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Abstract


The validity of a synthesis of a globally convergent numerical method with the
adaptive FEM technique for a coefficient inverse problem is verified on time resolved
experimental data. Refractive indices, locations and shapes of dielectric abnormalities
are accurately imaged.


1 Introduction


In [9] a globally convergent numerical method for a Coefficient Inverse Problems (CIP) for
a hyperbolic PDE was developed. Next, a two-stage numerical procedure was proposed in
[10, 11, 12]. In this procedure the technique of [9] is used as the first stage. Next, the
Adaptive Finite Element method (adaptivity below) is used as the second stage for the
refinement. In [23] the first stage was verified on blind experimental data. The goal of the
current publication is to demonstrate that the two-stage numerical procedure applied to the
same experimental data can significantly improve imaging results compared with the first
stage only. It was shown in [23] that the globally convergent stage can very accurately image
locations and refractive indices of dielectric abnormalities. In addition, we demonstrate
here that the adaptivity stage brings in the third important component: accurate images of
shapes of those abnormalities. Since the theory was developed in [9]-[12], we do not derive
new analytical results here. Instead we focus on the demonstration of the performance of
that theory for our experimental data.


The main difficulty in applying the technique of [9]-[12] to our experimental data is caused
by a huge discrepancy between these data and computationally simulated ones. The latter
can be derived from a visual comparison of Figures 2-a) and 2-b) (below). Conventional data
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denoising techniques, like, e.g. Fourier transform, Hilbert transform, spline interpolation,
etc. provide only an insignificant help in our case. Hence, it is necessary to apply a radically
new data pre-processing procedure as a crucial preliminary step. The goal of this step is
to obtain acceptable boundary conditions, which are used in our numerical method. This
procedure is based on the intuition only. The single justification of it is the accuracy of
reconstruction results.


Our data pre-processing procedure consists of three stages. First two stages were de-
scribed in [23] (they were new at that time). Hence, they are presented only briefly in this
paper for the convenience of the reader. The third stage is new, since it is designed solely for
the adaptivity technique. In particular, we describe a new rule for adaptive mesh refinements,
which is much broader than the one used in [4]-[8],[10]-[12].


Our two-stage algorithm does not assume neither a knowledge of the background medium
nor a knowledge of the presence/absence of small “sharp” abnormalities of our interest in
the medium. It uses only the knowledge of the target coefficient outside of the medium of
interest. Applications are in the detection of explosives, since their refractive indices usually
are much higher that those of regular materials, see http://www.clippercontrols.com. Other
procedures of solving CIPs, which do not rely on locally convergent algorithms, can be found
in [2, 14, 20, 24, 26, 27].


An excellent accuracy of the blind reconstruction of both locations and refractive indices
of dielectric abnormalities in [23] has led to the statement there that the globally convergent
method of [9, 10] “is completely validated now”. The same is true for a new mathematical
model, which was proposed in [10, 23] due to an approximation of this numerical technique.
That approximation is caused by the truncation of the large value s of the so-called pseudo
frequency s > 0, which is the parameter of the Laplace transform of the original hyper-
bolic PDE. Such an approximation is likely inevitable due to tremendous challenges of the
development of numerical methods for CIPs. Indeed, CIPs are both ill-posed and highly
nonlinear. It is shown in [10, 23] that, from the analytical standpoint, the above truncation
is neither better nor worse than the classical truncation of divergent asymptotic series in the
Real Analysis.


To explain our need for the above two-stage procedure, we note that the number 1/s
cannot be made infinitely small in practical computations. At the same time, convergence
estimates in global convergence theorems of [9, 10] depend on the small parameter 1/s.
Hence, in practical terms, these theorems only guarantee that the solution obtained on the
first stage is sufficiently close to the correct solution. However, they do not guarantee that the
distance between computed and correct solutions can be made infinitely small. This opens
the door for a refinement via a locally convergent technique. Indeed, the key ingredient for
any such technique is a good first approximation for the solution. So, this approximation
is provided on the globally convergent stage. It is shown below that, in the case of our
experimental data, it is crucial that the good first guess for the solution taken from the
globally convergent stage should be available for the adaptivity stage. On the other hand,
it was demonstrated in section 8 of [23] that if a modified gradient method does not use the
solution obtained on the first stage, then its performance is poor.
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We have chosen the adaptivity because of our previous experience of [10]-[12]. It was
shown in these references that the quasi-Newton method taken alone does not refine solution
of the globally convergent stage. On the other hand it was also demonstrated in these
references that a significant refinement is achieved if adaptive meshes are used. The same
observation is presented in this paper. The adaptivity for CIPs was first proposed in [4, 5] and
was developed further in [6, 8, 19]. It consists in minimizing either the Tikhonov functional
[10]-[12] or the associated Lagrangian [4]-[8],[19] on a sequence of locally refined meshes in
the FEM. Meshes are refined in such subdomains of the original domain, where a posteriori
error analysis indicates the maximal error of the solution. That error analysis does not
use a knowledge of the exact solution. Instead, one should know an upper bound of that
solution, and such a bound should be imposed a priori, in accordance with the Tikhonov
principle [31]. It was shown analytically in [12] that the mesh refinement indeed improves the
accuracy of the regularized solution as long as the modulus of the gradient of the Tikhonov
functional is not too small. However, as soon as it becomes too small, mesh refinements
should be stopped. The latter has been consistently observed in [4]-[8], [10, 11], as well as
in the current paper.


In section 2 we formulate both forward and inverse problems of our mathematical model
and briefly outline both stages of our two-stage algorithm. In section 3 we describe the
experimental setup. In section 4 the procedure of data simulation is described. This proce-
dure is an integral part of our technique. In section 5 we describe how we pre-process our
experimental data. In section 6 we present our imaging results. Discussion is presented in
section 7.


2 Brief Outline of the Two-Stage Numerical Procedure


2.1 Statements of forward and inverse problems


As the forward problem, we consider the following Cauchy problem


εr(x)utt = ∆u, in R3 × (0,∞) , (1)


u (x, 0) = 0, ut (x, 0) = δ (x− x0) . (2)


Here εr(x) is the spatially variable dielectric constant (relative dielectric permittivity),


εr(x) =
ε (x)


ε0
,


√
εr(x) = n (x) =


c0
c (x)


≥ 1, (3)


where ε0 is the dielectric permittivity of the vacuum (which we assume to be the same as one
in the air), ε (x) is the spatially variable dielectric permittivity of the medium of interest,
n (x) is the refractive index of the medium of interest, c (x) is the speed of the propagation
of the EM field in this medium, and c0 is the speed of light in the vacuum, which we assume
to be the same as one in the air. We point out that it is the refractive index rather than the
dielectric constant, which is measured in physics. The assumption n (x) ≥ 1 means that the
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speed of the EM field propagation in the medium does not exceed one in the air, which is
reasonable.


Let Ω ⊂ R3 be a convex bounded domain with the boundary ∂Ω ∈ C3. We assume that
the coefficient εr (x) of equation (1) is such that


εr (x) ∈ (1, d], εr (x) = 1 for x ∈ R3�Ω, (4)


εr (x) ∈ C2
(
R3


)
. (5)


The inequality εr (x) ≥ 1 follows from (3). An upper estimate for the constant d > 1 is
assumed to be known, although we do not assume that d− 1 is small.


Inverse Problem. Suppose that the coefficient εr (x) satisfies (4) and (5). Assume that
the function εr (x) is unknown in the domain Ω. Determine the function εr (x) for x ∈ Ω,
assuming that the following function g (x, t) is known for a single source position x0 /∈ Ω


u (x, t) = g (x, t) , ∀ (x, t) ∈ ∂Ω × (0,∞) . (6)


The assumption εr (x) = 1 for x ∈ R3�Ω means that one has air outside of the medium of
interest Ω. The question of uniqueness of this Inverse Problem is a well known long standing
open question. It is addressed positively only if the function δ(x−x0) above is replaced with
a function f(x) such that f(x) 6= 0, ∀x ∈ Ω. Corresponding uniqueness theorems were proven
via the method of Carleman estimates [21, 22], also see a recent survey in [32]. Still, due to
the applied aspect, numerical methods is worthy to develop, assuming that the uniqueness
question is addressed positively.


Remark 2.1. In section 7 we discuss some discrepancies between our mathematical
model and the reality. Since both stages of our two-stage numerical procedure were described
in detail in our previous publications [9]-[12], we outline them only briefly in section 2,
referring to these references for details. To save space, we do not specify functional spaces
here. In the adaptivity we work only with standard piecewise linear finite elements.


2.2 The globally convergent stage


Consider the Laplace transform of the solution of the problem (1), (2),


w (x, s) =


∞∫


0


u (x, t) e−stdt, s ≥ s = const. > 0. (7)


Then w (x, s) > 0 for sufficiently large s. We consider the function q (x, s) = ∂s (s−2 lnw (x, s)) .
Under certain conditions


Dα
xD


k
s


(
lnw (x, s)


s2


)
= O


(
1


sk+1


)
, s→ ∞, k = 0, 1; |α| ≤ 2. (8)


We obtain a nonlinear integral differential equation for the function q for x ∈ Ω, s ∈ (s,∞)
with Volterra integrals in which the s-integration is carried out from an arbitrary s ≥ s to
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∞. One of the key features of this equation is that the unknown coefficient εr (x) is not
involved in it. The Dirichlet boundary condition at ∂Ω is generated by the function g in
(6). If one would approximate the function q well, then one would approximate the function
εr (x) well via backwards computations. The main difficulty then is to solve the resulting
Dirichlet boundary value problem for q. To do this, we first truncate those Volterra integrals
at a large value s := s > s. However, we complement that truncation by the so-called “tail
function” V (x, s) ≈ s−2 lnw (x, s) . The tail function is unknown. However, it is small for
large s because of (8). Hence, the resulting equation for q contains two unknown functions:
q and V . The reason why we can approximate both of them is that we treat them separately:
while we approximate q via inner iterations, we approximate V via outer iterations.


To solve the resulting problem, we divide the interval [s, s] into N small subintervals. We
assume that the function q is constant with respect to s on each of those subintervals. As a
result, we obtain N elliptic Dirichlet boundary value problems for functions qn (x) , where n
is the number of the subinterval. Because originally we had Volterra integrals with respect to
s, we can solve these problems sequentially starting from q1. Let qn,k be the approximation for
qn obtained on the inner iteration number k and Vn,k (x) be the corresponding approximation


for the tail. Then we find the corresponding approximation ε
(n,k)
r (x) for the function εr (x) ,


solve the problem (1), (2) with εr := ε
(n,k)
r (x), calculate the Laplace transform wn.k+1 (x, s)


via (7) for it and find a new approximation Vn,k+1 (x) := s−2 lnwn,k+1 (x, s) for the tail.
Convergence criteria for this algorithm are described in [9, 10, 11, 12, 23]. In particular, in
our computations for experimental data we use the criterion described in subsection 7.1 of
[23].


2.3 The adaptivity


Let T = const. > 0. Denote QT = Ω × (0, T ) , ST = ∂Ω × (0, T ) . Our goal now is to find
such a function εr(x), which minimizes the Tikhonov functional


E(εr) =
1


2


∫


ST


(u |ST
− g(x, t))2dSxdt+


1


2
γ


∫


Ω


(εr − εglob
r )2 dx, (9)


where εglob
r is the solution obtained on the globally convergent stage of our two-stage numer-


ical procedure and γ is the regularization parameter. On the first step of the adaptivity we
take the same mesh as one we have used for the globally convergent method. The first guess
for iteration εr,0 (x) := εglob


r (x) is also taken on that mesh. On each follow up step of the
adaptivity when mesh refinements are used, the first guess is again taken from the globally
convergent stage. In doing so, values of the function εglob


r are linearly interpolated from the
coarser grid on the finer grid.


Since εr (x) = 1 for x ∈ R3�Ω, then, given the function g(x, t) = u |∂Ω, one can uniquely
determine the function u(x, t) for (x, t) ∈ (R3�Ω) × (0, T ) as the solution of the boundary
value problem for equation (1)-(2) with the Dirichlet condition g (x, t) from (6). Hence, one
can uniquely determine the normal derivative p (x, t) = ∂nu |ST


. Therefore, we consider the
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solution of the following problem


εrutt −△u = 0, (x, t) ∈ QT ,


u(x, 0) = ut(x, 0) = 0,


∂nu |ST
= p (x, t) , (x, t) ∈ ST .


(10)


In addition, let the function λ (x, t) be the solution of the following adjoint problem with the
reversed time


εrλtt −△λ = 0, (x, t) ∈ QT ,


λ(x, T ) = λt(x, T ) = 0,


∂nλ |ST
= (g − u) (x, t) , (x, t) ∈ ST .


(11)


We compute weak solutions of problems (10) and (11) via the FEM, see [4, 8] for details.
It was shown in [11, 12] that the Frechét derivative of the functional (9) is


E ′ (εr) (x) = γ
(
εr − εglob


r


)
−


T∫


0


utλtdt, x ∈ Ω .


Hence, we have to solve the following equation with respect to the function εr


E ′ (εr) (x) = 0, x ∈ Ω. (12)


In accordance with one of backbone principles of the regularization theory [31], we assume
that there exists the unique exact solution ε∗r of the original inverse problem. We also assume
that there exists the unique minimizer εr,γ of the functional E(εr) in a small neighborhood
of ε∗r. So, εr,γ is a regularized solution of our CIP. Consider a mesh in the domain Ω on which
the Tikhonov functional E(εr) is minimized. Let h be the maximal grid step size of this
mesh. Suppose that there exists a unique minimizer εr,h of the functional (9) on this mesh in
a small neighborhood of ε∗r. Let uh and λh be corresponding FEM solutions of problems (10)
and (11) respectively. A posteriori error analysis of [11] has shown that, in order to improve
the accuracy of the calculation of E (εr,γ ) , one needs to refine mesh in neighborhoods of
those points where the function |E ′ (εr,h) (x)| , attains its maximal values. Here


|E ′ (εr,h) (x)| =


∣∣∣∣∣∣
γ


(
εr,h − εglob


r,h


)
−


T∫


0


uhtλhtdt


∣∣∣∣∣∣
, x ∈ Ω. (13)


Here εglob
r,h is the linear interpolation of the function εglob


r on this mesh.
Remarks 2.2:
1. Note that we mention here only the accuracy of the calculation of the functional


E (εr,γ) rather than the accuracy of the reconstruction of the target coefficient. This is
because of the ill-posedness of the original CIP, which is unlike the adaptivity for classic
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well-posed forward problems [1, 28]. Nevertheless, it follows from the discussion on page 304
of [12] and Theorem 7.3 of [12] that, under certain additional conditions, this mesh refinement
leads not only to a better accuracy of computing E (εr,γ) but also to a better accuracy of
the calculation of the minimizer of (9) itself. This explains why the mesh refinement leads
to the improvement of the image. Likewise, if considering the functional E(εr) only on a
finite dimensional space of piecewise linear finite elements, then uniqueness and existence of
above minimizers εr,γ and εr,h follows from Theorems 3.1, 3.2 and 7.2 of [12].


2. In our experience of working with experimental data (13) is only an indicator. So,
along with (13), we need to find additional criteria for mesh refinements. We found such
based on our computational experience, see section 6.


3. Hence, on each mesh we should find an approximate solution of the equation E ′ (εr) (x) =
0, x ∈ Ω. By (13) we hope to decrease the error via locally refining mesh in those regions,
where the values of |E ′ (εr,h) (x)| are close to the maximal one.


For each new mesh we first linearly interpolate the function εglob
r (x) on it. Since this


function is computed on the globally convergent stage as a linear combination of finite
elements of the initial mesh and these finite elements are piecewise linear functions, then
subsequent linear interpolations on finer meshes do not change this function. On each mesh
we iteratively update approximations εn


r,h of the function εr,h. To do so, we use the quasi-
Newton method with the classic BFGS update formula with the limited storage [25]. Denote


gn(x) = α(εn
r,h − εglob


r ) (x) −
∫ T


0


(uhtλht)
(
x, t, εn


r,h


)
dt,


where functions uh


(
x, t, εn


r,h


)
, λh


(
x, t, εn


r,h


)
are computed via solving state and adjoint prob-


lems (10), (11) with εr := εn
r,h. We stop computing εn


r,h if either ||gn||L2(Ω) ≤ 10−5 or norms
||gn||L2(Ω) are stabilized. For a given mesh, let εr,h := εn


r,h be the last computed function on
which we have stopped. Next, we compute the function |E ′ (εr,h) (x)| in (13) and consider
all grid points in this mesh where


|E ′ (εr,h) (x)| ≥ κ max
Ω


|E ′ (εr,h) (x)| . (14)


In (14) the maximum is taken over all grid points and κ ∈ (0, 1) is a tolerance number which
should be chosen computationally. Next, we refine the mesh in neighborhoods of all grid
points satisfying (14). The stopping criterion for the mesh refinement process is described
in sub-subsection 6.2.1.


3 The Experimental Setup


For brevity below x denotes both a vector x = (x, y, z) ∈ R3 and the first component of
this vector. It is always clear from the context what is what there. Our source/detectors
configuration is schematically depicted on Figure 1. The source has generated an electro-
magnetic (EM) wave. Only one component of the vector of the electric field was generated


7







Figure 1: Schematic diagram of the source/detectors configuration. a) The rectangular prism


depicts our computational domain Ωsource location outside of this prism was used. Tomographic


measurements of the scattered time resolved EM wave were conducted on the bottom side of this


prism. b) Schematic diagram of locations of detectors on the bottom side of the prism Ω. The


distance between neighboring detectors was 10 mm.


by our source. And only one component of this field was measured at the bottom side of the
rectangular prism Ω depicted on Figure 1. We do not know which component was measured:
we have only worked with the measured time dependent voltage in our computations. This
prism is our computational domain Ω. It consisted of Styrofoam. Styrofoam is a material,
whose relative permittivity εr ≈ 1, i.e. the same as one in the air. The sizes of Ω were 240
mm×140 mm × 240 mm. Hence, sizes of front and back sides of the prism of Figure 1 are
240 mm× 240 mm and sizes of other four sides are 240 mm× 140 mm. The distance between
the wave source and the top side of the domain Ω was 130 mm. The initializing pulse was
100 ps duration. Since the speed of the EM wave propagation in the air is 0.3 mm/ps, then
it requires 433 ps ≈ 130/03 ps for this wave to travel from the source to the top boundary
of Ω. Hence, it follows from (15) the wave did not yet reach the domain Ω during the 100 ps
duration of this pulse. The initializing pulse was


f(t) =


{
≈ A sin


(
π
50
τ
)
, for τ ∈ (0, 100) ps,


0, for τ > 100 ps,
(15)


where A is the amplitude. Our data processing procedure does not rely on a knowledge of
A.
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The time resolved signal was measured at some locations of the detector on the bottom
side of the prism Ω, as indicated on Figure 1-b). On each detector location this signal was
measured with the time interval of 20 picoseconds between two consecutive measurements
for the total period of 12,300 picoseconds=12.3 nanoseconds. First, we were putting the
detector at one location, sent the pulse and measured the time resolved scattering wave at
this location. Next, we have moved the detector mechanically in a neighboring location
and repeated the measurement, etc.. Hence, it is reasonable to assume in the mathematical
model that the wave field was measured simultaneously at all those detectors. The distance
between two neighboring locations of the detector was 10 mm, and so we have covered the
entire bottom side of Ω by the grid of these locations of detectors. However, measurements
was not conducted at other sides of this prism, see section 5.


We had two measurements at each detector location. First, we have measured the ref-
erence signal when the inclusion was not present. Second, we have measured the signal
when the inclusion was present. In principle, our technique allows the measurement of the
reference signal only at a few locations outside of the medium of interest: for the calibration
purposes. The only reason why we have measured the reference signal for each location of
the detector was that our current numerical implementation works only with the case when
the initializing wave field is a plane wave. On the other hand, it was impossible to arrange
a true plane wave in that experiment and so we had a spherical wave. Both here and in
previous publications we have used the point source rather than the plane wave in (1), (2)
only to obtain the asymptotic behavior (8), which actually follows from the construction
of the fundamental solution of the hyperbolic equation in [29, 30]. In our computational
practice we verify this asymptotic behavior numerically when working with plane waves, see
subsection 7.2 of [9].


Our dimensionless computational domain Ω, the dimensionless distance h̃ between two
neighboring detectors and the dimensionless time t were [23]


Ω = {(x, y, z) ∈ [−2.4, 2.4] × [−1.4, 1.4] × [−2.4, 2.4]} , h̃ = 0.2, t ∈ (0, 12) . (16)


Let P be the bottom side of the domain Ω in (16),


P = {(x, y, z) : (x, y) ∈ [−2.4, 2.4] × [−1.4, 1.4], z = −2.4} . (17)


4 Data Simulation


4.1 Data simulation


Since the computationally simulated data play an important role in our data pre-processing
procedure, we outline here the solution of the forward problem for equation (1). Since it
is practically impossible to solve the PDE (1) in the entire space R3, we have solved it in
a larger rectangular prism G = {(x, y, z) ∈ [−3, 3] × [−2, 2] × [−5, 5]} . So, by (16) Ω ⊂ G.
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Our initializing plane wave was v (t) ,


v (t) =


{
sin (ωt) , for t ∈


(
0, 2π


ω


)
,


0, for t > 2π
ω
, ω = 7.


(18)


Let ∂G1 and ∂G2 be respectively top and bottom sides of G and ∂G3 = ∂G� (∂G1 ∪ ∂G2)
be the rest of the boundary of G. We have numerically solved the following initial boundary
value problem


εr (x) utt = △u, in G× (0, T ), T = 12,


u(x, 0) = 0, ut(x, 0) = 0, in G,


∂nu
∣∣
∂G1


= v (t) , on ∂G1 × (0, 2π/ω],


∂nu
∣∣
∂G1


= −∂tu, on ∂G1 × (t1, T ),


∂nu
∣∣
∂G2


= −∂tu, on ∂G2 × (0, T ),


∂nu
∣∣
∂G3


= 0, on ∂G3 × (0, T ),


(19)


In the case when data are simulated for the reference medium, we have in (19) εr (x) ≡ 1.
We denote this solution as u1 (x, t) . Thus, in (19) the plane wave is initialized at the top
boundary ∂G1 for times t ∈ (0, 2π/ω] and propagates intoG . First order absorbing boundary
conditions [18] were used on the top boundary for t ∈ (2π/ω, T ) as well as on the bottom
boundary ∂G2 for t ∈ (0, T ). The zero Neumann boundary condition was used on the rest
of the boundary of the prism G. The latter boundary condition is used because the “pure”
plane wave with εr (x) ≡ 1 satisfies this condition. The problem (19) was solved by the
hybrid FEM/FDM method described in [13]. In this method, FDM is used outside of the
domain Ω, i.e. in G�Ω, and FEM, is used inside of Ω. The step size in the overlapping
region was h̃ = 0.2 which is the same as the distance between any two neighboring detectors.


4.2 Solving problems (10) and (11) in the adaptivity


Although the above theory says that we should solve forward (10) and adjoint (11) problems
in the domain Ω, we actually solve both of them in larger domains. Namely, in our compu-
tations the problem (10) is solved in the domain G with boundary conditions (19). And the
problem (11) is solved in such a part of the domain G which is above the bottom side P in
(17) of the prism Ω, i.e. in the subdomain G′ = G∩{z > −2.4} . Let Pobs = {z = −2.4}∩G.
Then by (17) the rectangle P ⊂ Pobs. When solving the problem (11), we use the boundary
condition ∂nλ |Pobs


= (g − u) |Pobs
. Hence, we actually need to know the function g (x, t) not


only on the rectangle P but also on a wider rectangle Pobs. As to the rest of the boundary
of the domain G′, we use absorbing boundary conditions ∂nλ = −∂tλ. We believe that the
above theory of the adaptivity can be extended to this case, although we have not yet done
this.
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5 Data Pre-Processing


The main idea of this procedure is to immerse the experimental data in the computationally
simulated ones. We have done this in three stages described in follow up sub-sections of this
section. The third stage is new, whereas first two stages were described in [23]. The data
pre-processing procedure provides us with the boundary data at ∂Ω, which we use in our
computations.


An important observation of our computational simulations was that, at least for times
which are near of times of the first arrival of the EM wave, the bottom side P of Ω was the
most sensitive part of ∂Ω, to the presence of inclusions. This observation has saved us a lot
of time when collecting our data. For this reason, we have prescribed to all points of ∂Ω�P
the same values as ones we got in computations of the forward problem (19) for the case
εr ≡ 1, i.e. for the case of the air, which fills the medium outside of Ω.
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Figure 2: This figure explains the idea of the first stage of data immersing in the time domain. We have


intentionally set to zero the small amplitude fluctuations before that first burst. a) Resulting superimposed


experimental curves. The red curve (thin) is for the reference signal and the blue curve (thick) is for the


signal with a dielectric inclusion present, both at the same location xm ∈ P of the detector number m. b) The


red curve (thin) displays computationally simulated data uref (xm, t). The blue curve (thick) uincl (xm, t) =


uref (xm, t − ∆tm)Km
exp


/Mm
exp


represents a sample of the immersed experimental data in the time domain at


the same detector location xm ∈ P . It is only the blue curve (thick) with which we work further. The red


curve (thin) is displayed for the illustration purpose only.


5.1 First immersing in the time domain (the first immersing stage)


Let xm ∈ P be the detector number m at the bottom side P of the prism Ω, see (17) for P .
Samples of unprocessed experimental data can be found on Figure 2 of [23]. As in [23], we
work with the first burst only. Figure 2-a) displays a sample of the first burst after a partial
denoising via the Fourier transform, see details in [23]. We have decided to “immerse” our
experimental data in the computationally simulated data using the following two peaks for
each detector xm :


1. The largest peak in the red curve (thin line, reference medium) with the peak value
of Mm


exp.
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a) ε
(2,2)
r = 1.25, n(2,2) = 1.12 b) ε


(4,2)
r = 2.49, n(4,2) = 1.58 c) ε


(5,2)
r = 3.9, n(5,2) = 1.97


Figure 3: Spatial distributions of iteratively computed dielectric constants ε
(n,k)
r and refractive


indexes n(n,k) =


√
ε
(n,k)
r for the Cube No. 1 (Table 1). The final image corresponds to n(5,2) :=


nglob = 1.97. See Table 2 for the reconstruction accuracy. Recall that refractive indices rather than


dielectric constants are actually measured experimentally.


2. The next peak after it in the blue curve (thick line, the medium with a dielectric
inclusion present) with the peak value of Km


exp. This next peak was chosen because the
presence of a dielectric inclusion results in a time delay of the EM wave, see (3).


Recall that the function u1 (x, t) is the solution of the problem (19) with computationally
simulated data for εr ≡ 1. Obviously u1


(
x(1), t


)
= u1


(
x(2), t


)
, ∀x(1), x(2) ∈ P, ∀t ∈ (0, T ) .


Let t := tsimref be the time of the first arrival of the computationally simulated plane wave
u1 (x, t) at the plane P . In other words, for all x ∈ P we have u1 (x, t) = 0 for t < tsimref and
u1 (x, t) > 0 for such moments of time t > tsimref that are rather close to tsimref with, see the
reference curve on Fig. 2-b).


We point out that amplitudes of largest peaks of experimental curves for the reference
medium were different for different detectors. This is because it was impossible to arrange
experimentally the true plane wave for the reference medium. Experimentally we actually
had a spherical wave. Nevertheless, we have “forced” it to be a plane wave via applying the
first stage of our data immersing procedure.


Let y = yref
m (t) be the experimentally measured curve at the detector {xm} for the


reference medium, i.e. when the dielectric inclusion was not present. Let the above chosen
largest peak of this curve is achieved at


{
t = tref


m


}
and its value is yref


m


(
tref
m


)
= Mm


exp. Let
y = yincl


m (t) be the experimentally measured curve at the detector {xm} for the case when
inclusion is present. We choose such a local maximum of the function y = yincl


m (t) which
is achieved at the first point


{
t = tincl


m


}
which follows after the point


{
t = tref


m


}
, see Fig.


2-a). Let yincl
m


(
tincl
m


)
= Km


exp. So, Km
exp is the value of the latter peak, see Figure 2-a). On


all detectors we have observed that Km
exp ≤Mm


exp. This is because the presence of dielectrics
decreases the amplitude of the EM wave. We enforce


Km
exp := Mm


exp, if
Km


exp


Mm
exp


≥ 2


3
. (20)
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a) ε
(2,2)
r = 1.22, n(2,2) = 1.10 b) ε


(4,2)
r = 2.04, n(4,2) = 1.43 c) εr(5, 5) = 3.19, n(5,5) = 1.79


Figure 4: Spatial distributions of iteratively computed dielectric constants ε
(n,k)
r and refractive


indexes n(n,k) =


√
ε
(n,k)
r for the Cube No. 2 (Table 2). The final image corresponds to n(5,5) :=


nglob = 1.79, which is only 4.5% error compared with the experiment, see Table 2. Recall that


refractive indices rather than dielectric constants are actually measured experimentally.


Now we are ready to immerse our experimental data in the computationally simulated
data. Let ∆tm = tincl


m − tref
m be the time delay between two above chosen peaks, see Figure


2-a). Then we set


uincl (xm, t) =
Km


exp


Mm
exp


u1 (xm, t− ∆tm) . (21)


So, (21) is our first immersed data in the time domain for the detector number m. Figure 2-b)
illustrates (21). By (20) and (21) if Km


exp/M
m
exp ≥ 2/3, then we set uincl (xm, t) := u1 (xm, t) .


After this data immersing, we use only the curve uincl (xm, t) and do not use the curve for
the reference medium anymore. We cannot rigorously justify our above decision to work
with those peaks only. However, since our results of blind imaging in [23] were very accurate
ones, then this justifies our purely intuitive choice.


5.2 The second stage of data immersing


Next, we apply the Laplace transform (7) to each function uincl (xm, t) for nine values of
s ∈ [3.5, 7.5wincl (xm, s) the Laplace transform of the function uincl (xm, t) . Let w̃incl (xm, s) =
−s−2 lnwincl (xm, s) . Let wincl (x, s) be the standard linear interpolation of the values {w̃incl (xm, s)}
over the plane P . We have observed that the function wincl (x, s) is very noisy with respect
to x. Hence, we have applied a smoothing procedure to the function wincl (xm, s) with re-
spect to (x, y) ∈ P for each of those nine values of s. Specifically, we have used the Lowess
fitting procedure in the 2D case, which we took from MATLABR 2009. We have obtained
the function wsmooth (x, s) . Let w1 (x, s) , x ∈ P be the Laplace transform of the function
u1 (x, t) , i.e. for the case of the plane wave propagating in the air. Then we finally set for
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c) t = 12.0 d) t = 12.0


Figure 5: a), c) Data for the cube No. 1 (Table 1) resulting after the first stage of the immersing


procedure, i.e. this is the function uincl (x, t) , x ∈ P. We immerse these data into the data obtained


via the solution of the problem (19) for εr (x) := εglob
r (x) . However, this function is unknown for


x ∈ Pobs�P , whereas we need this knowledge for the adaptivity (subsection 4.2). Hence, immersed


data are presented at Pobs with β = 0.1 in b), d). The coefficient εglob
r (x) is the one computed by


the globally convergent method for the cube No. 1, see Tables 2 and Fig. 3-c).
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each of those nine values of s


wimmers (x, s) =


{
wsmooth (x, s) , if wsmooth (x, s) ≥ 0.985 maxP wsmooth (x, s) ,


−s−2 lnw1 (x, s) , otherwise,


see Figure 5 in [23]. So, we use the function wimmers (x, s) to obtain Dirichlet boundary
conditions for above mentioned elliptic equations of the globally convergent method (section
2).


5.3 Reconstruction by the globally convergent method


It was shown in [23] that first and second immersing stages of two previous subsections are
sufficient for the globally convergent algorithm. Our dielectric abnormalities to be imaged
were two wooden cubes, see Table 1. Let CL be the center line, i.e. the straight line which
is orthogonal to the plane P and which passes through the source of EM waves (Figure 1).
Then CL = {(x, y, z) : x = y = 0} . We test our two-stage numerical procedure on two sets
of experimental data. So, the center of our first cube was on CL, and the center of the
second cube was off CL by 0.2 in dimensionless coordinates, which is equivalent with 10
mm. Images are presented on Figures 3 and 4. One can see from Table 2 that the error of
the reconstruction of refractive indices is a few percent. The same conclusion was drawn in
[23]. At the same time, it is clear from Figures 3 and 4 that it is desirable to improve images
of shapes of these cubes. And this is why we use the adaptivity technique on the second
stage.


Cube number Original sizes, mm Dimensionless sizes Dimensionless coordinates of centers
1 40 × 40 × 40 0.8 × 0.8 × 0.8 (0, 0,−1.2)
2 60 × 60 × 60 1.2 × 1.2 × 1.2 (0.2, 0,−1.2)


Table 1: Sizes and coordinates of centers of two wooden cubes used in experiments


Cube number Computed n := nglob =
√
εglob


r Measured n, error Comput. error
1 1.97 2.07, 11% 4.8%
2 1.79 1.71, 3.5% 4.5%


Table 2: Computed refractive indices n := nglob =


√
εglob
r and ones directly measured by the


Waveguide Method


5.4 The third stage of data immersing


This stage is new, since it was not a part of [23]. The function uincl(xm, t) obtained in (21) is
very noisy with respect to xm ∈ P , see for example Figures 5-a), c) for this function. We know
this function only at the bottom side P of the rectangular prism Ω. However, it was pointed
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out in subsection 4.2 that in order to solve the adjoint problem, we actually need to know
this function on the bigger rectangle Pobs = {(x, y, z) : (x, y) ∈ [−3, 3] × [−2, 2], z = −2.4} .
So, since our experimental data were measured on a smaller rectangle P only, we need to
complement them somehow on the set Pobs�P. To do so, we have decided to solve the
problem (19) with a certain coefficient εr: to complement the data on Pobs�P. Let u (x, t)
be this solution. Then we treat values of u (x, t) |Pobs


as a certain part of immersed boundary
values g |Pobs


when solving the adjoint problem (11). In other words, this solution provides
us with a new piece of data at the entire rectangle Pobs. Hence, the question now is: How to
choose the coefficient εr in equation (19) for this third immersing stage?


We have decided to take in equation (19) the coefficient εglob
r (x) , which was obtained on


the globally convergent stage of our two-stage numerical procedure, see Figures 3 and 4 as
well as Table 2. Let Uref (x, t) be the solution of the problem (19) with εr (x) := εglob


r (x) .
Thus, we define our second immersed data in the time domain as


uimmers(x, t)|Pobs
=


{
uincl (x, t) , if uincl (x, t) ≥ βmaxP (uincl (x, t)) and x ∈ P,
Uref (x, t) , otherwise,


(22)


where the function uincl (x, t) is the standard linear interpolation of values uincl (xm, t) in (21)
over the rectangle P . In particular, (22) implies that uimmers(x, t) = Uref (x, t) for x ∈ Pobs\P.
In (22) the parameter β ∈ (0, 1) should be chosen in numerical experiments. This parameter
characterizes the amount of information which we take from the first immersed experimental
data in (21). Comparison of Figures 5-a), c) with Figures 5-b), d) shows that the third stage
of data immersing helps not only to obtain the data for x ∈ Pobs \ P (rather than for x ∈ P
only), but also to significantly decrease the noisy component of the data resulting from the
first immersing stage. We also show numerically below (Figure 10) that the change of the
parameter β in the wide range β ∈ (0.1, 0.985) does not significantly affect imaging results.


Thus, we now got a “double use” of the solution obtained on the globally convergent
stage. First, for the data immersing via (22). Second, as the starting point for the adaptivity
technique.


6 Reconstruction Results


While Figures 3-c) and 4-c) display reconstruction results via the globally convergent stage,
we present in this section refined results which were obtained on the adaptivity stage. As
it was pointed out in the second Remark 2.2, the mesh refinement recommendation of (23)
provides only an indication of those regions where mesh should be refined. However, it can
also be refined in other places. Hence, when applying the adaptivity to the experimental
data, we have developed a new procedure of mesh refinements, which consists of two stages,
see subsections 6.2 and 6.3.
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6.1 Some details of the numerical implementation of the adaptiv-
ity


Recall that by (14) we refine the mesh in all regions where


|E ′ (εr,h) (x)| ≥ κ max
Ω


|E ′ (εr,h) (x)| , (23)


where κ = const ∈ (0, 1) is the tolerance number of our choice. The choice of κ depends on
concrete values of |E ′ (εr,h) (x)| and this should be done in numerical experiments. Below
we take in (23) κ = 0.8 for all computational meshes. Just as in [10, 11, 12], we have used
a cut-off parameter Bcut on all refined meshes for the reconstructed coefficient εr,h. Namely,
we took


εr,h (x) =


{
εr,h (x) , if |εr,h (x) − εglob


r,h (x) | ≥ Bcut,


εglob
r,h (x) , elsewhere.


(24)


Our numerical experience of previous publications [10, 11, 12] has shown that it is im-
portant to use in the adaptive algorithm box constrains for the reconstructed coefficient via
imposing that 1 ≤ εr,h (x) ≤ d. While the inequality εr,h (x) ≥ 1 follows from physics, see (3),
we find a good estimate for the upper bound d on the basis of computed refractive indices
from globally convergent part, i.e. on the basis of the second column of Table 2. Concrete
values of Bcut and d can be found in subsections below.


6.2 Reconstruction results for the Cube No. 1


The function εglob
r (x) , which corresponds to Fig. 3-c), was taken as the starting point in


adaptivity technique on all meshes, as well as the one generating the function Uref in (22).
We took in (24) Bcut = 2 for all refinements of the mesh. Since by Table 2 max εglob


r (x) =
(1.97)2 ≈ 3.9, we enforce that the coefficient εr(x) belongs to the following set of admissible
parameters εr(x) ∈ CM = {1 ≤ εr(x) ≤ 4.4}.


6.2.1 The first stage of the mesh refinement


On this stage we refine mesh locally in the following two types of regions:
1. The one where we have the standard mesh refinement recommendation. That is, we


refine mesh in all regions where (23) is fulfilled.
2. In addition, we refine mesh in those regions where the coefficient imaged on the


globally convergent stage attains values which are sufficiently close to its maximal value. In
other words, we refine mesh in all regions where ≥ αmaxglob


r (x), where the parameter (0, 1)


is chosen in numerical experiments. In our specific case of cube No.1 maxΩ ε
glob
r (x) = 3.9.


In all calculations below we took


α = 0.2, β = 0.985, γ = 0.001, (25)


where γ is the regularization parameter of the Tikhonov functional (9).
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εr,h ≈ 3.9, nglob =
√
εr,h ≈ 1.97


Figure 6: The reconstruction result for the 1st stage of the adaptivity for the cube No. 1. Maximal


values of the imaged coefficient are shown for the third refined mesh. The shape is not yet well


reconstructed, although a comparison with Fig. 3-c) shows an improvement. The refractive index


is reconstructed accurately (Table 2).


εr,h ≈ 3.9, nglob =
√
εr,h ≈ 1.97


Figure 7: The reconstruction result for the 2nd stage of the adaptivity for the cube No. 1. Thin


lines (blue) indicate the correct cubical shape. Comparison with Fig. 6 shows an improvement of


the image. The refractive index is reconstructed accurately (Table 2).
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First, we use the same coarse mesh as the one on the globally convergent stage. Just as
in [10]-[12], we have not observed any improvement of the image. Next, we use adaptively
locally refined meshes. Let ΓT = Pobs × (0, T ) . To figure out the stopping criterion with
respect to the mesh refinements, we proceed similarly with Table 2 of [10] and Table 1
of [11]. Namely, let εr,h (x) be the approximation for the true coefficient εr (x) , which is
obtained on a certain mesh, and u := (x, t; εr,h) be the corresponding solution of the forward
problem (19). So, we analyze the behavior of computed L2-norms of ‖u− uimmers‖L2(ΓT ) .
We have observed that these norms decrease with the number of mesh refinements. Next,
this norm slightly increases on the 4th refinement. This is the same behavior as one in
[10, 11]. Hence, we take the coefficient εr (x) obtained after three mesh refinements as our
final solution on the first stage of the adaptive algorithm. The resulting image is shown on
Figure 6. Comparison of Figures 3-c) and 6 shows that the image of Fig. 6 is better than
one of Fig. 3-c), whereas refractive indices are the same. However, the shape of the inclusion
is not yet imaged well, although the size of the abnormality is computed rather well.


6.2.2 The second stage of the mesh refinement


One can derive from Fig. 6 that maximal values of the reconstructed coefficient are achieved
in the subdomain Ω1,


Ω1 = {(x, y, z) : (x, y) ∈ [−0.5, 0.5] × [−0.6, 0.6] × [−1.4,−0.5]} , (26)


We now specify the last statement. Let εr (x) be the coefficient imaged on the first stage
of the mesh refinement process. On the second stage we do not follow the conventional mesh
refinement recommendation (23). Instead we refine the mesh locally only in those regions
where


x ∈
{
εr (x) ≥ αmax


Ω
εr (x)


}
∩ Ω1., (27)


where α is taken from (25). This method provides a more regular refinement of the com-
putational mesh. Hence, we hope to image a better shape of the inclusion. We have used
parameters α, β, γ from (25). The same stopping criterion for the number of mesh refine-
ments as one above was used. Figure 7 displays the final image after four mesh refinements.
Comparison of Figs. 7 and 6 shows an improvement of the image due to the second stage of
the adaptivity.


6.3 Reconstruction results for the Cube No. 2


We now apply the above adaptive two-stage technique to reconstruct the Cube No. 2 of Table
1. In doing so, we again get the first guess from the globally convergent method, see Fig.
4-c) and Table 2. Because of Table 2, we consider the following set of admissible parameters
εr(x) ∈ CM = {1 ≤ εr(x) ≤ 3.3}. Let j be the number of iterations in the quasi-Newton
method on the 1st stage of the adaptivity. On all refined meshes we have chosen the cut-off
parameters in (24) as: Bcut = 0.91 for j = 1, 2, for j = 3, Bcut = 1.1 and Bcut = 2 for j > 3.
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εr,h ≈ 2.52, nglob =
√
εr,h ≈ 1.59


Figure 8: The reconstruction result for the 1st stage of the adaptivity for the cube No. 2. Only


maximal values of the imaged coefficient are shown for the 3rd refined mesh. The shape of the final


imaged coefficient is better than one on Fig. 4-c). However, the imaged refractive index is lowered


by about 19% compared with the imaged on the globally convergent stage.


εr,h ≈ 3.0, nglob =
√
εr,h ≈ 1.73


Figure 9: The final reconstruction result for the cube No. 2. Only maximal values of the computed


coefficient are displayed. The imaged coefficient εr (x) = 1 outside of these images. All three


components: shape, location and refractive index are imaged with a very good accuracy.


20







6.3.1 The first stage of the mesh refinement


As in the case of cube No. 1, the use of the same mesh as one in the globally convergent
method, did not lead to an improvement of the image. Again, just as in the case of the first
cube, we refine the mesh in all regions where the inequality (23) with κ = 0.8 is valid, as
well as in all regions where εglob


r (x) ≥ αmaxΩ ε
glob
r (x) . We have used parameters (25) as well


as the same stopping criterion for the number of mesh refinements as one in sub-subsection
6.2.1. Because of this criterion, we have stopped on the 3th mesh refinement. The final image
of the first stage of the adaptivity is displayed on Fig. 8. Comparing this image with one
on Fig. 4-c) and with Table 2, we observe a slight improvement of the imaged shape while
the value of the refractive index has decreased by about 19%. In addition, we observe that
we have actually obtained two disconnected imaged inclusions.


6.3.2 The second stage of the mesh refinement


We use the same procedure as one for the first cube. First, we have to figure out an analog
of the domain Ω1 in (26). To define upper and lower boundaries for the vertical coordinate
z of the subdomain of local mesh refinements, we have decided to use again the information
obtained on the globally convergent stage. We see on Fig. 4-c) that, unlike Fig. 8, we have
only a single rather than two inclusions. Hence, we have decided to refine mesh, in terms of
the vertical coordinate z as follows:


1. The top boundary ztop should be slightly below the low boundary of the small imaged
inclusion of Fig. 8.


2. The low boundary zlow should be slightly below the bottom of the larger imaged
inclusion of Fig. 8.


3. Boundaries with respect to horizontal coordinates (x, y) of the mesh refinement sub-
domain were determined from the criterion εr (x) ≥ αmaxΩ εr (x) for values of εr (x) , which
is similar with (27). Consider the subdomain Ω2 ⊂ Ω, where


Ω2 = {(x, y, z) : (x, y) ∈ [−0.6, 0.6] × [−0.6, 0.6] × [−1.8,−0.8]} .


So, we refine the mesh, using the criterion (27), in which Ω1 is replaced with Ω2.
The same stopping criterion for the number of mesh refinements as one in sub-subsection


6.2.1 was used. Thus, we have concluded that the 3rd mesh refinement should be the final
one. The resulting image is displayed on Fig. 9. A very accurate reconstruction of all three
components of the Cube No. 2: shape, location and refractive index is evident.


6.4 Sensitivity to parameters β and γ


To investigate the sensitivity of our images to the choice of the regularization parameter γ
in the Tikhonov functional (9), as well as to the parameter β in (22), we have performed
further testing for cube No. 2 with different values of β and γ. Results are displayed on
Figure 10. One can observe that the value of the regularization parameter γ does not impact
reconstruction results significantly. One can also see that images for β = 0.985 and β = 0.5
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Test nr elements in mesh ||u |ΓT
−g||L2(ΓT ) n =


√
εr Measured n =


√
εr


1 62902 0.0635991 1.73 1.71
2 86352 0.0577953 1.73 1.71
3 50158 0.0317876 2.0 2.07
4 61368 0.025447 2.0 2.07


Table 3: ||u |ΓT
−g||L2(ΓT ) together with comparison of values of refractive indexes for all tests on


finally adaptively refined meshes. Here ΓT = Pobs × (0, T ).


are almost the same, including imaged values of the refractive index. Surprisingly, images
for the case β = 0.1 also look almost the same as ones for β = 0.985 and β = 0.5. However,
values of the refractive index for β = 0.1 are lowered by about 10%. Hence, we conclude
from Fig. 10 that our procedure is quite stable with respect to parameters β and γ.


6.5 Verification for the Cube No. 1


We have compared our imaging result for Cube No. 1 with computational simulations. To
do so, we have computed the data for the forward problem for exactly the same cube as
No. 1 in Table 1. We took ǫr = 4 inside of this simulated cube. However, we have replaced
ω = 7 with ω = 14 in (18) and (19), since this corresponds to the twice smaller dimensionless
wavelength 2π/ω in computational simulations. So, we have conjectured that having a two
times lesser wavelength would result in a better image for the Cube No. 1. Indeed, with
ω = 7 the dimensionless wavelength in simulated data is 0.897, which is bigger than the
dimensionless size 0.8 of the side of the first cube (Table 1). On the other hand, ω = 14 gives
us the dimensionless wavelength of 0.45 < 0.8. Note that the dimensionless wavelength size
of the side of the Cube No. 2 is 1.2 > 0.897. We recall here the classical Rayleigh principle.


We have applied the same procedure as above to the computationally simulated data.
The resulting image is displayed on Fig. 11-a). One can observe a very good quality of
this image from synthetic data. Next, we have applied the same procedure as above to the
experimental data for the Cube No. 1 with the single difference that we now have used
ω = 14 instead of the previous ω = 7. The resulting image is displayed on Fig. 11-b). One
can observe a significant improvement compared with Figure 7. Hence, our conjecture about
ω was partially materialized for the case of experimental data. Still, however, the image on
Fig. 11-b) is not as good as the one for Cube No. 2 on Fig. 9.


7 Discussion


In this paper we have continued our work on experimental data of [23]. While only locations
and refractive indices of dielectric abnormalities were accurately computed in [23], we now
complement those by reconstructions of shapes. As a result, the shape of the Cube No. 2
is reconstructed with an excellent accuracy (Fig. 9). Furthermore, it was shown that our
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a) γ = 0.001, β = 0.985 b) γ = 0.01, β = 0.985 c) γ = 0.1, β = 0.985
εr,h ≈ 3.2, nglob = 1.79 εr,h ≈ 3.2, nglob = 1.79 εr,h ≈ 3.2, nglob = 1.79


d) γ = 0.001, β = 0.5 e) γ = 0.01, β = 0.5 f) γ = 0.1, β = 0.5
εr,h ≈ 3.1, nglob = 1.76 εr,h ≈ 3.1, nglob = 1.76 εr,h ≈ 3.0, nglob = 1.73


g) γ = 0.001, β = 0.1 h) γ = 0.01, β = 0.1 i) γ = 0.1, β = 0.1
εr,h ≈ 2.4, nglob = 1.55 εr,h ≈ 2.4, nglob = 1.55 εr,h ≈ 2.4, nglob = 1.55


Figure 10: Final reconstruction results for cube No. 2 with varying parameters β and γ. Lines


(blue) indicate the correct cubical shape. Maximal values of the imaged coefficient are displayed.


The computed value of the coefficient outside of imaged inclusions is 1.


23







a) εr,h ≈ 4.09, nglob =
√
εr,h ≈ 2.02


b) εr,h ≈ 4.2, nglob =
√
εr,h ≈ 2.05


Figure 11: a) The image of computationally simulated cube No. 1 from computationally simulated


data with ω = 14 in (18) and (19). b) The image of cube No. 1 from experimental data with


ω = 14 in (18) and (19). The same imaging procedure as above was applied. Compared with Fig.


7, a significant improvement is observed. Still, however, the image of the shape is not as good as


the one for Cube No. 2 on Fig. 9.
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technique is quite stable with respect to some critical parameters which we choose in the
reconstruction process (Fig. 10). The shape of the smaller Cube No. 1 was also reconstructed
well (Fig. 11-b)), although the accuracy is not as good as the one of Cube No. 2. Just as in
[23], refractive indices are imaged with a very good accuracy in both cases.


The difference of qualities of images of our two cubes might likely be attributed to the
classical Rayleigh principle. Indeed, the original wavelength λem of the EM wave in our
experimental data was λem = 3cm. On the other hand, sizes of sides of Cubes No. 1 and
No. 2 were respectively 4cm = 1.33λem and 6cm = 2λem (Table 1). Hence, we conjecture
that the shape of the Cube No. 2 was imaged better than the one of Cube No. 1 because
our experimental data had 3cm wavelength “inscribed” in them. This question needs to be
investigated further.


Compared with [23], the main new element here is that we have complemented the
globally convergent method by the adaptivity technique. In addition, we have complemented
the traditional rule of mesh refinements by broader non-traditional ones, thus coming up with
a two-stage mesh refinement procedure. Two other important features of these studies are:


1. The use of the solution obtained on the globally convergent stage is crucial for ob-
taining above results via the adaptivity. At least for the case of our experimental data the
adaptivity does not work without the availability of this solution.


2. Our studies have consistently demonstrated that all analytical and numerical conclu-
sions derived in our previous publications for computationally simulated data [9]-[12] were
confirmed on experimental data.


Some discrepancies between our mathematical model and the reality are evident. It is
well known that equation (1) cannot be derived from the Maxwell’s system for the 3-D case
if εr 6= const. In addition, we are not aware which of three components of the electric field
was measured in experiments: we only knew that the time-resolved voltage was measured.
Thus, we call (1) a simplified mathematical model of our process. A possible explanation
why everything still works well is that the data immersing procedure “enforces” our data
to be “good” for equation (1). A more complete investigation of this issue with the use of
the full Maxwell’s system is worthy to pursue. Since all three components of the electric
field should be measured (rather than the current one), a significant technical obstacle on
this path is that more experimental data should be collected, which is quite expensive. On
the other hand, comparison of Fig. 11-a) with Fig. 11-b) indicates that a less expensive
investigation of this issue on synthetic data only might be incomplete.


Another discrepancy is that in our globally convergent algorithm we need a certain asymp-
totic behavior of the Laplace transform of the function u, which can be derived from results
of [29, 30], see (8) and Lemma 2.1 in [9]. In particular, that lemma requires at least the
C2−smoothness of the coefficient εr (x). We verify that asymptotic behavior computation-
ally, see subsection 7.2 [9]. However, the smoothness assumption of the function εr (x) is
obviously violated at the boundaries of our two cubes, which were used in experiments. More
discrepancies can be derived from data immersing procedures described above. It might well
take years to figure out how to handle all these discrepancies.


In summary, it is rather surprising that, despite all these discrepancies, results of this
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publication as well as results of blind testing of [23] consistently demonstrate a very good
reconstruction accuracy. We believe that the latter validates our simplified mathematical
model as well points towards the robustness of our two-stage numerical procedure.
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[13] Beilina L, Samuelsson K and Åhlander K 2001 Efficiency of a hybrid method for the
wave equation. In International Conference on Finite Element Methods, Gakuto Inter-
national Series Mathematical Sciences and Applications. Gakkotosho CO., LTD


[14] Belishev M I 1997 Boundary control in reconstruction of manifolds and metrics (the bc
method) Inverse Problems 13 R1-R45


[15] Belishev M I and Gotlib V Yu 1999 Dynamical variant of the bc-method: theory and
numerical testing J Inverse and Ill-Posed Problems 7 221-240


[16] Burov V A, Morozov S A and Rumyantseva O D 2002 Reconstruction of fine-scale
structure of acoustical scatterers on large-scale contrast background, Acoust. Imaging
26 231-238


[17] Engl H W, Hanke M and Neubauer A 2000 Regularization of Inverse Problems (Boston:
Kluwer Academic Publishers)


[18] Engquist B and Majda A 1977 Absorbing boundary conditions for the numerical simu-
lation of waves Math. Comp. 31 629-651


[19] Griesbaum A, Kaltenbacher B and Vexler B 2008 Efficient computation of the Tikhonov
regularization parameter by goal-oriented adaptive discretization Inverse Problems 24
025025


[20] Grinevich P G 2000 The scattering transform for the two-dimensional operator with a
potential that decreases at infinity at fixed nonzero energy Russ. Math. Surv. 55 3-70


[21] Klibanov M V and Timonov A 2004 Carleman Estimates for Coefficient Inverse Prob-
lems and Numerical Applications (Utrecht, The Netherlands: VSP)


[22] Klibanov M V 1991 Inverse problems and Carleman estimates, Inverse Problems 8
575–596


[23] Klibanov M V, Fiddy M A, Beilina L, Pantong N and Schenk J, Picosecond scale
experimental verification of a globally convergent numerical method for a coefficient
inverse problem, Inverse Problems, 26, 045003, 2010.


[24] Mueller J and Siltanen S 2003 Direct reconstructions of conductivities from boundary
measurements SIAM J. Sci. Comp. 24 1232-1266


27







[25] Nocedal J 1991 Updating quasi-Newton matrices with limited storage, Mathematics of
Comp. 35 773–782


[26] Novikov R G 1988 Multidimensional inverse spectral problem for the equation −△ψ +
(v(x) −Eu(x))ψ = 0 Functional Analysis and Its Applications 22 11-22


[27] Novikov R G 1992 The inverse scattering problem on a fixed energy level for the two-
dimensional Schrödinger operator, J. Func. Anal. and Its Applications 103 409-463


[28] Repin S I 2008 A Posteriori Estimates for Partial Differential Equations (Berlin: de
Gruiter)


[29] Romanov V G 1986 Inverse Problems of Mathematical Physics (Utrecht, The Nether-
lands: VNU)


[30] Romanov V G 2009 On smoothness of a fundamental solution to a second order hyper-
bolic equation, Siberian Math. J 50 700-705


[31] Tikhonov A N, Goncharsky A V, Stepanov V V and Yagola A G 1995 Numerical Methods
for the Solution of Ill-Posed Problems (London: Kluwer)


[32] Yamamoto M 2009 Carleman estimates for parabolic equations and applications Inverse
Problems 25 123013


28







