possible, by [8, Theorem 11.2.],


because any ℓ⃗–periodic state is even, by Corollary 6.3. From the state ρ̃n ∈
E


(2n+1)ℓ⃗
we define next the ℓ⃗–periodic state


(6.8) ρ̂n :=
1


|Λ
n,ℓ⃗


∩ ℓ⃗.Zd|


∑
x∈Λn,ℓ⃗∩ℓ⃗.Zd


ρ̃n ◦ αx ∈ E
ℓ⃗
.


Clearly, the space–averaged state ρ̂n converges towards ρ ∈ E
ℓ⃗
w.r.t. the


weak∗–topology and we prove below that ρ̂n ∈ E
ℓ⃗
by using Lemma 6.5.


Indeed, for any A ∈ U0, there is a positive constant C > 0 such that


ρ̃n (αx(A
∗)αy(A)) = ρ̃n (αx(A


∗)) ρ̃n (αy(A))


whenever d(x, y) ≥ C. Here, d : L× L → [0,∞) is the usual metric defined on


the lattice L := Zd by (2.14). Using the space–average A
L,ℓ⃗


defined by (2.9)
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we then deduce that


ρ̃n(A
∗
L,ℓ⃗
A


L,ℓ⃗
)=


1


|ΛL ∩ ℓ⃗.Zd|2
∑


x,y∈ΛL∩ℓ⃗.Zd


ρ̃n (αx(A
∗)) ρ̃n (αy(A))(6.9)


+O(L−d).


Since ρ̂n ∈ E
ℓ⃗
is a ℓ⃗–periodic state, for any A ∈ U0, one has that


1


|ΛL ∩ ℓ⃗.Zd|


∑
x∈ΛL∩ℓ⃗.Zd


ρ̃n (αx(A)) = ρ̂n (A) +O(L−1)


which combined with the asymptotics (6.9) implies that


lim
L→∞


ρ̃n(A
∗
L,ℓ⃗
A


L,ℓ⃗
) = |ρ̂n (A)|


2 .


Using this last equality we then obtain from (6.8) that, for any A ∈ U0,


(6.10) lim
L→∞


ρ̂n(A
∗
L,ℓ⃗
A


L,ℓ⃗
) = |ρ̂n (A)|


2


because ρ̂n ∈ E
ℓ⃗
and


(6.11) αx(A
∗
L,ℓ⃗
A


L,ℓ⃗
) = (αx (A))


∗
L,ℓ⃗


(αx (A))L,ℓ⃗


for all x ∈ Zd. Since the set U0 is dense in the fermion algebra U , we can


extend (6.10) to any A ∈ U which shows that the state ρ̂n ∈ E
ℓ⃗
is ergodic and


thus extreme in E
ℓ⃗
, by Lemma 6.5.


We show now the converse of Lemma 6.5 which is not as obvious as the


proof of Lemma 6.5. Take, for instance, the trivial action of the group (ℓ⃗.Zd,+)


on the C∗-algebra U given by α̃x : A 7→ A for all x ∈ ℓ⃗.Zd. Observe that w.r.t.


this choice, the set of invariant states is simply the set E of all states. Then,


by the proof of Lemma 6.5, any ergodic state w.r.t. to this action is again an


extreme point of the set of all states. But, generally, extreme states are not


ergodic w.r.t. to the trivial action of ℓ⃗.Zd: Consider for simplicity the case of


quantum spin systems (cf. Remark 2.4). For a given element A ∈ U such that


A∗A ̸= A, we can always find a state ρ satisfying ρ(A∗A) ̸= |ρ(A)|2 and thus,


because the set E of extreme states of E is weak∗–dense in E (see [17, Example


4.1.31.]), there is an extreme state with this property .


In order to get the equivalence between ergodicity and extremality of


states, the asymptotic abelianess of the even sub–algebra U+ (2.5), i.e., the


fact that


(6.12) lim
|x|→∞


[A,αx(B)] = 0 for any A,B ∈ U+,


is crucial.


Indeed, for any state ρ ∈ E
ℓ⃗
with GNS representation (Hρ, πρ,Ωρ), let us


first consider the von Neumann algebra


Rρ :=
[
πρ(U) ∪ {Ux}x∈ℓ⃗.Zd


]′′ ⊂ B(Hρ).
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Here, {Ux}x∈ℓ⃗.Zd are the unitary operators of Theorem 6.1 with G = (ℓ⃗.Zd,+).


This von Neumann algebra is related to the projection Pρ := P defined via


Theorem 6.2 for H = Hρ:


Lemma 6.7 (Properties of the von Neumann algebra Rρ).


For any ℓ⃗–periodic state ρ ∈ E
ℓ⃗
, Pρ ∈ Rρ and PρRρPρ is an abelian von


Neumann algebra on PρHρ.


Proof. On the one hand, by Theorem 6.2, the projection Pρ is the strong


limit of linear combinations of unitary operators Ux for x ∈ ℓ⃗.Zd and so,


Pρ ∈ Rρ. On the other hand, if M is a von Neumann algebra on a Hilbert


space H and P is any projection from M, the set PMP is a von Neumann


algebra on PH. See, e.g., [4, Lemma IV.2.5]. Therefore, it remains to show


that PρRρPρ is abelian. To prove it we adapt now the proof of [4, Lemma


IV.2.6] – performed for quantum spin systems – to the case where U is a


fermion algebra. In particular, we show first that PρRρPρ = [Pρπρ(U)Pρ]
′′ and


then the abelianess of [Pρπρ(U)Pρ]
′′.


Since Uxπρ(A) = πρ(αx(A))Ux, it follows that each element B ∈ Rρ is the


strong limit as n→ ∞ of a sequence of elements of the form


Bn :=
∑
j


Uxj
πρ(Aj)


with xj ∈ ℓ⃗.Zd and Aj ∈ U . In particular, by using Theorem 6.2, each element


of PρRρPρ is the strong limit as n→ ∞ of elements of the form


PρBnPρ = Pρπρ(
∑
j


Aj)Pρ.


In other words, since Pρπρ(U)Pρ ⊂ PρRρPρ is clear, we deduce from the last


equality that PρRρPρ = [Pρπρ(U)Pρ]
′′ as [Pρπρ(U)Pρ]


′′ is the strong closure of


Pρπρ(U)Pρ.


Take now two local even elements A,B ∈ UΛ ∩U+ with Λ ∈ Pf (L). Then


via Theorem 6.2, for all ξ ∈ Hρ,


[(Pρπρ(A)Pρ) (Pρπρ(B)Pρ)− (Pρπρ(B)Pρ) (Pρπρ(A)Pρ)] ξ(6.13)


= lim
L→∞


[(
Pρπρ(A)P


(L)
ρ πρ(B)Pρ


)
−
(
Pρπρ(B)P (L)


ρ πρ(A)Pρ


)]
ξ


= lim
L→∞


1


|ΛL ∩ ℓ⃗.Zd|


∑
x∈ΛL∩ℓ⃗.Zd


Pρ[A,αx(B)]Pρ = 0


because [A,αx(B)] = 0 for any x ∈ Zd such that d(x, 0) ≥ 2|Λ|, see (2.14) for


the definition of the metric d. From Corollary 6.3, recall that Pρπρ(A)Pρ = 0


for any odd element A ∈ U . Therefore, by combining this with the density of


the ∗–algebra U0 ⊂ U of local elements, we can extend the equality (6.13) to
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any A,B ∈ U , i.e., for all A,B ∈ U ,


[Pρπρ(A)Pρ, Pρπρ(B)Pρ] = 0.


In other words, Pρπρ(U)Pρ is abelian. Since Pρπρ(U)Pρ is strongly dense in


[Pρπρ(U)Pρ]
′′ = PρRρPρ, the von Neumann algebra PρRρPρ is itself abelian.


We are now in position to show that all extreme points ρ ∈ E
ℓ⃗
of E


ℓ⃗
are


ergodic.


Lemma 6.8 (Extremality implies ergodicity).


For any extreme state ρ̂ ∈ E
ℓ⃗
of E


ℓ⃗
, Pρ̂ is the orthogonal projection on the


one–dimensional sub–space generated by Ωρ̂. In particular, any state ρ̂ ∈ E
ℓ⃗
is


ergodic.


Proof. For any ρ̂ ∈ E
ℓ⃗
, observe that the von Neumann algebra Rρ̂ is irre-


ducible, i.e., R′
ρ̂ = C1. Indeed, by contradiction, assume that R′


ρ̂ is strictly


larger than its sub–algebra C1. Then there is at least one non–trivial (orthog-


onal) projection P ∈ R′
ρ̂. By cyclicity of Ωρ̂ w.r.t. R′′


ρ̂, PΩρ̂ ̸= 0 and thus


⟨Ωρ̂, PΩρ̂⟩ = ∥PΩρ̂∥22 > 0. Similarly, ⟨Ωρ̂, (1−P )Ωρ̂⟩ > 0. Define the following


continuous linear functionals on U :


ρ1(A) := ⟨Ωρ̂, PΩρ̂⟩−1⟨Ωρ̂, Pπρ̂(A)Ωρ̂⟩,
ρ2(A) := ⟨Ωρ̂, (1− P )Ωρ̂⟩−1⟨Ωρ̂, (1− P )πρ̂(A)Ωρ̂⟩.


Observe that, by cyclicity of Ωρ̂ w.r.t. πρ̂(U), ρ1 ̸= ρ2. Since UxΩρ̂ = Ωρ̂ and


P commutes per definition with πρ̂(A) and Ux for all A ∈ U and x ∈ ℓ⃗.Zd, the


functionals ρ1 and ρ2 belong to E
ℓ⃗
, whereas


ρ̂ = ⟨Ωρ̂, PΩρ̂⟩ρ1 + ⟨Ωρ̂, (1− P )Ωρ̂⟩ρ2 .


Since ⟨Ωρ̂, (1 − P )Ωρ̂⟩ > 0 and ⟨Ωρ̂, PΩρ̂⟩ > 0, this last equality contradicts


the fact that ρ̂ ∈ E
ℓ⃗
. Therefore, R′


ρ̂ = C1 whenever ρ̂ ∈ E
ℓ⃗
.


Observe now that


(6.14) [Pρ̂Rρ̂Pρ̂]
′ = Pρ̂R


′
ρ̂Pρ̂ = CPρ̂ .


Here we use that, for any von Neumann algebra M and any orthogonal pro-


jection P ∈ M, [P MP ]′ = P M′P , see, e.g., [4, Lemma IV.2.5]. By Lemma


6.7, the von Neumann algebra Pρ̂Rρ̂Pρ̂ is abelian. In particular, from (6.14),


Pρ̂Rρ̂Pρ̂ ⊂ Pρ̂R
′
ρ̂Pρ̂ = CPρ̂


which implies that Pρ̂Rρ̂Pρ̂ = CPρ̂. This yields


Pρ̂πρ̂(A)Ωρ̂ = Pρ̂πρ̂(A)Pρ̂Ωρ̂ ∈ CPρ̂Ωρ̂ = CΩρ̂
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for any A ∈ U . In other words, by cyclicity of Ωρ̂, Pρ̂Hρ̂ = CΩρ̂ and thus


∥Pρ̂πρ̂(A)Ωρ̂∥2= ⟨Pρ̂πρ̂(A)Ωρ̂, Pρ̂πρ̂(A)Ωρ̂⟩
= ⟨Pρ̂πρ̂(A)Ωρ̂,Ωρ̂⟩⟨Ωρ̂, Pρ̂πρ̂(A)Ωρ̂⟩
= ⟨πρ̂(A)Ωρ̂,Ωρ̂⟩⟨Ωρ̂, πρ̂(A)Ωρ̂⟩


implying, by (6.6), that any state ρ̂ ∈ E
ℓ⃗
is ergodic.


As we can relate the ergodicity with the so–called strongly clustering prop-


erty [17, Section 4.3.2], we deduce from Lemma 6.8 that any extreme state


ρ̂ ∈ E
ℓ⃗
is strongly clustering:


Corollary 6.9 (Extreme states are strongly clustering).


Any extreme state ρ̂ ∈ E
ℓ⃗
is strongly clustering, i.e., for all A,B ∈ U ,


(6.15) lim
L→∞


1


|ΛL ∩ ℓ⃗.Zd|


∑
y∈ΛL∩ℓ⃗.Zd


ρ̂ (αx(A)αy(B)) = ρ̂(A)ρ̂(B)


uniformly in x ∈ ℓ⃗.Zd.


Proof. This corollary can directly be seen from Lemma 6.8 combined with


Theorem 6.2 because


lim
L→∞


1


|ΛL ∩ ℓ⃗.Zd|


∑
y∈ΛL∩ℓ⃗.Zd


ρ̂ (αx(A)αy(B))= lim
L→∞


⟨Uxπρ̂(A
∗)Ωρ̂, P


(L)
ρ̂ πρ̂(B)Ωρ̂⟩


= ⟨Uxπρ̂(A
∗)Ωρ̂, Pρ̂πρ̂(B)Ωρ̂⟩


= ⟨Ωρ̂, πρ̂(A)Ωρ̂⟩⟨Ωρ̂, πρ̂(B)Ωρ̂⟩


for any A,B ∈ U and x ∈ ℓ⃗.Zd. By using Cauchy–Schwarz inequality, note


that the limit L → ∞ is uniform in x ∈ ℓ⃗.Zd because P
(L)
ρ̂ converges strongly


to the projection Pρ̂. See Theorem 6.2.


Therefore, Theorem 2.16 is a consequence of Lemmata 6.5 and 6.8 together


with Corollary 6.9.


6.3. Properties of the space–averaging functional ∆A


We characterize now the properties of the space–averaging functional ∆A de-


fined in Definition 2.14 for any A ∈ U because it is intimately related with the


structure of the set E1 of t.i. states. We start by proving that this functional


is well–defined, even for ℓ⃗–periodic states ρ ∈ E
ℓ⃗
:


Lemma 6.10 (Well–definiteness of the map ρ 7→ ∆A (ρ)).


For any A ∈ U , the space–averaging functional ∆A is well–defined on the set


E
ℓ⃗
of ℓ⃗–periodic states for any ℓ⃗ ∈ Nd and it satisfies


∆A (ρ) = inf
(L,··· ,L)∈ℓ⃗.Nd


{ρ(A∗
LAL)} ∈


[
|ρ(A


ℓ⃗
)|2, ∥A∥2


]
.
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Proof. Assume that (L, · · · , L) ∈ ℓ⃗.Nd. In the same way we prove (6.6),


for any state ρ ∈ E
ℓ⃗
with GNS representation (Hρ, πρ,Ωρ), we obtain, by using


Theorem 6.1 for G = (ℓ⃗.Zd,+) and Theorem 6.2 for H = Hρ, that


(6.16) lim
L→∞


ρ(A∗
LAL) = lim


L→∞
∥P (L)


ρ πρ(Aℓ⃗
)Ωρ∥2 = ∥Pρπρ(Aℓ⃗


)Ωρ∥2 ≤ ∥A∥2.


The inequality ∆A (ρ) ≥ |ρ(A
ℓ⃗
)|2 then follows by using the Cauchy–Schwarz


inequality and PρΩρ = Ωρ. Additionally, by using again Theorem 6.2 we see


that, for all (L, · · · , L) ∈ ℓ⃗.Nd,


∥P (L)
ρ πρ(Aℓ⃗


)Ωρ∥2 ≥ ∥PρP
(L)
ρ πρ(Aℓ⃗


)Ωρ∥2 = ∥Pρπρ(Aℓ⃗
)Ωρ∥2.


Therefore, the functional ∆A is an infimum over (L, · · · , L) ∈ ℓ⃗.Nd as claimed


in the lemma.


Now, there is a constant C <∞ such that, for all L′ ∈ N, there is L ∈ N
such that |L− L′| ≤ C and (L, · · · , L) ∈ ℓ⃗.Nd. It follows that


ρ(A∗
L′AL′) = ρ(A∗


LAL) +O
(
L−1


)
,


which implies, for any diverging sequence {Ln}∞n=1 of natural numbers, that


lim
n→∞


ρ(A∗
Ln
ALn


) = ∥Pρπρ(Aℓ⃗
)Ωρ∥2 ∈


[
|ρ(A


ℓ⃗
)|2, ∥A∥2


]
because of (6.16).


From Lemma 6.10 we deduce now the main properties of the functional


∆A:


Lemma 6.11 (Weak∗–upper semi–continuity, t.i., and affinity of ∆A).


For any A ∈ U , the space–averaging functional ∆A on the set E
ℓ⃗
of ℓ⃗–periodic


states is affine, t.i., and weak∗–upper semi–continuous.


Proof. Because the map ρ 7→ ρ(A) is affine, ∆A is also affine. Moreover,


by using (2.12), (6.11), and (6.16) we obtain, for all x ∈ Zd, that


∆A(ρ ◦ αx) = ∆αx(A)(ρ) = ∥Pρπρ(αx


(
A


ℓ⃗


)
)Ωρ∥2 = ∥Pρπρ(Aℓ⃗


)Ωρ∥2 = ∆A(ρ)


because ρ ∈ E
ℓ⃗
. In other words, the map ρ 7→ ∆A (ρ) is t.i. on E


ℓ⃗
. Finally,


by Lemma 6.10, ∆A is an infimum over weak∗–continuous functionals and is


therefore weak∗–upper semi–continuous. The latter is completely standard to


verify. Indeed, by Lemma 6.10,


Mr := {ρ ∈ E
ℓ⃗
: ∆A (ρ) < r} =


∪
(L,··· ,L)∈ℓ⃗.Nd


{ρ ∈ E
ℓ⃗
: ρ(A∗


LAL) < r}


for any constant r ∈ R+
0 . Since, for any A ∈ U , the map ρ 7→ ρ(A) is weak∗–


continuous, Mr is the union of open sets which implies the weak∗–upper semi–


continuity of ∆A.
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Lemma 6.12 (Locally Lipschitz continuity of the map A 7→ ∆A (ρ)).


For all ρ ∈ E
ℓ⃗
and all A,B ∈ U ,


|∆A (ρ)−∆B (ρ) | ≤ (∥A∥+ ∥B∥)∥A−B∥.


Proof. This proof is straightforward. Indeed, observe that


∥ρ (A∗
LAL)− ρ (B∗


LBL)∥ ≤ ∥A∗ −B∗∥ ∥A∥+ ∥B∗∥ ∥A−B∥


from which we deduce the lemma.


We analyze now the space–averaging functional ρ 7→ ∆A (ρ) seen as a map


from the set E1 of t.i. states to R.


Proposition 6.13 (Continuity/Discontinuity of ∆A on E1).


(i) ∆A is continuous on E1 iff the affine map ρ 7→ |ρ(A)| from E1 to C is a


constant map.


(ii) For all A ∈ U such that ρ 7→ |ρ(A)| is not constant, ∆A is discontinuous


on a weak∗–dense subset of E1.


(iii) ∆A is weak∗–continuous on the Gδ weak∗–dense subset E1 of ergodic states


in E1. In particular, the set of all points in E1 where this functional is discon-


tinuous is meager.


Proof. We start by proving the statements (i)–(ii). From Lemmata 6.8,


6.11 and 12.17 combined with Theorem 2.9, ∆A can be decomposed in terms


of an integral on the set E1, see Theorem 2.19 (iv). As a consequence, if


ρ 7→ |ρ(A)| is a constant map on E1 then the functional ∆A is clearly constant


on E1 and hence continuous. Take now A ∈ U such that the map ρ 7→ |ρ(A)|
is not constant. Then, for any ρ ∈ E1, there is at least one state ϱρ ∈ E1 such


that |ρ(A)| ≠ |ϱρ(A)|. For all ρ ∈ E1, we define the subset I(ρ) ⊂ E1 by


I(ρ) := {λρ+ (1− λ)ϱρ for any λ ∈ (0, 1)}.


Finally, let us consider the subset


D :=
∪
ρ∈E1


I(ρ) ⊂ E1\E1.


By continuity of the map λ 7→ λρ for λ ∈ C and ρ ∈ E1, the set D is dense in


E1 w.r.t. the weak∗–topology. Moreover, the map ρ 7→ ∆A(ρ) is discontinuous


at any ρ ∈ D. This can be seen as follows.


Recall that any ρ ∈ D is of the form


ρ = λρ1 + (1− λ)ρ2


for some λ ∈ (0, 1) and states ρ1, ρ2 ∈ E1 with |ρ1(A)| ̸= |ρ2(A)|. From


Corollary 6.6, the set E1 of extreme states is weak∗–dense in E1. So, for any







82 J.-B. BRU AND W. DE SIQUEIRA PEDRA


ρ ∈ D, there is a sequence {ρ̂n}∞n=1 ⊂ E1 of extreme states converging w.r.t.


the weak∗–topology to ρ. Then, by Lemma 6.8, it follows that


lim
n→∞


∆A(ρ̂n)= |ρ̂n(A)|2 = |λρ1(A) + (1− λ)ρ2(A)|2


<λ|ρ1(A)|2 + (1− λ)|ρ2(A)|2 ≤ ∆A(ρ)(6.17)


because ρ 7→ |ρ(A)|2 is weak∗–continuous, λ ∈ (0, 1), ∆A(ρ) is affine, and


∆A(ρ) ≥ |ρ(A)|2 for any ρ ∈ E1.


We conclude this proof by showing that ∆A is weak∗–continuous for any


ρ̂ ∈ E1 which yields (iii), by Corollary 6.6. Take ρ̂ ∈ E1 and consider any


sequence {ρn}∞n=1 of states of E1 converging w.r.t. the weak∗–topology to ρ̂.


The functional ∆A is weak∗–upper semi–continuous, whereas, for all ρ ∈ E1,


∆A(ρ) ≥ |ρ(A)|2 with equality whenever ρ ∈ E1 (see Lemma 6.8). Therefore,


|ρ̂(A)|2 = ∆A (ρ̂) ≥ lim
n→∞


∆A(ρn) ≥ lim
n→∞


|ρn(A)|2 = |ρ̂(A)|2.


In other words, the functional ∆A is weak∗–continuous on E1.
Note that the map ρ 7→ |ρ(A)|2 is a weak∗–continuous convex minorant of


the space–averaging functional ∆A, see Lemma 6.10 for ℓ⃗ = (1, · · · , 1). From


Definitions 2.14, 2.15, and Theorem 2.16 (or Lemma 6.8), ∆A (ρ̂) = |ρ̂(A)|2 for


any extreme state ρ̂ ∈ E1. Since, by Corollary 6.6, the set E1 of extreme states


is weak∗–dense in E1, these last properties suggest that the map ρ 7→ |ρ(A)|2
is the largest weak∗–lower semi–continuous convex minorant of ∆A. This is


proven in our last lemma on the functional ∆A.


Lemma 6.14 (Γ–regularization of ∆A).


The Γ–regularization on E1 of the functional ∆A is the weak∗–continuous con-


vex functional ρ 7→ |ρ(A)|2. In particular, ρ 7→ |ρ(A)|2 is the largest weak∗–


lower semi–continuous convex minorant of ∆A on E1.


Proof. Recall that the Γ–regularization of functionals are defined by Def-


inition 12.27. By Lemmata 6.8 and 6.10 for ℓ⃗ = (1, · · · , 1), ∆A (ρ̂) = |ρ̂(A)|2
for any ρ̂ ∈ E1, whereas, for all ρ ∈ E1, ∆A (ρ) ≥ |ρ(A)|2. Since the map


ρ 7→ |ρ(A)|2 from E1 to R is a weak∗–continuous convex functional, by Corol-


lary 12.30, the Γ–regularization ΓE1
(∆A) of ∆A is bounded from below on E1


by the map ρ 7→ |ρ(A)|2, whereas, for any extreme state ρ̂ ∈ E1, ΓE1
(∆A) (ρ̂) =


|ρ̂(A)|2. Because of the weak∗–density of E1 in E1 (Corollary 6.6), we de-


duce by using the weak∗–lower semi–continuity of the functional ΓE1
(∆A) that


ΓE1
(∆A) (ρ) = |ρ(A)|2 for all ρ ∈ E1.


6.4. Von Neumann entropy and entropy density of ℓ⃗–periodic
states


For any local state ρΛ ∈ EΛ, there exists a unique density matrix dρΛ
∈ U+∩UΛ


satisfying ρΛ(A) = Trace(dρΛ
A) for all A ∈ UΛ. The von Neumann entropy is







FERMI SYSTEMS WITH LONG RANGE INTERACTIONS 83


then defined, for any local state ρΛ with density matrix dρΛ
, by


(6.18) S(ρΛ) := Trace
(
η(dρΛ


)
)
≥ 0.


Here, η(x) := −x log(x). Observe that UΛ is isomorphic to some (finite dimen-


sional) matrix algebraB(CNΛ). The linear functional Trace : UΛ → C is defined


by Trace := Tr ◦ φ with φ being an arbitrary ∗–isomorphism UΛ → B(CNΛ)


and Tr being the usual trace for linear operators on CNΛ . Note further that


Trace does not depend on the choice of the isomorphism φ. The von Neumann


entropy has the following well–known properties:


S1 It is ℓ⃗–periodic in the sense that, for any ρ ∈ E
ℓ⃗
, Λ ∈ Pf (L), and x ∈ ℓ⃗.Zd,


S(ρΛ) = S(ρΛ+x)


with the local state ρΛ being the restriction of the ℓ⃗–periodic state ρ on


the sub–algebra UΛ ⊂ U and with Λ + x defined by (2.13).


S2 It is strongly sub–additive, i.e., for any Λ1,Λ2 ∈ Pf (L) and any local


state ρΛ1∪Λ2
on UΛ1∪Λ2


,


S(ρΛ1∪Λ2
)− S(ρΛ1


)− S(ρΛ2
) + S(ρΛ1∩Λ2


) ≤ 0,


see [8, Theorems 3.7 and 10.1].


S3 It is concave, i.e., for any Λ ∈ Pf (L), any states ρΛ,1, ρΛ,2 on UΛ, and


λ ∈ [0, 1],


S(λρΛ,1 + (1− λ)ρΛ,2) ≥ λS(ρΛ,1) + (1− λ)S(ρΛ,2),


see [5, Proposition 6.2.28].


S4 It is approximately convex, i.e., for any Λ ∈ Pf (L), any states ρΛ,1, ρΛ,2
on UΛ, and λ ∈ [0, 1],


S(λρΛ,1 + (1− λ)ρΛ,2) ≤ λS(ρΛ,1) + (1− λ)S(ρΛ,2) + η(λ) + η(1− λ),


see [5, Proposition 6.2.28].


S1–S4 ensure the existence as well as some basic properties of the entropy


density s : E
ℓ⃗
→ R+


0 defined in Definition 2.27:


Lemma 6.15 (Existence and properties of the entropy density).


The map ρ 7→ s(ρ) from E
ℓ⃗
to R equals


s(ρ) := lim
L→∞


1


|ΛL|
S(ρΛL


) = inf
(L,··· ,L)∈ℓ⃗.Nd


1


|ΛL|
S(ρΛL


).


It is an affine, t.i., and weak∗–upper semi–continuous functional.
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Proof. This lemma is standard, see, e.g., [8, Section 3]. Indeed, the


existence of the entropy density is a direct consequence of properties S1–S2


because one deduces from these properties that


s(ρ) = inf
(L,··· ,L)∈ℓ⃗.Nd


1


|ΛL|
S(ρΛL


).


This equation implies the weak∗–upper semi–continuity of the entropy density


functional s as the map ρ 7→ S(ρΛL
) is weak∗–continuous for any L ∈ N,


see similar arguments performed in the proof of Lemma 6.11. By using the


property S3, the functional s is convex, whereas from S4 one deduces that it


is also concave. Therefore, ρ 7→ s(ρ) defines a weak∗–upper semi–continuous


affine functional on E
ℓ⃗
. The translation invariance of s follows from the strong


sub–additivity S2 together with standard estimates.


Observe that the entropy density functional s is not weak∗–continuous


but only norm continuous. These properties are well known, see, e.g., [18, 19].


Nevertheless, the entropy density functional s has still an interesting weak∗–


“pseudo–continuity” property w.r.t. to specific sequences of ergodic states.


This property is important in the following and reads as follows:


Lemma 6.16 (Weak∗–pseudo–continuity of the entropy density).


For any t.i. state ρ ∈ E1, there is a sequence {ρ̂n}∞n=1 of ergodic states con-


verging in the weak∗–topology to ρ and such that


s(ρ) = lim
n→∞


s(ρ̂n).


Proof. The states ρ̂n defined by (6.8) with ℓ⃗ = (1, · · · , 1) for any ρ ∈ E1


and all n ∈ N are ergodic, i.e., ρ̂n ∈ E1, see (6.10) (extended by density of U0 to


all A ∈ U). Moreover, the sequence {ρ̂n}∞n=1 converges in the weak∗–topology


towards ρ. On the other hand, by translation invariance and affinity of the


entropy (Lemma 6.15),


s(ρ̂n) = s(ρ̃n) =
1


|Λn|
S(ρΛn


)


with S being the von Neumann entropy (6.18) and ρ̃n the (2n+ 1)(1, . . . , 1)–


periodic continuation of the restriction ρΛn
∈ EΛn


of the state ρ ∈ E1 on the


box Λn = Λn,(1,...,1) (defined by (6.7)). Therefore the entropy density s(ρ̂n)


converges to s(ρ) as n→ ∞, see Definition 2.27.


6.5. The set E1 as a subset of the dual space W∗
1


Another important thermodynamic quantity associated with any ℓ⃗–periodic


state ρ ∈ E
ℓ⃗
on U is the energy density ρ 7→ eΦ(ρ) defined for any t.i. inter-


action Φ ∈ W1. It is the thermodynamic limit of the internal energy ρ(UΦ
Λ )
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(Definition 2.22 (ii)) per unit volume associated with any fixed local interaction


Φ, see Definition 2.30. This last definition makes sense as soon as Φ ∈ W1.


Indeed, this basically follows from Lebesgue’s dominated convergence theorem:


Lemma 6.17 (Well–definiteness of the energy density).


The energy density eΦ(ρ) of any ℓ⃗–periodic state ρ ∈ E
ℓ⃗
w.r.t. Φ ∈ W1 equals


eΦ(ρ) = ρ(e
Φ,ℓ⃗


) with e
Φ,ℓ⃗


being defined by (2.16) for any ℓ⃗ ∈ Nd.


Proof. For any t.i. interaction Φ ∈ W1, its internal energy equals


UΦ
Λ : =


∑
Λ′∈Pf (L)


1{Λ′⊂Λ}ΦΛ′ =
∑


x=(x1,··· ,xd), xi∈{0,··· ,ℓi−1}∑
y∈Λ∩ℓ⃗.Zd,x+y∈Λ


∑
Λ′∈Pf (L),0∈Λ′


1{Λ′⊂(Λ−x−y)}
Φ(x+y)+Λ′


|Λ′|
.(6.19)


Then, for any ℓ⃗–periodic state ρ ∈ E
ℓ⃗
and any L ∈ R,


ρ
(
UΦ
ΛL


)
|ΛL|


=
|ΛL ∩ ℓ⃗.Zd|


|ΛL|
∑


x=(x1,··· ,xd), xi∈{0,··· ,ℓi−1}


∑
Λ′∈Pf (L),0∈Λ′


ρ


(
Φx+Λ′


|Λ′|


)


× 1


|ΛL ∩ ℓ⃗.Zd|


 ∑
y∈ΛL∩ℓ⃗.Zd,x+y∈ΛL


1{Λ′⊂(ΛL−x−y)}


 .


As ∥Φ∥W1
<∞, we can perform the limit L→ ∞ in this last equality by using


Lebesgue’s dominated convergence theorem in order to show that


eΦ(ρ) := lim
L→∞


ρ
(
UΦ
ΛL


)
|ΛL|


= ρ(e
Φ,ℓ⃗


).


The functional eΦ can be seen either as the affine map ρ 7→ eΦ(ρ) at fixed


Φ ∈ W1 or as the linear functional Φ 7→ eΦ(ρ) at fixed ρ ∈ E
ℓ⃗
. In this section


we use the second point of view to identify the set E1 of all t.i. states on U
with a weak∗–compact set of norm one functionals on the Banach space W1


(Definition 2.24). Indeed, we define the map ρ 7→ T(ρ) from E
ℓ⃗
to the dual


space W∗
1 which associates to any ℓ⃗–periodic state ρ ∈ E


ℓ⃗
on U the affine


continuous functional T(ρ) ∈ W∗
1 defined on the Banach space W1 by


(6.20) Φ 7→ T(ρ) (Φ) := −eΦ(ρ).


The functional T(ρ) is clearly continuous and linear for any ρ ∈ E
ℓ⃗
since


|eΦ(ρ)| ≤ ∥Φ∥W1
and e(λ1Φ+λ2Ψ)(ρ) = λ1eΦ(ρ) + λ2eΨ(ρ)


for any λ1, λ2 ∈ R and any Φ,Ψ ∈ W1, see Lemma 6.17. Observe that the


minus sign in the definition (6.20) is arbitrary. It is used only for convenience
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when we have to deal with tangent functionals (Definition 12.43) of the pressure


(3.20), see Section 3.5. The map T restricted on the set E1 has some interesting


topological properties:


Lemma 6.18 (Properties of T on E1).


The affine map T : E1 → T (E1) ⊂ W∗
1 is a homeomorphism in the weak∗–


topology and an isometry in the norm topology, i.e., ∥T(ρ)− T(ρ′)∥ = ∥ρ− ρ′∥
for all ρ, ρ′ ∈ E1.


Proof. The functional T is weak∗–continuous because the map ρ→ eΦ(ρ)


is weak∗–continuous, by Lemma 2.31 (i). As E1 is compact w.r.t. the weak∗–


topology and the dual space W∗
1 is Hausdorff w.r.t. the weak∗–topology (cf.


Corollary 12.9), it is a homeomorphism from E1 to T (E1) if it is an injection


from E1 to W∗
1 .


In fact, for any ρ, ρ′ ∈ E
ℓ⃗
, observe that


(6.21) ∥T(ρ)− T(ρ′)∥ := sup
Φ∈W1, ∥Φ∥W1=1


|ρ(eΦ)− ρ′(eΦ)| ≤ ∥ρ− ρ′∥.


Therefore, in order to show that the functional T on E1 is an isometry, which


yields its injectivity, it suffices to prove the opposite inequality.


For any A = A∗ ∈ U0, there exists a finite range interaction ΦA ∈ W1


with ∥ΦA∥W1
= ∥A∥ such that, for any ρ ∈ E1,


eΦA(ρ) = ρ(A).


For A = A∗ ∈ UΛ, choose, for instance, ΦA(Λ′) = αx(A) if Λ′ = Λ + x and


ΦA(Λ′) = 0 else. It follows that, for any A = A∗ ∈ U0,


(6.22) |ρ(A)− ρ′(A)| ≤ ∥T(ρ)− T(ρ′)∥ ∥A∥.


The difference (ρ − ρ′) of states ρ, ρ′ ∈ E1 is a Hermitian functional on a


C∗–algebra which implies that


∥ρ− ρ′∥ = sup
A∈U , A=A∗, ∥A∥=1


|ρ(A)− ρ′(A)|.


Since the algebra U0 of local elements is dense in U , this last equality together


with (6.21) and (6.22) implies that, for all ρ, ρ′ ∈ E1,


∥T(ρ)− T(ρ′)∥ = ∥ρ− ρ′∥.


As a consequence, we can identify any t.i. state ρ ∈ E1 with the continuous


linear functional T (ρ) ∈ W∗
1 .
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6.6. Well–definiteness of the free–energy densities on Eℓ⃗


Two crucial functionals related to the thermodynamics of long range models


m := (Φ, {Φa}a∈A, {Φ′
a}a∈A) ∈ M1


are the free–energy density functional f ♯m defined on the set E
ℓ⃗
of ℓ⃗–periodic


states by


f ♯m (ρ) := ∥∆a,+ (ρ)∥1 − ∥∆a,− (ρ)∥1 + eΦ(ρ)− β−1s(ρ)


and the reduced free–energy density functional gm defined on E
ℓ⃗
by


gm (ρ) := ∥γa,+ρ
(
eΦa


+ ieΦ′
a


)
∥22 − ∥γa,−ρ


(
eΦa


+ ieΦ′
a


)
∥22 + eΦ(ρ)− β−1s(ρ),


see Definitions 3.5 and 3.6. Here, ∆a,± (ρ) is defined by (3.2), that is,


∆a,± (ρ) := γa,±∆eΦa+ieΦ′
a
(ρ) ∈ [0, ∥Φa∥2W1


+ ∥Φ′
a∥2W1


]


(cf. (2.17) and Lemma 6.10) with


γa,± := 1/2(|γa| ± γa) ∈ {0, 1}


being the negative and positive parts (3.1) of the fixed measurable function


γa ∈ {−1, 1}.
Both functionals f ♯m and gm are well–defined. Indeed, the entropy density


functional s as well as the energy density functional eΦ are both well–defined,


see Lemmata 6.15 and 6.17. Moreover, for any ρ ∈ E
ℓ⃗
and any m ∈ M1, the


maps a 7→ ∆a,±(ρ) are measurable and ∥∆a,± (ρ) ∥1 <∞:


Lemma 6.19 (Long range energy densities for m ∈ M1).


The maps ρ 7→ ∥∆a,± (ρ) ∥1 from E
ℓ⃗
to R+


0 are well–defined affine, t.i., and


weak∗–upper semi–continuous functionals which equal


(6.23)


∥∆a,±(ρ)∥1 = inf
(L,··· ,L)∈ℓ⃗.Nd


{∫
A
γa,±ρ(u


∗
L,auL,a)da (a)


}
≤ ∥Φa∥22 +


∥∥Φ′
a


∥∥2
2


for any ρ ∈ E
ℓ⃗
, where


uL,a :=
1


|ΛL|
∑
x∈ΛL


αx(eΦa
+ ieΦ′


a
) ∈ U .


Proof. The maps a 7→ ∆a,±(ρ) are measurable and


∥∆a,± (ρ) ∥1 ≤ ∥Φa∥22 +
∥∥Φ′


a


∥∥2
2
<∞


for any m ∈ M1 and ρ ∈ E
ℓ⃗
. It is a consequence of (2.17) and Lemma 6.10


which also implies that


∥∆a,±(ρ)∥1 =
∫
A
γa,±∆a,±(ρ)da (a) =


∫
γa,±


{
inf


(L,··· ,L)∈ℓ⃗.Nd


ρ(u∗L,auL,a)
}
da (a)
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for any ρ ∈ E
ℓ⃗
. Thus, by the monotonicity of integrals,


(6.24) ∥∆a,±(ρ)∥1 ≤ inf
(L,··· ,L)∈ℓ⃗.Nd


{∫
A
γa,±ρ(u


∗
L,auL,a)da (a)


}
.


By (2.17), note that, for all L ∈ N,


ρ(u∗L,auL,a) ≤ 2∥Φa∥2W1
+ 2∥Φ′


a∥2W1
.


Therefore, using that


∆a,±(ρ) = inf
(L,··· ,L)∈ℓ⃗.Nd


ρ(u∗L,auL,a) = lim
L→∞


ρ(u∗L,auL,a)


and Lebesgue’s dominated convergence we obtain that


∥∆a,±(ρ)∥1 = lim
L→∞


∫
A
γa,±ρ(u


∗
L,auL,a)da (a) = lim inf


L→∞


∫
A
γa,±ρ(u


∗
L,auL,a)da (a) .


In particular, we have that


∥∆a,±(ρ)∥1 ≥ inf
(L,··· ,L)∈ℓ⃗.Nd


{∫
A
γa,±ρ(u


∗
L,auL,a)da (a)


}
which combined with (6.24) implies Equality (6.23).


By Lebesgue’s dominated convergence theorem, the map


ρ 7→
∫
A
γa,±ρ(u


∗
L,auL,a)da (a)


is weak∗–continuous for any L ∈ N. So, the weak∗–upper semi–continuity of


the maps ρ 7→ ∥∆a,± (ρ) ∥1 results from (6.23), see similar arguments in the


proof of Lemma 6.11. Additionally, the maps ρ 7→ ∥∆a,± (ρ) ∥1 inherit the t.i.


and affinity of the space–averaging functionals ∆a,±, see again Lemma 6.11.


Therefore, combining Lemmata 6.15 and 6.17 with Lemma 6.19, we obtain


the well–definiteness of the functionals f ♯m and gm:


Corollary 6.20 (Well–definiteness of the functionals f ♯m and gm).


(i) ρ 7→ f ♯m (ρ) is a well–defined map from E
ℓ⃗
to R.


(ii) ρ 7→ gm (ρ) is a well–defined map from E
ℓ⃗
to R.


7. Permutation Invariant Fermi Systems


By using the so–called passivity of Gibbs states (Theorem 12.2) the pressure


pl = pl,m defined by (3.7) for l ∈ N and any discrete model


m = {Φ} ∪ {Φk,Φ
′
k}Nk=1 ∈ Md


1 ⊂ M1
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(see Section 3.1) can easily be bounded from below, for all states ρ ∈ E, by


pl ≥−
N∑
k=1


γk
|Λl|2


ρ
(
(UΦk


Λl
+ iU


Φ′
k


Λl
)∗(UΦk


Λl
+ iU


Φ′
k


Λl
)
)


− 1


|Λl|
ρ
(
UΦ
Λl


)
+


1


β|Λl|
S(ρΛl


)(7.1)


with S being the von Neumann entropy defined by (6.18). Furthermore, The-


orem 12.2 tells us that the equality in (7.1) is only satisfied for the Gibbs


equilibrium state ρl = ρΛl,Ul
(12.2), i.e.,


pl =−
N∑
k=1


γk
|Λl|2


ρl


(
(UΦk


Λl
+ iU


Φ′
k


Λl
)∗(UΦk


Λl
+ iU


Φ′
k


Λl
)
)


− 1


|Λl|
ρl
(
UΦ
Λl


)
+


1


β|Λl|
S(ρl).(7.2)


Therefore, in order to prove Theorem 3.12 for any discrete models, one has


to control each term in (7.1) and (7.2) as l → ∞. Unfortunately, it is not


clear how to perform this program directly, even if we concentrate on discrete


long range models. In fact, as it is originally done in [20] and subsequently


in [21] for quantum spin systems (Remark 2.4), we first need to understand


permutation invariant models m ∈ M1 to be able to prove Theorem 3.12.


This specific class of models is defined and analyzed in Section 7.2. In-


deed, such a study requires a preliminary analysis, done in Section 7.1, of


the set EΠ ⊂ E1 of permutation invariant states. This corresponds to a direct


extension of our results [9] on the strong coupling BCS–Hubbard model to gen-


eral permutation invariant systems and is given for completeness as well as a


kind of “warm up” for the non–expert reader. Among other things, we shortly


establish Størmer theorem, a non–commutative version of the celebrated de


Finetti theorem for permutation invariant states on the fermion algebra U as


it is proven in [9].


7.1. The set EΠ of permutation invariant states


Let Π be the set of all bijective maps from L to L which leaves all but finitely


many elements invariant. It is a group w.r.t. the composition of maps. The


condition


(7.3) απ : ax,s 7→ aπ(x),s, s ∈ S, x ∈ L,


defines a group homomorphism π 7→ απ from Π to the group of ∗–automorphisms


of U . The set of all permutation invariant states is then defined by


EΠ :=
∩


π∈Π, A∈U
{ρ ∈ U∗ : ρ(1) = 1, ρ(A∗A) ≥ 0 with ρ = ρ ◦ απ}.
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Since obviously


EΠ ⊂ E1 ⊂
∩
ℓ⃗∈Nd


E
ℓ⃗
,


every permutation invariant state ρ ∈ EΠ is even, by Lemma 2.8. Furthermore,


EΠ is clearly convex and weak∗–compact and, by Krein–Milman theorem (The-


orem 12.11), it is the weak∗–closure of the convex hull of the (non–empty) set


EΠ of its extreme points.


The set E
ℓ⃗
of extreme states of E


ℓ⃗
is characterized by Theorem 2.16 and


EΠ can likewise be precisely characterized by Størmer theorem for permutation


invariant states on the fermion algebra U . This theorem is a non–commutative


version of the celebrated de Finetti theorem from (classical) probability theory


and it is proven in the case of even states on the fermion algebra U in [9].


Indeed, extreme permutation invariant states ρ ∈ EΠ are product states defined


as follows.


Let ρ{0} ∈ EU{0} be any even state on the one–site C∗–algebra U{0}, i.e.,


ρ{0} = ρ{0} ◦ σπ with σπ defined by (2.4) for θ = π. Then, from [8, Theorem


11.2.], there is a unique even state ρ̂ ∈ EΠ satisfying


ρ̂(αx1
(A1) · · ·αxn


(An)) = ρ{0}(A1) · · · ρ{0}(An)


for all A1 . . . An ∈ U{0} and all x1, . . . xn ∈ Zd such that xi ̸= xj for i ̸= j. The


set of all states ρ̂ of this form, called product states, is denoted by E⊗ which


is nothing else but the set EΠ of extreme points of EΠ:


Theorem 7.1 (Størmer theorem, lattice CAR–algebra version).


Extreme permutation invariant states ρ̂ ∈ EΠ are product states and conversely,


i.e., EΠ = E⊗.


This theorem was proven by Størmer [12] for the case of lattice quantum spin


systems (cf. Remark 2.4). Its corresponding version for permutation invariant


states on the fermion algebra U follows from [9, Lemmata 6.6–6.8]. Observe


that the proof of Theorem 7.1 is performed in [9] for a spin set S = {↑, ↓}. It
can easily be extended to the general case of Theorem 7.1.


It follows from Theorem 7.1 that all permutation invariant states ρ̂ ∈ EΠ
are strongly mixing which means (2.10). They are, in particular, strongly


clustering and thus ergodic w.r.t. to any sub–group ℓ⃗.Zd of Zd, where ℓ⃗ ∈ Nd.


In other words, for all ℓ⃗ ∈ Nd, EΠ = E⊗ ⊂ E
ℓ⃗
and the set EΠ ⊂ E


ℓ⃗
is hence a


closed metrizable face of E
ℓ⃗
. Therefore, by using Theorem 2.9 and Theorem


7.1, we obtain the existence of a unique decomposition of states ρ ∈ EΠ in


terms of product states:
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Theorem 7.2 (Unique decomposition of permutation invariant states).


For any ρ ∈ EΠ, there is a unique probability measure µρ on EΠ such that


µρ(E⊗) = 1 and ρ =


∫
EΠ


dµρ(ρ̂) ρ̂.


Furthermore, the map ρ 7→ µρ is an isometry in the norm of linear functionals,


i.e., ∥ρ− ρ′∥ = ∥µρ − µ′ρ∥ for any ρ, ρ′ ∈ EΠ.


From Theorem 2.12, for all ℓ⃗ ∈ Nd, the sets E
ℓ⃗
are affinely homeomorphic


to the Poulsen simplex, but the set EΠ of all permutation invariant states do


not share this property. Indeed, EΠ is a Bauer simplex (Definition 12.24), i.e.,


a (Choquet) simplex whose set of extreme points is closed:


Theorem 7.3 (EΠ is a Bauer simplex).


The set EΠ is a Bauer simplex. In particular, the map ρ 7→ µρ of Theorem 7.2


from EΠ to the set M+
1 (EΠ) =M+


1 (E⊗) of probability measures on EΠ = E⊗ is


an affine homeomorphism w.r.t. to the weak∗–topologies on EΠ and M+
1 (EΠ).


Proof. As explained above, for all ℓ⃗ ∈ Nd, EΠ is a closed face of E
ℓ⃗


(and thus a closed simplex) with set EΠ of extreme points being the set E⊗
of product states, i.e., EΠ = E⊗ ⊂ E


ℓ⃗
, see Theorem 7.1. Since the set E⊗ is


obviously closed in the weak∗–topology, it is a Bauer simplex which, combined


with Theorem 12.25, implies the statement.


Therefore, the simplex EΠ has a much simpler geometrical structure than


all simplices {E
ℓ⃗
}
ℓ⃗∈Nd and it is easier to use in practice, see, e.g., [9]. For


instance, for any fixed element A of the one–site C∗–algebra U{0}, the space–


averaging functional ∆A described in Sections 2.3 and 6.3 has a very explicit


representation on the Bauer simplex EΠ:


Lemma 7.4 (The space–averaging functional ∆A on EΠ).


At fixed A ∈ U{0}, the restriction on EΠ of the functional ∆A equals, for any


x ∈ Zd\{0}, the weak∗–continuous affine map ρ 7→ ρ(A∗αx(A)) from EΠ to


R+
0 .


Proof. This lemma follows from elementary combinatorics, see, e.g., [9,


Lemma 6.2].


Permutation invariance is, however, a too restrictive condition in general.


Indeed, most of models coming from Physics are only translation invariant. In


particular, the general set of states to be considered in these cases is the Poulsen


simplex (up to an affine homeomorphism), which is in a sense complementary


to the Bauer simplices, see [2, p. 164] or [45, Section 5].
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7.2. Thermodynamics of permutation invariant Fermi systems


Permutation invariant interactions form a subset of the real Banach space W1


of all t.i. interactions Φ, see Definition 2.24. They are naturally defined as


follows:


Definition 7.5 (Permutation invariant interactions).


A t.i. interaction Φ ∈ W1 is permutation invariant if ΦΛ = 0 whenever |Λ| ̸= 1.


Permutation invariant Fermi systems m ∈ M1 with long range interactions


(see Definition 3.1) are then defined from permutation invariant interactions


as follows:


Definition 7.6 (Permutation invariant models).


A long range model m := (Φ, {Φa}a∈A, {Φ′
a}a∈A) ∈ M1 is permutation invari-


ant whenever the interactions Φ, Φa and Φ′
a are permutation invariant for all


(a.e.) a ∈ A.


If the model m ∈ M1 is permutation invariant then the corresponding


internal energies Ul defined for l ∈ N in Definition 3.3 are invariant w.r.t. to


permutations of lattice sites inside the boxes Λl. More precisely: For all l ∈ N
and all π ∈ Π such that π|L\Λl


= id|L\Λl
, απ(Ul) = Ul. Here, id ∈ Π is the


neutral element of the group Π, i.e., the identity map L → L. As a consequence,


for any permutation invariant m ∈ M1, the thermodynamic limit


P♯
m := lim


l→∞
{pl}


of the pressure pl = pl,m (3.7) associated with the internal energy Ul can be


computed via the minimization of the affine free–energy functional f ♯m on the


subset EΠ ⊂ E1 of permutation invariant states, see Definitions 3.5, 3.11 and


Lemma 3.8 (i).


Theorem 7.7 (Thermodynamics as a variational problem on EΠ).


For any permutation invariant m ∈ M1,


P♯
m = − inf


ρ∈EΠ


f ♯m(ρ) = − inf
ρ∈E⊗


f ♯m (ρ) .


Here, the restriction of f ♯m on the weak∗–compact convex set EΠ equals, for any


x ∈ Zd\{0}, the weak∗–lower semi–continuous affine map


(7.4) ρ 7→
∫
A
γaρ


(
(eΦa


− ieΦ′
a
)αx(eΦa


+ ieΦ′
a
)
)
da (a) + eΦ(ρ)− β−1s(ρ)


from EΠ to R, see (2.16) for the definition of eΦ.


Proof. Observe first that the equality between f ♯m and the weak∗–lower


semi–continuous affine map (7.4) (cf. Lemmata 2.28 (i) and 2.31 (i)) is a direct
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consequence of Lemma 7.4 because m is permutation invariant. By the Bauer


maximum principle (Lemma 12.31), it follows that the minimization of f ♯m on


the weak∗–compact convex set EΠ can be restricted to the subset EΠ of extreme


points which by Theorem 7.1 equals the set E⊗ of product states.


We analyze now the thermodynamic limit l → ∞ of the pressure pl = pl,m.


We concentrate our study on discrete permutation invariant models


m = {Φ} ∪ {Φk,Φ
′
k}Nk=1 ∈ Mdf


1 ⊂ Md
1 ⊂ M1


only. The extension of this proof to any permutation invariant models m ∈ M1


is performed by using the density of the set of discrete permutation invariant


models in the set of permutation invariant models, see similar arguments per-


formed in Section 3.1 as well as in Section 8.1.


The lower bound on the pressure pl = pl,m for discrete models m ∈ Mdf
1


follows from the passivity of Gibbs states (Theorem 12.2). Indeed, note that


eΦ ∈ U{0} for any permutation invariant interaction Φ ∈ W1. Therefore, as m


is permutation invariant, straightforward estimates show, for all ρ ∈ EΠ and


any x ∈ Zd\{0}, that


(7.5) lim
l→∞


{
1


|Λl|2
ρ
(
(UΦk


Λl
+ iU


Φ′
k


Λl
)∗(UΦk


Λl
+ iU


Φ′
k


Λl
)
)}


= ρ(e∗Φk
αx(eΦk


)).


Therefore, from (7.1) and (7.5) combined with Definitions 2.27 and 2.30, we


deduce that


(7.6) lim inf
l→∞


pl ≥ − inf
ρ∈EΠ


f ♯m(ρ).


So, we concentrate now our analysis on the upper bound.


Let ρl ∈ EΛl
be the Gibbs equilibrium state (12.2) w.r.t. to the internal


energy UΛl
. We define as usual a space–averaged t.i. Gibbs state ρ̂l ∈ E1


by using (3.19) with the even state ρl seen as a periodic state on the whole


C∗–algebra U . Observe that the sequences {ρl}l∈N and {ρ̂l}l∈N have the same


weak∗–accumulation points. Since m is permutation invariant, the internal


energy Ul is invariant w.r.t. permutations of lattice sites inside the boxes Λl


which in turn implies the invariance of the state ρl ∈ E under permutations


π ∈ Π such that π|L\Λl
= id|L\Λl


. This invariance property of ρl yields that


the weak∗–accumulation points of sequences {ρl}l∈N and {ρ̂l}l∈N belong to


EΠ. As a consequence, there is ρ∞ ∈ EΠ and a diverging subsequence {ln}n∈N
such that both ρln and ρ̂ln converge in the weak∗–topology to the permutation


invariant state ρ∞.


As eΦ ∈ U{0} for any permutation invariant model m ∈ M1, observe, by


Lemma 2.31 (i), that


(7.7) lim
n→∞


1


|Λln |
ρln(U


Φ
ln) = lim


n→∞
ρln (̂eΦ,ln) = lim


n→∞
eΦ(ρln) = eΦ(ρ∞),







94 J.-B. BRU AND W. DE SIQUEIRA PEDRA


where


(7.8) êΦ,L :=
1


|ΛL|
∑
x∈ΛL


αx (eΦ) = ê∗Φ,L.


By combining the symmetry of the state ρl ∈ E under permutations of lattice


sites inside the boxes Λl with elementary combinatorics,


lim
n→∞


{
1


|Λln |2
ρln


(
(UΦk


Λln
+ iU


Φ′
k


Λln
)∗(UΦk


Λln
+ iU


Φ′
k


Λln
)
)}(7.9)


= lim
n→∞


ρln((eΦk
− ieΦ′


k
)αx(eΦk


+ ieΦ′
k
)) = ρ∞((eΦk


− ieΦ′
k
)αx(eΦk


+ ieΦ′
k
))


for any x ∈ Zd\{0}. Furthermore, by using Lemma 2.28 (i), the periodicity of


ρl and the additivity of the von Neumann entropy for product states,


(7.10) s(ρ̂l) =
1


|Λl|
∑
x∈Λl


s(ρl ◦αx) = s(ρl) = lim
n→∞


1


|Λ(n)
l |


S(ρl|U
Λ
(n)
l


) =
1


|Λl|
S(ρl)


with the definition


(7.11) Λ
(n)
l := ∪


x∈Λn


{Λl + (2l + 1)x}.


Therefore, by using (7.2) combined with (7.7), (7.9), (7.10), and Lemma 7.4,


(7.12) lim sup
l→∞


pl ≤ − lim
n→∞


f ♯m(ρln) ≤ −f ♯m(ρ∞)


because the entropy density functional s is a weak∗–upper semi–continuous


functional on E1 (Lemma 2.28 (i)).


Since ρ∞ ∈ EΠ, the theorem follows from (7.6) and (7.12) combined with


the density of the set of discrete permutation invariant models in the set of


permutation invariant models, see, e.g., Corollary 8.3.


As a consequence, the thermodynamics of any permutation invariant model


m ∈ M1 can be related to a weak∗–continuous free–energy density functional


over one–site states:


Corollary 7.8 (Variational problem on one–site states).


For any permutation invariant m ∈ M1, the (infinite volume) pressure equals


P♯
m = − inf


ρ{0}∈E{0}


{∫
A
γa|ρ{0}(eΦa


+ ieΦ′
a
)|2da(a) + ρ{0}(eΦ)− β−1S(ρ{0})


}
with the weak∗–continuous functional S being the von Neumann entropy defined


by (6.18).


Proof. By Lemma 7.4, for any permutation invariant model m ∈ M1,


x ∈ Zd\{0} and all product states ρ ∈ E⊗,


∆eΦa+ieΦ′
a
(ρ) = ρ


(
(eΦa


− ieΦ′
a
)αx(eΦa


+ ieΦ′
a
)
)
= |ρ{0}(eΦa


+ ieΦ′
a
)|2
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with the state ρ{0} ∈ E{0} being the restriction of ρ ∈ E⊗ on the local sub–


algebra U{0}. Furthermore, observe that, for any product state ρ ∈ E⊗, s(ρ) =


S(ρ{0}). Therefore, Corollary 7.8 is a direct consequence of Theorem 7.7.


The map (7.4) is a weak∗–lower semi–continuous affine map from EΠ to


R. So, from Theorem 7.7, all generalized permutation invariant equilibrium


states are (usual) equilibrium states as


Ω ♯
m ∩EΠ = M ♯


m ∩EΠ ̸= ∅.


Moreover, Ω ♯
m ∩EΠ is a face of EΠ (cf. Definitions 3.13 and 3.15). Since EΠ is


a Bauer simplex (Theorem 7.3) with its set EΠ of extreme points being the set


E⊗ of product states (Theorem 7.1), M ♯
m ∩EΠ is also a simplex and, by using


Choquet theorem (cf. Theorems 12.18 and 12.22), each permutation invariant


equilibrium state ω ∈ M ♯
m ∩EΠ has a unique decomposition in terms of states


of the set


E(M ♯
m ∩ EΠ) = E(M ♯


m ∩EΠ) ∩E⊗


of extreme states of M ♯
m ∩ EΠ. In fact, Theorem 7.7 and Corollary 7.8 make


a detailed analysis of the set M ♯
m ∩ EΠ of permutation invariant equilibrium


states possible. As an example we recommend [9], where a complete description


of permutation invariant equilibrium states for a class of physically relevant


models is performed.


Note that Ω ♯
m\EΠ may not be empty, i.e., the existence of a generalized t.i.


equilibrium state which is not permutation invariant, is, a priori, not excluded.


However, for permutation invariant models m, this set Ω ♯
m\EΠ is not relevant


as soon as the weak∗–limit of Gibbs states is concerned:


Corollary 7.9 (Weak∗–limit of Gibbs equilibrium states).


For any permutation invariant m ∈ M1, the weak∗–accumulation points of


Gibbs equilibrium states {ρl}l∈N belong to the set M ♯
m ∩ EΠ of permutation


invariant equilibrium states.


Proof. As explained in the proof of Theorem 7.7, the state ρl ∈ EΛl


(12.2) associated with UΛl
allows us to define a space–averaged t.i. Gibbs state


ρ̂l ∈ E1. The sequences {ρl}l∈N and {ρ̂l}l∈N have the same weak∗–accumulation


points which all belong to EΠ because ρl is invariant under permutations π ∈ Π


such that π|L\Λl
= id|L\Λl


. Therefore, the corollary is a direct consequence of


Theorem 7.7 combined with Equation (7.12) extended to any permutation


invariant model m ∈ M1 (instead of discrete models only).


8. Analysis of the Pressure via t.i. States


The aim of this section is to prove Theorem 3.12. This proof is broken in several


lemmata. We first show in Section 8.1 that one can reduce the computation
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of the thermodynamic limit of (3.7), for any m ∈ M1, to discrete finite range


models


{Φ} ∪ {Φk,Φ
′
k}Nk=1 ∈ Mdf


1 := Md
1 ∩Mf


1 ⊂ M1,


see Corollary 8.3. Then in Section 8.2 we use the so–called passivity of Gibbs


states (Theorem 12.2) to find the thermodynamic limit of (3.7), for any m ∈
Mdf


1 , from which we deduce Theorem 3.12, see Theorem 8.8.


8.1. Reduction to discrete finite range models


From the density of the set of finite range interactions in W1, recall that the


sub–space Mdf
1 := Md


1 ∩ Mf
1 of discrete finite range models is dense in M1.


As a consequence, the thermodynamic limit of (3.7), for any m ∈ M1, can


be found by using a sequence {mn}n∈N ⊂ Mdf
1 of discrete finite range models


converging to m. This result follows from the next two lemmata:


Lemma 8.1 (Equicontinuity of the map m 7→ pℓ,m).


The family of maps m 7→ pl,m is equicontinuous20 for l ∈ N. In particular,


m 7→ P♯
m (Definition 3.11) is a locally Lipschitz continuous map from M1 to


R.


Proof. For any m1,m2 ∈ M1 observe that the corresponding internal


energies Ul,1 and Ul,2 (Definition 3.3) satisfy the bound


(8.1) ∥Ul,1 − Ul,2∥ ≤ |Λl| ∥m1 −m2∥M1


(
1 + ∥m1∥M1


+ ∥m2∥M1


)
.


In particular, the map m 7−→ Ul is continuous. For each sequence {mn}n∈N ⊂
M1 converging to m, we obtain from the bound (5.11) combined with (8.1)


that


|pl,mn
− pl,m| ≤ ∥mn −m∥M1


(
1 + ∥mn∥M1


+ ∥m∥M1


)
.


This bound leads to the equicontinuity of the family of maps m 7→ pl for l ∈ N
and the locally Lipschitz continuity of the map m 7→ P♯


m.


Lemma 8.2 (Equicontinuity of the map m 7→ f ♯m(ρ)).


The family of maps m 7→ f ♯m(ρ) is equicontinuous for ρ ∈ E1. In particular,


for any sequence {mn}n∈N ⊂ M1 converging to m ∈ M1,


inf
ρ∈E1


f ♯m(ρ) = lim
n→∞


inf
ρ∈E1


f ♯mn
(ρ).


Proof. This lemma is a consequence of the norm equicontinuity of the


family of maps Φ 7→ eΦ(ρ) and


m 7→ ∥∆a,+ (ρ)∥1 − ∥∆a,− (ρ)∥1


20For each sequence {mn}n∈N ⊂ M1 converging to m, pℓ,mn converges uniformly in ℓ ∈ N
to pℓ,m.
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for ρ ∈ E1. Indeed, for all m1,m2 ∈ M1 and ρ ∈ E1, the corresponding


functionals ∆
(1)
a,± and ∆


(2)
a,± satisfy the inequality∣∣∣∣∫


A
∆


(1)
a,± (ρ) da (a)−


∫
A
∆


(2)
a,± (ρ) da (a)


∣∣∣∣
≤∥m1 −m2∥M1


(
1 + ∥m1∥M1


+ ∥m2∥M1


)
for all ρ ∈ E1.


Therefore, by using Lemmata 8.1–8.2, we can assume, without loss of


generality, that


m := {Φ} ∪ {Φk,Φ
′
k}Nk=1 ∈ Mdf


1 := Md
1 ∩Mf


1 ⊂ M1


in order to prove Theorem 3.12. Indeed, using the density of the set Mdf
1 in


M1, we deduce from Lemmata 8.1 and 8.2 the following corollary:


Corollary 8.3 (Reduction to discrete finite range models).


For any m ∈ M1, there exists a sequence {mn}n∈N ⊂ Mdf
1 converging to


m ∈ M1 such that


P♯
m = lim


n→∞
P♯
mn


and inf
ρ∈E1


f ♯m(ρ) = lim
n→∞


inf
ρ∈E1


f ♯mn
(ρ).


8.2. Passivity of Gibbs states and thermodynamics


From Theorem 12.2, the pressure pl (3.7) of any finite range discrete model


m ∈ Mdf
1 is bounded from below, for all states ρ ∈ E, by (7.1) with Equality


(7.2) for ρ = ρl. Recall that ρl := ρΛl,Ul
is the Gibbs equilibrium state (12.2)


with internal energy Ul defined in Definition 3.3 for any m ∈ M1 and l ∈ N.
This even state ρl is seen as defined either on the local algebra UΛl


or on the


whole algebra U by periodically extending it (with period (2l + 1) in each


direction of the lattice L).


Thus, for any m ∈ Mdf
1 , the lower bound on the pressure pl in the ther-


modynamic limit is found by studying the r.h.s. of (7.1) as l → ∞:


Lemma 8.4 (Thermodynamic limit of the pressure pl – lower bound).


For any m ∈ Mdf
1 ,


lim inf
l→∞


pl ≥ − inf
ρ∈E1


f ♯m(ρ),


with the free–energy density functional f ♯m defined in Definition 3.5.


Proof. The first term in the r.h.s. of (7.1) is the only one we really need to


control. To this purpose, observe that, for any Φ ∈ W1 and l ∈ N, the space–


average êΦ,l (7.8) of the energy observable eΦ (2.16) is obviously a bounded


operator. Hence, by using


êΦ,l − |Λl|−1UΦ
Λl


=
∑


Λ∈Pf (L),0∈Λ


1


|Λl|
∑
x∈Λl


1{Λ*(Λl−x)}
ΦΛ+x


|Λ|
,
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∥ΦΛ+x∥ = ∥ΦΛ∥, ∥Φ∥W1
< ∞, and Lebesgue’s dominated convergence theo-


rem, we have that


(8.2) lim
l→∞


∥∥êΦ,l − |Λl|−1UΦ
Λl


∥∥ = 0.


Therefore, by using the definition Cl := UΦ
Λl
+ iUΦ′


Λl
for any l ∈ N and any finite


range interaction Φ ∈ W f
1, we obtain


(8.3) lim
l→∞


{
1


|Λl|2
ρ(C∗


l Cl)− ρ((̂eΦ,l + îeΦ′,l)
∗(̂eΦ,l + îeΦ′,l))


}
= 0


uniformly in ρ ∈ E. Consequently, the lower bound on the pressure pl as l → ∞
follows from (7.1) combined with Definitions 2.14, 2.27, 2.30, and (8.3).


To obtain the upper bound on the pressure pl, as in the proof of Theorem


7.7, one needs to control each term in (7.2) when l → ∞. Observe that ρl is


generally not t.i. even if m ∈ Mdf
1 does per definition. But, we can canonically


construct a space–averaged t.i. Gibbs state ρ̂l from ρl, see (3.19). If we restrict


ourselves to the case of models with purely repulsive long range interactions


(i.e. Φa,− = Φ′
a,− = 0 (a.e.)), we can analyze each term in (7.2) as a function


of ρ̂l ∈ E1 in the limit l → ∞. The mean entropy per volume as a function of


the t.i. state ρ̂l (3.19) is already given in the proof of Theorem 7.7 by Equality


(7.10). The analysis of the other terms is, however, more involved than for


permutation invariant models (Definition 7.6). The first term of the r.h.s. of


(7.2) being the most problematic one if we tries to use the space–averaged t.i.


Gibbs state ρ̂l as test states.


In the following we treat first – as a kind of “warming up” – the special


case of purely repulsive models by using the sequence ρ̂l ∈ E1 of test states.


The general case – for which the test states have to be much more carefully


chosen – is considered afterwards.


We now prove that, at large l, the internal energy computed from a large


box Λ
(n)
l (7.11) is the same as the one for |Λn| copies of boxes of volume |Λl|.


This is a standard method often used in statistical mechanics to prove the


existence of the thermodynamic limit.


Lemma 8.5 (Internal energy).


For any finite range t.i. interaction Φ ∈ W f
1,


sup
n∈N


{
1


|Λ(n)
l |


∥UΦ
Λ


(n)
l


−
∑
x∈Λn


UΦ
Λl+(2l+1)x∥


}
= O(l−1).
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Proof. From Definition 2.22, it is straightforward to check, for any t.i.


finite range interaction Φ, that


1


|Λ(n)
l |


∥UΦ
Λ


(n)
l


−
∑
x∈Λn


UΦ
Λl+(2l+1)x∥≤


|Λn|
|Λ(n)


l |


∑
Λ⊂∂Λl


∥ΦΛ∥


≤ |∂Λl|
|Λl|


∥Φ∥W1
= O(l−1)


with ∂Λl being the boundary21 of the cubic box Λl defined for large enough


m ≥ 1.


As a consequence, as far as the limit l → ∞ is concerned one can use, for


all Φ ∈ W1, the energy density eΦ(ρ̂l) instead of the mean internal energy per


volume ρl
(
UΦ
Λl


)
/|Λl|. (Recall that ρ̂l ∈ E1 is the t.i. state (3.19).) Indeed,


one deduces from Lemma 8.5 the following result:


Lemma 8.6 (Mean internal energy per volume as ℓ→ ∞).


For any m ∈ M1 and all finite range interactions Φ ∈ W f
1,∣∣∣∣∣eΦ(ρ̂l)− ρl(U


Φ
Λl
)


|Λl|


∣∣∣∣∣ = O(l−1)


with the energy density eΦ(ρ) defined by Definition 2.30.


Proof. By (2l + 1)Zd–invariance of Gibbs equilibrium states ρl, it follows


that ∑
x∈Λn


ρl(U
Φ
Λl+(2l+1)x) = |Λn|ρl(UΦ


Λl
).


Consequently, by using Lemma 8.5 and the limit n→ ∞, one obtains that


(8.4)


∣∣∣∣∣eΦ(ρl)− ρl(U
Φ
Λl
)


|Λl|


∣∣∣∣∣ = O(l−1).


The functional ρ 7→ eΦ(ρ) is affine and t.i., see Lemma 2.31 (i). Therefore


eΦ(ρ̂l) = eΦ(ρl) which combined with (8.4) implies the lemma.


The next step to find the upper bound is now to study the first term in


the r.h.s of (7.2) because the others terms can be controlled by using (7.10)


and Lemma 8.6. The relationship of this term with ∆eΦ+ieΦ′ (ρ̂l) at large l is


problematic (recall that eΦ := eΦ,(1,··· ,1) and ∆A are respectively defined by


(2.16) and Definition 2.14): On the one hand, we cannot expect the limit


lim
l→∞


(
1


|Λl|2
ρl((U


Φ
Λl


+ iUΦ′


Λl
)∗(UΦ


Λl
+ iUΦ′


Λl
))− |ρl(eΦ + ieΦ′)|2


)
= 0


21By fixing m ≥ 1 the boundary ∂Λ of any Λ ⊂ Γ is defined by ∂Λ := {x ∈ Λ : ∃y ∈
Γ\Λ with d(x, y) ≤ m}, see (2.14) for the definition of the metric d(x, y).
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to hold in general. Otherwise it would follow – at least w.r.t. the observables


eΦ and eΦ′ – the absence of long range order (LRO). On the other hand, we


know – as ρ̂l are ergodic states – that:


∆eΦ+ieΦ′ (ρ̂l) = |ρ̂l (eΦ + ieΦ′)|2 .


In the case of purely repulsive long range coupling constants where Φa,− =


Φ′
a,− = 0 (a.e.) (cf. Definition 3.4), the arguments become easier because from


the GNS representation of ρl combined with (8.3) for ρ = ρl we obtain that,


for any m ∈ Mdf
1 ,


lim inf
l→∞


{
1


|Λl|2
ρl


(
(UΦ


Λl
+ iUΦ′


Λl
)∗(UΦ


Λl
+ iUΦ′


Λl
)
)
−∆eΦ+ieΦ′ (ρ̂l)


}
≥ 0.


This last limit combined with (7.2), (7.10), and Lemma 8.6, yields the desired


upper bound when Φa,− = 0 (a.e.), i.e., for purely repulsive long range models.


However, as soon as we have long range attractions Φa,−,Φ
′
a,− ̸= 0 (a.e.),


the proof of the upper bound on the pressure requires Corollary 7.8 as a key


ingredient to obtain a more convenient sequence of test states ϱ̂l ∈ E1. (ρl,


ρ̂l, and ϱ̂l have not necessarily the same weak∗–accumulation points.) In fact,


similar arguments was first used in [20] and subsequently in [21] for translation


invariant quantum spin systems (Remark 2.4). Following their strategy [20, 21]


combined with Corollary 7.8, we obtain the desired upper bound for any m ∈
Mdf


1 :


Lemma 8.7 (Thermodynamic limit of the pressure pl – upper bound).


For any m ∈ Mdf
1 , there is a sequence {ϱ̂l}l∈N ⊂ E1 of ergodic states such that


lim sup
l→∞


pl,m = − lim
l→∞


gm (ϱ̂l) = − lim
l→∞


f ♯m(ϱ̂l) ≤ − inf
ρ∈E1


f ♯m(ρ)


with the functional gm defined by Definition 3.6.


Proof. We use here, at any fixed l ∈ N and any interaction Φ ∈ W1, the


self-adjoint elements


UΦ
l,n :=


∑
x∈Λn


α(2l+1)x(U
Φ
Λl
)


for n ∈ N, whereas UΦ
l,0 := UΦ


Λl
. Then, for any l, n ∈ N and any discrete finite


range model


m := {Φ} ∪ {Φk,Φ
′
k}Nk=1 ∈ Mdf


1 ,


we define the internal energy Ul,n by


Ul,n := UΦ
l,n +


N∑
k=1


γk


|Λ(n)
l |


(UΦk


l,n + iU
Φ′


k


l,n )
∗(UΦk


l,n + iU
Φ′


k


l,n )
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with Λ
(n)
l defined by (7.11). The pressure associated with Ul,n is as usual


defined, for β ∈ (0,∞), by


pl,m (n, β) :=
1


β|Λ(n)
l |


lnTrace∧HΛ
(e−βUl,n).


Now, by using Lemma 8.5 together with (5.11) observe that


(8.5) lim
l→∞


{
lim sup
n→∞


|pl,m (n, β)− p2ln+n+l,m|
}


= 0


for any m ∈ Mdf
1 . The pressure pl,m (n, β) can be seen as a pressure of a


permutation invariant model ml defined as follows. Recall that the C∗–algebra


U is the fermion algebra defined in Section 2.1 with a spin set S. Then the


space M1 = M1(U) defined by Definition 3.1 is the Banach space of long


range models constructed from U . Now, for each l ∈ N, we define the C∗–


algebra Ul to be the fermion algebra with spin set S × Λl, and in the same


way M1 is defined, we construct from Ul the Banach space M1(Ul) of long


range models. For any x ∈ Λn, note that the sub–algebra (Ul){x} of Ul can be


canonically identified with the sub–algebra UΛl+(2l+1)x of U . At l ∈ N and for


any m ∈ Mdf
1 , the permutation invariant discrete long range model ml is the


element


ml := {Φ(l)} ∪ {Φ(l)
k , (Φ


(l))′k}Nk=1 ∈ M1(Ul)


uniquely defined by the conditions


Φ
(l)
{0} := |Λl|−1UΦ


Λl
, (Φ


(l)
k ){0} := |Λl|−1UΦk


Λl
, ((Φ(l))′k){0} := |Λl|−1U


Φ′
k


Λl


with Φ
(l)
Λ = (Φ


(l)
k )Λ = ((Φ(l))′k)Λ = 0 whenever |Λ| ≠ 1.


By using these definitions, we have


pl,m (n, β) = pn,ml
(0, βl)


with βl := |Λl|β. Therefore, we are in position to use Corollary 7.8 in order


to compute the thermodynamic limit n → ∞ of the permutation invariant


discrete model ml ∈ M1(Ul):


lim
n→∞


pl,m (n, β)= lim
n→∞


pn,ml
(0, βl) = − inf


ρΛl
∈EΛl


{
N∑
k=1


γk|Λl|−2|ρΛl
(UΦk


Λl
+ iU


Φ′
k


Λl
)|2


+ |Λl|−1ρΛl
(UΦ


Λl
)− (β|Λl|)−1S(ρΛl


)
}


with the weak∗–continuous functional S being the von Neumann entropy de-


fined by (6.18). This variational problem is a minimization of a weak∗–continuous


functional over the set EΛl
of all (local) states on the finite dimensional algebra


UΛl
. Therefore, for each l ∈ N, it has a minimizer ϱl ∈ EΛl


which can also


be seen as a state on the whole algebra U by periodically extending it (with
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period (2l + 1) in each direction of the lattice L). We define from ϱl ∈ E the


t.i. space–averaged (ergodic) state


ϱ̂l :=
1


|Λl|
∑
x∈Λl


ϱl ◦ αx ∈ E1


(compare this definition with (6.8) for ℓ⃗ = (1, · · · , 1)). Then, by using ∆A (ϱ̂l) =


|ϱ̂l(A)|2 (see Theorem 2.19 (iv)), Equality (7.10) and Lemma 8.6 applied to


states ϱl ∈ E and ϱ̂l ∈ E1, we obtain that


(8.6) lim
l→∞


lim
n→∞


pl,m (n, β) = − lim
l→∞


gm (ϱ̂l) = − lim
l→∞


f ♯m(ϱ̂l),


see also Lemma 3.8 (ii). Therefore, the limits (8.5) and (8.6) yield the lemma.


Consequently, Theorem 3.12 is a direct consequence of Lemmata 3.9, 8.1,


8.4, and 8.7 together with Corollary 8.3. In fact, we obtain a bit more than


Theorem 3.12. Indeed, by combining Theorem 3.12 with Theorem 12.2, (8.3)


and the fact that the space–average êΦ,l (7.8) is uniformly bounded by ∥Φ∥W1


for l ∈ N, we show that the map


ρ 7→ F♯
m (ρ) : = lim sup


l→∞


{∫
A
γaρ((̂eΦa,l + îeΦ′


a,l)
∗(̂eΦa,l + îeΦ′


a,l))da (a)


+
1


|Λl|
ρ
(
UΦ
Λl


)
− 1


β|Λl|
S(ρΛl


)


}
(8.7)


from E to R makes sense, as the quantity in the lim sup above is uniformly


bounded in l ∈ N. Furthermore, for any ρ ∈ E
ℓ⃗
, F♯


m (ρ) = f ♯m (ρ) because the


lim sup in the definition of F♯
m above can be changed into a lim on the set E


ℓ⃗
of


ℓ⃗.Zd–invariant states for any ℓ⃗ ∈ Nd. See also Corollary 6.20 (i). By deriving


upper and lower bounds for the pressure w.r.t. F♯
m (ρ), exactly in the same


way we did for f ♯m (ρ), we get the following theorem:


Theorem 8.8 (Pressure P♯
m as variational problems on states).


(i) For ℓ⃗ ∈ Nd and any m ∈ M1,


P♯
m := lim


l→∞
{pl} = − inf


ρ∈E
F♯
m (ρ) = − inf


ρ∈Eℓ⃗


f ♯m(ρ) = − inf
ρ∈E1


f ♯m(ρ) <∞.


(ii) The map m 7→ P♯
m from M1 to R is locally Lipschitz continuous.


The two infima, respectively over the set E and E
ℓ⃗
of Theorem 8.8 (i),


are not really used in the sequel as we concentrate our attention on t.i. states.


These results are only discussed in Section 3.5.


Remark 8.9 (Convexity of the functional F♯
m).


As F♯
m (ρ) is defined by a lim sup, by using the property S4 of the von Neumann


entropy, it is easy to check that the map ρ 7→ F♯
m (ρ) from E to R is a convex


functional.
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9. Purely Attractive Long Range Fermi Systems


Recall that generalized t.i. equilibrium states are defined to be weak∗–limit


points of approximating minimizers of the free–energy density functional f ♯m,


see Definition 3.15. It is, a priori, not clear that the first variational problem


P♯
m = − inf


ρ∈E1


f ♯m(ρ)


given in Theorem 3.12 (i) has any minimizer. The problem comes from the


fact that f ♯m is generally not weak∗–lower semi–continuous because of the long


range repulsions, see discussions after Lemma 3.8. As a consequence, models


without long range repulsions (Definition 3.4 (+)), i.e., with Φa,+ = Φ′
a,+ = 0


(a.e.), are the easiest case to handle. This specific case is analyzed in this


section also because it is necessary to understand the variational problem F♭
m


of the thermodynamic game defined in Definition 3.35 and studied in Section


10.1.


Thermodynamics of models without long range repulsions is then dis-


cussed in Section 9.2. We start, indeed, in Section 9.1 with some preliminary


results about the thermodynamics of approximating interactions of long range


models, see Definition 3.31.


9.1. Thermodynamics of approximating interactions


As a preliminary step, we describe the thermodynamic limit


Pm (ca) := lim
l→∞


{pl (ca)}


of the pressure pl (ca) (3.28) associated with the internal energy Ul(ca) :=


U
ΦΛ(ca)
Λl


(3.25) for any ca ∈ L2(A,C). This question is already solved by The-


orem 3.12 for all m ∈ M1, and so, in particular for (Φ(ca), 0, 0) ∈ M1, see


Definition 3.31. We give this result together with additional properties as a


proposition:


Proposition 9.1 (Pressure of approximating interactions of m ∈ M1).


(i) For any ca ∈ L2(A,C),


Pm (ca) = − inf
ρ∈E1


fm (ρ, ca) = − inf
ρ̂∈E1


fm (ρ̂, ca)


with the map (ρ, ca) 7→ fm (ρ, ca) defined by (3.30), see also (9.1) just below.


(ii) The map ca 7→ Pm (ca) from L2(A,C) to R is convex and Lipschitz norm


continuous as, for all ca, c
′
a ∈ L2(A,C),


|Pm(ca)− Pm(c
′
a)| ≤ 2(∥Φa∥2 + ∥Φ′


a∥2)∥ca − c′a∥2.


It is also continuous w.r.t. to the weak topology on any ball BR (0) ⊂ L2(A,C)
of arbitrary radius R > 0 centered at 0.
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Proof. The first assertion (i) is just Lemma 3.9 and Theorem 3.12 (i)


applied to the (local) model (Φ(ca), 0, 0) ∈ M1 because, for all ca ∈ L2(A,C)
and ρ ∈ E1,


(9.1) fΦ(ca) = fm (ρ, ca) := 2Re
{⟨
eΦa


(ρ) + ieΦ′
a
(ρ), γaca


⟩}
+eΦ(ρ)−β−1s(ρ),


see Definition 2.32. The definition of ⟨·, ·⟩ is given in Section 12.3. Thus, the


Lipschitz norm continuity of the map ca 7→ Pm (ca) is a direct consequence of


(i) together with the Cauchy–Schwarz inequality and the uniform upper bound


of Lemma 2.31 (ii). Knowing (i), the convexity of ca 7→ Pm (ca) is also easy to


deduce because the map ca 7→ fm (ρ, ca) is obviously real linear for any ρ ∈ E1.


The proof of the continuity of ca 7→ Pm (ca) w.r.t. to the weak topology on


any ball BR (0) results from the weak equicontinuity of the family


(9.2) {ca 7→ fm (ρ, ca)}ρ∈E1


of real linear functionals on BR (0). The latter is proven as follows.


If m = {Φ} ∪ {Φk,Φ
′
k}Nk=1 ∈ Md


1 is a discrete model then the family (9.2)


of maps is weakly equicontinuous on L2(A,C). This follows from the (uniform)


upper bound


∣∣ ⟨eΦa
(ρ) + ieΦ′


a
(ρ), γac


′
a


⟩ ∣∣ ≤ N∑
k=1


(
∥Φk∥W1


+ ∥Φ′
k∥W1


) ∣∣⟨c′a,1Ik⟩∣∣ ,
satisfied for all ρ ∈ E1, where Ik ∈ A are conveniently chosen subsets of A
such that a (Ik) < ∞ for k ∈ {1, . . . , N}. Let ε,R > 0 and m ∈ M1. From


the density of Md
1 in M1 and the uniform upper bound of Lemma 2.31 (ii)


combined with the Cauchy–Schwarz inequality, there is m′ ∈ Md
1 such that,


for all ca ∈ BR (0) and ρ ∈ E1,


|fm (ρ, ca)− fm′ (ρ, ca)| ≤
ε


3
.


By the equicontinuity on L2(A,C) of the family (9.2) of maps for any discrete


models, for all ca ∈ BR (0) there is a weak neighborhood Vϵ of ca such that, for


all c′a ∈ Vϵ and all ρ ∈ E1,∣∣fm′ (ρ, ca)− fm′
(
ρ, c′a


)∣∣ ≤ ε


3
.


Therefore, for all ca ∈ BR (0), there is a weak neighborhood Vϵ of ca such that,


for all c′a ∈ Vϵ and all ρ ∈ E1,∣∣fm (
ρ, c′a


)
− fm (ρ, ca)


∣∣ ≤ ε.


In other words, for any m ∈ M1, the family (9.2) of maps is weakly equicon-


tinuous on BR (0) which yields the continuity of the map ca 7→ Pm (ca) in the


weak topology on BR (0).
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9.2. Structure of the set M ♯
m = Ω ♯


m of t.i. equilibrium states


We analyze models without long range repulsions (Definition 3.4 (+)), i.e.,


m ∈ M1 satisfying Φa,+ = Φ′
a,+ = 0 (a.e.). Their (infinite volume) pressure


Pm := P♯
m = P♭


m


defined in Definition 3.11 (see also (3.14)) is already given by Theorem 3.12


and we first prove Theorem 3.36. In fact, by using the simple inequality


(9.3) |ρ (A− c) |2 = |ρ (A) |2 − 2Re {ρ (A) c̄}+ |c|2 ≥ 0


for any c ∈ C and A ∈ U , Theorem 3.36 for models without long range repul-


sions is not difficult to show. Indeed, (9.3) yields the following lemma:


Lemma 9.2 (ca,±–approximation of ∥γa,±ρ(eΦa
+ ieΦ′


a
)∥22).


For any m ∈ M1 and all ρ ∈ E1,


sup
ca,±∈L2


±(A,C)


{
−∥ca,±∥22 + 2Re{⟨eΦa


(ρ) + ieΦ′
a
(ρ), ca,±⟩}


}
= ∥γa,±ρ(eΦa


+ieΦ′
a
)∥22


with unique maximizer da,± (ρ) = γa,±(eΦa
(ρ) + ieΦ′


a
(ρ)) (a.e.).


Proof. This lemma is a direct consequence of (9.3). In particular, the


solution da,± (ρ) ∈ L2
±(A,C) of the variational problem satisfies, for all ca,− ∈


L2
−(A,C), the Euler–Lagrange equations


Re {⟨da,± (ρ) , ca,±⟩} = Re
{⟨
eΦa


(ρ) + ieΦ′
a
(ρ), ca,±


⟩}
.


Then Theorem 3.36 for models without long range repulsions is a direct


consequence of Theorem 3.12 (i) together with Proposition 9.1 and Lemma


9.2.


Proposition 9.3 (Pressure of models without long range repulsions).


For any m ∈ M1 satisfying Φa,+ = Φ′
a,+ = 0 (a.e.),


Pm = −F♯
m = −F♭


m = − inf
ca,−∈BR,−


fm (ca,−, 0) =: −Fm


with fm (ca,−, 0) defined by Definition 3.34 and BR,− ⊂ L2
−(A,C) (3.31) being


a closed ball of sufficiently large radius R > 0 centered at 0.


Proof. If Φa,+ = Φ′
a,+ = 0 (a.e.) then, for all extreme states ρ̂ ∈ E1,


f ♯m (ρ̂) = gm (ρ̂) = −
∥∥γa,−ρ̂ (eΦa


+ ieΦ′
a


)∥∥2
2
+ eΦ(ρ̂)− β−1s(ρ̂),


see Lemma 3.8 (ii). From Lemma 9.2 it follows that


(9.4) inf
ρ̂∈E1


f ♯m(ρ̂) = inf
ρ̂∈E1


{
inf


ca,−∈L2
−(A,C)


{
∥ca,−∥22 + fm (ρ̂, ca,−)


}}
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with fm (ρ, ca,−) defined by (9.1) for Φa,+ = Φ′
a,+ = 0 (a.e.). The infima in


Equality (9.4) obviously commute with each other and, by doing this, we get


via Theorem 3.12 (i) and Proposition 9.1 (i) that


Pm = sup
ca,−∈L2


−(A,C)


{
−∥ca,−∥22 + Pm (ca,−)


}
= − inf


ca,−∈L2
−(A,C)


fm (ca,−, 0) <∞.


Finally, the existence of a radius R > 0 such that


inf
ca,−∈L2


−(A,C)
fm (ca,−, 0) = inf


ca,−∈BR,−
fm (ca,−, 0)


directly follows from the upper bound of Proposition 9.1 (ii).


The description of the set Ω ♯
m of generalized t.i. equilibrium states (Defi-


nition 3.15) is also easy to perform when there is no long range repulsions.


Indeed, the free–energy density functional f ♯m becomes weak∗–lower semi–


continuous when Φa,+ = Φ′
a,+ = 0 (a.e.), see discussions after Lemma 3.8.


In particular, the variational problem


Pm = − inf
ρ∈E1


f ♯m(ρ)


has t.i. minimizers, i.e., Ω ♯
m = M ♯


m (Definition 3.13). Recall that Ω ♯
m is convex


and weak∗–compact, by Lemma 3.16, and sinceM ♯
m = Ω ♯


m in this case, the non–


empty set Ω ♯
m is a closed face of E1 by Lemma 3.14. Therefore, to extract the


structure of the set Ω ♯
m = M ♯


m, it suffices to describe extreme states ω̂ ∈ Ω ♯
m∩E1


which are directly related with the solutions da,− ∈ C♯
m ⊂ L2


−(A,C) of the


variational problem given in Proposition 9.3:


Proposition 9.4 (Gap equations).


Let m ∈ M1 be a model without long range repulsions: Φa,+ = Φ′
a,+ = 0 (a.e.).


(i) For all ergodic states ω̂ ∈ Ω ♯
m ∩ E1,


(9.5) da,− = γa,−(eΦa
(ω̂) + ieΦ′


a
(ω̂)) ∈ C♯


m


and ω̂ ∈ MΦ(da,−) with MΦ(da,−) being described in Lemma 3.33.


(ii) Conversely, for any fixed da,− ∈ C♯
m, MΦ(da,−) ∩E1 ⊂ Ω ♯


m ∩E1 and all states


ω ∈ MΦ(da,−) satisfy (9.5).


Proof. (i) Recall that Ω ♯
m = M ♯


m. Any ω̂ ∈ Ω ♯
m ∩ E1 is a solution of the


l.h.s. of (9.4) and the solution da,− = da,− (ω̂) of the variational problem


inf
ca,−∈L2


−(A,C)


{
∥ca,−∥22 + fm (ω̂, ca,−)


}
satisfies the Euler–Lagrange equations (9.5), by Lemma 9.2. The two infima in


(9.4) commute with each other. It is what it is done above to prove Proposition


9.3. Therefore, da,− (ω̂) ∈ C♯
m and, by (9.1), ω̂ belongs to the set MΦ(da,−) =


ΩΦ(da,−) of t.i. equilibrium states of the approximating interaction Φ (da,−).
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(ii) Any da,− ∈ C♯
m is solution of the variational problem given in Propo-


sition 9.3, that is,


(9.6) inf
ca,−∈L2


−(A,C)


{
∥ca,−∥22 + inf


ρ∈E1


fm (ρ, ca,−)


}
,


see Proposition 9.1 (i). Since the two infima in (9.6) commute with each other


as before, any t.i. equilibrium state ω ∈ MΦ(da,−) satisfies (9.5) because of


Lemma 9.2, and MΦ(da,−) ∩ E1 ⊂ Ω ♯
m ∩ E1 because of (9.4).


Therefore, since the convex and weak∗–compact set Ω ♯
m = M ♯


m is a closed


face of E1 in this case, Proposition 9.4 leads to an exact characterization of


the set Ω ♯
m of generalized t.i. equilibrium states via the closed faces MΦ(da,−)


for da,− ∈ C♯
m:


Corollary 9.5 (Structure of Ω ♯
m through approximating interactions).


For any model m ∈ M1 such that Φa,+ = Φ′
a,+ = 0 (a.e.), the closed face Ω ♯


m


is the weak∗–closed convex hull of


∪
da,−∈C♯


m


MΦ(da,−).


10. The max–min and min–max Variational Prob-
lems


The thermodynamics of any model m ∈ M1 is given on the level of the pressure


by Theorem 3.12. This result is not satisfactory enough because we also would


like to have access to generalized t.i. equilibrium states from local theories (cf.


Definition 3.52). The additional information we need for this purpose is Theo-


rem 3.36. In particular, it is necessary to relate the thermodynamics of models


m ∈ M1 with their approximating interactions through the thermodynamic


games defined in Definition 3.35.


As a preliminary step of the proof of Theorem 3.36, we need to analyze


more precisely the max–min and min–max variational problems F♭
m and F♯


m.


This is performed in Section 10.1 and the proof of Theorem 3.36 is postponed


until Section 10.2, see Lemmata 10.5 and 10.7.


10.1. Analysis of the conservative values F♭
m and F♯


m


We start by giving important properties of the map


(ca,−, ca,+) 7→ fm (ca,−, ca,+) := −∥ca,+∥22 + ∥ca,−∥22 − Pm (ca,− + ca,+)


from L2
−(A,C)× L2


+(A,C) to R, see Definition 3.34.
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Lemma 10.1 (Approximating free–energy density fm for m ∈ M1).


(+) At any fixed ca,− ∈ L2
−(A,C), the map ca,+ 7→ fm (ca,−, ca,+) from L2


+(A,C)
to R is upper semi–continuous in the weak topology and strictly concave (γa,+ ̸=
0 (a.e.)).


(−) At any fixed ca,+ ∈ L2
+(A,C), the map ca,− 7→ fm (ca,−, ca,+) from L2


−(A,C)
to R is lower semi–continuous in the weak topology.


Proof. The maps ca,± 7→ ∥ca,±∥22 from L2
±(A,C) to R are lower semi–


continuous in the weak topology and, as soon as γa,± ̸= 0 (a.e.), strictly


convex. By Proposition 9.1 (ii), the map ca 7→ Pm (ca) is weakly continuous on


any ball BR (0) ⊂ L2(A,C) of radius R < ∞ and convex. Therefore, the map


ca,+ 7→ fm (ca,−, ca,+) is upper semi–continuous and strictly concave if γa,± ̸= 0


(a.e.), whereas ca,− 7→ fm (ca,−, ca,+) is lower semi–continuous.


We continue our analysis of the conservative values F♭
m and F♯


m by studying


the functionals f♭m and f♯m of the thermodynamic game defined in Definition


3.35.


Lemma 10.2 (Properties of functionals f♭m and f♯m for m ∈ M1).


(♭) The map ca,+ 7→ f♭m (ca,+) from L2
+(A,C) to R is upper semi–continuous in


the weak topology and strictly concave (γa,+ ̸= 0 (a.e.)).


(♯) The map ca,− 7→ f♯m (ca,−) from L2
−(A,C) to R is lower semi–continuous in


the weak topology.


Proof. By Proposition 9.1 (ii), we first observe that there is R > 0 such


that


f♭m (ca,+) = inf
ca,−∈BR,−


fm (ca,−, ca,+) and f♯m (ca,−) = sup
ca,+∈BR,+


fm (ca,−, ca,+) ,


where BR,± ⊂ L2
±(A,C) are the closed balls of radius R centered at 0. In other


words, f♭m(ca,+) and f♯m(ca,−) are well–defined for any ca,± ∈ L2
±(A,C).


(♭) From Proposition 9.3, there exists also R <∞ such that


(10.1) Pm(ca,+) = sup
ca,−∈BR,−


{
−∥ca,−∥22 + Pm (ca,− + ca,+)


}
is the pressure of the Fermi system


(10.2) m (ca,+) := (Φ (ca,+) , {Φa,−}a∈A, {Φ′
a,−}a∈A) ∈ M1.


Here, Φa,− := γa,−Φa and Φ′
a,− := γa,−Φ


′
a, whereas Φ (ca,+) = Φm (ca,+) is


defined in Definition 3.31.


By using similar arguments as in the proof of Proposition 9.1 (ii), one


obtains that the family


(10.3) {ca,+ 7→ fm (ρ, ca,+ + ca,−)}ρ∈E1,ca,− ∈BR,−
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of real linear functionals is weakly equicontinuous on the ball BR,+. It follows


from Proposition 9.1 (i) and (10.1) that the map ca,+ 7→ Pm(ca,+) is weakly


continuous on the ball BR,+. Additionally, ca,+ 7→ ∥ca,+∥22 is lower semi–


continuous in the weak topology. Therefore, the map


(10.4) ca,+ 7→ f♭m (ca,+) = −∥ca,+∥22 − Pm(ca,+)


is upper semi–continuous in the weak topology. As soon as γa,+ ̸= 0 (a.e.),


the functional f♭m is also strictly concave: For all λ ∈ (0, 1) and c
(1)
a,+, c


(2)
a,+ ∈


L2
+(A,C) such that c


(1)
a,+ ̸= c


(2)
a,+ (a.e.),


λf♭m(c
(1)
a,+) + (1− λ)f♭m(c


(2)
a,+) < f♭m(λc


(1)
a,+ + (1− λ)c


(2)
a,+).


(♯) The functional f♯m is lower semi–continuous w.r.t. the weak topology


because it is the supremum of a family


{ca,− 7→ fm (ca,−, ca,+)}ca,+∈ L2
+(A,C)


of lower semi–continuous functionals, see Lemma 10.1 (−).


For all ca,± ∈ L2
±(A,C), we study now the sets C♭


m (ca,+) and C♯
m (ca,−)


related to the solutions of the variational problems f♭m and f♯m and defined by


(3.33).


Lemma 10.3 (Solutions of variational problems f♭m and f♯m).


(♭) For all ca,+ ∈ L2
+(A,C), the set C♭


m (ca,+) is non–empty, norm bounded and


weakly compact.


(♯) If γa,+ ̸= 0 (a.e.) then, for all ca,− ∈ L2
−(A,C), the set C♯


m (ca,−) has


exactly one element r+(ca,−).


Proof. Fix ca,± ∈ L2
±(A,C). From Proposition 9.1 (ii), there is R < ∞


such that C♭
m (ca,+) ⊂ BR,− and C♯


m (ca,−) ⊂ BR,+ with BR,± ⊂ L2
±(A,C) being


the closed balls of radius R centered at 0.


(♭) We first observe that, by the separability assumption on the measure


space (A, a), the weak topology of any weakly compact set is metrizable, by


Theorem 12.10. Therefore, since, by Banach–Alaoglu theorem, balls BR,− are


weakly compact, they are metrizable and we can restrict ourself on sequences


instead of more general nets. Take now any sequence {c(n)a,−}∞n=1 of approxi-


mating minimizers in BR,− such that


f♭m(ca,+) = lim
n→∞


fm(c
(n)
a,−, ca,+).


By compactness and metrizability of balls BR,− in the weak topology, we can


assume without loss of generality that {c(n)a,−}∞n=1 converges weakly towards


da,− ∈ BR,−.
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The map ca,− 7→ fm (ca,−, ca,+) is lower semi–continuous in the weak topol-


ogy, see Lemma 10.1 (−). It follows that


f♭m (ca,+) = fm (da,−, ca,+) .


In other words, for all ca,+ ∈ L2
+(A,C), the set C♭


m (ca,+) ⊂ BR,− is non–


empty and norm bounded. Again by weakly lower semi–continuity of the


map ca,− 7→ fm (ca,−, ca,+), for any sequence {d(n)a,−}∞n=1 in C♭
m (ca,+) converging


weakly towards d
(∞)
a ∈ L2


−(A,C) as n → ∞, it is also clear that d
(∞)
a ∈


C♭
m (ca,+) is weakly compact. Thus C♭


m (ca,+) is weakly compact because it is a


weakly closed subset of a weakly compact set.


(♯) Similarly as in (♭), the set C♯
m (ca,−) ⊂ BR,+ is non–empty because


the map ca,+ 7→ fm (ca,−, ca,+) is upper semi–continuous in the weak topology,


by Lemma 10.1 (+). The uniqueness of r+(ca,−) in the L2
+(A,C)–sense for


any fixed ca,− ∈ L2
−(A,C) follows from the strict concavity of the functional


ca,+ 7→ fm (ca,−, ca,+), see again Lemma 10.1 (+).


Then we conclude the analysis of the two optimization problems F♭
m and


F♯
m of the thermodynamic game defined in Definition 3.35 with a study of their


sets C♭
m and C♯


m of conservative strategies, see (3.32).


Lemma 10.4 (The set of optimizers for m ∈ M1).


(♭) If γa,+ ̸= 0 (a.e.), the set C♭
m ⊂ L2


+(A,C) has exactly one element da,+.


(♯) The set C♯
m ⊂ L2


−(A,C) is non–empty, norm bounded, and weakly compact.


Proof. From Proposition 9.1 (ii), there is R <∞ such that C♭
m ⊂ BR,+ and


C♯
m ⊂ BR,− with BR,± ⊂ L2


±(A,C) being the closed balls of radius R centered


at 0. In particular, −∞ < F♭
m ≤ F♯


m <∞.


(♭) From Lemma 10.2 (♭), F♭
m is a supremum of a weakly upper semi–


continuous functional f♭m and C♭
m is the set of its maximizers. Therefore, in the


same way we prove (♭) in Lemma 10.3, C♭
m ⊂ BR,+ is non–empty and weakly


compact. Moreover, Lemma 10.2 (♭) also tells us that f♭m is strictly concave


as soon as γa,+ ̸= 0 (a.e.). Therefore, there is actually a unique solution


da,+ ∈ L2
+(A,C) of the variational problem


F♭
m := sup


ca,+∈L2
+(A,C)


f♭m (ca,+) .


(♯) To prove the second statement, we use similar arguments as in (♭).


Indeed, one uses Lemma 10.2 (♯). Observe, however, that f♯m is not strictly


convex and so, the solution of the variational problem


F♯
m := inf


ca,−∈L2
−(A,C)


f♯m (ca,−)


may not be unique.
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10.2. F♭
m and F♯


m as variational problems over states: Proof of
Theorem 3.36


Theorem 3.36 (♭), i.e.,


P♭
m := − inf


ρ∈E1


f ♭m(ρ) = −F♭
m,


follows from Lemma 9.2 together with von Neumann min–max theorem (The-


orem 12.50) which also give us additional information about the non–empty


set


(10.5) M ♭
m :=


{
ϱ ∈ E1 : f ♭m (ϱ) = inf


ρ∈E1


f ♭m(ρ)


}
of t.i. minimizers of the weak∗–lower semi–continuous convex functional f ♭m
(3.12). This is proven in the next lemma.


Lemma 10.5 (F♭
m and gap equations).


For any m ∈ M1, P
♭
m = −F♭


m and there is ω ∈ Ω ♯
m(da,+) ∩M ♭


m satisfying


(10.6) da,+ = γa,+(eΦa
(ω) + ieΦ′


a
(ω)) (a.e.)


with da,+ ∈ C♭
m and Ω ♯


m(da,+) = M ♯
m(da,+) being the set of generalized t.i. equi-


librium states of the model m(da,+) ∈ M1 with purely attractive long range


interactions defined by (10.2). Compare with Proposition 9.4 and Corollary


9.5.


Proof. On the one hand, by using Lemma 9.2, observe that


inf
ρ∈E1


f ♭m (ρ)= inf
ρ∈E1


{
sup


ca,+∈BR,+


{
−∥ca,+∥22 + 2Re


{⟨
eΦa


(ρ) + ieΦ′
a
(ρ) , ca,+


⟩}
−∥∆a,− (ρ)∥1 + eΦ(ρ)− β−1s(ρ)


}}
(10.7)


with BR,+ ⊂ L2
+(A,C) being a closed ball of sufficiently large radius R > 0


centered at 0.


On the other hand, the set C♭
m ⊂ BR,+ of conservative strategies of F♭


m


defined by (3.32) has a unique element (Lemma 10.4 (♭)) and, by using Propo-


sition 9.3 and (10.4),


F♭
m= sup


ca,+∈BR,+


{
inf
ρ∈E1


{
−∥ca,+∥22 + 2Re


{⟨
eΦa


(ρ) + ieΦ′
a
(ρ) , ca,+


⟩}
−∥∆a,− (ρ)∥1 + eΦ(ρ)− β−1s(ρ)


}}
(10.8)


provided the radius R > 0 is taken sufficiently large.
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Now, the real functional


(ρ, ca,+) 7→−∥ca,+∥22 + 2Re{⟨eΦa
(ρ) + ieΦ′


a
(ρ), ca,+⟩}


−∥∆a,−(ρ)∥1 + eΦ(ρ)− β−1s(ρ)


is convex and weak∗–lower semi–continuous w.r.t. ρ ∈ E1, but concave and


weakly upper semi–continuous w.r.t. ca,+ ∈ L2
+(A,C). Additionally, the sets


E1 and BR,+ are clearly convex and compact, in the weak∗ and weak topolo-


gies respectively. Therefore, from von Neumann min–max theorem (Theo-


rem 12.50), there is a saddle point (ω, da,+) ∈ E1 × L2
+(A,C) which yields


P♭
m = −F♭


m, see Definition 12.49. In particular, by Lemma 9.2, there are


ω ∈ Ω ♯
m(da,+) ∩ M ♭


m and da,+ ∈ C♭
m satisfying the Euler–Lagrange equations


(10.6), which are also called gap equations in Physics (Remark 3.43).


Note that (10.8) can be interpreted as a two–person zero–sum game with


a non–cooperative equilibrium defined by the saddle point (ω, da,+). Observe


also that Lemma 10.5 combined with Theorem 3.25 (+) directly yields Theorem


3.36 (♯) for purely repulsive long range interactions:


Corollary 10.6 (Thermodynamics game and pressure – I).


For any m ∈ M1 and under the condition that Φa,− = Φ′
a,− = 0 (a.e.),


Pm := P♯
m = P♭


m = −Fm


with Fm := F♯
m = F♭


m, see Definition 3.35.


We are now in position to prove Theorem 3.36 (♯) in the general case.


Lemma 10.7 (Thermodynamics game and pressure – II).


For any m ∈ M1, P
♯
m = −F♯


m with the pressure P♯
m given for m ∈ M1 by the


minimization of the free–energy density functional f ♯m over E1, see Definition


3.11 and Theorem 3.12 (i).


Proof. From Theorem 3.12 (i) combined with Lemmata 3.9 and 9.2,


−P♯
m= inf


ρ̂∈E1


{
inf


ca,−∈L2
−(A,C)


{
∥ca,−∥22 + f ♯


m(ca,−) (ρ̂)
}}


= inf
ca,−∈L2


−(A,C)


{
inf
ρ̂∈E1


{
∥ca,−∥22 + f ♯


m(ca,−) (ρ̂)
}}


(10.9)


with


f ♯
m(ca,−)(ρ) := −2Re{⟨eΦa


(ρ) + ieΦ′
a
(ρ), ca,−⟩}+ ∥∆a,+(ρ)∥1 + eΦ(ρ)− β−1s(ρ)


for all ρ ∈ E1. By using again Lemma 3.9 and Theorem 3.12 (i), for all


ca,− ∈ L2
−(A,C),


P♯
m(ca,−) = − inf


ρ̂∈E1


f ♯
m(ca,−) (ρ̂) = − inf


ρ∈E1


f ♯
m(ca,−) (ρ)
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is the pressure associated with the purely repulsive long range model


(10.10) m (ca,−) := (Φ (ca,−) , {Φa,+}a∈A, {Φ′
a,+}a∈A) ∈ M1,


where Φa,+ := γa,+Φa and Φ′
a,+ := γa,+Φ


′
a, see (3.43). In particular,


(10.11) −P♯
m = inf


ca,−∈L2
−(A,C)


{
∥ca,−∥22 − P♯


m(ca,−)


}
.


Therefore, applying Corollary 10.6 on the model m (ca,−) with purely repulsive


long range interactions, one gets from (10.11) that


−P♯
m = inf


ca,−∈L2
−(A,C)


{
sup


ca,+∈L2
+(A,C)


fm (ca,−, ca,+)


}
= F♯


m


for any m ∈ M1.


Observe that treating first the positive part of the model m ∈ M1 in P♯
m by


using Lemma 9.2 is not necessarily useful in the general case unless F♯
m = F♭


m.


Indeed, we approximate first the long range attractions Φa,− and Φ′
a,− because


we can then commute in (10.9) two infima. If we would have first approximated


the long range repulsions Φa,+ and Φ′
a,+, by using Lemma 9.2, we would have


to commute a sup and a inf, which is generally not possible because we would


have obtained P♭
m and not P♯


m ≥ P♭
m, see Lemma 10.5.


Finally, we conclude by giving an interesting lemma about the continuity


of the thermodynamic decision rule


r+ : ca,− 7→ r+ (ca,−) ∈ C♯
m (ca,−)


(cf. (3.34)) with r+ (ca,−) being the unique element of the set C♯
m (ca,−) defined


by (3.33) for all ca,− ∈ L2
−(A,C), cf. Lemma 10.3 (♯). This lemma follows


from Lemma 10.7.


Lemma 10.8 (Weak–norm continuity of the map r+).


If γa,+ ̸= 0 (a.e.) then the map


r+ : ca,− 7→ r+ (ca,−) ∈ C♯
m (ca,−)


from L2
−(A,C) to L2


+(A,C) is continuous w.r.t. the weak topology in L2
−(A,C)


and the norm topology in L2
+(A,C).


Proof. First, recall that m(ca,−) ∈ M1 is the model with purely repulsive


long range interactions defined by (10.10) for any ca,− ∈ L2
−(A,C). From


Lemma 10.7, its pressure equals


(10.12)


Pm(ca,−) = inf
ca,+∈L2


+(A,C)


{
∥ca,+∥22 + Pm (ca,− + ca,+)


}
= ∥ca,−∥22 − f♯m (ca,−) .
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Take any sequence {c(n)a,−}∞n=1 converging to ca,− ∈ L2
−(A,C) in the weak


topology. From the uniform boundedness principle (Banach–Steinhaus the-


orem), it follows that any weakly convergent sequence in L2
−(A,C) is norm


bounded. In particular, the sequence {c(n)a,−}∞n=1 belongs to a ball BR,− ⊂
L2
−(A,C) of sufficiently large radius R centered at 0. By Proposition 9.1 (ii),


the family


{ca,− 7→ Pm (ca,− + ca,+)}ca,+∈L2
+(A,C)


of functionals is weakly equicontinuous on the ball BR,− ⊂ L2
−(A,C). It follows


that


(10.13) lim
n→∞


P
m(c


(n)
a,−) = Pm(ca,−).


For all n ∈ N, the unique r+(c
(n)
a,−) ∈ C♯


m(c
(n)
a,−) satisfies


(10.14) P
m(c


(n)
a,−) = ∥r+(c(n)a,−)∥22 + Pm(c


(n)
a,− + r+(c


(n)
a,−)).


By (10.12), we obtain that, for all n ∈ N,


(10.15) ∥r+(c(n)a,−)∥22 ≤ Pm(c
(n)
a,−)− Pm(c


(n)
a,− + r+(c


(n)
a,−)).


Using Proposition 9.1 (ii), one also gets that, for all n ∈ N,


Pm(c
(n)
a,−)− Pm(c


(n)
a,− + r+(c


(n)
a,−)) ≤ 2


(
∥Φa∥2 + ∥Φ′


a∥2
)
∥r+(c(n)a,−)∥2.


Combined with (10.15), the previous inequality yields the existence of a closed


ball BR,+ ⊂ L2
+(A,C) of radius R centered at 0 such that


{r+(c(n)a,−)}∞n=1 ∈ BR,+.


By compactness and metrizability of BR,+ in the weak topology (cf. Banach–


Alaoglu theorem and Theorem 12.10), we can then assume that r+(c
(n)
a,−) weakly


converges to d∞a,+ ∈ L2
+(A,C) as n→ ∞.


The map ca,+ 7→ ∥ca,+∥22 from L2
+(A,C) to R is weakly lower semi–


continuity and, by Proposition 9.1 (ii),


ca,+ 7→ Pm (ca,− + ca,+)


is weakly continuous on BR,+. It follows that


lim
n→∞


{
∥r+(c(n)a,−)∥22 + Pm(c


(n)
a,− + r+(c


(n)
a,−))


}
≥


∥∥d∞a,+∥∥22 + Pm


(
ca,− + d∞a,+


)
.


Combined with (10.12), (10.13), and (10.14), the previous inequality implies


that d∞a,+ ∈ C♯
m(ca,−) and


(10.16) lim
n→∞


∥r+(c(n)a,−)∥22 = ∥d∞a,+∥22


because of Proposition 9.1 (ii). As a consequence,


d∞a,+ = r+(ca,−) ∈ C♯
m(ca,−),
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cf. Lemma 10.3 (♯). Moreover, since


∥r+(c(n)a,−)− d∞a,+∥22 = ∥r+(c(n)a,−)∥22 + ∥d∞a,+∥22 − 2Re{⟨r+(c(n)a,−), d
∞
a,+⟩},


the limit (10.16) and the weak convergence of the sequence {r+(c(n)a,−)}∞n=1 to


d∞a,+ imply that r+(c
(n)
a,−) converges in the norm topology to d∞a,+ ∈ L2


+(A,C)
as n→ ∞.


11. Bogoliubov Approximation and Effective Theo-
ries


The precise characterization of the set Ω ♯
m of generalized t.i. equilibrium states


defined in Definition 3.15 is performed in Theorem 3.21. It is the weak∗–closed


convex hull of the set


M̂m :=


{
ω ∈ E1 : gm (ω) = inf


ρ∈E1


gm(ρ)


}


of t.i. minimizers of the reduced free–energy density functional defined by


(11.1)


gm (ρ) := ∥γa,+ρ
(
eΦa


+ ieΦ′
a


)
∥22 − ∥γa,−ρ


(
eΦa


+ ieΦ′
a


)
∥22 + eΦ(ρ)− β−1s(ρ)


for all ρ ∈ E1, see Definition 3.6 and (3.10). Thus the first aim of the present


section is to characterize the weak∗–compact set M̂m (see Lemma 3.19 (i)).


A key information to analyze the set M̂m is given by Theorem 3.36. It


establishes a relation between the thermodynamics of models m ∈ M1 and the


thermodynamics of their approximating interactions through thermodynamic


games. Combining this with some additional arguments we prove that M̂m is


a subset of the set co
(
M (T♯


m)
)
(3.44) of convex combinations of t.i. equilib-


rium states coming from the min–max local theory T♯
m (Definition 3.53). This


last result is proven in Section 11.1 and gives a first answer to an old open


problem in mathematical physics – first addressed by Ginibre [11, p. 28] in


1968 within a different context – about the validity of the so–called Bogoliubov


approximation (see Section 4.1) on the level of states. Then in Section 11.2


we show that the set Ω ♯
m of generalized t.i. equilibrium states is not a face for


an uncountable set of models of M1. This last fact implies that Ω ♯
m is strictly


smaller than co
(
M (T♯


m)
)
, i.e., Ω ♯


m  co
(
M (T♯


m)
)
, preventing such models to


have effective local theories, see Definitions 3.49 and 3.52.
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11.1. Gap equations


From Lemma 9.2, we have that


inf
ρ∈E1


gm (ρ)= inf
ρ∈E1


{
inf


ca,−∈L2
−(A,C)


{
∥ca,−∥22 + f ♭m(ca,−) (ρ)


}}
(11.2)


= inf
ca,−∈L2


−(A,C)


{
inf
ρ∈E1


{
∥ca,−∥22 + f ♭m(ca,−) (ρ)


}}
(11.3)


for any m ∈ M1, where the model m(ca,−) with purely repulsive long range


interactions Φa,+ := γa,+Φa and Φ′
a,+ := γa,+Φ


′
a is defined by (10.10) in Section


10.2 or by (3.43) in Section 3.7.


It is thus natural to relate the set M̂m of t.i. minimizers of the functional gm
with the sets Ω ♯


m(da,−) of generalized t.i. equilibrium states of models m (da,−)


for all da,− ∈ C♯
m (3.32). In fact, we verify below that the set M̂m is the union


of the sets Ω ♯
m(da,−) for all da,− ∈ C♯


m:


Lemma 11.1 (M̂m and generalized t.i. equilibrium states of m(da,−)).


(i) For any m ∈ M1,


M̂m = ∪
da,−∈C♯


m


Ω ♯
m(da,−).


(ii) For any state ω ∈ M̂m, there is da,− ∈ C♯
m such that ω ∈ Ω ♯


m(da,−) and


(11.4) da,− = γa,−(eΦa
(ω) + ieΦ′


a
(ω)) (a.e.).


(iii) Conversely, for any da,− ∈ C♯
m, all states ω ∈ Ω ♯


m(da,−) ⊂ M̂m satisfy (11.4).


Proof. By using Lemma 9.2, any minimizer ω ∈ M̂m is solution of the


variational problem (11.2) with da,− ∈ L2
−(A,C) satisfying the Euler–Lagrange


equations (11.4). Since the two infima commute in (11.2), (ω, da,−) is also


solution of the variational problem (11.3), i.e., ω ∈ Ω ♯
m(da,−) and da,− ∈ C♯


m.


Conversely, for any da,− ∈ C♯
m and all ω ∈ Ω ♯


m(da,−), (ω, da,−) is solution of


the variational problem (11.3). The latter implies that (ω, da,−) is a minimum


of (11.2), i.e., by Lemma 9.2, ω ∈ M̂m and da,− ∈ C♯
m satisfies the Euler–


Lagrange equations (11.4).


It now remains to characterize the set Ω ♯
m(da,−) of generalized t.i. equi-


librium states for the model m (da,−) (10.10) with purely repulsive long range


interactions. So, the next step is to analyze the set Ω ♯
m for any arbitrary model


without long range attractions, that is, m ∈ M1 such that Φa,− = Φ′
a,− = 0


(a.e.), see Definition 3.4. In this case we can relate Ω ♯
m to the set


Ω ♯
m (da,+) :=


{
ω ∈ MΦ(da,+) : γa,+(eΦa


(ω) + ieΦ′
a
(ω)) = da,+ (a.e.)


}
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defined by (3.37) for the unique element ca = da,+ ∈ C♭
m (see (3.32) and Lemma


10.4 (♭)), where MΦ(da,+) is the closed face described in Lemma 3.33. In fact


we show below that the sets Ω ♯
m and Ω ♯


m (da,+) coincide for any model with


purely repulsive long range interactions:


Lemma 11.2 (Ω ♯
m for models without long range attractions).


For any m ∈ M1 such that Φa,− = Φ′
a,− = 0 (a.e.) and γa,+ ̸= 0,


Ω ♯
m = M̂m = Ω ♯


m (da,+)


with da,+ ∈ C♭
m being unique.


Proof. If Φa,− = Φ′
a,− = 0 (a.e.) then, by (3.12) and (11.1), f ♭m = gm on


E1 and, by Theorem 3.25 (+),


Ω ♯
m = M̂m = M ♭


m,


where M ♭
m is the non–empty set of t.i. minimizers of f ♭m, see (10.5). Therefore,


since m(da,+) = Φ(da,+) when Φa,− = Φ′
a,− = 0 (a.e.) (cf. (10.2)), applying


Lemma 10.5 we have a t.i. equilibrium state ω ∈ MΦ(da,+) ∩ Ω ♯
m satisfying the


Euler–Lagrange equations


(11.5) γa,+(eΦa
(ω) + ieΦ′


a
(ω)) = da,+ (a.e.),


where da,+ ∈ C♭
m is the unique element of the set C♭


m, see Lemma 10.4 (♭).


We now observe that


2Re{⟨eΦa
(ρ) + ieΦ′


a
(ρ), da,+⟩}(11.6)


= ∥γa,+ρ(eΦa
+ ieΦ′


a
)∥22 + ∥da,+∥22 − ∥γa,+ρ(eΦa


+ ieΦ′
a
)− da,+∥22


and since ω ∈ MΦ(da,+) ∩ Ω ♯
m satisfies (11.5), we obtain that


inf
ρ∈E1


{
2Re{⟨eΦa


(ρ) + ieΦ′
a
(ρ), da,+⟩+ eΦ(ρ)− β−1s(ρ)


}
(11.7)


= ∥γa,+ω(eΦa
+ ieΦ′


a
)∥22 + eΦ(ω)− β−1s(ω) + ∥da,+∥22


= gm(ω) + ∥da,+∥22
= inf


ρ∈E1


gm(ρ) + ∥da,+∥22.(11.8)


Going backwards from (11.8) to (11.7) and using then (11.6), we obtain, for


any generalized t.i. equilibrium state ω ∈ Ω ♯
m = M̂m, the inequality


gm(ω) + ∥da,+∥22 ≤ gm(ω)− ∥γa,+ω
(
eΦa


+ ieΦ′
a


)
− da,+∥22 + ∥da,+∥22,


i.e.,


∥γa,+ω
(
eΦa


+ ieΦ′
a


)
− da,+∥22 ≤ 0.


As a consequence, any generalized t.i. equilibrium state ω ∈ Ω ♯
m = M̂m satisfies


the Euler–Lagrange equations (11.5) with da,+ ∈ C♭
m. Combining this with


(11.6) it follows that Ω ♯
m ⊂ Ω ♯


m(da,+).
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Conversely, take any ω ∈ MΦ(da,+) satisfying the Euler–Lagrange equations


(11.5) with da,+ ∈ C♭
m. Such a state ω ∈ MΦ(da,+) is a solution of the variational


problem (11.7) and we easily deduce that ω ∈ Ω ♯
m = M̂m.


Applying Lemma 11.2 to the model m (da,−) (10.10) with purely repulsive


long range interactions, we obtain the following corollary:


Corollary 11.3 (Generalized t.i. equilibrium states of m(da,−)).


For any m ∈ M1 and all da,− ∈ C♯
m,


Ω ♯
m(da,−) = Ω ♯


m(da,−) (r+(da,−)) = Ω ♯
m (da,− + r+(da,−))


are (non–empty) convex and weak∗–compact subsets of E1 satisfying


Ω ♯
m(da,−) ∩ Ω ♯


m(d′
a,−) = ∅


whenever da,− ̸= d′a,− with da,−, d
′
a,− ∈ C♯


m. Here, r+ is the thermodynamic


decision rule defined by (3.34) and Ω ♯
m (da,− + r+(da,−)) is defined by (3.37).


Proof. First, Ω ♯
m(da,−) is a (non–empty) convex and weak∗–compact subset


of E1 for any da,− ∈ C♯
m, by Lemma 3.16. By Lemma 11.1 (iii), all states


ω ∈ Ω ♯
m(da,−) must satisfy (11.4). On the other hand, by Corollary 11.2 applied


to the model m (da,−) (10.10) without long range attractions, we have


Ω ♯
m(da,−) = Ω ♯


m(da,−) (r+(da,−)) ,


see (3.34). Therefore, by combining (11.4) with the last equality, we deduce


that


Ω ♯
m(da,−) = Ω ♯


m (da,− + r+(da,−)) ,


which in turn implies that


Ω ♯
m(da,−) ∩ Ω ♯


m(d′
a,−) = ∅


when da,− ̸= d′a,− with da,−, d
′
a,− ∈ C♯


m.


As a consequence, by combining Lemma 11.1 (i) with Corollary 11.3, we


finally obtain the following theorem:


Theorem 11.4 (Characterization of the set M̂m).


For any m ∈ M1,


M̂m =
∪


da,−∈C♯
m


Ω ♯
m (da,− + r+(da,−)) ,


where r+ is the thermodynamic decision rule defined by (3.34).







FERMI SYSTEMS WITH LONG RANGE INTERACTIONS 119


For many relevant models coming from Physics, like, for instance, BCS


type models, the set MΦ(ca) contains exactly one state. (Actually it is enough


to have |MΦ(ca)| = 1 for ca = da,− + r+(da,−) with da,− ∈ C♯
m.) This special


case has an interesting interpretation in terms of game theory as explained in


Section 3.7 after Theorem 3.47. We conclude this section by proving Theorem


3.47.


First, observe that, in this case, there is an injective and continuous map


da,− 7→ ωda,− from C♯
m to E1:


Lemma 11.5 (Properties of the map da,− 7→ ω̂da,− from C♯
m to E1).


For any m ∈ M1 and all da,− ∈ C♯
m, assume that MΦ(da,−+r(da,−)) contains


exactly one state denoted by ω̂da,−. Then the map da,− 7→ ω̂da,− from C♯
m to E1


is injective and continuous w.r.t. to the weak topology on C♯
m and the weak∗–


topology on the set E1 of ergodic states.


Proof. By the assumptions, ω̂da,− is ergodic as MΦ(da,−+r+(da,−)) is always


a face of E1, see Lemma 3.33. If da,− ̸= d′a,− then ω̂d′
a,−


̸= ω̂da,−because of


Corollary 11.3. Thus the map da,− 7→ ω̂da,− is injective. The Hilbert space


L2(A,C) is separable and C♯
m is weakly compact and, therefore, closed in the


weak topology. By Theorem 12.10, the weak topology in C♯
m is metrizable and


we can restrict ourself to sequences instead of more general nets.


Take any sequence {d(n)a,−}∞n=0 ⊂ C♯
m converging in the weak topology to


da,− ∈ C♯
m as n→ ∞. The thermodynamic decision rule r+ is weak–norm con-


tinuous, by Lemma 10.8, and, from the definition of Φ(ca), the map ca 7→ Φ(ca)


from L2(A,C) to W1 is continuous w.r.t. to the weak topology of L2(A,C)
and the norm topology of W1. It follows that the sequence{


Φ(d
(n)
a,− + r+(d


(n)
a,−))


}∞


n=0
⊂ W1


converges in norm to Φ(da,− + r+(da,−)) ∈ W1. The map Φ 7→ P♯
(Φ,0,0) from


W1 to R is (norm) continuous, by Theorem 3.12 (ii). Therefore,


(11.9) P♯
(Φ(da,−+r+(da,−)),0,0) = lim


n→∞
P♯


(Φ(d
(n)
a,−+r+(d


(n)
a,−)),0,0)


.


By Theorem 3.12 (i) and Lemma 3.33,


P♯


(Φ(d
(n)
a,−+r+(d


(n)
a,−)),0,0)


= f ♯m(ω̂d
(n)
a,−


)


with ω̂d
(n)
a,−


∈ MΦ(d
(n)
a,−+r+(d


(n)
a,−)). Combined with (11.9) and Lemma 3.33 for the


t.i. interaction Φ(da,− + r+(da,−)), the last equality implies that any accumu-


lation point of the sequence {ω̂d
(n)
a,−


}∞n=0 converges in the weak∗–topology to a


t.i. equilibrium state ω̂da,− ∈ MΦ(da,−+r+(da,−)) which is assumed to be unique


and is thus ergodic.
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Notice that, by Lemma 11.1 (i) and Corollary 11.3, for all da,− ∈ C♯
m, the


sets Ω ♯
m(da,−+r+(da,−)) are never empty. As a consequence, by Theorem 3.21


(ii), the map da,− 7→ ωda,− of Lemma 11.5 is bijective from C♯
m to the set E(Ω ♯


m)


of extreme generalized t.i. equilibrium states. Since C♯
m is weakly compact, it


is a homeomorphism:


Corollary 11.6 (The map da,− 7→ ωda,− from C♯
m to E(Ω ♯


m)).


For any m ∈ M1 and all da,− ∈ C♯
m, assume that MΦ(da,−+r(da,−)) contains


exactly one state denoted by ωda,−. Then the map da,− 7→ ωda,− from C♯
m to E1


defines a homeomorphism between C♯
m and E(Ω ♯


m) w.r.t. to the weak topology


in C♯
m and the weak∗–topology in the set E(Ω ♯


m). In particular, E(Ω ♯
m) is weak


∗–


compact.


Consequently, any continuous function f ∈ C(E(Ω ♯
m)) can be identified


with a continuous function g ∈ C(C♯
m) through the prescription g(da,−) :=


f(ωda,−). This map C(E(Ω ♯
m)) → C(C♯


m) clearly defines an isomorphism of


C∗–algebras. Therefore, by combining this with Theorems 12.25 and 3.46, we


obtain Theorem 3.47.


11.2. Breakdown of effective local theories: Proof of Theorem
3.54


The fact that the approximating Hamiltonian method (Section 12.2) leads to


the correct pressure (cf. Theorem 3.36 (♯)) does not mean that the min–max


local theory T♯
m (Definition 3.53) is an effective theory for m ∈ M1. In fact, we


prove the existence of uncountably many models m ∈ M1 having no effective


local theory.


The construction of such models uses the fact, first observed by Israel [4,


Theorem V.2.2.] for lattice spin systems with purely local interactions, that


any finite set of extreme t.i. states can be seen as t.i. equilibrium states of


some t.i. interaction Φ ∈ W1:


Lemma 11.7 (Ergodic states as t.i. equilibrium states).


For any finite subset {ρ̂1, . . . , ρ̂n} ⊂ E1 of ergodic states, there is Φ ∈ W1 such


that {ρ̂1, . . . , ρ̂n} ⊂ MΦ.


Proof. For any Φ ∈ W1, recall that the map


ρ 7→ fΦ (ρ) := eΦ(ρ)− β−1s(ρ)


is weak∗–lower semi–continuous and affine, see Lemmata 2.28 (i), 2.31 (i) and


Definition 2.32. In particular, ΩΦ = MΦ is the (non–empty) set of all t.i.


minimizers which is a closed face of E1. Therefore, the lemma follows from


Bishop–Phelps’ theorem [4, Theorem V.1.1.] together with Choquet theorem
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(Theorem 2.9) and Theorem 3.28 for m = (Φ, 0, 0). The arguments are exactly


those of Israel and we recommend [4, Theorem V.2.2. (a)] for more details.


Using this last lemma, we can then construct uncountably many models


m ∈ M1 such that its set Ω ♯
m of generalized t.i. equilibrium states is not a face


of E1.


Lemma 11.8 (The set Ω ♯
m is generally not a face).


There are uncountably many m ∈ M1 for which Ω ♯
m is not a face of E1.


Proof. Let


U− ⊂ U0\{A ∈ U0 : A = A∗}


be the (non–empty) set of non self–adjoint local elements of the ∗–algebra U0


defined by


U− :=
∪


θ∈R/(2πZ)


{A ∈ U0 : A = −σθ(A), ρ(A) ̸= 0 for some ρ ∈ E1}


with σθ being the automorphism of the algebra U defined by (2.4). Since,


for any x, y ∈ L with x ̸= y, any s ∈ S, and any λ ∈ R\{0}, we have


λax,say,s ∈ U−, the set U− contains uncountably many elements.


By assumption, for any A ∈ U−, there is ρ̂1 ∈ E1 such that ρ̂1(A) ̸= 0. By


density of the set E1 of extreme points of E1 (Corollary 6.6), we can assume


without loss of generality that ρ̂1 ∈ E1. As A ∈ U−, there is θ ∈ R/(2πZ) such
that


(11.10) ρ̂1 (A) = −ρ̂2 (A) ̸= 0


with ρ̂2 := ρ̂1 ◦ σθ. Since σθ is an automorphism of U , ρ̂2 ̸= ρ̂1 is clearly a


state. As ρ̂1 ∈ E1, by using Theorem 2.16 and αx ◦ σθ = σθ ◦ αx, we have that


ρ̂2 ∈ E1 . Now, by Lemma 11.7, there is Φ ∈ W1 such that {ρ̂1, ρ̂2} ⊂ MΦ.


Any non self–adjoint local element A ∈ U− ⊂ U0 can be decomposed as


A = AR + iAI with AR = A∗
R ∈ U0 and AI = A∗


I ∈ U0. Thus, as explained


in the proof of Lemma 6.18, there exists two finite range t.i. interactions


ΦAR ,ΦAI ∈ W1 with ∥ΦAR∥W1
= ∥AR∥ and ∥ΦAI∥W1


= ∥AI∥ such that


(11.11) ρ(A) = eΦAR (ρ) + ieΦAI (ρ)


for any ρ ∈ E1. For any A ∈ U−, we define the discrete model


mA :=
(
Φ,ΦAR ,ΦAI


)
∈ M1


without long range attractions, i.e., Φa,− = Φ′
a,− = 0, Φa,+ := ΦAR , and


Φ′
a,+ := ΦAI , see Definition 3.4.


As {ρ̂1, ρ̂2} ⊂ MΦ and by convexity of the set MΦ,


(11.12) ω :=
1


2
ρ̂1 +


1


2
ρ̂2 ∈ MΦ.
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It follows from Definition 3.6 that


(11.13) gmA
(ω) = fΦ (ω) < gmA


(ρ̂1) = gmA
(ρ̂2)


because of (11.10) and (11.11). Therefore, ρ̂1, ρ̂2 /∈ M̂mA
do not belong to


the set M̂mA
(3.10) of minimizers of gmA


over E1. However, since mA is a


model with purely repulsive long range interactions, fΦ ≤ gmA
on E1 and, by


(11.12) and (11.13), we obtain that ω ∈ M̂mA
. Since Ω ♯


mA
= M̂mA


, by Theorem


3.25 (+), we finally get that ω ∈ Ω ♯
mA


, whereas ρ̂1, ρ̂2 /∈ Ω ♯
mA


in spite of the


decomposition (11.12). In other words, for any A ∈ U−, Ω ♯
mA


is not a face of


E1.


As a consequence, the equality P♯
m = −F♯


m of Theorem 3.36 (♯) does not


necessarily imply that the min–max local theory T♯
m (Definition 3.53) is an


effective theory, see Definition 3.49. In fact, if Ω ♯
m is not a face then there is


no effective local theory and Lemma 11.8 implies Theorem 3.54.


12. Appendix


For the reader’s convenience we give here a short review on the following sub-


jects:


• Gibbs equilibrium states (Section 12.1), see, e.g., [5];


• The approximating Hamiltonian method (Section 12.2), see, e.g., [13, 14,


15, 16];


• Lp–spaces of maps with values in a Banach space (Section 12.3);


• Compact convex sets and Choquet simplices (Section 12.4), see, e.g.,


[2, 3];


• Γ–regularization of real functionals (Section 12.5), see, e.g., [46];


• Legendre–Fenchel transform and tangent functionals (Section 12.6), see,


e.g., [30, 47];


• Two–person zero–sum games (Section 12.7), see, e.g., [33, 48].


These subjects are rather standard and can be found in many textbooks.


Therefore, we keep the exposition here as short as possible and only concen-


trate on results used in this paper. It is important to note, however, that we


also give two new and useful theorems – Theorems 12.37 and 12.38 – which are


general results related to the study of variational problems with non–convex


functionals on compact convex sets. Observe further that Lemma 12.32 in Sec-


tion 12.5 does not seem to have been observed before. In fact, Lemma 12.32


and Theorems 12.37–12.38 are given in this appendix – and not in the main


part of the text – as they will be subject of a separate paper.
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12.1. Gibbs equilibrium states


In quantum statistical mechanics a physical system of fermions on a lattice is


first characterized by its energy observables UΛ for particles enclosed in finite


boxes Λ ∈ L. Mathematically speaking, UΛ are self–adjoint elements of the


local algebras UΛ. Given any local state ρΛ ∈ EΛ on UΛ, the energy observable


UΛ fixes the so–called finite volume free–energy density (in the box Λ ∈ L)


fΛ,UΛ
(ρΛ) := |Λ|−1ρΛ(UΛ)− (β|Λ|)−1S(ρΛ),


of the physical system at inverse temperature β > 0. The functional fΛ,UΛ
can


be seen either as a map from EΛ to R or from E to R by taking, for all ρ ∈ E,


the restriction ρΛ ∈ EΛ on UΛ. The first term in fΛ,UΛ
is obviously the mean


energy per volume of the physical system found in the state ρΛ, whereas S is


the von Neumann entropy defined by (6.18) which measures, in a sense, the


amount of randomness carried by the state. See Section 6.4 for more details.


The state of a system in thermal equilibrium and at fixed mean energy


per volume maximizes the entropy, by the second law of thermodynamics.


Therefore, it minimizes the free–energy density functional fΛ,UΛ
. Such well–


known arguments lead to the study of the variational problem


(12.1) inf
ρ∈E


fΛ,UΛ
(ρ) = inf


ρΛ∈EΛ


fΛ,UΛ
(ρΛ) .


As the von Neumann entropy S is weak∗–continuous, the functional fΛ,UΛ
has


at least one minimizer on EΛ which is the local equilibrium state of the physical


system, also called Gibbs equilibrium state:


Definition 12.1 (Gibbs equilibrium state).


A Gibbs equilibrium state is a solution of the variational problem (12.1), i.e.,


a minimizer of the finite volume free–energy density functional fΛ,UΛ
.


The set of solutions of the variational problem (12.1) is, a priori, not


unique. But, for β ∈ (0,∞), it is well–known that the maximum of −fΛ,UΛ


over E equals the finite volume pressure


pΛ,UΛ
:=


1


β|Λl|
lnTrace∧HΛ


(
e−βUΛ


)
(compare with (3.7)) and is attained for the unique minimizer ρΛ,UΛ


∈ EΛ of


fΛ,UΛ
defined by


(12.2) ρΛ,UΛ
(A) :=


Trace∧HΛ


(
A e−βUΛ


)
Trace∧HΛ


(e−βUΛ)
, A ∈ UΛ.


This result is a key ingredient in the proof of Theorem 3.12 (see Sections 7 and


8) and is also known in the literature as the passivity of Gibbs states:
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Theorem 12.2 (Passivity of Gibbs states).


For β ∈ (0,∞) and any self–adjoint UΛ ∈ UΛ,


pΛ,UΛ
= − inf


ρ∈E
fΛ,UΛ


(ρ) = − inf
ρΛ∈EΛ


fΛ,UΛ
(ρΛ) = −fΛ,UΛ


(
ρΛ,UΛ


)
with the Gibbs equilibrium state ρΛ,UΛ


∈ EΛ being the unique minimizer on EΛ


of the finite volume free–energy density functional fΛ,UΛ
.


The proof of this standard theorem is a (non–trivial) consequence of Jensen’s


inequality, see, e.g., [9, Lemma 6.3] or [5, Proposition 6.2.22] (for quantum


spin systems).


12.2. The approximating Hamiltonian method


The approximating Hamiltonian method is presented in [13, 14, 15, 16]. This


rigorous technique for computing the thermodynamic pressure does not seem to


be well–known in the mathematical physics community, unfortunately. There-


fore, we give below a brief account on the approximating Hamiltonian method


and we compare it to our results.


Let


(12.3) HΛ := TΛ +
1


|Λ|


N∑
k=1


γk
(
Uk,Λ + iU ′


k,Λ


)∗ (
Uk,Λ + iU ′


k,Λ


)
be any self–adjoint operator acting on a Hilbert space HΛ of a box Λ with


γk = −1 for any k ∈ {1, · · · , n} and γk = 1 for k ∈ {n + 1, · · · , N} (n < N


being fixed). Here, TΛ = T∗
Λ and {Uk,Λ, U


′
k,Λ}Nk=1 are operators acting on HΛ.


Then the approximating Hamiltonian method corresponds to use so–called


approximating Hamiltonians to compute the finite volume pressure


p [HΛ] :=
1


β|Λ|
lnTraceHΛ


(e−βHΛ)


associated with HΛ, for any β ∈ (0,∞), in the thermodynamic limit. A minimal


requirement on HΛ to have a thermodynamic behavior is of course to ensure


the finiteness of p [HΛ]. The latter is, in fact, fulfilled because this method


is based on operators TΛ = T∗
Λ and {Uk,Λ, U


′
k,Λ}Nk=1 satisfying the following


conditions:


(A1) The finite volume pressure of TΛ exists, i.e.,∣∣∣lnTraceHΛ
(e−βTΛ)


∣∣∣ ≤ β|Λ| C0.


(A2) The operators


(Uk,Λ + iU ′
k,Λ)


# ∈ {Uk,Λ + iU ′
k,Λ, (Uk,Λ + iU ′


k,Λ)
∗}


are bounded in operator norm, for any k ∈ {1, · · · , N}, by C1|Λ|.
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(A3) The following commutators are also bounded for any k, q, p ∈ {1, · · · , N}:


∥[Uk,Λ + iU ′
k,Λ, (Uq,Λ + iU ′


q,Λ)
#]∥ ≤ |Λ|C2.


∥[(Uk,Λ + iU ′
k,Λ)


#, [(Uq,Λ + iU ′
q,Λ)


#, Up,Λ + iU ′
p,Λ]]∥ ≤ |Λ|C3.


∥[(Uk,Λ + iU ′
k,Λ)


#, [Uq,Λ + iU ′
q,Λ,TΛ]]∥ ≤ |Λ|C4.


For all k ∈ {1, 2, 3, 4}, note that the constants Ck are finite and do not depend


on the box Λ.


Approximating Hamiltonians are then defined from HΛ by


HΛ (c⃗−, c⃗+) := TΛ −
n∑


k=1


(
c̄k,−


(
Uk,Λ + iU ′


k,Λ


)
+ ck,−


(
Uk,Λ + iU ′


k,Λ


)∗)
+


N∑
k=n+1


(
c̄k,+


(
Uk,Λ + iU ′


k,Λ


)
+ ck,+


(
Uk,Λ + iU ′


k,Λ


)∗)
with c⃗− := (c1,−, · · · , cn,−) ∈ Cn, c⃗+ := (cn+1,+, · · · , cN,+) ∈ CN−n. Let


fH,Λ (c⃗−, c⃗+) := − |⃗c+|2 + |⃗c−|2 −
1


β|Λ|
lnTraceHΛ


(e−βHΛ(c⃗− ,⃗c+))


be the approximating free–energy density and


⟨−⟩c⃗− ,⃗c+
:=


TraceHΛ


(
− e−βHΛ(c⃗− ,⃗c+)


)
TraceHΛ


(
e−βHΛ(c⃗− ,⃗c+)


)
be the (local) Gibbs equilibrium state associated with HΛ (c⃗−, c⃗+), see Section


12.1. From (A1)–(A2) it can be proven that, for any c⃗− ∈ Cn, there is a


unique solution r+(c⃗−) := (d1,+, · · · , dN,+) ∈ CN−n of the (finite volume) gap


equations


(12.4) |Λ|−1
⟨
Uk,Λ + iU ′


k,Λ


⟩
c⃗−,r+(c⃗−)


= dk,+


for all k ∈ {n+ 1, · · · , N}. Then let us consider two additional conditions:


(A4) For any k ∈ {n, · · · , N} with fixed n < N , the operators U#
k,Λ satisfy the


ergodicity condition


lim
|Λ|→∞


{
|Λ|−2


(⟨(
Uk,Λ + iU ′


k,Λ


)∗
(Uk,Λ + iU ′


k,Λ)
⟩
c⃗−,r+(c⃗−)


−|
⟨
Uk,Λ + iU ′


k,Λ


⟩
c⃗−,r+(c⃗−)


|2
)}


= 0


for all c⃗− ∈ Cn.


(A5) The free–energy density fH,Λ (c⃗−, c⃗+) converges in the thermodynamic


limit |Λ| → ∞ towards


lim
|Λ|→∞


fH,Λ (c⃗−, c⃗+) =: fH (c⃗−, c⃗+)


for any c⃗− ∈ Cn and c⃗+ ∈ CN−n.
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Bogoliubov Jr. et al. have shown [15] the following:


Theorem 12.3 (Bogoliubov Jr., Brankov, Zagrebnov, Kurbatov, and Tonchev).


Under assumptions (A1)-(A4) we obtain:


(i) For any box Λ and at fixed c⃗− ∈ Cn, the solution of the variational problem


sup
c+∈CN−n


fH,Λ(c⃗−, c⃗+) = fH,Λ(c⃗−, r+(c⃗−))


is unique and solution of (12.4), whereas there is d⃗− ∈ Cn such that


inf
c⃗−∈Cn


{
sup


c⃗+∈CN−n


fH,Λ(c⃗−, c⃗+)


}
= fH,Λ(d⃗−, r+(d⃗−)).


(ii) In the thermodynamic limit


lim
|Λ|→∞


{
p[HΛ] + fH,Λ(d⃗−, r+(d⃗−))


}
= 0


and if (A5) also holds then


lim
|Λ|→∞


p[HΛ] = − inf
c⃗−∈Cn


{
sup


c⃗+∈CN−n


fH(c⃗−, c⃗+)


}
.


The proof of this theorem uses as a key ingredient the Bogoliubov (convex-


ity) inequality [31, Corollary D.4] which can be deduced from Theorem 12.2.


Another important technique used by the authors [14, 15, 16] are the Ginibre


inequalities [11, Eq. (2.10)]. Their proofs are thus essentially different from


ours.


To conclude we analyze Conditions (A1)–(A3) and (A5) for discrete Fermi


systems m ∈ Md
1 (see Section 3.1).


Lemma 12.4 (Conditions (A1)–(A3) and (A5) for m ∈ Md
1).


For any discrete Fermi system m := {Φ}∪{Φk,Φ
′
k}Nk=1 ∈ Md


1, the self–adjoint


operators TΛl
:= UΦ


Λl
, Uk,Λl


:= UΦk


Λl
, and Uk,Λl


:= UΦk


Λl
satisfy Conditions


(A1)–(A2) and (A5). (A3) holds whenever m ∈ Mdf
1 is also finite range.


Proof. Condition (A1)–(A2) and (A5) are clearly satisfied. Condition


(A3) requires direct computations. We omit the details.


Remark 12.5 (Condition (A4) as a non–necessary assumption).


Condition (A4) is used in Theorem 12.3 to handle the positive part of long


range interactions. It is generally not satisfied for discrete Fermi systems m ∈
Md


1. This condition is shown here to be absolutely not necessary to handle the


thermodynamic limit of the pressure of Fermi systems m ∈ M1 (see Theorem


3.36).
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Remark 12.6 (Condition (A3) as a non–necessary assumption).


Let Φ,Φ′ ∈ W1 such that ∥ΦΛl
∥, ∥ΦΛl


∥ = O(l−(d+ϵ)) for some small ϵ > 0.


Such interactions clearly exist. If this is the only information we have about


the interactions then the only bound we can give for the commutators [UΦ
Λ , U


Φ′


Λ ]


is


∥[UΦ
Λ , U


Φ′


Λ ]∥ ≤
∑


Λ1,Λ′
1⊂Λ, Λ1∩Λ′


1 ̸=∅


2∥ΦΛ1
∥ ∥Φ′


Λ′
1
∥.


Depending on ϵ > 0, the r.h.s. of the last inequality grows at large |Λ| much


faster than the volume |Λ|. Hence, the condition (A3) is very unlikely to hold


for all Φ,Φ′ ∈ W1.


12.3. Lp–spaces of maps with values in a Banach space


Let (A,A, a) be a separable measure space with A and a : A → R+
0 being re-


spectively some σ–algebra on A and some measure on A. Recall that (A,A, a)
being separable means that the space L2(A,C) := L2(A, a,C) of square in-


tegrable complex valued functions on A is a separable Hilbert space. This


property implies, in particular, that (A,A, a) is a σ–finite measure space, see


[49, p. 54].


Let X be any Banach space with norm ∥·∥X . We denote by S (A,X )


the set of measurable step functions with support of finite measure. For any


measurable map sa : A → X and any p ≥ 1, we define the semi–norm


∥s∥p :=
∫
A
∥sa∥pX da (a) ∈ [0,∞].


Let s
(n)
a be any Lp–Cauchy sequence of measurable maps, i.e., ∥s(n)a ∥p <∞ and


lim
N→∞


sup
n,m>N


∥s(n)a − s(m)
a ∥p = 0.


Then there is a measurable function s∞ from A to X with ∥s(∞)
a ∥p < ∞ such


that


lim
n→∞


∥s(n)a − s(∞)
a ∥p = 0


(Completeness of Banach–valued Lp–spaces). Now, define the sub–space


Lp (A,X ) :=
{
s(∞)
a : there is {s(n)a }∞n=1 in S (A,X ) with lim


n→∞
∥s(n)a − s(∞)


a ∥p = 0
}


of the space of measurable functions A → X . Observe that the semi–norm


∥·∥p is finite on Lp (A,X ). In other words, Lp (A,X ) is the closure of S (A,X )


w.r.t. the semi-norm ∥·∥p.
Define the linear map from S (A,X ) to X by


(12.5) sa 7→
∫
A
sada (a) :=


∑
x∈sa(A)


xa
(
s−1
a (x)


)
.
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Obviously, for all sa ∈ S (A,X ),


(12.6)


∥∥∥∥∫
A
sada (a)


∥∥∥∥
X
≤ ∥sa∥1 .


Now, for each function ca ∈ L2 (A,C), let us consider the linear map sa 7→
⟨sa, ca⟩ from S (A,X ) to X defined by


(12.7) ⟨sa, ca⟩ :=
∑


x∈sa(A)


x


∫
s−1
a (x)


c̄ada (a) .


From the (finite dimensional) Cauchy–Schwarz inequality note that, for all


sa ∈ S (A,X ),


(12.8) ∥⟨sa, ca⟩∥X ≤ ∥sa∥2 ∥ca∥2 .


By using Hahn–Banach theorem and the density of S (A,X ) in Lp (A,X ), we


obtain the existence and uniqueness of linear extensions of the maps (12.5) and


(12.7) respectively to the spaces L1 (A,X ) and L2 (A,X ). In particular, the


linear extensions of (12.5) and (12.7) satisfy (12.6) and (12.8), respectively.


12.4. Compact convex sets and Choquet simplices


The theory of compact convex subsets of a locally convex (topological vector)


space X is standard. For more details, see, e.g., [2, 3]. Note, however, that the


definitions of topological vector spaces found in the literature differ slightly


from each other. Those differences mostly concern the Hausdorff property.


Here, we use Rudin’s definition [1, Section 1.6]:


Definition 12.7 (Topological vector spaces).


A topological vector space X is a vector space equipped with a topology τ for


which the vector space operations of X are continuous and every point of X
defines a closed set.


The fact that every point of X is a closed set is usually not part of the definition


of a topological vector space in many textbooks. It is used here because it is


satisfied in most applications – including those of this paper – and, in this


case, the space X is automatically Hausdorff by [1, Theorem 1.12]. Examples


of topological vector spaces used in this paper are the dual spaces (cf. [1,


Theorem 3.10]):


Theorem 12.8 (Dual space of a topological vector space).


The dual space X ∗ of a (topological vector) space X is a locally convex space


in the σ(X∗, X)–topology – known as the weak∗–topology – and its dual is X .


Since any Banach space is a topological vector space in the sense of Defi-


nition 12.7, the dual space of a Banach space is a locally convex space:
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Corollary 12.9 (Dual space of a Banach space).


The dual space X ∗ of a Banach space X is a locally convex space in the


σ(X∗, X)–topology – known as the weak∗–topology – and its dual is X .


It follows that the dual spaces U∗ and W∗
1 respectively of the Banach


spaces U and W1 (cf. Section 2.1 and Definition 2.24) are both locally convex


real spaces w.r.t. the weak∗–topology. Note that U and W1 are separable.


This property yields the metrizability of any weak∗–compact subset K of their


dual spaces (cf. [1, Theorem 3.16]):


Theorem 12.10 (Metrizability of weak∗–compact sets).


Let K ⊂ X ∗ be any weak∗–compact subset of the dual X ∗ of a separable topo-


logical vector space X . Then K is metrizable in the weak∗–topology.


One important observation concerning locally convex spaces X is that any


compact convex subset K ⊂ X is the closure of the convex hull of the (non–


empty) set E(K) of its extreme points, i.e., of the points which cannot be


written as – non–trivial – convex combinations of other elements in K. This


is Krein–Milman theorem (see, e.g., [1, Theorems 3.4 (b) and 3.23]):


Theorem 12.11 (Krein–Milman).


Let K ⊂ X be any (non–empty) compact convex subset of a locally convex space


X . Then we have that:


(i) The set E(K) of its extreme points is non–empty.


(ii) The set K is the closed convex hull of E(K).


Remark 12.12. X being a topological vector space on which its dual space


X ∗ separates points is the only condition necessary on X in Krein–Milman


theorem. For more details, see, e.g., [1, Theorem 3.23].


In fact, the set E(K) of extreme points is even a Gδ set if the compact convex


set K ⊂ X is metrizable. Moreover, among all subsets Z ⊂ K generating K,


E(K) is – in a sense – the smallest one (see, e.g., [3, Proposition 1.5]):


Theorem 12.13 (Properties of the set E(K)).


Let K ⊂ X be any (non–empty) compact convex subset of a locally convex space


X . Then we have that:


(i) If K is metrizable then the set E(K) of extreme points of K forms a Gδ set.


(ii) If K is the closed convex hull of Z ⊂ K then E(K) is included in the closure


of Z.


Property (i) can be found in [3, Proposition 1.3] and only needs that X is a


topological vector space, whereas the second statement (ii) is a classical result


obtained by Milman, see [3, Proposition 1.5].
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Theorem 12.11 restricted to finite dimensions is a classical result of Minkowski


which, for any x ∈ K in (non–empty) compact convex subsetK ⊂ X , states the


existence of a finite number of extreme points x̂1, . . . , x̂k ∈ E(K) and positive


numbers µ1, . . . , µk ≥ 0 with Σk
j=1µj = 1 such that


(12.9) x =


k∑
j=1


µj x̂j .


To this simple decomposition we can associate a probability measure, i.e., a


normalized positive Borel regular measure, µ on K.


Indeed, the Borel sets of any set K are elements of the σ–algebra B


generated by closed – or open – subsets of K. Positive Borel regular measures


are the positive countably additive set functions µ over B satisfying


µ (B) = sup {µ (C) : C ⊂ B, C closed} = inf {µ (O) : B ⊂ O, O open}


for any Borel subset B ∈ B of K. If K is compact then any positive Borel


regular measure µ corresponds (one–to–one) to an element of the set M+(K)


of Radon measures with µ (K) = ∥µ∥ and we write


(12.10) µ (h) =


∫
K
dµ(x̂) h (x̂)


for any continuous function h on K. A probability measure µ ∈M+
1 (K) is per


definition a positive Borel regular measure µ ∈ M+(K) which is normalized :


∥µ∥ = 1.


Remark 12.14. The set M+
1 (K) of probability measures on K can also


be seen as the set of states on the commutative C∗–algebra C(K) of continuous


functionals on the compact set K, by the Riesz–Markov theorem.


Therefore, using the probability measure µx ∈M+
1 (K) on K defined by


µx =


k∑
j=1


µjδx̂j


with δy being the Dirac – or point – mass22 at y, Equation (12.9) can be seen


as an integral defined by (12.10) for the probability measure µx ∈M+
1 (K):


(12.11) x =


∫
K
dµx(x̂) x̂ .


The point x is in fact the barycenter of the probability measure µx. This notion


is defined in the general case as follows (cf. [3, p. 1]):


22δy is the Borel measure such that for any Borel subset B ∈ B of K, δy(B) = 1 if y ∈ B
and δy(B) = 0 if y /∈ B.
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Definition 12.15 (Barycenters of probability measures in convex sets).


Let K ⊂ X be any (non–empty) compact convex subset of a locally convex space


X and let µ ∈ M+
1 (K) be a probability measure on K. We say that x ∈ K is


the barycenter23 of µ if, for all continuous linear24 functionals h on X ,


h (x) =


∫
K
dµ(x̂) h (x̂) .


Barycenters are well–defined for all probability measures in convex compact


subsets of locally convex spaces (cf. [3, Propositions 1.1 and 1.2]):


Theorem 12.16 (Well-definiteness and uniqueness of barycenters).


Let K ⊂ X be any (non–empty) compact subset of a locally convex space X
such that co (K) is also compact. Then we have that:


(i) For any probability measure µ ∈M+
1 (K) on K, there is a unique barycenter


xµ ∈ co (K). In particular, if K is convex then, for any µ ∈ M+
1 (K), there


is a unique barycenter xµ ∈ K. Moreover, the map µ 7→ xµ from M+
1 (K) to


co (K) is affine and weak∗–continuous.


(ii) Conversely, for any x ∈ co (K), there is a probability measure µx ∈M+
1 (K)


on K with barycenter x.


Therefore, we write the barycenter xµ of any probability measure µ in K


as


xµ =


∫
K
dµ(x̂) x̂,


where the integral has to be understood in the weak sense. By Definition


12.15, it means that h (xµ) can be decomposed by the probability measure


µ ∈ M+
1 (K) provided h is a continuous linear functional. In fact, this last


property can also be extended to all affine upper semi–continuous functionals


on K, see, e.g., [17, Corollary 4.1.18.] together with [1, Theorem 1.12]:


Lemma 12.17 (Barycenters and affine maps).


Let K ⊂ X be any (non–empty) compact convex subset of a locally convex


space X . Then, for any probability measure µ ∈M+
1 (K) on K with barycenter


xµ ∈ K and for any affine upper semi–continuous functional h on K,


h (x) =


∫
K
dµx (x̂) h (x̂) .


It is natural to ask whether, for any x ∈ K in a convex set K, there is a


(possibly not unique) probability measure µx on K supported on E(K) with


23Other terminology existing in the literature: “x is represented by µ”, “x is the resultant
of µ”.


24Barycenters can also be defined in the same way via affine functionals instead of linear
functionals, see [17, Proposition 4.1.1.].
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barycenter x. Equation (12.11) already gives a first positive answer to that


problem in the finite dimensional case. The general case has been proven by


Choquet, whose theorem is a remarkable refinement of Krein–Milman theorem


(see, e.g., [3, p. 14]):


Theorem 12.18 (Choquet).


Let K ⊂ X be any (non–empty) metrizable compact convex subset of a locally


convex space X . Then, for any x ∈ K, there is a probability measure µx ∈
M+


1 (K) on K such that


µx(E(K)) = 1 and x =


∫
K
dµx(x̂) x̂.


Recall that the integral above means that x ∈ K is the barycenter of µx.


Remark 12.19 (Choquet theorem and affine maps).


By Lemma 12.17, Choquet theorem can be used to decompose any affine upper


semi–continuous functional defined on the metrizable compact convex subset


K ⊂ X w.r.t. extreme points of K.


Remark 12.20 (Choquet theorem for non metrizable K).


If the (non–empty) compact convex subset K ⊂ X is not metrizable then E(K)


may not form a Borel set. Choquet theorem (Theorem 12.18) stays, however,


valid under the modification that µx is pseudo–supported by E(K) which means


that µx(B) = 1 for all Baire sets B ⊇ E(K). This result is known as the


Choquet–Bishop–de Leeuw theorem, see [3, p. 17].


Note that the probability measure µx of Theorem 12.18 is a priori not unique.


For instance, in the 2-dimensional plane, simplices (points, segments, and tri-


angles) are uniquely decomposed in terms of their extreme points, i.e., they


are uniquely represented by a convex combination of extreme points. But this


decomposition is not anymore unique for a square. In fact, uniqueness of the


decomposition given in Theorem 12.18 is related to the theory of simplices.


To define them in the general case, let S be a compact convex set of


a locally convex real space X . Without loss of generality assume that the


compact convex set S is included in a closed hyper–plane which does not


contain the origin25. Let


K := {αx : α ≥ 0, x ∈ S}


be the cone with base S. Recall that the cone K induces a partial ordering on


X by using the definition x = y iff x− y ∈ K. A least upper bound for x and y


is an element x∨ y = x, y satisfying w = x∨ y for all w with w = x, y. Then a


simplex is defined as follows:


25Otherwise, we embed X as X × {1} in X × R.
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Definition 12.21 (Simplices).


The (non–empty) compact convex set S is a simplex whenever K is a lattice


with respect to the partial ordering =. This means that each pair x, y ∈ K has


a least upper bound x ∨ y ∈ K.


Observe that a simplex can also be defined for non–compact convex sets but


we are only interested here in compact simplices. Such simplices are particular


examples of simplexoids, i.e., compact convex sets whose closed proper faces


are simplices.


The definition of simplices above agrees with the usual definition in finite


dimensions as the n–dimensional simplex {(λ1, λ2, · · · , λn+1, ),Σjλj = 1} is


the base of the (n+1)–dimensional cone {(λ1, λ2, · · · , λn+1, ), λj ≥ 0}. In fact,


for all metrizable simplices, the probability measure µx of Theorem 12.18 is


unique and conversely, if µx is always uniquely defined then the corresponding


metrizable compact convex set is a simplex (see, e.g., [3, p. 60]):


Theorem 12.22 (Choquet).


Let S ⊂ X be any (non–empty) closed convex metrizable subset of a locally


convex space X . Then S is a simplex iff, for any x ∈ S, there is a unique


probability measure µx ∈M+
1 (S) on S such that


µx(E(S)) = 1 and x =


∫
S
dµx(x̂) x̂.


Compact and metrizable convex sets for which the integral representation in


Theorem 12.22 is unique are also called Choquet simplices:


Definition 12.23 (Choquet simplex).


The simplex S is a Choquet simplex whenever the decomposition of S on E(S)
given by Theorem 12.18 (see also Remark 12.20) is unique.


In this paper we are only interested in metrizable compact convex set on which


Theorem 12.22 is applied. Therefore, all our examples of simplices are in fact


Choquet simplices.


Two further special types of simplices are of particular importance: The


Bauer and the Poulsen simplices. The first one is defined as follows:


Definition 12.24 (Bauer simplex).


The simplex S is a Bauer simplex whenever its set E(S) of extreme points is


closed.


A compact Bauer simplex S has the interesting property that it is affinely


homeomorphic to the set of states on the commutative C∗–algebra C(E(S))
(see, e.g., [2, Corollary II.4.2]):
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Theorem 12.25 (Bauer).


Let S ⊂ X be any compact Bauer Simplex of a locally convex space X . Then


the map x 7→ µx defined by Theorem 12.22 from S to the set M+
1 (E(S)) of


probability measures26 on E(S) is an affine homeomorphism.


Bauer simplices are special simplices as the set of E(S) of extreme points


of a simplex S may not be closed. In fact, E. T. Poulsen [50] constructed in


1961 an example of a metrizable simplex S with E(S) being dense in S. This


simplex is now well–known as the Poulsen simplex because it is unique [45,


Theorem 2.3.] up to an affine homeomorphism:


Theorem 12.26 (Lindenstrauss–Olsen–Sternfeld).


Every (non–empty) compact metrizable simplex S with E(S) being dense in S


is affinely homeomorphic to the Poulsen simplex.


The original example given by Poulsen [50] is not explained here as we give


in Section 2.2 a prototype of the Poulsen simplex: The set E
ℓ⃗
⊂ U∗ of all


ℓ⃗.Zd–invariant states defined by (2.8) for any ℓ⃗ ∈ Nd, see Theorem 2.12.


For more details on the Poulsen simplex we recommend [45] where its


specific properties are described. They also show that the Poulsen simplex is,


in a sense, complementary to the Bauer simplices, see [2, p. 164] or [45, Section


5].


12.5. Γ–regularization of real functionals


The Γ–regularization of real functionals on a subset K ⊂ X is defined from


the space A (X ) of all affine continuous real valued functionals on X as follows


(cf. [46, Definition 2.1.1]):


Definition 12.27 (Γ–regularization of real functionals).


For any real functional h defined from a locally convex space X to (−∞,∞],


its Γ–regularization ΓK (h) on a subset K ⊂ X is the functional defined as the


supremum over all affine and continuous minorants from X to R of h|K , i.e.,


for all x ∈ X ,


ΓK (h) (x) := sup {m(x) : m ∈ A(X ) and m|K ≤ h|K} .


If a functional h is only defined on a subset K ⊂ X of a locally convex space


X then we compute ΓX (h) by extending h to the locally convex space X as


follows:


26I.e. the set of states on the commutative C∗–algebra C(E(S)) of continuous functionals
on the compact set E(S).
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Definition 12.28 (Extension of functionals on a locally convex space X ).


Any functional h : K ⊂ X → (−∞,∞] is seen as a map from X to (−∞,∞]


by the definition


h(x) :=


{
h(x) , for x ∈ K.


+∞ , for x ∈ X\K.


If h is convex and weak∗–lower semi–continuous on the closed and convex


subset K ⊂ X then its extension on X is also convex and weak∗–lower semi–


continuous. Moreover, in this case, ΓX (h) = ΓK (h) on X .


Since the Γ–regularization ΓK (h) of a real functional h is a supremum


of continuous functionals, ΓK (h) is a convex and lower semi–continuous func-


tional on X . In fact, every convex and lower semi–continuous functional on K


equals its Γ–regularization on K (cf. [46, Proposition 2.1.2]):


Proposition 12.29 (Γ–regularization of lower semi–cont. convex maps).


Let h be any functional from a (non–empty) closed convex subset K ⊂ X of a


locally convex space X to (−∞,∞]. Then the following statements are equiv-


alent:


(i) ΓK (h) = h on K.


(ii) h is a lower semi–continuous convex functional on K.


This proposition is a standard result which can directly be proven without


using the fact that the Γ–regularization ΓK (h) of a functional h onK equals its


twofold Legendre–Fenchel transform – also called the biconjugate (functional)


of h. Indeed, ΓK (h) is the largest lower semi–continuous and convex minorant


of h:


Corollary 12.30 (Largest lower semi–continuous convex minorant of h).


Let h be any functional from a (non–empty) closed convex subset K ⊂ X of


a locally convex space X to (−∞,∞]. Then its Γ–regularization ΓK (h) is its


largest lower semi–continuous and convex minorant on K.


Proof. For any lower semi–continuous convex functional f satisfying f ≤ h


on K, we have, by Proposition 12.29, that


f (x) = sup {m(x) : m ∈ A(X ) and m|K ≤ f |K ≤ h|K} ≤ ΓK (h) (x)


for any x ∈ K.


In particular, if (X ,X ∗) is a dual pair and h is any functional from X to


(−∞,∞] then ΓX (h) = h∗∗, by using Theorem 12.41 together with Corollary


12.30. See Corollary 12.42.


Proposition 12.29 has further interesting consequences. The first one we


would like to mention is an extension of the Bauer maximum principle [17,


Lemma 4.1.12], that is:
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Lemma 12.31 (Bauer maximum principle).


Let X be a topological vector space. An upper semi–continuous convex real


functional h over a compact convex subset K ⊂ X attains its maximum at an


extreme point of K, i.e.,


sup
x∈K


h (x) = max
x̂∈E(K)


h (x̂) .


Here, E(K) is the (non–empty) set of extreme points of K, cf. Theorem 12.11.


Indeed, by combining Proposition 12.29 with Lemma 12.31 it is straightforward


to check the following statement which does not seem to have been observed


before:


Lemma 12.32 (Extension of the Bauer maximum principle).


Let h± be two convex real functionals from a locally convex space X to (−∞,∞]


such that h− and h+ are, respectively, lower and upper semi–continuous. Then


the supremum of the sum h := h− + h+ over a compact convex subset K ⊂ X
can be reduced to the (non–empty) set E(K) of extreme points of K, i.e.,


sup
x∈K


h (x) = sup
x̂∈E(K)


h (x̂) .


Proof. We first use Proposition 12.29 in order to write h− = ΓK (h−) as


a supremum over affine and continuous functionals. Then we commute this


supremum with the one over K and apply the Bauer maximum principle to


obtain that


sup
x∈K


h (x) = sup


{
sup


x̂∈E(K)
{m(x̂) + h+ (x̂)} : m ∈ A(X ) and m|K ≤ h−|K


}
.


The lemma follows by commuting once again both suprema and by using h− =


ΓK (h−).


Observe, however, that, under the conditions of the lemma above the


supremum of h = h− + h+ is, in general, not attained on E(K).


Another consequence of Proposition 12.29 is Jensen’s inequality for convex


lower semi-continuous real functionals on a compact convex sets K.


Lemma 12.33 (Jensen’s inequality on compact convex sets).


Let X be a locally convex space, h be any lower semi–continuous convex real


functional over a compact convex subset K ⊂ X and µx ∈ M+
1 (K) be any


probability measure with barycenter x ∈ K (Definition 12.15). Assume the


existence of some positive and µx–integrable upper bound h for h, i.e., some


measurable functional h from K to R+
0 satisfying∫


K
dµx(x̂) h(x̂) <∞ and h ≤ h µx–a.e. on K.
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Then


h (x) ≤
∫
K
dµx(x̂) h(x̂).


Jensen’s inequality is of course a well–known result stated in various sit-


uations including functionals taking value in a topological vector space. We


give here a rather simple proof, in our case, by using Proposition 12.29.


Proof. As h is convex and lower semi–continuous, by Proposition 12.29,


h(x) = sup {m(x) : m ∈ A(X ) and m|K ≤ h|K}


for any x ∈ K. We further observe that, for any affine continuous real func-


tional m and any probability measure µx with barycenter x ∈ K,


m(x) =


∫
K
dµx(x̂)m(x̂),


see Lemma 12.17. Thus


(12.12) h(x) = sup


{∫
K
dµx(x̂)m(x̂) : m ∈ A(X ) and m|K ≤ h|K


}
.


Since there is a positive and µx–integrable upper bound h for h, we have that∫
K
dµx(x̂) max {h(x̂), 0} <∞.


Hence, by (12.12) together with the monotonicity of integrals,


h(x) ≤
∫
K
dµx(x̂)h(x̂) <∞.


We give now an interesting property concerning the Γ–regularization of


real functionals in relation with compact convex sets (cf. [2, Corollary I.3.6.]):


Theorem 12.34 (Γ–regularization of continuous maps).


Let K ⊂ X be any (non–empty) compact convex subset of a locally convex


space X and h : K → (−∞,∞] be a continuous real functional. Then, for any


x ∈ K, there is a probability measure µx ∈ M+
1 (K) on K with barycenter x


such that


ΓK (h) (x) =


∫
K
dµx(x̂) h (x̂) .


This theorem is a useful result to study variational problems – at least the ones


appearing in this paper. Indeed, if h is a continuous functional from a compact


convex set K to [k,∞] with k ∈ R then extreme points of the compact set of


minimizers of ΓK (h) on K are minimizers of h. This can be seen – in a more


general setting – as follows.
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Let K be a compact convex subset of a locally convex space X and h :


K → (−∞,∞] be any real functional. Then {xi}i∈I ⊂ K is – per definition –


a net of approximating minimizers when


lim
I
h(xi) = inf


x∈K
h(x).


Note that nets {xi}i∈I ⊂ K converges along a subnet as K is compact. Then


we define the set of generalized minimizers of h as follows:


Definition 12.35 (Set of generalized minimizers).


Let K be a (non–empty) compact convex subset of a locally convex space X
and h : K → (−∞,∞] be any real functional. Then the set Ω (h,K) ⊂ K of


generalized minimizers of h is the (non–empty) set


Ω (h,K) :=
{
y ∈ K : ∃{xi}i∈I ⊂ K converging to y with lim


I
h(xi) = inf


K
h
}


of all limit points of approximating minimizers of h.


Note that the non–empty set Ω (h,K) is compact when K is metrizable:


Lemma 12.36 (Properties of the set Ω (h,K)).


Let K be a compact, convex, and metrizable subset of a locally convex space


X and h : K → (−∞,∞] be any real functional. Then the set Ω (h,K) of


generalized minimizers of h over K is compact.


Proof. Since K is compact, Ω (h,K) ⊂ K is compact if it is a closed


set. Because it is metrizable, K is sequentially compact and we can restrict


ourself on sequences instead of more general nets. Then the lemma can easily


be proven by using any metric dK(x, y) on K generating the topology. Indeed,


for any sequence {yn}∞n=1 ⊂ Ω (h,K) of generalized minimizers converging to


y, there is, by Definition 12.35, a sequence {xn,m}∞n,m=1 ⊂ K of approximating


minimizers converging, for any n ∈ N, to yn ∈ Ω (h,K) as m → ∞. In


particular, for all n ∈ N, there exists Nn > 0 such that, for all m > Nn,


dK(xn,m, y) ≤ 2−n + dK(yn, y) and |h(xn,m)− inf
K
h| ≤ 2−n.


By taking any function p(n) ∈ N satisfying p(n) > Nn and converging to ∞ as


n→ ∞ we obtain that {xn,p(n)}∞n=1 is a sequence of approximating minimizers


converging to y as n→ ∞. In other words, y ∈ Ω (h,K).


Now, we are in position to give a useful theorem on the minimization of


real functionals:


Theorem 12.37 (Minimization of real functionals – I).


Let K be any (non–empty) compact convex subset of a locally convex space X
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and h : K → [k,∞] be any real functional with k ∈ R. Then we have that:


(i)


inf h (K) = inf ΓK (h) (K) .


(ii) The set M of minimizers of ΓK (h) over K equals the closed convex hull of


the set Ω (h,K) of generalized minimizers of h over K, i.e.,


M = co (Ω (h,K)).


Proof. The assertion (i) is a standard result. Indeed, by Definition 12.27,


ΓK (h) ≤ h on K and thus


inf ΓK (h) (K) ≤ inf h (K) .


The converse inequality is derived by restricting the supremum in Definition


12.27 to constant maps m from K to R with k ≤ m ≤ h.


By Definition 12.27, we also observe that ΓK (h) is a lower semi–continuous


functional. This implies that the variational problem inf ΓK (h) (K) has mini-


mizers and the set M = Ω (ΓK (h) ,K) of all minimizers of ΓK (h) is compact.


Moreover, again by Definition 12.27, the functional ΓK (h) is convex which


obviously yields the convexity of the set M .


For any y ∈ Ω (h,K), there is a net {xi}i∈I ⊂ K of approximating mini-


mizers of h on K converging to y. In particular, since the functional ΓK (h) is


lower semi–continuous and ΓK (h) ≤ h on K, we have that


ΓK (h) (y) ≤ lim inf
I


ΓK (h) (xi) ≤ lim
I
h(xi) = inf h(K) = inf ΓK (h) (K),


i.e., y ∈ M . As M is convex and compact we obtain that


(12.13) M ⊃ co (Ω (h,K)).


So, we prove now the converse inclusion. We can assume without loss of


generality that co (Ω (h,K)) ̸= K since there is otherwise nothing to prove.


We show next that, for any x ∈ K\co (Ω (h,K)), we have x /∈ M .


As co (Ω (h,K)) is a closed set of a locally convex space X , for any x ∈
K\co (Ω (h,K)), there is an open and convex neighborhood Vx ⊂ X of {0} ⊂ X
which is symmetric, i.e., Vx = −Vx, and which satisfies


Gx ∩ [{x}+ Vx] = ∅


with


Gx := K ∩
[
co (Ω (h,K)) + Vx


]
.


This follows from [1, Theorem 1.10] together with the fact that each neighbor-


hood of {0} ⊂ X contains some open and convex neighborhood of {0} ⊂ X
because X is locally convex. Observe also that any one–point set {x} ⊂ X is


compact.
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For any neighborhood Vx of {0} ⊂ X in a locally convex space, there is


another convex, symmetric, and open neighborhood V ′
x of {0} ⊂ X such that


[V ′
x + V ′


x] ⊂ Vx, see proof of [1, Theorem 1.10]. Let


G′
x := K ∩


[
co (Ω (h,K)) + V ′


x


]
.


Then the following inclusions hold:


(12.14) co (Ω (h,K)) ⊂ G′
x ⊂ G′


x ⊂ Gx ⊂ Gx ⊂ K\{x}.


Since K, Vx, V ′
x, and co (Ω (h,K)) are all convex sets, Gx and G′


x are also


convex. Seen as subsets of K they are open neighborhoods of co (Ω (h,K)).


By Definition 12.7, the set X is a Hausdorff space and thus any compact


subset K of X is a normal space. By Urysohn lemma, there is a continuous


function


fx : K → [inf h(K), inf h(K\G′
x)]


satisfying fx ≤ h and


fx (y) =


{
inf h(K) for y ∈ G′


x.


inf h(K\G′
x) for y ∈ K\Gx.


By compacticity of K\G′
x and the inclusion Ω (h,K) ⊂ G′


x, observe that


inf h(K\G′
x) > inf h(K).


Then we have per construction that


(12.15) fx(co (Ω (h,K))) = {inf h(K)}


and


(12.16) f−1
x (inf h(K)) = Ω (fx,K) ⊂ Gx


for any x ∈ K\co (Ω (h,K)).


We use now the Γ–regularization ΓK (fx) of fx on the set K and denote


by Mx = Ω (ΓK(fx),K) its non–empty set of minimizers over K. Applying


Theorem 12.34 for any y ∈ Mx we have a probability measure µy ∈ M+
1 (K)


on K with barycenter y such that


(12.17) ΓK (fx) (y) =


∫
K
dµy(z) fx (z) .


As y ∈ Mx, i.e.,


(12.18) ΓK (fx) (y) = inf ΓK (fx) (K) = inf fx(K),


we deduce from (12.17) that


µy(Ω (fx,K)) = 1
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and it follows that y ∈ co (Ω (fx,K)), by Theorem 12.16. By (12.16) together


with the convexity of the open neighborhood Gx of co (Ω (h,K)) , we thus


obtain


(12.19) Mx ⊂ co (Ω (fx,K)) ⊂ Gx


for any x ∈ K\co (Ω (h,K)).


We remark now that the inequality fx ≤ h on K yields ΓK (fx) ≤ ΓK (h)


on K because of Corollary 12.30. As a consequence, it results from (i) and


(12.15) that the set M of minimizers of ΓK (h) over K is included in Mx, i.e.,


M ⊂ Mx. Hence, by (12.14) and (12.19), we have the inclusions


(12.20) M ⊂ Gx ⊂ K\{x}.


Therefore, we combine (12.13) with (12.20) for all x ∈ K\co (Ω (h,K)) to


obtain the desired equality in the assertion (ii).


This last theorem can be useful to analyze variational problems with non–


convex functionals on compact convex sets K. Indeed, the minimization of a


real functional h over K can be done in this case by analyzing a variational


problem related to a lower semi–continuous convex functional ΓK (h) for which


many different methods of analysis are available.


To conclude, note that extreme points of the compact convex set M be-


longs to the set Ω (h,K) and the non–convexity of Ω (h,K) prevents the set


M from being homeomorphic to the Poulsen simplex:


Theorem 12.38 (Minimization of real functionals – II).


Let K be any (non–empty) compact convex subset of a locally convex space X
and h : K → [k,∞] be any real functional with k ∈ R. Then we have that:


(i) Extreme points of the compact convex set M of minimizers of ΓK (h) over


K belong to the closure of the set of generalized minimizers of h, i.e., E (M ) ⊂
Ω (h,K).


(ii) If E (M ) is dense in M then Ω (h,K) = M is a compact and convex set.


Proof. The first statement (i) results from Theorem 12.37 (ii) together


with Theorem 12.13 (ii). The second assertion (ii) is also straightforward.


Indeed, if E (M ) is dense in M then Ω (h,K) is also dense in M as E (M ) ⊂
Ω (h,K), by (i). As a consequence, M = Ω (h,K).


Therefore, if K is metrizable and E (M ) is dense in M then, by Lemma


12.36 together with Theorem 12.38 (ii), Ω (h,K) = M is a compact and convex


set.


12.6. The Legendre–Fenchel transform and tangent functionals


In contrast to the Γ–regularization defined in Section 12.5 the notion of Legendre–


Fenchel transform requires the use of dual pairs defined as follow:
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Definition 12.39 (Dual pairs).


For any locally convex space (X , τ), let X ∗ be its dual space, i.e., the set of all


continuous linear functionals on X . Let τ∗ be any locally convex topology on


X ∗. (X ,X ∗) is called a dual pair iff, for all x ∈ X , the functional x∗ 7→ x∗(x)


on X ∗ is continuous w.r.t. τ∗, and all linear functionals which are continuous


w.r.t. τ∗ have this form.


By Theorem 12.8, a typical example of a dual pair (X ,X ∗) is given by any


locally convex space (X , τ) and X ∗ equipped with the σ(X∗, X)–topology τ∗,


i.e., the weak∗–topology. In particular, as W1 is a Banach space, by Corollary


12.9, (W1,W∗
1 ) is a dual pair w.r.t. the norm and weak∗–topologies. We also


observe that if (X ,X ∗) is a dual pair w.r.t. τ and τ∗ then (X ∗,X ) is a dual


pair w.r.t. τ∗ and τ .


The Legendre–Fenchel transform of a functional h on X – also called the


conjugate (functional) of h – is defined as follows:


Definition 12.40 (The Legendre–Fenchel transform).


Let (X ,X ∗) be a dual pair. For any functional h : X → (−∞,∞], its Legendre–


Fenchel transform h∗ is the convex lower semi–continuous functional from X ∗


to (−∞,∞] defined, for any x∗ ∈ X ∗, by


h∗ (x∗) := sup
x∈X


{x∗ (x)− h (x)} .


If a functional h is only defined on a subset K ⊂ X of a locally convex space


X then one uses Definition 12.28 to compute its Legendre–Fenchel transform


h∗.


The Legendre–Fenchel transform and the Γ–regularization ΓX (h) of h are


strongly related to one another. This can be seen in the next theorem which


gives an important property – proven, for instance, in [47, Proposition 51.6]


– of the double Legendre–Fenchel transform h∗∗, also called the biconjugate


(functional) of h:


Theorem 12.41 (Property of the biconjugate).


Let (X ,X ∗) be a dual pair and h : X → (−∞,∞] be any real functional. Then


h∗∗ ≤ h and h∗∗ ≤ ĥ ≤ h implies h∗∗ = ĥ whenever ĥ is convex and lower


semi–continuous.


By using Theorem 12.41 together with Proposition 12.29, we observe that h∗∗


is thus equal to the Γ–regularization ΓX (h) of h:


Corollary 12.42 (Biconjugate and Γ–regularization of h).


Let a dual pair (X ,X ∗) and h : X → (−∞,∞] be any real functional. Then


h∗∗ = ΓX (h) on X .
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Another important notion related to the Legendre–Fenchel transform is


the concept of tangent functionals on real linear spaces:


Definition 12.43 (Tangent functionals).


Let h be any real functional on a real linear space X . A linear functional


dh : X → (−∞,∞] is said to be tangent to the function h at x ∈ X iff, for all


x′ ∈ X , h(x+ x′) ≥ h(x) + dh(x′).


If X is a separable real Banach space and h is convex and continuous then


it is well–known that h has, on each point x ∈ X , at least one continuous


tangent functional dh ∈ X ∗. This is a crucial result coming from Mazur


theorem [29] and Lanford III – Robinson theorem [23, Theorem 1]. Indeed,


Mazur theorem describes the set Y on which a continuous convex functional


h is Fréchet differentiable, i.e., the set Y where h has exactly one continuous


tangent functional dh(x) ∈ X ∗ at any x ∈ Y:


Theorem 12.44 (Mazur).


Let X be a separable real Banach space and let h : X → R be a continuous


convex functional. The set Y ⊂ X of elements where h is Fréchet differentiable


is residual, i.e., a countable intersection of dense open sets.


Remark 12.45. By Baire category theorem, the set Y is dense in X .


Lanford III – Robinson theorem [23, Theorem 1] completes Mazur theorem


by characterizing the set of continuous tangent functionals dh(x) ∈ X ∗ for


any x ∈ X . In particular, there is at least one continuous tangent functional


dh(x) ∈ X ∗ at any x ∈ X .


Theorem 12.46 (Lanford III – Robinson).


Let X be a separable real Banach space and let h : X → R be a continuous


convex functional. Then the set of tangent functionals dh(x) ∈ X ∗ to h, at any


x ∈ X , is the weak∗–closed convex hull of the set Zx. Here, at fixed x ∈ X , Zx


is the set of functionals x∗ ∈ X ∗ such that there is a net {xi}i∈I in Y converging


to x with the property that the unique tangent functional dh(xi) ∈ X ∗ to h at


xi converges towards x∗ in the weak∗–topology.


The Legendre–Fenchel transform and the tangent functionals are also re-


lated to each other via the Γ–regularization of real functionals. Indeed, the


Γ–regularization ΓX (h) of a real functional h allows to characterize all tangent


functionals to h∗ at the point x∗ ∈ X ∗ (see, e.g., [30, Theorem I.6.6]):


Theorem 12.47 (Tangent functionals as minimizers).


Let (X ,X ∗) be a a dual pair and h be any real functional from a (non–empty)


convex subset K ⊂ X to (−∞,∞]. Then the set T ⊂ X of tangent functionals
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to h∗ at the point x∗ ∈ X ∗ is the (non–empty) set M of minimizers over K of


the map


y 7→ −x∗ (y) + ΓK (h) (y)


from K ⊆ X to (−∞,∞].


Proof. The proof is standard and simple, see, e.g., [30, Theorem I.6.6].


Indeed, by Definition 12.28, any tangent functional x ∈ X to h∗ at x∗ ∈ X
satisfies the inequality:


(12.21) x∗ (x) + h∗ (y∗)− y∗ (x) ≥ h∗ (x∗)


for any y∗ ∈ X ∗. Since ΓK (h) = h∗∗ and h∗ = h∗∗∗, we have (12.21) iff


x∗ (x)+ inf
y∗∈X ∗


{h∗ (y∗)− y∗ (x)} = x∗ (x)−ΓK (h) (x) ≥ sup
y∈X


{x∗ (y)− ΓK (h) (y)} .


We combine Theorem 12.37 with Theorem 12.47 to characterize the set


T ⊂ X of tangent functionals to h∗ at the point 0 ∈ X ∗ as the closed convex


hull of the set Ω (h,K) of generalized minimizers of h over a compact convex


subset K, see Definition 12.35.


Corollary 12.48 (Tangent functional and generalized minimizers).


Let (X ,X ∗) be a dual pair and h be any functional from a (non–empty) compact


convex subset K ⊆ X to [k,∞] with k ∈ R. Then the set T ⊂ X of tangent


functionals to h∗ at the point 0 ∈ X ∗ is the set


T = M = co (Ω (h,K))


of minimizers of ΓK (h) over K, see Theorem 12.37.


This last result has some similarity with Lanford III – Robinson theorem (The-


orem 12.46) which has only been proven for separable real Banach spaces X
and continuous and convex functionals h : X → R.


12.7. Two–person zero–sum games


A study of two–person zero–sum games belongs to any elementary book on


game theory. These are defined via a map (x, y) 7→ f(x, y) from the strategy


set M × N to R. Here, M ⊂ X and N ⊂ Y are subsets of two topological


vector spaces X and Y. The value f(x, y) is the loss of the first player making


the decision x and the gain of the second one making the decision y. Without


exchange of information and by minimizing the functional


f ♯ (x) := sup
y∈N


f (x, y)
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the first player obtain her/his least maximum loss


F♯ := inf
x∈M


f ♯ (x) ,


whereas the greatest minimum gain of the second player is


F♭ := sup
y∈N


f ♭ (y) with f ♭ (y) := inf
x∈M


f (x, y) .


F♭ and F♯ are called the conservative values of the game. The sets


C♯ :=
{
x ∈M : F♯ = f ♯ (x)


}
and C♭ :=


{
y ∈ N : F♭ = f ♭ (x)


}
are the so–called set of conservatives strategies and [F♭,F♯] is the duality in-


terval.


Non–cooperative equilibria (or Nash equilibria) [48, Definition 7.4.] of


two–person zero–sum games are also called saddle points. They are defined as


follows:


Definition 12.49 (Saddle points).


Let M ⊂ X and N ⊂ Y be two subsets of topological vector spaces X and Y.
Then the element (x0, y0) ∈ M × N is a saddle point of the real functional


f :M ×N → R iff x0 ∈ C♯, y0 ∈ C♭, and F := F♭ = F♯.


It follows from this definition that a saddle point (x0, y0) ∈ M × N satisfies


F = f(x0, y0). In this case F := F♭ = F♯ is called the value of the game. As


a sup and a inf do not generally commute we have in general F♭ < F♯ and so,


no saddle point of a two–person zero–sum game. An important criterion for


the existence of saddle points is given by the von Neumann min–max theorem


[48, Theorem 8.2]:


Theorem 12.50 (von Neumann).


Let M ⊂ X and N ⊂ Y be two (non–empty) compact convex subsets of topolog-


ical vector spaces X and Y. Assume that f : M ×N → R is a real functional


such that, for all y ∈ N , the map x 7→ f(x, y) is convex and lower semi–


continuous, whereas, for all x ∈M , the map y 7→ f(x, y) is concave and upper


semi–continuous. Then there exists a saddle point (x0, y0) ∈M ×N of f .


If the game ends up with a maximum loss F♯ for the first player then it


means that the second player has full information on the choice of the first


one. Indeed, the second player maximizes his gain f (x, y) knowing always the


choice x of the first player. (Similar interpretations can of course be done if


one gets F♭ instead of F♯.)


Another way to highlight this phenomenon can be done by introducing


the so–called decision rule r : M → N . Indeed, from [48, Proposition 8.7] we
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have


(12.22) F♯ = sup
r∈NM


f ♭ (r (x)) = sup
r∈NM


inf
x∈M


f (x, r (x))


with NM being the set of all decision rules (functions fromM to N). It means


that the second player is informed of the choice x of the first player and uses


a decision rule to maximize his gain. Under stronger assumptions on the sets


M , N and on the map (x, y) 7→ f(x, y) (cf. [48, Theorem 8.4]), observe that


the second player can restrict himself on continuous decision rules only:


Theorem 12.51 (Lasry).


Let M ⊂ X and N ⊂ Y be two subsets of topological vector spaces X and


Y such that M is compact and N is convex. Assume that f : M × N → R
is a real functional such that, for all y ∈ N , the map x 7→ f(x, y) is lower


semi–continuous, whereas, for all x ∈ M , the map y 7→ f(x, y) is concave.


Then


inf
x∈M


sup
y∈N


f (x, y) = sup
r∈C(M,N)


inf
x∈M


f (x, r (x))


with C(M,N) being the set of continuous mappings from M to N .


Equation (12.22) or Theorem 12.51 can be interpreted as an extension


of the two–person zero–sum game with exchange of information. Extension


of games are defined for instance in [33, Ch. 7, Section 7.2]. In the special


case of two–person zero–sum games, saddle point may not exist, but such a


non–cooperative equilibrium may appear by extending the strategy sets M or


N (or both). This is, in fact, what we prove in Theorem 3.37 for the extended


thermodynamic game.
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