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‡ Centre de Recerca Matemàtica, Apartat 50, 08193 Bellaterra (Barcelona), Spain


E-mail: Amadeu.Delshams@upc.edu, Gemma.Huguet@upc.edu


Abstract. In the present paper we consider the case of a general Cr+2 perturbation,


for r large enough, of an a priori unstable Hamiltonian system of 2 + 1/2 degrees of


freedom, and we provide explicit conditions on it, which turn out to be C2 generic and


are verifiable in concrete examples, which guarantee the existence of Arnold diffusion.


This is a generalization of the result in Delshams et al., Mem. Amer. Math.


Soc., 2006, where it was considered the case of a perturbation with a finite number of


harmonics in the angular variables.


The method of proof is based on a careful analysis of the geography of resonances


created by a generic perturbation and it contains a deep quantitative description of


the invariant objects generated by the resonances therein. The scattering map is used


as an essential tool to construct transition chains of objects of different topology. The


combination of quantitative expressions for both the geography of resonances and the


scattering map provides, in a natural way, explicit computable conditions for instability.
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1. Introduction


The goal of this paper is to present a generalization of the geometric mechanism for


global instability (popularly known as Arnold diffusion) in a priori unstable Hamiltonian


systems introduced in [DLS06a]. That paper developed an argument to prove the


existence of global instability in a-priori unstable nearly integrable Hamiltonian systems


(the unperturbed Hamiltonian presents hyperbolicity, so that it can not be expressed


globally in action-angle variables) and applied it to a model which presented the so


called large gap problem. However, in that case, the perturbation was assumed to be a


trigonometric polynomial in the angular variables. In this paper we perform an accurate


process of truncation of the Fourier series of the perturbation and we present a deeper


study of the geography of resonances. Using this, we are able to extend and simplify
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some of the results in [DLS06a] and apply them to an a priori unstable Hamiltonian


system with a generic perturbation.


The phenomenon of global instability in Hamiltonian systems has attracted the


attention of both mathematicians and physicists in the last years due to its remarkable


importance for the applications. It deals, essentially, with the question of what is the


effect on the dynamics when an autonomous mechanical system is submitted to a small


periodic perturbation. More precisely, whether these perturbations accumulate over


time giving rise to a long term effect or whether these effects average out.


The instability problem was formulated first by Arnold in 1964. In his celebrated


paper [Arn64], Arnold constructed an example for which he proved the existence of


trajectories that avoided the obstacles of KAM tori and performed long excursions.


The mechanism is based on the existence of transition chains of whiskered tori, that is,


sequences of tori such that the unstable manifold (whisker) of one of these tori intersects


transversally the stable manifold (whisker) of the next one. By an obstruction argument,


there is an orbit that follows this transition chain, giving rise to an unstable orbit.


The example proposed in [Arn64] turns out to be rather artificial because the


perturbation was chosen in such a way that it preserved exactly the complete foliation


of invariant tori existing in the unperturbed system. However, a generic perturbation of


size ε creates gaps at most of size
√
ε in the foliation of persisting primary KAM tori,


whereas it moves the whiskers only by an amount ε. These gaps are centered around


resonances, that is, resonant tori that are destroyed by the perturbation. This is what


is known in the literature as the large gap problem (see, for instance, [Moe96] for a


discussion about the large gap problem and, indeed, of the problem of diffusion).


In the last ten years there has been a notable progress in the comprehension


of the mechanisms that give rise to the phenomenon of instability and a variety of


methods has been suggested. As an example of this, we will mention that the large gap


problem has been solved simultaneously by a variety of techniques: different geometrical


methods [DLS00, DLS06a, DLS06b] (scattering map) and [Tre04, PT07] (separatrix


map); topological methods [GL06b, GL06a] and variational methods [CY04a, CY04b].


For more information regarding the problem of Arnold diffusion in the absence of gaps


as well as time estimates, the reader is referred to [DGLS08].


Of particular interest for the present paper are [DLS00, DLS06a, DLS06b]. The


strategy in the mentioned papers is based on the incorporation of new invariant objects,


created by the resonances, like secondary KAM tori and the stable and unstable


manifolds of lower dimensional tori in the transition chain, together with the primary


KAM tori. The scattering map, introduced by the same authors (see [DLS08] for a


geometric study) is the essential tool for the heteroclinic connections between invariant


objects of different topology.


In this paper we extend the geometric mechanism introduced in the mentioned


papers to a wider class of model systems for which the perturbation does not need to have


a finite number of harmonics in the angular variables. In particular, the Hamiltonian
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studied in this paper has the following form


Hε(p, q, I, ϕ, t) = ±
(


1


2
p2 + V (q)


)
+


1


2
I2 + εh(p, q, I, ϕ, t; ε), (1)


where p ∈ (−p0, p0) ⊂ R, I ∈ (I−, I+) ⊂ R and (q, ϕ, t) ∈ T3.


The main result of this paper is Theorem 2.1, stated in section 2.2 with the concrete


hypotheses for Hamiltonian (1), from which we can deduce the following short version:


Theorem 1.1. Consider the Hamiltonian (1) and assume that V and h are Cr+2


functions which are C2 generic, with r > r0, large enough. Then there is ε∗ > 0 such


that for 0 < |ε| < ε∗ and for any interval [I∗−, I
∗
+] ∈ (I−, I+), there exists a trajectory


x̃(t) of the system with Hamiltonian (1) such that for some T > 0


I(x̃(0)) ≤ I∗−; I(x̃(T )) ≥ I∗+.


Remark 1.2. A value of r0 which follows from our argument is r0 = 242 (see Remark


2.2).


Our strategy for the proof follows the geometric mechanism proposed in [DLS06a].


Indeed, in order to organize the different invariant objects that we will use to construct


a transition chain, we will first identify the normally hyperbolic invariant manifold


(NHIM) present in the system. This NHIM will have associated stable and unstable


invariant manifolds that, generically, intersect transversally. Therefore, we can associate


to this object two types of dynamics: the inner and the outer. The outer dynamics takes


into account the asymptotic motions to the NHIM and is described by the scattering


map. The inner dynamics is the one restricted to the NHIM and contains Cantor


families of primary and secondary KAM tori. Since generically these families of KAM


tori, invariant for the inner dynamics, are not invariant for the outer dynamics, the


combination of both dynamics will allow us to construct a transition chain.


The results in [DLS06a] can be applied straightforwardly for the persistence of


the NHIM and the transversality of its associated stable and unstable manifolds. The


arguments presented in this paper focus on the inner dynamics and the study of the


invariant objects present in the NHIM.


For Hamiltonian (1), resonances correspond to the places where the frequency


I = −l/k for (k, l) ∈ Z2 is rational and the associated Fourier coefficient hk,l of the


perturbation h is nonzero. On these resonances, the foliation of KAM tori in the NHIM


is destroyed and gaps between the Cantor family of invariant tori in the NHIM of size


O(ε1/2|hk0,l0|1/2) are created, for (k0, l0) such that l/k = l0/k0 and gcd(k0, l0) = 1 (see


equation (86)). For a perturbation h which is a Cr+2 function and C2 generic, when


we restrict it to the NHIM and we write it in adequate coordinates we are left with


a Cr perturbation (see the subsection “restriction to NHIM” in Section 2.3.3), so that


|hk,l| ∼ |(k, l)|−r, and therefore the above gaps are of size O(ε1/2|(k0, l0)|−r/2). Moreover,


other invariant objects, like secondary tori and lower dimensional tori, are created inside


the gap. They correspond to invariant objects of different topology that were not present


in the unperturbed system but are generated by the resonances.
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In order to study their existence and give an approximate expression for them we


will combine m steps of averaging plus a KAM Theorem. Notice that in our case, since


the perturbation is generic, we will have an infinite number of resonances. Our approach


for this study will be to consider an adequate truncation up to some order M , depending


on ε, of the Fourier series of the perturbation h in such a way that we deal only with a


finite number of harmonics |(k, l)| ≤M and therefore of resonances.


Another remarkable difference with respect to the results obtained in [DLS06a] is


that in that case the size of the gaps created in the foliation of invariant tori was uniform,


whereas in our case, since the size is O(ε1/2|(k0, l0)|−r/2), we have a heterogeneous sea


of gaps of different sizes. Among them, we will distinguish between small gaps and big


gaps, which are strongly related to the mentioned large gap problem. Indeed, big gaps


are those of size bigger or equal than ε and therefore they are generated by resonances


−l0/k0 of order one, such that |(k0, l0)| < ε−1/r or, equivalently, |(k0, l0)|−r/2 ≥ ε1/2 (see


Section 3.3.3 for precise results).


From a more technical point of view (see Section 3.2 for details), we would like to


remark that the main difficulties arise from the fact that in order to perform a resonant


averaging procedure, we need to isolate resonances corresponding to |(k, l)| ≤ M ,


for M depending on ε. Consequently, the width L of the resonant domain can not


be chosen independently of ε, as it was the case in [DLS06a]. Moreover, along the


averaging procedure we need to keep track of the Cℓ norms of the averaged terms and


the remainders, and these blow up as a negative power of L. Hence, we will see that a


good choice for L around a resonance I = −l/k will be L = Lk ∼ ε1/n/|k| (see hypotheses


of Theorem 3.11), where n is the required regularity to apply KAM Theorem after the


averaging procedure. Notice that L is not uniform along the resonances but depends on


the value |k| of the resonance.


Finally, after m steps of averaging, we will show that the remainder tail, that is, the


Fourier coefficients hk,l such that |(k, l)| > M can be neglected. This will be ensured by


a fast enough decreasing rate of the coefficients and therefore a large enough regularity


r of the perturbation. Thus, the required regularity r will be determined according to


the number m of steps of averaging performed, as well as the needed regularity n to


apply KAM Theorem after the averaging procedure.


We are using a version of the KAM theorem that requires to have the Hamiltonian


system written in action angle variables. Since near the resonances we approximate


the system by one which is close to a pendulum, the action variable becomes singular


on the separatrix. This fact, together with the requirement to have the invariant


objects close enough (at a distance smaller than ε) implies that the perturbation of


the averaged Hamiltonian has to be extremely small in the resonant regions. The


immediate consequence of this fact is that, in the case we are studying, one has to


perform at least m = 10 steps of averaging (see Theorem 3.28). The needed regularity


n to apply KAM Theorem after m averaging steps is n = 2m+6 (see Proposition 3.24).


Since the regularity r required to ensure that the remainder tail is smaller than the


averaging remainder turns out to be r > (n − 2)m + 2, see Remark 3.20, one has to
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impose r > r0 = 242.


We do not claim that this is an optimal result. Actually, another version of the


KAM theorem that allowed us to avoid the change into action-angle variables like


[LGJV05, FLS07] could improve the results in terms of the needed regularity (see


also [LHS08] for a numerical implementation). However, it is worth mentioning that


we managed to decrease the required steps of averaging in the resonant domains with


respect to the results in [DLS06a]. Since in the resonances the behavior of KAM tori is


different depending on how close they are to the separatrix (tori are flatter as they are


further from the separatrix), we consider different regions where we perform different


scalings. This strategy, which was already introduced in [DLS06a], has been improved


in this paper introducing a new sequence of domains in Theorem 3.30. When applied


to the case with a finite number of resonances as in [DLS06a], m = 9 steps of averaging


and r ≥ 26 are enough (see Remark 3.32). This clearly improves the needed regularity


r which was r ≥ 60 in [DLS06a] because m was chosen m = 26.


Sections 3.3.3, 3.3.4 and 3.3.5 contain a quantitative description of the geography


of resonances and a detailed study of the invariant objects generated by the resonances.


The effect of the resonances in a system constitutes a fundamental problem not


only for diffusion but also for many other physical applications and it has been an


important object of study in the physical literature, see for instance [Chi79, Ten82].


The study performed in this paper contributes to understand better the different types


of resonances and the geometric objects that one can find therein and can be very helpful


in many physical problems.


Moreover, we think that this study can be extended to a class of models that present


multiple resonances, see [DLS07].


We would like to emphasize that in our case, and this is different from the results


in [DLS06a], only the resonances of order 1, that is, the ones that appear at the first


step of averaging, create big gaps; whereas in [DLS06a], both resonances of order 1 and


2 could generate big gaps. This is because we are dealing with a perturbation that


generically will have all the harmonics different from zero. This means that the effect


of the resonances associated to the biggest Fourier coefficients (low frequencies) will be


detected at the first step of averaging. Since the size of the gap depends on both the


order of the resonance and the size of the Fourier coefficient associated to that resonance,


the ones that appear at the second step of averaging already correspond to small Fourier


coefficients and the size of their gap will be smaller than ε. The immediate consequence


of this fact it that in the forthcoming Theorem 2.1, we can give all conditions explicitly


in terms of the original perturbation h.


The paper is organized in the following way. In Section 2 we state Theorem 2.1,


which establishes the existence of diffusing orbits for the model considered under precise


conditions. Since the required hypotheses are checked to be C2 generic, Theorem 1.1


follows straightforwardly. The proof of Theorem 2.1 is given in Section 2, except for


two technical results, Theorem 3.1 and Proposition 4.1, which are postponed to the


following sections.







Geography of resonances and Arnold diffusion 6


Thus, in Section 3, we prove Theorem 3.1, which provides a quantitative existence


of invariant objects for the inner dynamics in the NHIM following the steps indicated


in Section 2. In Section 4, we use the scattering map to prove Proposition 4.1 about


the existence of heteroclinic connections between the invariant objects obtained in the


previous section.


We would like to remark that, in contrast to [DLS06a], and thanks to the new


results about the scattering map obtained in [DLS08], we use the Hamiltonian function


generating the deformation of the scattering map instead of the scattering map itself,


in order to compute the images of the leaves of a certain foliation under the scattering


map.


Finally, in Section 5 we have included for illustration a concrete example, for which


we sketch how the hypotheses of Theorem 2.1 can be checked. We plan to come back


to this example in a future paper for a more detailed description of the mechanism. In


the Appendix, we have brought some technical results used in the paper.


2. Statement of results


Before stating the main result in this paper we need to introduce some notation.


2.1. Notation and preliminaries


Let r be a positive integer and D ⊂ Rn a compact set with nonempty interior D̊. We


will denote the set of Cr functions from D̊ to Rm and continuous on D by Cr(D,Rm).


When m = 1, we simply write Cr(D) instead of Cr(D,Rm). Given f ∈ Cr(D,Rm), we


consider the standard Cr norm,


|f |Cr(D) =
m∑


i=1


r∑


ℓ=0


∑


|α|=ℓ


sup
x∈D


|Dαfi(x)|
α!


, (2)


where fi denotes the i-th component of the function f , for i = 1, . . . , m. We omit the


domain in the notation when it does not lead to confusion.


We use the standard multi-index notation: if α = (α1, . . . , αn) ∈ Nn and x =


(x1, . . . , xn) ∈ Rn one sets


|α| = α1 + · · ·+ αn


α! = α1!α2! · · ·αn!


Dα =
∂|α|


∂xα1
1 . . . ∂xαn


n


In the case that the function f depends only on a few of the variables, we will


denote it in the same way, that is |f |Cr = |f |Cr(D), and consider it as a function of more


variables defined in the appropriate domain.
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Note that we denote |f |C0 = supx∈D |f(x)|, which is the standard supremum norm,


so the | · |Cr(D) norm can be expressed, equivalently, as


|f |Cr(D) :=


m∑


i=1


r∑


ℓ=0


∑


|α|=ℓ


|Dαfi|C0(D)


α!
.


The space of Cr(D) functions endowed with the Cr norm is a Banach algebra (see


[Con90]), that is, it is a Banach space with the property that given any two functions


f, g in Cr(D), they satisfy


|fg|Cℓ ≤ |f |Cℓ |g|Cℓ .


Since we will also deal with Cr functions defined on a compact domain D = I ×Tn,


where I ⊂ Rn is a compact set with non empty interior, we can also consider the


following seminorm, that takes into account the different regularities and the estimates


for the derivatives in each type of variable:


|f |ℓ1,ℓ2 :=


ℓ1∑


m1=0


ℓ2∑


m2=0


∑


α1,α2∈N
n


|α1|=m1,|α2|=m2


1


α1!α2!
sup


(I,ϕ)∈D


∣∣∣∣
∂m1+m2f(I, ϕ)


∂Iα1∂ϕα2


∣∣∣∣ , (3)


for 0 ≤ ℓ1 + ℓ2 ≤ r.


Note that |f |Cℓ =
∑ℓ


m=0 |f |m,ℓ−m, for 0 ≤ ℓ ≤ r.


We will use the following notation, which is rather usual. Given α = α(ε) and


β = β(ε), we will write α � β and also α = O(β) if there exists ε0 and a constant


C independent of ε, such that |α(ε)| ≤ C|β(ε)|, for |ε| ≤ ε0. When we have α � β


and β � α we will write α ∼ β. However, in some informal discussions we will abuse


notation and we will say that α is of order εp ⇔ α ∼ εp.


We will say that a function f = OCr(D)(β) when


|f |Cr(D) � β.


2.2. Set up and main result


We consider a 2π-periodic in time perturbation of a pendulum and a rotor described by


the non-autonomous Hamiltonian (1),


Hε(p, q, I, ϕ, t) = H0(p, q, I) + εh(p, q, I, ϕ, t; ε)


= P±(p, q) +
1


2
I2 + εh(p, q, I, ϕ, t; ε),


(4)


where


P±(p, q) = ±
(


1


2
p2 + V (q)


)
(5)


and V (q) is a 2π-periodic function. We will refer to P±(p, q) as the pendulum.


The term 1
2
I2 describes a rotor and the final term εh is the perturbation term and


depends periodically on time, so that h can be expressed via its Fourier series in the


variables (ϕ, t)


h(p, q, I, ϕ, t; ε) =
∑


(k,l)∈Z2


hk,l(p, q, I; ε)e
i(kϕ+lt). (6)
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It will be convenient to consider the autonomous system by introducing the extra


variables (A, s):


H̃ε(p, q, I, ϕ, A, s) = A+H0(p, q, I) + εh(p, q, I, ϕ, s; ε)


= A+ P±(p, q) +
1


2
I2 + εh(p, q, I, ϕ, s; ε)


(7)


where the pairs (p, q) ∈ R × T, (I, ϕ) ∈ R × T and (A, s) ∈ R × T are symplectically


conjugate.


The extra variableA does not play any dynamical role; it is symplectically conjugate


to the variable s and simply makes the system autonomous. So, we are only interested


in studying the dynamics of variables (p, q, I, ϕ, s), given by the system of equations:


ṗ = ∓ V ′(p) − ε
∂h


∂q
(p, q, I, ϕ, s; ε)


q̇ = ± p + ε
∂h


∂p
(p, q, I, ϕ, s; ε)


İ = − ε
∂h


∂ϕ
(p, q, I, ϕ, s; ε) (8)


ϕ̇ = I + ε
∂h


∂I
(p, q, I, ϕ, s; ε)


ṡ = 1


The domain of definition we consider is a compact set of type


D := S × [I−, I+] × T2 × [−ε0, ε0],


where S ⊂ R × T is a neighborhood of the separatrix (P−1
± (0)) of the pendulum.


Then, the main Theorem of this paper is:


Theorem 2.1. Consider a Hamiltonian of the form (1) where V and h are Cr+2 in D,


with r > r0, sufficiently large. Assume also that,


H1 The potential V : T → R has a unique global maximum, say at q = 0, which is non-


degenerate (i.e. V ′′(0) < 0). We denote by (p0(t), q0(t)) an orbit of the pendulum


P±(p, q) in (1), homoclinic to (0, 0).


H2 Consider the Poincaré function, also called Melnikov potential, associated to h (and


to the homoclinic orbit (p0, q0)):


L(I, ϕ, s) = −
∫ +∞


−∞


(h(p0(σ), q0(σ), I, ϕ+ Iσ, s+ σ; 0)


−h(0, 0, I, ϕ+ Iσ, s + σ; 0))dσ


(9)
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H2’ Given real numbers I− < I+, assume that, for any value of I ∈ (I−, I+), there


exists an open set JI ∈ T2, with the property that when (I, ϕ, s) ∈ H+, where


H+ =
⋃


I∈(I−,I+)


{I} × JI ⊂ (I−, I+) × T2, (10)


the map


τ ∈ R 7→ L(I, ϕ− Iτ, s− τ)


has a non-degenerate critical point τ which is locally given by the implicit


function theorem in the form τ = τ ∗(I, ϕ, s), with τ ∗ a smooth function.


H2” Introduce the reduced Poincaré function L∗ defined by


L∗(I, ϕ) := L(I, ϕ− Iτ ∗(I, ϕ, 0),−τ ∗(I, ϕ, 0)), (11)


on


H∗
+ = {(I, θ̃) : θ̃ = ϕ− Is, (I, ϕ, s) ∈ H+} =


⋃


I∈(I−,I+)


{I} × J ∗
I , (12)


and assume that


θ̃ 7→ ∂L∗


∂θ̃
(I, θ̃)


for θ̃ = ϕ− Is ∈ J ∗
I is non-constant and positive (respectively negative).


H3 Fix 1/(r/6 − 1) < ν ≤ 1/16, for any 0 < ε < 1 and for any (k0, l0) ∈ Z2


with gcd(k0, l0) = 1 and |(k0, l0)| < MBG, where |(k0, l0)| = max(|k0|, |l0|) and


MBG = ε−(1+ν)/r, introduce the 2π-periodic function


Uk0,l0(θ) =
∑


t∈Z−{0},
|t||(k0,l0)|<M


htk0,tl0(0, 0,−l0/k0; 0)eitθ,


where θ = k0ϕ+ l0s and M = ε−1/(26+δ), for δ small, for which we assume:


H3’ The function Uk0,l0 has a non-degenerate global maximum.


H3” For |(k0, l0)| ≺ ε−1/r, we assume that the 2πk0-periodic function f given by


f(θ) =
k0U


′k0,l0(θ)∂L∗


∂θ̃


(
−l0
k0
, θ


k0


)
+ 2Uk0,l0(θ)∂2L∗


∂θ̃2


(
−l0
k0
, θ


k0


)


2∂2L∗


∂θ̃2


(
−l0
k0
, θ


k0


) (13)


is non-constant.


H3”’ For |(k0, l0)| ∼ ε−1/r, we assume the non-degeneracy condition stated explicitly


in equation (152).


Then, there exists ε∗ > 0 such that for 0 < |ε| < ε∗ and for any interval


[I∗−, I
∗
+] ∈ (I−, I+), there exists a trajectory x̃(t) of the system (1) such that for some


T > 0


I(x̃(0)) ≤ I∗−; I(x̃(T )) ≥ I∗+.


(respectively:


I(x̃(0)) ≥ I∗+; I(x̃(T )) ≤ I∗−).
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Remark 2.2. r0 depends on the number m of some averaging steps performed in the


proof: r0 = 2(m+ 1)2 and m ≥ 10 (see hypotheses of Theorem 3.1 in Section 3). If we


take just m = 10 then r0 = 242 is enough.


Remark 2.3. The truncation order M in hypotheses H3 depends on the regularity n


required for the application of the KAM Theorem along the proof: M = ε−1/(n+δ), for


n = 2m + 6 and 0 < δ < 1/m, where m is the number of averaging steps performed


in the proof and is such that m ≥ 10 (see hypotheses of Theorems 3.11 and 3.1 and


Remark 3.20). Hence, we choose m = 10 and therefore M = ε−1/(26+δ) in hypotheses


H3.


Remark 2.4. Notice that for every fixed ε we have one condition H3 for every (k0, l0)


such that |(k0, l0)| < MBG, that depends explicitly on (k0, l0). Hence, the number of


non-degeneracy conditions H3 is finite but grows with ε.


Remark 2.5. Notice that by the definition of τ ∗(I, ϕ, s), the function


f(I, ϕ, s) = L(I, ϕ− Iτ ∗(I, ϕ, s), s− τ ∗(I, ϕ, s))


satisfies the equation


I∂ϕf(I, ϕ, s) + ∂sf(I, ϕ, s) = 0.


Therefore it is of the form f(I, ϕ, s) = L∗(I, ϕ− Is), so we can alternatively define


L∗(I, ϕ− Is) = L(I, ϕ− Iτ ∗(I, ϕ, s), s− τ ∗(I, ϕ, s)).


Remark 2.6. The main feature of Theorem 2.1, as already said in the Introduction, is


that h is not required to be a trigonometric polynomial in the variables (ϕ, s), which is


a non-generic assumption, as it was the case in [DLS06a].


Before proving Theorem 2.1 let us see that Theorem 1.1 stated in the Introduction


is just a consequence of Theorem 2.1. Indeed, for every fixed ε, conditions H1 and H2


are open and dense, that is they hold for an open and dense set of Hamiltonians in the


C2 topology.


For every fixed ε, the number of non-degeneracy conditions H3 is finite but grows


with ε (the number of conditions depends on (k0, l0) ∈ Z2 such that gcd(k0, l0) = 1 and


|(k0, l0)| � ε−1/r). When ε tends to 0 we have a countable number of conditions in terms


of the functions


Uk0,l0
∞ (θ) =


∑


t∈Z−{0}


htk0,tl0(0, 0,−l0/k0; 0)eitθ,


which are the same as those in hypotheses H3 but without any truncation. This


countable number of conditions involve only derivatives up to order 2 of the Hamiltonian,


hence the set of Hamiltonians satisfying them is a residual set in the C2 topology, that


is, a countable intersection of open and dense sets in the C2 topology.


Therefore the hypotheses of the Theorem are C2 generic in the set of Cr+2


Hamiltonians of the form (1). So, the short version of Theorem 2.1 stated in Theorem


1.1 in the Introduction follows straightforwardly.
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2.3. Proof of Theorem 2.1


The proof of this theorem follows the geometric mechanism stated in [DLS06a] and it


is organized in four parts that we first sketch now:


Part 1 The first part deals with the existence of a Normally Hyperbolic Invariant Manifold


(NHIM), which jointly with its associated stable and unstable manifolds, organizes


all the dynamics, and is a consequence of hypothesis H1. By hypothesis H2’,


its associated stable and unstable manifolds will intersect transversally, so we can


associate to this object two types of dynamics: the inner and the outer.


Part 2 The outer dynamics, which is the one that takes into account the asymptotic


motions to the NHIM, is studied in the second part. We will see that we can


associate a scattering map to the NHIM and give formulas for the Hamiltonian


function which determines the deformation of this scattering map.


Part 3 The third part of the proof consists of studying the inner dynamics, that is the one


restricted to the NHIM. The goal is to show that, by hypotheses H3’, there exists


a discrete foliation of invariant tori, which are closely spaced. Among these tori,


some of them are primary, so they are just a continuation of the ones that existed


for the integrable system (ε = 0), and some of them are secondary, these ones are


contractible to a periodic orbit, so they correspond to motions with topologies


that were not present in the unperturbed system but they are created by the


resonances. The method of proof will be a combination of an averaging procedure


and a quantitative version of KAM Theorem, which requires the Hamiltonian to be


differentiable enough.


Part 4 The last part of the proof consists of showing that the combination of both types


of dynamics give rise to a construction of a transition chain, that is, a sequence


of whiskered tori in which the stable manifold of one torus intersects transversally


the unstable manifold of the next one. To this end, one needs to show that the


discrete foliation of whiskered tori which are invariant under the (inner) flow is not


invariant under the scattering map or outer map. This is ensured by hypotheses


H2”, H3” and H3”’ in Theorem 2.1, which indeed provide the transversality of


this discrete foliation to the scattering map. Finally we prove, using a standard


obstruction property, that there is an orbit that follows this transition chain.


Next we give a proof of Theorem 2.1 organized in the four parts that we have


mentioned. The first two parts follow readily from [DLS06a] and Theorems stated in


[DLS06a] apply straightforwardly because hypotheses H1 and H2’ required for the proof


of the mentioned results are the same as in our case. Moreover, for the second part we


use the symplectic properties developed in [DLS08] to generalize the computation of


the scattering map using its Hamiltonian function. So, for these parts, we only refer in


Section 2.3.1 and 2.3.2, to the results in [DLS06a] and [DLS08] that we are using.


However, for the third part, the results obtained in [DLS06a] do not apply directly


because in the present paper we are not assuming that the perturbation has a finite
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number of harmonics. Therefore, it has been necessary to develop a new methodology


in order to prove that when we have a Cr+2 perturbation h, with r large enough,


and hypotheses H3’ are fulfilled, for every ε we can truncate adequately its Fourier


series and deal only with a finite number of harmonics and therefore a finite number


of resonances to get a discrete foliation of tori closely spaced. Moreover, explicit


approximate expressions for these tori are obtained as the level sets of a certain function.


The mentioned results are stated and proved rigorously in Section 3, giving rise to


Theorem 3.1 and they constitute the essential result of this paper. In Section 2.3.3 we


just refer to the results in Section 3 needed to prove part 3 of Theorem 2.1.


Once we have fixed in part 3, for every ε, the number of resonances, part 4


follows readily from the finite hypotheses H2”, H3” and H3”’ as in [DLS06a]. The


main difference is that, in contrast to [DLS06a] and thanks to the new results about


the symplectic properties of the scattering map obtained in [DLS08], we can use the


Hamiltonian function generating the deformation of the scattering map instead of the


scattering map itself, in order to compute the images of the leaves of a certain foliation


under the scattering map. The results with their proof are stated in Section 4. In


Section 2.3.4 we just refer to the results in Section 4 needed to prove part 4 of Theorem


2.1.


2.3.1. First Part: Existence of a NHIM and its associated stable and unstable manifolds


The method of proof is based on the existence of an invariant object, a NHIM (see, for


instance, [HPS77, Fen74, Fen77, Fen79, Lla00, Wig90] for the standard theory of NHIMs


used in this paper), which jointly with its associated stable and unstable manifolds,


organizes all the dynamics around it.


We start by discussing the geometric features of the unperturbed case which will


survive under the perturbation. For the case ε = 0, Hamiltonian (1) is integrable and


consists of two uncoupled systems: a rotor and a pendulum. So, the cartesian product


of invariant objects of each of these subsystems will give an invariant object of the full


system. Then, by hypothesis H1, if we consider the product of the hyperbolic fixed


point (p, q) = (0, 0) of the pendulum P±(p, q) in (5) with all the other variables, we have


that for the values I−, I+ given in Theorem 2.1, the set


Λ̃ = {x̃ = (p, q, I, ϕ, s) ∈ (R × T)2 × T : p = q = 0, I ∈ [I−, I+]} (14)


is a 3-dimensional invariant manifold and normally hyperbolic for the flow of the


Hamiltonian system (8) for ε = 0. The associated stable and unstable invariant


manifolds of Λ̃ are the ones inherited from the separatrices of the pendulum (stable


and unstable manifolds of the hyperbolic fixed point) and they agree:


W sΛ̃ = W uΛ̃ = {(p0(τ), q0(τ), I, ϕ, s) : τ ∈ R, I ∈ [I−, I+], (ϕ, s) ∈ T2} (15)


where (p0(τ), q0(τ)) is the chosen orbit of the pendulum P±, provided by hypothesis H1,


which is homoclinic to the hyperbolic fixed point (0, 0).
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The Hamiltonian system (8) for ε = 0 restricted to the manifold Λ̃ is given simply


by


İ = 0, ϕ̇ = I, ṡ = 1.


The dynamics on this manifold is very simple: all the solutions lie on a 2-dimensional


invariant torus I = cte. Therefore, the normally hyperbolic invariant manifold is foliated


by a one-parameter family of 2-dimensional invariant tori indexed by I, with associated


frequency (I, 1).


For 0 < |ε| ≪ 1, by the theory of NHIM (see the references above), the


manifold Λ̃ persists, giving rise to another manifold Λ̃ε with associated local stable


and unstable manifolds W s,locΛ̃ε and W u,locΛ̃ε, which can be prolonged to W sΛ̃ε and


W uΛ̃ε, respectively. Both Λ̃ε and its local stable and unstable manifolds, W s,locΛ̃ε and


W u,locΛ̃ε, are ε-close in the Cr sense to the unperturbed ones:


Λ̃ε = Λ̃ + OCr(ε); W s,locΛ̃ε = W s,locΛ̃ + OCr(ε); W u,locΛ̃ε = W u,locΛ̃ + OCr(ε). (16)


The result of the persistence of the NHIM Λ̃ε and its stable and unstable manifolds


is formulated in Theorem 7.1 of [DLS06a], where the perturbation h in (1) was assumed


to be a trigonometric polynomial. However, the only assumption required for the proof


was the fact that the perturbation h and the potential V were Cr+2, so Theorem 7.1 can


be applied straightforwardly in our case.


2.3.2. Second Part: Outer Dynamics The outer dynamics, which is the one that takes


into account the asymptotic motion to the NHIM Λ̃ε, is described by the scattering


map. It is possible to construct a scattering map associated to the NHIM Λ̃ε, as long


as its stable and unstable manifolds intersect transversally.


In Proposition 9.2 in [DLS06a] it is proved that if hypothesis H2’ in Theorem 2.1 is


satisfied, then the stable and unstable manifolds W sΛ̃ε and W uΛ̃ε of the NHIM intersect


transversally along a homoclinic manifold Γε, which is also called a homoclinic channel


(see [DLS08] for more details, in particular for the definition of the wave operators,


needed for the construction of the scattering map). So, we will be able to locally define


the scattering map associated to Γε and compute it in first order perturbation theory


using the results in [DLS08]. Again, hypothesis H2’ required for Proposition 9.2 in


[DLS08] does not depend on the number of harmonics of the perturbation h, so the


results stated also hold for the case we are considering in this paper.


Therefore, the manifold Λ̃ε defined in (14) has a scattering map associated to a


homoclinic manifold Γε, defined in the following way


Sε : H+ ⊂ Λ̃ε → Λ̃ε


x− 7→ x+


(17)


such that x+ = S(x−) ⇔ ∃ z ∈ Γε such that


dist(Φt,ε(z),Φt,ε(x±)) → 0 for t→ ±∞,


where Φt,ε is the flow of Hamiltonian (1). Indeed,


|Φt,ε(z) − Φt,ε(x±)| ≤ cte e−µ|t|/2 for t→ ±∞,
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where µ =
√


−V ′′(0) > 0 is the characteristic exponent of the saddle point (0, 0) of the


pendulum P±(p, q) in (5).


Heuristically, the scattering map maps points of the manifold Λ̃ε to points of the


manifold Λ̃ε, such that the motion of z synchronizes with that of x− (and x+) in the


past (and in the future).


Moreover, in Proposition 9.2 in [DLS06a] it is given a perturbative formula for the


difference of the actions I of the points x+ = Sε(x−) and x−. Concretely, expressing the


points x± in terms of the parametrization of Λ̃ε, given in Theorem 7.1 in [DLS06a] we


have that


I(x±) = I + OC1(ε), ϕ(x±) = ϕ+ OC1(ε), s(x±) = s,


and


I(x+) − I(x−) = ε
∂L∗


∂θ̃
(I, θ̃) + OC1(ε2), (18)


for θ̃ = ϕ− Is, where L∗ is the reduced Poincaré function defined in hypothesis H2”.


Remark 2.7. Notice that there is a wrong sign in formula (9.9) in [DLS06a].


The method used in [DLS06a], based on the fact that I is a slow variable, allowed


only to compute the leading term of the action component of the scattering map, but


not the ϕ component since it is not a slow variable.


In a more recent paper [DLS08] the authors showed that the scattering map is exact


symplectic and introduced geometric methods that allow to compute perturbatively an


expression for both fast and slow variables.


Thus, using the method proposed in Section 5 in [DLS08], we can give perturbative


formulas for the Hamiltonian Sε generating the deformation of the scattering map Sε.


It follows straightforwardly from Theorem 31 in [DLS08] that the reduced Poincaré


function L∗ introduced in (11) is equal to the Hamiltonian −S0, so that we obtain


Sε(I, ϕ, A, s) = −L∗(I, θ̃) + O(ε), (19)


with θ̃ = ϕ− Is.


Hence, the first order perturbative term of the scattering map is given by


Sε(I, ϕ, A, s) = (I, ϕ, A, s) + εJ∇S0(I, ϕ, A, s) + O(ε2), (20)


where J is the canonical matrix of the symplectic form ω = dI ∧ dϕ + dA ∧ ds and


∇ = (∂I , ∂ϕ, ∂A, ∂s). The extra variable A, conjugated to the angle s, was introduced to


make apparent the symplectic character of the scattering map.


Notice that equation (18) is just the I component of equation (20).


We would like to remark that Sε = Id+O(ε). In particular, one iteration of Sε can


only jump distances of order ε in the action direction I.


Remark 2.8. For the mechanism of diffusion we are interested in comparing the inner


dynamics in Λ̃ε with the outer dynamics provided by the scattering map Sε. Although


the computation up to first order of the scattering map for the I component is enough


for our purposes, it is more natural to study the action of the scattering map in terms


of the Hamiltonian Sε.
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2.3.3. Third Part: Inner Dynamics In this section we study the inner dynamics, that


is, the dynamics of the flow of Hamiltonian (1) restricted to the NHIM Λ̃ε. The main


result is Theorem 3.1, which states that there exists a discrete sequence of invariant


tori Ti in the NHIM Λ̃ε, which are distributed along the actions in the interval (I−, I+)


introduced in Theorem 2.1 and which are O(ε1+η)-closely spaced in terms of the action


variable, for some η > 0. Moreover, Theorem 3.1 provides explicit approximate


expressions for the invariant tori, which are of two types depending on the region of


the phase of space where invariant tori lie: the big gaps region and the flat tori region.


The big gaps region is defined as


DBG = {(I, ϕ, s) ∈ (I−, I+) × T2 : |I + l/k| ≤ L/|k|, |(k, l)| < MBG} (21)


where L is defined in (54) and is going to be introduced precisely along this third Part


and MBG was introduced in hypothesis H3 of Theorem 2.1. For the purpose of this


exposition it is enough to know now that L = O(ε1/n) and MBG = O(ε−1/r), where n is


the regularity of the Hamiltonian required for the application of KAM Theorem (n = 26


will be enough, see hypotheses of Theorem 3.1) and r (r > n) is the regularity of the


Hamiltonian required for Theorem 2.1. The flat tori region is the complementary region


of the big gaps region.


In the flat tori region, there exists a Cantorian foliation of primary KAM tori,


which are just a continuation of invariant tori I = cte present in Λ̃0 for the unperturbed


Hamiltonian (1) for ε = 0.


The big gaps region is formed by gaps of size bigger or equal than ε in the Cantorian


foliation of primary KAM tori. These gaps are bigger than the size ε of the heteroclinic


jumps provided by the scattering map (20). This is what is known in the literature as


the large gap problem. Inside these regions, apart from primary KAM tori which are


bent, there appear other invariant objects, which were not present in the unperturbed


case, like secondary KAM tori and lower-dimensional tori, which are not detected by a


direct application of KAM Theorem, but require a more careful analysis based on an


averaging procedure.


In order to prove Theorem 3.1 we will restrict Hamiltonian (1) to the NHIM Λ̃ε


and perform an averaging procedure before applying a quantitative version of KAM


Theorem. The fundamental difference with respect to [DLS06a] is that for every fixed ε


it will be necessary to truncate adequately the perturbation in order to deal with a finite


number of harmonics depending on ε. The phase space of the truncated Hamiltonian


possesses an heterogeneous sea of a finite number of big gaps of different sizes, depending


on the size of the harmonics of the perturbation.


Restriction to the NHIM Λ̃ε


Following the same arguments given in Sections 8.1 and 8.2 in [DLS06a], we have that


the flow restricted to Λ̃ε is Hamiltonian. More precisely, by Proposition 8.2 of [DLS06a],


we can construct a Cr system of coordinates (J, ϕ, s) on Λ̃ε, where


J = J (I, ϕ, s; ε) = I + OCr−1(ε), (22)
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such that the symplectic form on any Λs
ε = {(J ′, ϕ′, s′) ∈ Λ̃ε : s′ = s} has the standard


expression ω|Λs
ε


= dJ ∧ dϕ. Since Λ̃ε = Λ̃ for ε = 0 according to equation (16), by


Proposition 8.4 in [DLS06a], the restriction of the Hamiltonian Hε in (1) to Λ̃ε expressed


in these action angle coordinates (J, ϕ, s) has the form


k(J, ϕ, s; ε) = Z(J) + εR(J, ϕ, s; ε) (23)


with


Z(J) = J2/2 and R(J, ϕ, s; 0) = h(0, 0, J, ϕ, s; 0), (24)


where h is the perturbation in Hε given in (6) and R is OCr(1).


Remark 2.9. Notice that, by expression (24), Rk,l(J ; 0) = hk,l(0, 0, J ; 0), where hk,l and


Rk,l are the Fourier coefficients in the angle variables (ϕ, s) of the perturbation h and


its restriction R to Λ̃ε, respectively.


Averaging procedure


We start performing an averaging procedure to the restricted Hamiltonian (23), as it


was done in [DLS06a], which follows the argument used in the proof of KAM theorem


in [Arn63], but paying attention to resonant regions. In [DLS06a] the perturbation


was assumed to be a trigonometric polynomial, so there was only a finite number of


resonances. However, in Hamiltonian (1) the perturbation h has an infinite number of


harmonics, in the same way as R in equation (23), which give rise to an infinite number


of resonances, so the results in [DLS06a] do not apply directly.


The main result for the implementation of an averaging procedure for a generic


perturbation will be Theorem 3.11 in Section 3.2. This theorem makes precise the


hypotheses required to truncate the Fourier series of the perturbation R in (23) with


respect to the angle variables and develop a global averaging procedure that casts the


Hamiltonian (23) into a global normal form that has different expressions in the non-


resonant and resonant regions. The main property of the normal form is that it is almost


ready to apply on it a quantitative version of KAM Theorem.


The precise statement and rigorous proof of Theorem 3.11 are postponed to Section


3.2. In the following we only describe its main features and the results needed to apply


KAM Theorem.


There are three parameters that play an important role in the averaging procedure


of Theorem 3.11. One is the number of steps of averaging m to be performed, which


imposes a restriction on the differentiability r of the perturbation: r > 2(m+ 1)2. This


number of averaging steps is chosen later in the application of KAM Theorem. The


other two are M , which is the order of truncation of the Fourier series and L, which


determines the size of the resonant regions. Both of them are chosen to depend on ε


in the following way: M ∼ ε−ρ and L ∼ εα where ρ, α > 0 are going to be chosen


conveniently during this averaging procedure.


For every fixed ε, we truncate the Fourier series of the perturbation R in equation


(23) with respect to the angle variables (ϕ, s) up to order M in the following way


R = R[≤M ] +R[>M ],
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where


R[≤M ](J, ϕ, s; ε) =
∑


(k,l)∈Z2,
|k|+|l|≤M


Rk,l(J ; ε)ei(kϕ+ls), (25)


and


R[>M ](J, ϕ, s; ε) =
∑


(k,l)∈Z
2,


|k|+|l|>M


Rk,l(J ; ε)ei(kϕ+ls), (26)


and we deal only with R[≤M ], which is the trigonometric polynomial of degree M , as a


perturbation. The error introduced in Hamiltonian (23) coming from the neglected tail


of the Fourier series will have to be estimated later on.


Since the truncated Hamiltonian R[≤M ] has a finite number of harmonics, an


averaging procedure of m steps has to take into account a finite number of resonances,


which are the set of rational numbers J = −l/k with |l| + |k| ≤ mM (see Definitions


3.6 and 3.4).


This averaging procedure divides the phase space (J, ϕ, s) in two types of domains.


On the one hand, the non-resonant regions up to order m Dm
nr, which are the set of


points (J, ϕ, s) such that its action variable J is at a distance greater than 2Lk of any


resonance J = −l/k, where Lk = L/|k|. On the other hand, the resonant regions up


to order m Dm
r , which are the set of points (J, ϕ, s) such that its action variable J is


at a distance smaller than Lk of any resonance J = −l/k (see Definitions 3.7 and 3.9).


To avoid overlapping between all the resonant domains, the distance between a


resonance −l0/k0 and any other −l/k must be greater than 2(Lk0 + Lk). Since the


resonances considered satisfy |k| ≤ mM we need to impose 4L < 1/mM , which requires


ρ ≤ α in terms of exponents of ε and this corresponds to the left hand side inequality


of hypothesis (55) in Theorem 3.11.


Along the averaging procedure, one needs to control the Cℓ norms of the averaged


terms and the remainders, for 0 ≤ ℓ ≤ n and 2m < n < r, where n is the regularity


which will be needed for the KAM Theorem and r is the regularity of the perturbation


R in Hamiltonian (23). It turns out that the estimates for the Cℓ norm blow up as a


negative power of L ∼ εα. Since the averaged terms and the remainder contain a power


of ε in front of them, bounds for them can be kept small provided that α is small enough,


that is for α < 1/n. This corresponds to the right hand side inequality of hypothesis


(55) in Theorem 3.11 and also implies ρ < 1/n, which is formula (51) in the hypotheses


of Theorem 3.11.


In all this averaging procedure, there was an initial error coming from the neglected


tail of the truncation of order M of the perturbation R in Hamiltonian (23), whose Cℓ


norm can be bounded by ε/M r−ℓ−2, where r is the regularity of the perturbation R.


To keep it smaller than the Cℓ norm of the remainder after m steps of averaging, one


has to impose a lower bound on ρ, which implies r ≥ (1/ρ− 2)m+ 2 in order to make


compatible lower and upper bounds for ρ, and this is hypothesis (52) in Theorem 3.11.
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These conditions on m, ρ, α and r are stated in the hypotheses of Theorem 3.11.


In it, it is proved that one can develop a global averaging procedure that casts the


Hamiltonian (23) into a global normal form (56), that has different expressions in the


non-resonant and resonant regions (these correspond to expressions (57) and (58) in


theses of Theorem 3.11). In the non-resonant regions one can perform non resonant


averaging transformations in such a way that the averaged Hamiltonian is very close to


a rotor. On the other hand, near the resonances, the resonant averaging transformations


cast the system to a one d.o.f. Hamiltonian, which is close to an integrable pendulum,


provided that the perturbation satisfies some non-degeneracy conditions like H3’.


Summing up, we end up with a Hamiltonian (56) that consists of an integrable part


Z̄m (the averaged Hamiltonian) plus a perturbation εm+1R̄m which is OCℓ(εm+1−α(ℓ+2m)),


for ℓ = 0, . . . , n − 2m, where m is the number of steps of averaging performed. Recall


that the integrable Hamiltonian Z̄m has different expressions in resonant regions and


non-resonant regions.


The integrable part of Hamiltonian (56) gives us an approximate equation Z̄m = cte


for the invariant tori. The next step is to show which tori survive and what is the distance


between them when we add the perturbation term εm+1R̄m in equation (56).


Quantitative version of KAM Theorem


The main tool for this section will be KAM Theorem 3.22, which is a result about


the existence of invariant tori of a periodic perturbation of a Hamiltonian expressed in


action-angle variables. It is a direct adaptation of Theorem 8.12 in [DLS06a]. We will


use Theorem 3.22 to show that there exists a discrete foliation of invariant tori which


are O(ε1+η)-closely spaced, for some η > 0, and give approximate explicit expressions


for them.


Since the integrable Hamiltonian (56) after m steps of averaging has different


expressions in resonant and non-resonant regions (up to order m) introduced along the


averaging procedure, we perform this study separately. In the end, we will show that


all these regions can be grouped in two according to the expressions for the invariant


tori obtained in each one, which are the big gaps region (21) and its complementary


the flat tori region, already mentioned at the beginning of this subsection. Notice


that the big gaps region (21) is formed by the resonances J = −l/k of order 1, such


that |(k, l)| ≤ MBG, whereas flat tori region is composed by the non resonant regions


up to order m and the resonant regions up to order m such that J = −l/k and


|(k, l)| > MBG, where MBG is explicitly chosen in hypotheses H3 as MBG = ε−(1+ν)/r,


for any 1/(r/6 − 1) < ν ≤ 1/16.


Non-resonant regions are studied in Section 3.3.2. In Proposition 3.24, we apply


Theorem 3.22 directly to Hamiltonian (56)-(57), which is already written in action-angle


variables, and we conclude that for these regions there exist flat primary KAM tori given


in (79) as the level sets of a flat function F = I + O(ε1+η), which are O(ε1+η)-closely


spaced, for some η > 0, provided that m ≥ 2 and n ≥ 2m+ 6.


Resonant regions are studied in Section 3.3.3. As we already said, for these regions
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Hamiltonian (56)-(58) is not written in action angle variables but it is close to an


integrable pendulum (58) provided that hypotheses H3’ are satisfied. The integrable


pendulum has rotational and librational orbits as well as separatrices, which separate


these two types of motion. Rotational orbits have the same topology as the primary tori


in the integrable Hamiltonian Z(J) = J2/2 in Hamiltonian (23) and librational orbits


are contractible to a periodic orbit, so they correspond to motions with topologies that


were not present in the unperturbed Hamiltonian Z(J) and they are called secondary


tori. Librational orbits cover all the region inside the separatrix loop of Hamiltonian


(58), giving rise to a gap between primary tori, and the size of this gap depends on the


order of the corresponding resonance and the size of the Fourier coefficient associated


to it.


When gaps are of size smaller than ε, which is the size of the heteroclinic jumps


provided by the scattering map (17), they are called small gaps. In section 3.3.4, we


study the resonant regions with small gaps DSG and in Proposition 3.26 we show that


we can apply the same argument as in the case of non resonant regions to conclude that


for these regions there exist flat primary KAM tori given in (87) as the level sets of a


flat function F = I+O(ε1+η), which is the same as in the non-resonant case, and which


are O(ε1+η)-closely spaced, for some η > 0, provided that m ≥ 2 and n ≥ 2m+ 6.


Notice that tori in the non resonant regions and resonant regions with small gaps


are given by the level sets of the same function F = I +O(ε1+η) and they are flat up to


O(ε1+η), for some η > 0. Both regions form the flat tori region.


Resonant regions with big gaps DBG are studied in Section 3.3.5. They correspond


to resonances J = −l/k such that |(k, l)| < MBG, where MBG = ε−(1+ν)/r, for


1/(r/6 − 1) < ν ≤ 1/16. The size of the gap for these resonances is Cε1/2|(k, l)|−r/2,


where C is a constant independent of ε and (k, l). Note that there is no uniform size


of the gaps since it runs from order ε1/2 for resonances with low |(k, l)| to ε1+ν/2 for


resonances with |(k, l)| ∼MBG.


Our criterium for the choice of the big gaps has been motivated by the size of the


heteroclinic jumps provided by the scattering map (20): small gaps are of size smaller


than ε, so they can always be traversed just connecting two primary tori by the scattering


map, whereas this is not the case for big gaps. For these big gaps, we will show that we


can find other invariant objects, like secondary tori, which fill the region inside the gaps


and they get rather close to the frontier of the gaps among the primary KAM tori.


Remark 2.10. We would like to remark that our result about resonances that create big


gaps is remarkably different of the one obtained in [DLS06a], where it was considered


the case of a perturbation h with a finite number of harmonics. In that case there


was a uniform size for the gaps created by the resonances of order 1 which was Cε1/2.


Moreover, for resonances of order 2 the uniform size of the associated gap was Cε.


Hence, both resonances of order 1 and 2 were considered as big gaps.


In the case of resonances with big gaps, we will need to write the integrable


pendulum Z̄m given in (58) into action-angle variables before applying KAM Theorem


3.22. Since this change of coordinates becomes singular on the separatrix of the







Geography of resonances and Arnold diffusion 20


pendulum, we will need to define different action-angle variables inside and outside


the separatrix, and we will exclude a thin neighborhood of the separatrix.


Moreover, since the behavior of the tori outside is different depending on their


distance to the separatrix (tori are flatter as they are further from the separatrix)


we consider different regions in the outside part of the separatrix, where we perform


different scalings. This strategy, which was already introduced in [DLS06a], has been


improved introducing a new sequence of domains in Theorem 3.30, which reduce the


differentiability requirements.


The main result for the implementation of the above strategy for resonances with


big gaps is Theorem 3.30 jointly with Corollary 3.31 which make explicit the relationship


between the minimum distance between the surviving tori and the number m of steps


of averaging performed.


In Theorem 3.28 we use both Theorem 3.30 and Corollary 3.31 to show that many of


the invariant tori (both primary and secondary) of the integrable averaged Hamiltonian


persist under the perturbation forming a sequence of tori given in (94) as the level sets


of a function F , close to the averaged Hamiltonian with a distance between consecutive


tori of order ε1+η, for some η > 0, in terms of the action variable, provided that m ≥ 10


and n ≥ 2m+ 6.


Propositions 3.24 and 3.26 and Theorem 3.28 can be joined in a unique result about


the existence of nearby invariant tori for the inner dynamics, which is Theorem 3.1. This


Theorem also gives explicit approximate expressions for the invariant tori, which are of


two types depending on the region of the phase of space where invariant tori lie: the


big gaps region and the flat tori region.


We refer to Sections 3.2 and 3.3 for the referenced theorems where one can find the


complete proof.


2.3.4. Fourth Part: Construction of a transition chain and obstruction property In


order to finish the proof, it remains to check that the finite sequence of invariant tori


provided by Theorem 3.1 form a transition chain along the NHIM Λ̃ε, traversing both


big gaps and flat tori regions, and to show that there are orbits that follow it closely.


These are the orbits claimed in Theorem 2.1.


The scattering map Sε associated to the homoclinic channel Γε, defined in (17), is


the main tool to detect that there exist transverse heteroclinic connections between these


tori, which are objects of different topology. Indeed, by Lemma 10.4 in [DLS06a], we


know that two submanifolds, like the invariant tori Ti, of a NHIM Λ̃ε, have a transverse


heteroclinic intersection if they are transversal under the scattering map as submanifolds


of Λ̃ε.


The main result of this section is Proposition 4.1 where it is proved the existence of


transition chains, that is chains of invariant tori Ti, both primary and secondary, such


that their image under the scattering map Sε in (20) intersects transversally Ti+1 on Λ̃ε,


that is


Sε(Ti) ⋔Λ̃ε
Ti+1. (27)
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In Section 2.3.2 we have obtained an explicit expression (20) up to first order for


the scattering map Sε using the first order calculation of the Hamiltonian function Sε.


In Section 2.3.3 we have shown that on the NHIM Λ̃ε there exists a discrete foliation


of KAM tori Ti (primary and secondary) which are O(ε1+η)-closely spaced, for some


η > 0. Moreover, we have obtained explicit expressions for tori Ti, both primary and


secondary, and we have seen that these invariant objects are given approximately by


the level sets of the averaged Hamiltonian.


In Lemma 4.2 in Section 4.1, we give an expression for the action of the scattering


map Sε on a foliation given by the level sets of a given function F , using the expression


for the Hamiltonian function Sε generating the deformation of the scattering map,


introduced in Section 2.3.2. Moreover, we give conditions to assure transversality


between the foliation in Λ̃ε and its image under the scattering map Sε.


As we have seen in the previous section, the different types of tori that appear in


our problem have different quantitative properties and therefore the dominant terms


in the expression of these invariant objects as the level sets of a certain function are


different whether they lie in a flat tori region or a big gaps region. Lemma 4.2 is applied


in Lemma 4.5 for the case of the flat tori region, and in Lemma 4.7 for the case of


the big gaps region. In these Lemmas it is shown that the sufficient conditions on the


perturbation of the Hamiltonian (1) for the transversality are hypotheses H2”, H3”


and H3”’ in Theorem 2.1.


Putting all these results together in Proposition 4.1, we have that, by hypothesis


H2” and the non-degeneracy conditions H3” and H3”’, the scattering map Sε maps


pieces of these tori transversally in Λε to other tori at a distance O(ε), that is Sε(Ti) ⋔


Ti+1, where Ti and Ti+1 are invariant tori at a distance smaller than ε. Therefore, by


Lemma 10.4 in [DLS06a] we have that W u
Ti


⋔ W s
Ti+1


and we have constructed a transition


chain.


Finally, we use the well known result that given a transition chain {Ti}N
i=0, we can


find an orbit visiting all the elements of the chain. In our case, as it was the case in


[DLS06a] we have incorporated in the chain objects with different topologies, so applying


Lemma 11.1 in [DLS06a] to the transition chain obtained, we get that there is ε∗ > 0


such that for 0 < |ε| < ε∗, and for any interval [I∗−, I
∗
+] ∈ (I−, I+), x̃(t) satisfies that, for


some T > 0


I(x̃(0)) ≤ I∗−; I(x̃(T )) ≥ I∗+


(respectively:


I(x̃(0)) ≥ I∗+; I(x̃(T )) ≤ I∗−)


as we wanted to prove.


3. Inner Dynamics


The main goal of this section is to prove Theorem 3.1 about the existence of a sequence


of invariant tori Ti in the NHIM Λ̃ε, which are distributed along all the actions in the
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interval (I−, I+) and are O(ε1+η)-closely spaced, for some η > 0. The method of proof


will consist of the combination of two parts: averaging methods and KAM Theorem.


In Section 3.2 we will consider the restricted Hamiltonian (23) and perform, in


Theorem 3.11, a global averaging procedure that casts the Hamiltonian into a global


normal form, which has different expressions in the non-resonant and resonant regions.


In the non-resonant regions, averaging transformations cast the system to close to a


rotor and, in general, in the non-resonant regions to close to an integrable pendulum.


In Section 3.3 we will use KAM Theorem 3.22 to show that many of the invariant


tori of the averaged Hamiltonian persist when we add the error terms of the normal


form and they are close enough in terms of the action variables. For the flat tori region,


which consists of non-resonant regions and resonant regions with small gaps, we can


apply KAM Theorem 3.22 almost straightforwardly and this is done in Propositions


3.24 and 3.26, respectively. For the big gaps region, we will show in Theorem 3.28 that


we can apply KAM Theorem after we have written the Hamiltonian in action-angle


coordinates.


3.1. Main result


The main result about the existence of invariant tori in the NHIM Λ̃ε is stated in the


following Theorem:


Theorem 3.1. Consider a Hamiltonian of the form (1) and assume that r > 2(m+1)2,


with m ≥ 10 and n = 2m + 6, as well as hypothesis H3’. Choose η = min((m − 1 −
αn)/2, ν/2 − 3(1 + ν)/r), where α < 1/n and 1/(r/6 − 1) < ν ≤ 1/16. Then, for ε


small enough, there exists a finite sequence of invariant tori {Ti}N
i=0 in Λ̃ε which are


distributed along all the actions in the interval (I−, I+), such that


1. They are defined by the equation F (I, ϕ, s; ε) ≡ Ei, where F is a C4−̺ function,


for any ̺ > 0, which has the form (87) and (94) depending on the region where


the invariant tori lie: the flat tori region or a connected component of the big gaps


region defined in (82), respectively. In the flat tori region, the invariant tori are


primary whereas in the big gaps region invariant tori can be primary or secondary.


In the big gaps region, for values of Ei > 0 equation (94) provides two primary tori


T ±
Ei


, whereas for Ei < 0 it gives a secondary tori TEi
.


2. They can be also written as a graph of the variable I over the angle variables (ϕ, s):


I = λE(ϕ, s; ε) with λE given in (88) for the flat tori region. In the case of the


big gaps region, the equations for them are given for two different invariant tori


T ±
i (two different components in the case of secondary KAM tori) in the form


I = λ±E(ϕ, s; ε), with λ±E given in (95).


3. These tori are O(ε1+η)-closely spaced in terms of the action variable I. In the


connected component (82) of the big gaps region associated to the resonance −l0/k0,


they are O(ε3/2+η|(k0, l0)|−r/2+1)-closely spaced in terms of energies Ei, where


−l0/k0 is the associated resonance.
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4. T0 and TN are OC2(ε1+η)-close to I− and I+, respectively.


The proof of Theorem 3.1 is a combination of an averaging procedure (Section 3.2)


and a KAM Theorem (Section 3.3). In Section 3.4 we put the results obtained in the


previous sections together to give a proof of Theorem 3.1.


3.2. Averaging procedure


In this section we proceed to obtain a suitable global normal form of the restricted


Hamiltonian (23), according to the procedure described in Section 2.3.3. We use


the standard formalism of Lie Series, so we are considering canonical transformations


obtained as the time-one map of the flow of a Hamiltonian. A very pedagogical treatment


of this method can be found in [LM88]. As we have already mentioned, we consider


a truncation of the Fourier Series of the perturbation and we deal with trigonometric


polynomials of a finite order. We first introduce a Banach space with a suitable norm,


which allows an efficient study of the estimates for the different terms that appear in


the averaging procedure.


3.2.1. Preliminaries. Functional Spaces We consider the space of functions defined on


I ×T2, I ⊂ R compact set, which consists of trigonometric polynomials of order M on


(ϕ, s) ∈ T2, and Cr with respect to J ∈ I ⊂ R. We denote this space TM(I × T2). A


function u ∈ TM (I × T2) is of the form


u(J, ϕ, s) =
∑


(k,l)∈Z2,
|k|+|l|≤M


uk,l(J)ei(kϕ+ls). (28)


Remark 3.2. Note that the product of two elements u ∈ TM(I×T2) and v ∈ TN(I×T2)


is another trigonometric polynomial in the variables (ϕ, s) ∈ T2 but of degree M +N ,


that is, uv ∈ TM+N(I × T2).


Clearly, the space TM (I×T2) is a closed subset of Cr(I×T2). Therefore, TM (I×T2)


is a Banach space with the Cr norm introduced in (2).


Moreover, since the functions u are trigonometric polynomials in (ϕ, s), we can


consider the expression (28) and deal with the Fourier norm:


‖u‖[≤M ]


Cℓ(I×T2)
:=


ℓ∑


m=0


m∑


n=0


2ℓ
∑


(k,l)∈Z
2,


|k|+|l|≤M


|uk,l|Cn(I)|(k, l)|m−n (29)


where |uk,l|Cn(I) is defined in (2) and |(k, l)| = max(|k|, |l|), and | · | denotes the standard


modulo. When there is no possibility of confusion about M we will abreviate it as ‖·‖Cℓ .


On the other hand, to understand better the behavior of the function u with respect


to the variable J when it gets closer to the resonances, we will use the Fourier norm


with a weight L ≤ 1:


‖u‖[≤M ]


Cℓ(I×T2),L
:=


ℓ∑


m=0


m∑


n=0


2ℓ
∑


(k,l)∈Z
2,


|k|+|l|≤M


|uk,l|Cn(I),L|(k, l)|m−n (30)
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where |(k, l)| is as before and


|uk,l|Cn(I),L :=


n∑


i=0


Li |Diuk,l|C0(I)


i!
.


As before, when there is no confusion about M we will abbreviate these norms as ‖·‖Cℓ,L


and | · |Cn,L, respectively.


Note that when L = 1, we recover the Fourier norm (29).


The basic properties of these norms are collected in Appendix B. In particular they


are related by


Lℓ|u|Cℓ ≤ ‖u‖Cℓ,L ≤ CM2|u|Cℓ, (31)


where C is a constant that depends on ℓ but it is independent of M and 0 < L ≤ 1.


For the seminorm |·|j,ℓ−j defined in (3) one has that for all 0 ≤ j ≤ ℓ,


Lj |u|j,ℓ−j ≤ ‖u‖Cℓ,L . (32)


Note that in the case that the function u ∈ TM (I × T2) does not depend on the


action variable J , we have that


|u|Cℓ = |u|0,ℓ,


therefore by equation (32),


|u|Cℓ ≤ ‖u‖Cℓ,L . (33)


Moreover, given u ∈ TM(I × T2) and v ∈ TN(I × T2), we have that uv ∈
TM+N(I × T2) and for 0 < L ≤ 1 and 0 ≤ ℓ ≤ r,


‖uv‖[≤M+N ]


Cℓ,L
≤ ‖u‖[≤M ]


Cℓ,L
‖v‖[≤N ]


Cℓ,L
. (34)


We will say that a function f is OCr ,L(η) when ‖f‖Cr,L � η.


3.2.2. The homological equation In this section, we will use the standard formalism


of Lie series to perform a resonant averaging procedure. We first start discussing


the infinitesimal equations for averaging, which will serve as a motivation for the


phenomenon of resonances and therefore for the resonant averaging.


We begin with a Hamiltonian K(J,A, ϕ, s) = K0(J,A) + εK1(J,A, ϕ, s), where


(J,A, ϕ, s) ∈ R2 × T2 and K0(J,A) = A + J2/2. We start looking for a canonical


transformation g, given by the time-one map of the flow of a Hamiltonian εG(J,A, ϕ, s)


(generating function), that eliminates, when it is possible, the dependence on the angle


variables (ϕ, s) up to order ε. Therefore,


K ◦ g = K + {K, εG} +
1


2
{{K, εG}, εG}+ . . .


= K0 + ε(K1 + {K0, G}) + O(ε2)


where {, } denotes the Poisson bracket in the canonical coordinates (J,A, ϕ, s):


{f, g} =
∂f


∂ϕ


∂g


∂J
+
∂f


∂s


∂g


∂A
− ∂f


∂J


∂g


∂ϕ
− ∂f


∂A


∂g


∂s
.
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We seek for a solution G of the infinitesimal equation


K1 + {K0, G} = K̄,


which produces a K̄ as simple as possible. In Fourier coefficients this equation has the


form


Kk,l(J) − i(ω(J) · (k, l))Gk,l(J) = K̄k,l(J) (35)


where Kk,l(J), Gk,l(J) and K̄k,l(J) are the Fourier coefficients of K1, G and K̄,


respectively, for (k, l) ∈ Z2, and ω(J) ∈ R2 is of the form


ω(J) =


(
∂K0


∂J
,
∂K0


∂A


)
= (J, 1).


This vector ω(J) is called resonant when (J, 1) · (k, l) = Jk + l = 0, for


(k, l) 6= (0, 0); and the values J = −l/k, with k 6= 0, for which this equation vanishes


and Kk,l(−l/k) 6= 0 are called resonances. Looking at equation (35) it is clear that these


are the places where we can not choose Gk,l(J) in order to have K̄k,l(J) ≡ 0. So, for


these values of J and, in order to keep smoothness, the ones in a neighborhood around


them, we will choose K̄k,l(J) to be the Fourier term Kk,l(−l/k). Note that we cannot


have K̄0,0(J) ≡ 0 for any J either, so we will also keep the Fourier coefficient K0,0(J).


The precise result with the estimates for the functions is formulated in the following


Lemma:


Lemma 3.3. Let K(J, ϕ, s) be a Hamiltonian defined on I × T2, I ⊂ R compact set,


which is a Cr+1 function with respect to J and a trigonometric polynomial in (ϕ, s) of


degree M , so it can be expressed in the following way


K(J, ϕ, s) =
∑


(k,l)∈N


Kk,l(J)ei(kϕ+ls),


with N = {(k, l) ∈ Z2, |k| + |l| ≤ M}. We refer to resonances as the elements of the


finite set of rational numbers


R = {−l/k ∈ Q : (k, l) ∈ N , k 6= 0, Kk,l(−l/k) 6= 0}. (36)


For any (k, l) ∈ N , we consider (k̃, l̃) ∈ Z2 such that −l/k = −l̃/k̃ and gcd(k̃, l̃) = 1


and we define Lk = Lk̃ = L/|k̃|, being L ≤ 1 some constant small enough such that for


all −l/k ∈ R, the real intervals [−l/k − 2Lk,−l/k + 2Lk] are all disjoint.


Then, there exist a function G = G[≤M ] of class Cr with respect to J and K̄ = K̄ [≤M ]


of class Cr+1, which are both trigonometric polynomials in (ϕ, s), such that they solve


the homological equation


K + {K0, G} = K̄, (37)


and verify:


1. If |J + l/k| ≥ 2Lk for any (k, l) ∈ N , then


K̄(J, ϕ, s) = K0,0(J). (38)
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2. If |J + l0/k0| ≤ Lk0 for some (k0, l0) ∈ N , then


K̄(J, ϕ, s) = K0,0(J) +
∑


t∈Z−{0}
|t|(|k0|+|l0|)≤M


Ktk0,tl0(−l0/k0)e
it(k0ϕ+l0s)


=: K0,0(J) + Uk0,l0(k0ϕ+ l0s).


(39)


3. The function K̄ verifies
∥∥K̄
∥∥
Cℓ,L


≤ Cℓ ‖K‖Cℓ,L , (40)


for ℓ = 0, . . . , r + 1, where Cℓ is a constant independent of L,M .


4. The function G verifies


‖G‖Cℓ,L ≤ Cℓ


L
‖K‖Cℓ+1,L (41)


for ℓ = 0, . . . , r, where Cℓ is a constant independent of L,M .


Proof. We want to solve for each (k, l) ∈ N the equation (35)


Kk,l(J) − i(Jk + l)Gk,l(J) = K̄k,l(J), (42)


where the unknowns are the Fourier coefficients of the generating function G and the


averaged Hamiltonian K̄.


So, we first choose:


1. K̄0,0(J) = K0,0(J),


2. if (0, l) ∈ N , l 6= 0, K̄0,l(J) = 0,


3. if (k, l) ∈ N , k 6= 0, we choose K̄k,l(J) as


K̄k,l(J) = Kk,l(−l/k)ψ
(


1


Lk


(J + l/k)


)
, (43)


where ψ(x) is a fixed C∞ function such that: ψ(x) = 1, if x ∈ [−1, 1], and ψ(x) = 0,


if x /∈ [−2, 2]. With this choice we have that K̄k,l verifies:


(a) If |J + l/k| ≤ Lk then K̄k,l(J) = Kk,l(−l/k),
(b) if |J + l/k| ≥ 2Lk then K̄k,l(J) = 0.


Once we have defined K̄ as above, it is clear that it is a Cr+1 function, and its


Fourier coefficients satisfy:


∣∣K̄k,l


∣∣
Cn,L


=
n∑


i=0


Li


∣∣DiK̄k,l


∣∣
C0


i!


=


n∑


i=0


Li


i!


|Kk,l(−l/k)| |Diψ|C0


Li
k


≤ |Kk,l|C0 |k|n
n∑


i=0


|Diψ|C0


i!
(44)


= |Kk,l|C0 |k|n |ψ|Cn .
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Using this inequality for the Fourier coefficients it is easy to see that K̄ verifies the


desired bound (40). More precisely,


∥∥K̄
∥∥
Cℓ,L


=
ℓ∑


m=0


m∑


n=0


2ℓ
∑


(k,l)∈Z2,
|k|+|l|≤M


∣∣K̄k,l


∣∣
Cn,L


|(k, l)|m−n


≤
ℓ∑


m=0


m∑


n=0


2ℓ
∑


(k,l)∈Z
2,


|k|+|l|≤M


|ψ|Cn |Kk,l|C0 |k|n|(k, l)|m−n


≤ |ψ|Cℓ


ℓ∑


m=0


m∑


n=0


2ℓ
∑


(k,l)∈Z
2,


|k|+|l|≤M


|Kk,l|C0 |(k, l)|m


≤ (ℓ+ 1) |ψ|Cℓ ‖K‖Cℓ,L


for ℓ = 0, . . . , r + 1, so choosing Cℓ = (ℓ + 1) |ψ|Cℓ , which is independent of L, we get


the desired bound.


Now, we choose G to verify equation (42) so we get:


1. G0,0 = 0 and Gk,l(J) = 0 if (k, l) /∈ N ,


2. if (0, l) ∈ N , l 6= 0, G0,l(J) = K0,l(J)/il,


3. if (k, l) ∈ N , k 6= 0, we choose Gk,l(J) as:


(a) If J 6= −l/k then Gk,l(J) = i
K̄k,l(J) −Kk,l(J)


Jk + l
,


(b) Gk,l(−l/k) = lim
J→−l/k


Kk,l(J) − K̄k,l(J)


i(Jk + l)
=
K ′


k,l(−l/k)
ik


.


Then G(J, ϕ, s) is a trigonometric polynomial in (ϕ, s) of degree M , and of class


Cr with respect to J . To bound the function G, we first need to bound its Fourier


coefficients in terms of |·|Cℓ,L norm for 0 ≤ ℓ ≤ r. Given a fixed (k0, l0) ∈ N , by the


definition of K̄ and G, we have:


1. ∀J , |G0,l|Cn,L ≤ |K0,l|Cn,L /|l|, for ℓ = 0, . . . , r.


2. If |J + l0/k0| ≤ Lk0, then |Gk0,l0 |Cn,L ≤ (n + 1)
|Kk0,l0 |Cn+1,L


L|k0|
, for n = 0, . . . , r.


This estimate comes from


|Gk0,l0|Cn,L =


n∑


i=0


Li |DiGk0,l0|C0


i!


≤
n∑


i=0


Li


i!


|Di+1Kk0,l0 |C0


|k0|


≤ (n + 1)


L|k0|
n∑


i=0


Li+1


(i+ 1)!


∣∣Di+1Kk0,l0


∣∣
C0


≤ (n + 1)
|Kk0,l0 |Cn+1,L


L|k0|
.
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3. If |J + l0/k0| ≥ 2Lk0 then |Gk0,l0 |Cn ≤ n + 1


L


ℓ∑


i=0


|Kk0,l0|Ci,L |k0|n−i, for n =


0, . . . , r + 1.


This estimate is obtained using Leibniz rule for derivatives in the following way:


|Gk0,l0|Cn,L =


n∑


i=0


Li |DiGk0,l0|C0


i!


=
n∑


i=0


Li


i!


∣∣∣∣D
i


(
−i


Kk0,l0


Jk0 + l0


)∣∣∣∣
C0


≤
n∑


i=0


Li


i!


i∑


j=0


(
i


j


)
|DjKk0,l0|C0


(2Lk0)
i−j+1|k0|


≤
n∑


i=0


1


L


i∑


j=0


Lj |DjKk0,l0 |C0


j!
|k0|i−j


≤ n + 1


L


n∑


i=0


Li |DiKk0,l0|C0


i!
|k0|n−i


≤ n + 1


L


n∑


i=0


|Kk0,l0|Ci,L |k0|n−i.


4. If Lk0 ≤ |J + l0/k0| ≤ 2Lk0 , then


|Gk0,l0|Cn,L ≤ n+ 1


L


n∑


i=0


|Kk0,l0|Ci,L |k0|n−i + (n + 1) |Kk,l|C0 |k|n |ψ|Cn ,


for n = 0, . . . , r and C is a constant independent of L.


This estimate can be obtained in the same way as the previous one using the


estimate obtained for K̄k,l in (44), in the following way


|Gk0,l0|Cn,L =
n∑


i=0


Li |DiGk0,l0 |C0


i!


≤
n∑


i=0


Li


i!


∣∣∣∣D
i


(
i
K̄k0,l0


Jk0 + l0


)∣∣∣∣
C0


+
n∑


i=0


Li


i!


∣∣∣∣D
i


(
−i


Kk0,l0


Jk0 + l0


)∣∣∣∣
C0


≤ (n+ 1)2


L
|Kk,l|C0 |k|n |ψ|Cn +


n + 1


L


n∑


i=0


|Kk0,l0|Ci,L |k0|n−i.


In order to finish the proof, we will use these estimates for the Fourier coefficients


of G to bound the function G.


First we concentrate on the set I ′ ⊂ I formed by J ∈ R, such that |J+ l0/k0| ≤ Lk0


for some −l0/k0 ∈ R. Notice that if J ∈ I ′, for any other (k, l) ∈ N , such that


(k, l) 6= (tk0, tl0) for t ∈ Z, J satisfies that |J+l/k| ≥ 2Lk. Therefore, we will distinguish


three types of Fourier coefficients Gk,l of G, which are the ones described in points 1,2


and 3 in this proof. Using their corresponding bounds we have
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‖G‖Cℓ(I′×T2),L =


ℓ∑


m=0


m∑


n=0


2ℓ






M∑


l=−M


|G0,l|Cn,L |l|m−n +
∑


(k,l)∈N
(k,l)6=t(k0,l0)


|Gk,l|Cn,L |(k, l)|m−n


+
∑


t∈Z\{0}
|t|(|k0|+|l0|)≤M


|Gtk0,tl0 |Cn,L |t(k0, l0)|m−n






≤
ℓ∑


m=0


m∑


n=0


2ℓ


(
M∑


l=−M


|K0,l|Cn,L


|l| |l|m−n


+
∑


(k,l)∈N
(k,l)6=t(k0,l0)


(
(n+ 1)


L


n∑


i=0


|Kk,l|Ci,L |k|n−i


)
|(k, l)|m−n


+
∑


t∈Z\{0}
|t|(|k0|+|l0|)≤M


(n+ 1)


L|k0|
|Ktk0,tl0 |Cn+1,L |t(k0, l0)|m−n






≤
ℓ∑


m=0


m∑


n=0


2ℓ


(
M∑


l=−M


|K0,l|Cn,L |l|m−n


+
∑


(k,l)∈N
(k,l)6=t(k0,l0)


(n+ 1)


L


n∑


i=0


|Kk,l|Ci,L |(k, l)|m−i


+
∑


t∈Z\{0}
|t|(|k0|+|l0|)≤M


(n+ 1)


L
|Ktk0,tl0 |Cn+1,L |t(k0, l0)|m−n−1






≤
ℓ∑


m=0


m∑


n=0


2ℓ


(
M∑


l=−M


|K0,l|Cn,L |l|m−n


+
(n+ 1)(m+ 1)


L


∑


(k,l)∈N
(k,l)6=t(k0,l0)


|Kk,l|Cn,L |(k, l)|m−n


+
n+ 1


L


∑


t∈Z\{0}
|t|(|k0|+|l0|)≤M


|Ktk0,tl0 |Cn+1,L |t(k0, l0)|m−n−1






≤ ‖K‖Cℓ,L +
(ℓ+ 1)


L


(
(ℓ+ 1) ‖K‖Cℓ,L + ‖K‖Cℓ+1,L


)


≤ Cℓ


L
‖K‖Cℓ+1,L







Geography of resonances and Arnold diffusion 30


for ℓ = 0, . . . , r, where Cℓ = 3(ℓ+ 1)2 is a constant independent of L.


Analogously, for the set I ′′ ⊂ I formed by J ∈ R such that Lk0 ≤ |J+ l0/k0| ≤ 2Lk0


for some −l0/k0 ∈ R, we notice that if J ∈ I ′′ then for any other (k, l) ∈ N such that


(k, l) 6= (tk0, tl0), t ∈ Z, J satisfies that |J+ l/k| ≥ 2Lk. In this case, we will distinguish


three types of Fourier coefficients Gk,l of G, which are the ones described in points 1,3


and 4 in this proof. Using the same argument as in the previous case, jointly with the


bounds for the Fourier coefficients, we have that


‖G‖Cℓ(I′′×T2),L ≤ ‖K‖Cℓ,L +
(ℓ+ 1)2


L


(
‖K‖Cℓ,L + |ψ|Cℓ ‖K‖Cℓ,L + ‖K‖Cℓ,L


)


≤ Cℓ


L
‖K‖Cℓ,L


for ℓ = 0, . . . , r, where Cℓ = 4(ℓ+ 1)2 is a constant independent of L.


And finally, for the remaining set I ′′′ ⊂ I formed by J ∈ R, such that |J+l/k| ≥ 2Lk


for any (k, l) ∈ N , the Fourier coefficients Gk,l of G are just the ones described in points


1 and 3. Arguing as before we have


‖G‖Cℓ(I′′′×T2),L ≤ ‖K‖Cℓ,L +
(ℓ+ 1)2


L
‖K‖Cℓ,L ≤ Cℓ


L
‖K‖Cℓ,L ,


for ℓ = 0, . . . , r, where Cℓ = 2(ℓ+ 1)2 is a constant independent of L.


So putting all these estimates together we get the desired bound (41) for the whole


domain. �


3.2.3. The main averaging result In this section we apply repeatedly the procedure


stated in the previous section to the truncated Fourier series of the perturbation R[≤M ]


in (25), to get a suitable normal form.


We start the averaging procedure with the Hamiltonian (23) truncated up to order


M ,


k0(J, ϕ, s; ε) = Z0(J, ϕ, s; ε) + εR0(J, ϕ, s; ε),


where Z0(J, ϕ, s; ε) = J2/2 andR0(J, ϕ, s; ε) = R[≤M ](J, ϕ, s; ε), which is a trigonometric


polynomial of degree M in the angle variables (ϕ, s).


We will search for a canonical transformation g0, given by the time-one map of the


flow of Hamiltonian εG0 provided by Lemma 3.3 that eliminates, when it is possible,


the dependence on the angle variables (ϕ, s) at order ε.


According to expression (36), we will refer to resonances of order 1 as the elements


of


R1 = {−l/k ∈ Q ∩ (I−, I+), |k| + |l| ≤ M, k 6= 0, R0
k,l(−l/k; 0) 6= 0},


where R0
k,l are the Fourier coefficients ofR0. For each resonance −l/k in R1 we will define


a strip of size 2L/|k|, for L ∼ εα and α > 0, centered on the resonance. We will call


resonant region of order 1 the union of these strips, where the averaging transformation


g0 can not eliminate the dependence on the angle variables, and non resonant region up
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to order 1 the complementary region in Λ̃ε, where k0 ◦ g0 reduces to contain only the


harmonic R0
0,0(J ; 0) at order ε.


Hence, the Hamiltonian k1 = k0 ◦ g0 is now of the form


k1(J, ϕ, s; ε) = Z1(J, ϕ, s; ε) + ε2R1(J, ϕ, s; ε),


where the normal form Z1 is a Cr function, which has different expressions in the resonant


and non resonant regions, and the remainder ε2R1 is a Cr−2 function.


Proceeding by induction, we obtain a sequence of Hamiltonians kq−1, for q ≥ 1,


which are normalized up to order εq−1, that is, in adequate symplectic coordinates


Hamiltonian kq−1 takes the form


kq−1(J, ϕ, s; ε) = Zq−1(J, ϕ, s; ε) + εqRq−1(J, ϕ, s; ε), (45)


where, as before, the normal form Zq−1 is a Cr−2(q−2) function, which has different


expressions in the resonant and non resonant regions up to order q−1, and the remainder


εqRq−1 is a Cr−2(q−1) function.


The set of resonances of order q and its associated resonant and non resonant regions


up to order q, are defined recursively in the following way:


Resonances. Resonant and non resonant regions.


Definition 3.4. The set of resonances of order q ≥ 1 is the set of rational numbers


r ∈ Rq\(R1 ∪ · · · ∪ Rq−1), where Rq is the set of rational numbers r ∈ Q ∩ (I−, I+)


which admit a representation r = −l/k for some integers k, l satisfying |l| + |k| ≤ qM ,


such that Rq−1
k,l (−l/k; 0) 6= 0; in symbols,


Rq = Rq(M) =


{
− l


k
∈ Q ∩ (I−, I+) : |k| + |l| ≤ qM, k 6= 0, Rq−1


k,l (−l/k; 0) 6= 0


}
, (46)


where Rq−1
k,l are the Fourier coefficients of the remainder Rq−1 in (45).


Roughly speaking, we call resonances of order q the places in J where the q-th order


averaging can not eliminate the dependence on the angles at order q.


Remark 3.5. Notice that, by hypotheses H3’ in Theorem 2.1, for all


−l0/k0 ∈ Q ∩ (I−, I+) such that |(k0, l0)| < MBG there exists t∗ ∈ Z2 such that


ht∗k0,t∗l0(0, 0,−l0/k0; 0) 6= 0 and therefore, by equation (24), Rt∗k0,t∗l0(−l0/k0; 0) 6= 0.


Hence, by definition 3.4 for resonances of order 1, as long as MBG ≤M , all the rational


numbers −l/k with |(k, l)| < MBG are resonant of order 1.


Definition 3.6. The set R[≤q](M) of resonances up to order q is the union of sets of


resonances of order i, for i = 1, . . . , q; in symbols,


R[≤q] = R[≤q](M) =
⋃


i=1,...,q


Ri(M) ⊂ Q. (47)


For this set of resonances we define different strips in Λ̃ε of a width depending on


a parameter L, which is L ∼ εα, with α > 0. This divides the phase space in two types


of regions:
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Definition 3.7. The non-resonant region up to order q Dq
nr is the set of points


(J, ϕ, s) ∈ Λ̃ε which are at a distance greater than 2Lk in terms of the J variable of


any resonance −l/k ∈ R[≤q], where Lk = L/|k|; in symbols,


Dq
nr = Dq


nr(M,L) =


{
(J, ϕ, s) ∈ (I−, I+) × T2 :


∣∣∣∣J +
l


k


∣∣∣∣ ≥ 2Lk, for − l


k
∈ R[≤q]


}
. (48)


Definition 3.8. The resonant region of order q Dr,q is the set of points (J, ϕ, s) ∈ Λ̃ε


which are at a distance smaller than Lk = L/|k| in terms of the J variable from any


resonance −l/k ∈ Rq\(R1 ∪ . . . ∪Rq−1); in symbols,


Dr,q = Dr,q(M,L) =
{
(J, ϕ, s) ∈ (I−, I+) × T2 :


∣∣J + l
k


∣∣ ≤ Lk,


for some − l
k
∈ Rq\(R1 ∪ . . . ∪Rq−1)


}
.


(49)


The union of resonant regions of order i, for i = 1, . . . , q gives us the resonant region


up to order q, which can be defined in the following way:


Definition 3.9. The resonant region up to order q Dq
r is the set of points (J, ϕ, s) ∈ Λ̃ε


which are at a distance smaller than Lk = L/|k| in terms of the J variable from any


resonance −l/k ∈ R[≤q]; in symbols,


Dq
r = Dq


r (M,L) =


{
(J, ϕ, s) ∈ (I−, I+) × T2 :


∣∣∣∣J +
l


k


∣∣∣∣ ≤ Lk, for some − l


k
∈ R[≤q]


}
(50)


The dependence of these domains onM and L: Dq
nr = Dq


nr(M,L), Dr,q = Dr,q(M,L)


and Dq
r = Dq


r (M,L), will be suppressed to simplify notation.


Remark 3.10. Note that, by Remark 3.5, the big gaps region DBG introduced in (21) is


contained in the resonant region of order 1 Dr,1.


The precise result to obtain a global normal form for the reduced Hamiltonian by


applying repeatedly the averaging procedure, jointly with the estimates for the bounds


of the normal form terms and the expression of the order of truncation M and the


constant L as functions of ε are stated in the following Theorem 3.11:


Theorem 3.11. Let n,m be any given integers satisfying 1 ≤ 2m ≤ n. Given ρ a real


number satisfying


ρ <
1


n
, (51)


and r an integer verifying


r ≥ (1/ρ− 2)m+ 2, (52)


consider a Cr Hamiltonian of the form (23):


k(J, ϕ, s; ε) =
J2


2
+ εR(J, ϕ, s; ε), (53)


satisfying εR(J, ϕ, s; ε) = OCr(ε).


Introduce M ∼ ε−ρ, for any −l/k ∈ R[≤m](M), introduced in (47), consider


Lk = L/|k|, where


L = Cεα (54)
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with


ρ ≤ α < 1/n (55)


and C a constant independent of ε, such that for −l/k ∈ R[≤m], the real intervals


I−l/k ≡ [−l/k − 2Lk, l/k + 2Lk] are disjoint. Then, there exists a symplectic change


of variables, depending on time, (J, ϕ, s) = g(B, φ, s), periodic in φ and s, and of class


Cr−2m, which is ε-close to the identity in the Cn−2m−1 sense, such that transforms the


Hamiltonian system associated to k(J, ϕ, s; ε) into a Hamiltonian system of Hamiltonian


k̄m(B, φ, s; ε) = Z̄m(B, φ, s; ε) + εm+1R̄m(B, φ, s; ε), (56)


where the function Z̄m is of class Cr−2m+2 and R̄m is of class Cr−2m and they verify:


1. If B /∈ ⋃−l/k∈R[≤m]
I−l/k, then


Z̄m(B, φ, s; ε) =
1


2
B2 + εZ̃m(B; ε), (57)


for any (B, φ, s) ∈ Dm
nr (Dm


nr was introduced in (48)).


2. If B ∈ I−l0/k0
for some −l0/k0 ∈ Ri \ (R1 ∪ . . .Ri−1), for some 1 ≤ i ≤ m, then


Z̄m(B, φ, s; ε) =
1


2
B2 + εZ̃m(B; ε) + εiUk0,l0


m (k0φ+ l0s; ε), (58)


for any (B, φ, s) ∈ Dr,i, (Dr,i was introduced in (49)).


In a particular case of a resonance −l0/k0 of order 1, Uk0,l0
m (k0φ + l0s; 0) does not


depend on m and is given by


Uk0,l0
m (θ; 0) = Uk0,l0


1 (θ) =
∑


t∈Z−{0}
|t|(|k0|+|l0|)≤M


Rtk0,tl0(−l0/k0; 0)eitθ (59)


where θ = k0φ + l0s and Rk,l(J ; ε) are the Fourier coefficients of the perturbation


R(J, ϕ, s; 0) with respect to (ϕ, s).


3. The function εZ̃m(B; ε) in (57) and (58) is a polynomial of degree m in ε,


whose term of order q + 1 is of class Cr−2q and of size OCℓ(εq+1−α(ℓ+2q)), for


ℓ = 0, . . . , n− 2q and q = 0, . . . , m− 1. The function εiUk0,l0
m (k0φ + l0s; ε) in (58)


is a polynomial of degree m in ε and a trigonometric polynomial in θ = k0φ + l0s,


which is OCℓ,θ(ε
i−2α(i−1)|(k0, l0)|−r+2(i−1)), for ℓ = 0, . . . , n− 2(i− 1). The function


εm+1R̄(B, φ, s; ε) in (56) is OCℓ(εm+1−α(ℓ+2m)), for ℓ = 0, . . . , n − 2m. Finally,


the change of variables (J, ϕ, s) = g(B, φ, s) satisfies g − Id = OCℓ(ε1−α(ℓ+2)), for


ℓ = 0, . . . , n− 2m.


Remark 3.12. We always will consider that Hamiltonian (53) is Hamiltonian (23) and


therefore, by equation (24) and Remark 2.9, the function Uk0,l0
m given in (59) for a


resonance −l0/k0 ∈ R1 is equal to the function Uk0,l0 in hypothesis H3′:


Uk0,l0
m (θ; 0) = Uk0,l0(θ) =


∑


t∈Z−{0},
|t||(k0,l0)|<M


htk0,tl0(0, 0,−l0/k0; 0)eitθ. (60)


By the same reason Z̃m(B; 0) in formulae (57) and (58) is equal to h(0, 0,B; 0).
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Remark 3.13. Note that the bound on the trigonometric polynomial εiUk0,l0
m (θ; ε), where


θ = k0φ+ l0s, is more precise because it incorporates the size of its Fourier coefficients.


We use the notation OCℓ,θ to emphasize that we are bounding the derivatives with


respect to the variable θ.


Remark 3.14. Notice that although the remainder term εm+1R̄m is Cr−2m, it is bounded


in the supremum norm |·|Cℓ for ℓ only up to n− 2m, for n < r, which is enough for the


future application of KAM Theorem.


3.2.4. Proof of Theorem 3.11 The proof of this theorem will follow by the repeated


application of the inductive Lemma 3.18m times. Before stating it, we need two previous


Lemmas that we will use to prove Lemma 3.18 and finally Theorem 3.11.


Lemma 3.15. Let G(J, ϕ, s) a Hamiltonian and assume that G is Cr trigonometric


polynomial of order M defined in a compact domain I × T2, with I ⊂ R, such that


supx∈I×T2 |x| ≤ D. Consider the Cr−1 change of variables defined on I × T2,


(J, ϕ, s) = gt(B, φ, s),
given by the time-t map of the flow of Hamiltonian εpG(J, ϕ, s), for some p ∈ N. Assume


that G is OCℓ(εηℓ), ηℓ being some positive number. Then,


max
0≤t≤1


|gt|Cℓ ≤ Dℓ, max
0≤t≤1


|gt − Id|Cℓ ≤ D′
ℓ ε


ηℓ+1 (61)


for ℓ = 0, . . . , r− 1, Dℓ and D′
ℓ being some constants, which depend on the domain and


ℓ, but not on ε. In terms of the notation introduced in Section 2.1, the above inequalities


read gt = OCℓ(1) and gt − Id = OCℓ(εηℓ+1), for ℓ = 0, . . . , r − 1 and 0 ≤ t ≤ 1.


Proof. By the fundamental theorem of calculus we can write


gt(x) = x+


∫ t


0


∂gτ


∂τ
(x)dτ = x+


∫ t


0


J∇G ◦ gτ(x)dτ,


where x = (B, φ, s) ∈ I × T2 and J is the canonical matrix of the symplectic form


ω = dJ ∧dϕ+dA∧ds. The extra variable A, conjugated to the angle s, was introduced


to make apparent the symplectic character of the change of variables.


Using formula (C.5) in Appendix C we obtain


|gt|Cℓ ≤ |Id|Cℓ +


∫ 1


0


|J∇G ◦ gτ |Cℓ dτ


≤ |Id|Cℓ + Cℓ


∫ 1


0


(
|J∇G|C1 |gτ |Cℓ + |J∇G|Cℓ |gτ |ℓCℓ−1


)
dτ


(62)


for ℓ = 2, . . . , r − 1, where Cℓ is a constant depending on ℓ; and


|gt|C1 ≤ |Id|C1 +


∫ 1


0


|J∇G|C1 |gτ |C1 dτ.


Let us define aℓ = max
0≤t≤1


|gt|Cℓ. Then,


a1 ≤ D + δ1a1,
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and


aℓ ≤ D + δ1aℓ + Cℓδℓa
ℓ
ℓ−1, for ℓ ≥ 2,


with δℓ = |G|Cℓ+1. Hence,


aℓ ≤
D + δℓa


ℓ
ℓ−1


1 − δ1
for ℓ ≥ 2.


Since δ1 ∼ εη2 ≪ 1 and δℓ ∼ εηℓ+1 ≪ 1, it is easy to check by induction that


aℓ ≤ Dℓ, for ℓ ≥ 1, Dℓ being some constant independent of ε.


Denoting by bℓ = max
0≤t≤1


|gt − Id|Cℓ , one has


b1 ≤ δ1a1,


and


bℓ ≤ δ1aℓ + Cℓδℓa
ℓ
ℓ−1, for ℓ ≥ 2.


So that,


bℓ ≤ Dℓδ1 + CℓD
ℓ
ℓ−1δℓ ≤ D′


ℓδ
ℓ = D′


ℓε
ηℓ+1,


for ℓ ≥ 1, D′
ℓ being some constant independent of ε. �


Since the averaging procedure is based on the method of Lie transforms, the


transformed Hamiltonian will be expressed in terms of Poisson brackets. In the following


Lemma 3.16 we give an estimate for the bound of the Poisson bracket of two functions,


where the second one is a generating function, in terms of the bounds on the norm (30)


of each one.


Lemma 3.16. Let ρ, α be two positive real numbers, such that ρ ≤ α and M ∼ ε−ρ and


L = Cεα. Given F p(J, ϕ, s) and Gq(J, ϕ, s) two trigonometric polynomials in (ϕ, s),


assume that F p(J, ϕ, s) is a Cn, n > 0, function in J and a trigonometric polynomial


of degree Mp = (p + 1)M and Gq(J, ϕ, s) is a Cm, m > 0, function in J and a


trigonometric polynomial of degree Mq = (q+1)M , that satisfy ‖εp+1F p‖Cℓ,L � εp+1−α(2p)


and ‖εq+1Gq‖Cℓ,L � εq+1−α(2q+1), for ℓ = 0, . . . , n, with ε > 0. Then {F p, Gq} is a


Cr function in J , for r = min(n,m) − 1 and a trigonometric polynomial of degree


Mp̃ = (p̃+ 1)M in (ϕ, s), where p̃ = p+ q + 1, and εp̃+1F p̃ = {εp+1F p, εq+1Gq} satisfies
∥∥εp̃+1F p̃


∥∥
Cℓ,L


� εp̃+1−α(2p̃),


for ℓ = 0, . . . , r.


Proof. From


{F p, Gq} =
∂F p


∂ϕ


∂Gq


∂J
− ∂F p


∂J


∂Gq


∂ϕ
,
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we have


{F p, Gq} =
∑


(k,l)∈Z
2,


|k|+|l|≤Mp


ikF p
k,l(J)ei(kϕ+ls)


∑


(k,l)∈Z
2,


|k|+|l|≤Mq


∂Gq
k,l(J)


∂J
ei(kϕ+ls)


−
∑


(k,l)∈Z
2,


|k|+|l|≤Mp


∂F p
k,l(J)


∂J
ei(kϕ+ls)


∑


(k,l)∈Z
2,


|k|+|l|≤Mq


ikGp
k,l(J)ei(kϕ+ls)


It is clear from this expression that {F p, Gq} is a trigonometric polynomial of degree


Mp +Mq = (p+ q + 2)M .


On the other hand, using equation (34), it follows that
∥∥{εp+1F p, εq+1Gq}


∥∥
Cℓ,L


≤
∥∥∥∥∥∥∥∥
εp+1


∑


(k,l)∈Z2,
|k|+|l|≤Mp


ikF p
k,l(J)ei(kϕ+ls)


∥∥∥∥∥∥∥∥
Cℓ,L


∥∥∥∥∥∥∥∥
εq+1


∑


(k,l)∈Z2,
|k|+|l|≤Mq


∂Gq
k,l(J)


∂J
ei(kϕ+ls)


∥∥∥∥∥∥∥∥
Cℓ,L


+


∥∥∥∥∥∥∥∥
εp+1


∑


(k,l)∈Z
2,


|k|+|l|≤Mp


∂F p
k,l(J)


∂J
ei(kϕ+ls)


∥∥∥∥∥∥∥∥
Cℓ,L


∥∥∥∥∥∥∥∥
εq+1


∑


(k,l)∈Z
2,


|k|+|l|≤Mq


ikGp
k,l(J)ei(kϕ+ls)


∥∥∥∥∥∥∥∥
Cℓ,L


≤


∥∥∥∥∥∥∥∥
εp+1


∑


(k,l)∈Z2,
|k|+|l|≤Mp


F p
k,l(J)ei(kϕ+ls)


∥∥∥∥∥∥∥∥
Cℓ+1,L


1


L


∥∥∥∥∥∥∥∥
εq+1


∑


(k,l)∈Z2,
|k|+|l|≤Mq


Gq
k,l(J)ei(kϕ+ls)


∥∥∥∥∥∥∥∥
Cℓ+1,L


+
1


L


∥∥∥∥∥∥∥∥
εp+1


∑


(k,l)∈Z2,
|k|+|l|≤Mp


F p
k,l(J)ei(kϕ+ls)


∥∥∥∥∥∥∥∥
Cℓ+1,L


∥∥∥∥∥∥∥∥
εq+1


∑


(k,l)∈Z2,
|k|+|l|≤Mq


Gq
k,l(J)ei(kϕ+ls)


∥∥∥∥∥∥∥∥
Cℓ+1,L


≤ 2


L


∥∥εp+1F p
∥∥
Cℓ+1,L


∥∥εq+1Gq
∥∥
Cℓ+1,L


.


Using now the hypotheses on εq+1F p and εp+1Gp in this Lemma and the fact that


L = Cεα, where C is a constant independent of ε, we have
∥∥{εp+1F, εq+1G}


∥∥
Cℓ,L


� ε−αεp+1−α(2p)εq+1−α(2q+1)


= εp+q+2−α(2(p+q+1))


= εp̃+1−α(2p̃).


�


Remark 3.17. This Lemma will be applied a certain number of times and expresses the


fact that given two functions εp+1F p and εq+1Gq, which are trigonometric polynomials


in (ϕ, s) of degree Mp = (p + 1)M and Mq = (q + 1)M , respectively, with bounds


‖εp+1F p‖Cℓ,L � εp+1−α(2p) and ‖εq+1Gq‖Cℓ,L � εq+1−α(2q+1), its Poisson bracket is a
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function εp̃+1F p̃, with p̃ = p+q+1, that is, εp̃+1F p̃ = {εp+1F p, εq+1Gq} is a trigonometric


polynomial in (ϕ, s) of degree Mp̃ = (p̃+ 1)M with a bound
∥∥εp̃+1F p̃


∥∥
Cℓ,L


� εp̃+1−α(2p̃).


Notice that this process of “εq+1Gq Poisson-bracketing” can be iterated: εp̂+1F p̂ =


{εp̃+1F p̃, εq+1Gq}, with p̂ = p̃ + q + 1, is a trigonometric polynomial in (ϕ, s) of degree


Mp̂ = (p̂+ 1)M with a bound
∥∥εp̂+1F p̂


∥∥
Cℓ,L


� εp̂+1−α(2p̂).


We state and prove now the iterative Lemma 3.18 for averaging, which we will


apply a finite number of times q = 1, . . . , m in the proof of Theorem 3.11 and m will be


chosen m ≤ 10 in Theorem 3.28. It basically tells us that given a Hamiltonian already


in normal form up to some order εq, we can produce another Hamiltonian which is


normalized up to order εq+1. The averaged Hamiltonian is given rather explicitly both


in the resonant regions and in the non-resonant ones, which are redefined at every step


according to the new resonances that will come up.


Lemma 3.18. Let r > n > 1 and 0 ≤ 2q < n be any given integers. Consider a


Hamiltonian of the form


kq(J, ϕ, s; ε) = Zq(J, ϕ, s; ε) + εq+1Rq(J, ϕ, s; ε),


satisfying the following hypotheses:


1. Z0(J, ϕ, s; ε) = J2


2
and, for q ≥ 1, Zq(J, ϕ, s; ε) is a Cr−2q+2 function that verifies:


There exist finite sets Ri ⊂ Q, i = 1, . . . , q, depending on M ∼ ε−ρ, where ρ is


a positive number satisfying ρ < 1
n
, and a number L = Cεα > 0, which satisfy


hypothesis (55), that is, ρ ≤ α < 1
n


and C a constant independent of ε, such that:


1a For a resonance −l/k up to order q, that is −l/k ∈ R[≤q] ≡
⋃


i=1...q Ri (see


(47)), the intervals I−l/k ≡ [−l/k − 2Lk,−l/k + 2Lk], with Lk = L/|k|, are


disjoint.


1b If J /∈ ⋃−l/k∈R[≤q]
I−l/k, then


Zq(J, ϕ, s; ε) =
J2


2
+ εZ̃q(J ; ε),


for any (J, ϕ, s) ∈ Dq
nr (Dq


nr was introduced in (48)), where εZ̃q(J ; ε) is a


polynomial of degree q in ε whose term of order p + 1 is OCℓ,L(εp+1−α(2p)), for


ℓ = 0, . . . , r − 2p and p = 0, . . . , q − 1.


1c If J ∈ I−l0/k0, for some resonance −l0/k0 of order q, that is −l0/k0 ∈
Ri \ R1 ∪ · · · ∪ Ri−1 for some 1 ≤ i ≤ q, then


Zq(J, ϕ, s; ε) =
J2


2
+ εZ̃q(J ; ε) + εiUk0,l0


q (k0ϕ+ l0s; ε)


for any (J, ϕ, s) ∈ Dr,i (Dr,i was introduced in (49)), where εZ̃q(J ; ε) is a


polynomial of degree q in ε and Uk0,l0
q (θ; ε) is a polynomial of degree q − i in ε


and a trigonometric polynomial in θ = k0ϕ + l0s. The term of order p + 1 in


ε of Zq is OCℓ,L(εp+1−α(2p)), for ℓ = 0, . . . , r − 2p and p = 0, . . . , q − 1.


2. εq+1Rq(J, ϕ, s; ε) is a Cr−2q function and is OCℓ(εq+1−α(ℓ+2q)), for ℓ = 0, . . . , n− 2q.


For the particular case of the first iteration (q = 0), εR0 is Oℓ(ε), for ℓ = 0, . . . , n.







Geography of resonances and Arnold diffusion 38


The term of order i+1 of the Taylor expansion with respect to ε of εq+1Rq(J, ϕ, s; ε)


is a trigonometric polynomial in (ϕ, s) of degree Mi = (i + 1)M and is


OCℓ,L(εi+1−α(2i)), for ℓ = 0, . . . , r − q − i and for i = q, . . . , r − q.


Denote K = Rq(J, ϕ, s; 0), which is the term of the perturbation of order exactly


q + 1 in ε. Following Definition 3.4, introduce the set


Rq+1 = {−l/k ∈ Q∩(I−, I+), |k|+ |l| ≤ Mq, k 6= 0, Rq
k,l(−l/k; 0) 6= 0},(63)


where Mq = (q + 1)M and Rq
k,l are the Fourier coefficients of Rq.


Choose a new value of C, independent of ε, in L = Cεα, such that the intervals


I−l/k ≡ [−l/k − 2Lk,−l/k + 2Lk], with Lk = L/|k|, are disjoint for −l/k ∈ R[≤q+1].


Let G(J, ϕ, s) = Gq(J, ϕ, s) be the Cr−2q−1 trigonometric polynomial of order Mq


given by Lemma 3.3, verifying (37) with K = Rq(J, ϕ, s; 0).


Then, the Cr−2q−2 change of variables


(J, ϕ, s) = gq(B, φ, s),
given by the time-one map of the flow of Hamiltonian εq+1Gq(B, φ, s), transforms the


Hamiltonian kq(J, ϕ, s; ε) into a Hamiltonian kq+1 = kq ◦ gq of the form


kq+1(B, φ, s; ε) = Zq+1(B, φ, s; ε) + εq+2Rq+1(B, φ, s; ε),
with


Zq+1(B, φ, s; ε) = Zq(B, φ, s; ε) + εq+1R̄q(B, φ, s; 0)


where R̄q(B, φ, s; 0) = K̄(B, φ, s) given in Lemma 3.3, is a Cr−2q function, such that


i. If B /∈ ⋃−l/k∈R[≤q+1]
I−l/k, then


R̄q(B, φ, s; 0) = Rq
0,0(B; 0),


for any (B, φ, s) ∈ Dq+1
nr and εq+1R̄q is OCℓ,L(εq+1−α(2q)), for ℓ = 0, . . . , r − 2q.


ii. If B ∈ I−l0/k0, for some −l0/k0 ∈ Ri \R1 ∪ · · · ∪Ri−1 for some 1 ≤ i ≤ q+ 1, then


R̄q(B, φ, s) = Rq
0,0(B; 0) +


∑


t∈Z−{0},
|t|(|k0|+|l0|)≤Mq


Rq
tk0,tl0


(−l0/k0; 0)eitθ, (64)


for any (B, φ, s) ∈ Dr,i, where Rq
k,l(J ; ε) are the Fourier coefficients of the function


Rq(J, ϕ, s; ε) with respect to (ϕ, s). Moreover, εq+1R̄q is OCℓ,L(εq+1−α(2q)), for


ℓ = 0, . . . , r − 2q.


Moreover, the Hamiltonian Zq+1(B, φ, s; ε) verifies properties 1b and 1c up to order


q + 1, and Rq+1(B, φ, s; ε) verifies property 2 replacing q by q + 1.


Remark 3.19. Note that all the terms of order p+ 1, for p ≥ 0, in the Taylor expansion


in ε that appear in Lemma 3.18 are Cr−2p functions in J and trigonometric polynomials


in the variables (ϕ, s) and they are bounded independently of ε in the Fourier weighted


norm ‖·‖Cℓ,L defined in (30) for ℓ up to r − 2p. However, the whole remainder term


εq+2Rq+1 is not a trigonometric polynomial in the variables (ϕ, s), so we can not use the


Fourier weighted norm. In this case we estimate their supremum norm |·|Cℓ defined in


(2), but only for ℓ up to n− 2q, as in Theorem 3.11 (see Remark 3.14).
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Proof. We will apply Lemma 3.3 with K = Rq(J, ϕ, s; 0), which is a Cr−2q function, as


well as a trigonometric polynomial in (ϕ, s) of degree Mq = (q + 1)M . Accordingly,


by Definition 3.4, resonances of order q + 1 correspond to the set of rational numbers


r ∈ Rq+1 \ (R1 ∪ . . . ∪Rq).


Let us see first that taking L = Cεα, with α satisfying α < 1/n and C = Cq


chosen adequately, the real intervals I−l/k = [−l/k−2Lk,−l/k+2Lk], with Lk = L/|k|,
for −l/k ∈ R[≤q+1] are disjoint. Indeed, the distance dk,k0 between any two resonances


−l0/k0,−l/k ∈ R[≤q+1] is greater or equal than 1/(|k0||k|). In order to avoid overlapping


between all these intervals, the distance dk,k0 must be greater than 2Lk0 + 2Lk. Taking


into account that we only consider resonances with denominators |k|, |k0| ≤ (q + 1)M ,


the condition that ensures that these intervals are separated is 1/((q + 1)M) > 4L,


which requires ρ ≤ α in terms of exponents of ε. This is guaranteed by the hypothesis


on α and ρ in this Lemma.


Hence, we can apply Lemma 3.3, obtaining a Cr−2q−1 function Gq(J, ϕ, s) and a


Cr−2q function K̄ = Rq(J, ϕ, s), which are also trigonometric polynomials in (ϕ, s) of


degree Mq.


Under the canonical change of variables (J, ϕ, s) = gq(B, φ, s), where gq is the time-


one map of the flow of Hamiltonian εq+1Gq, the extended autonomous Hamiltonian


A+ kq becomes


A+ kq+1 = (A + kq) ◦ gq


= (A + Zq + εq+1Rq) ◦ gq


= A + Zq + εq+1({A+ Z0, Gq} +Rq(·, 0))


+ (Zq − Z0) ◦ gq − (Zq − Z0)


+ (A + Z0) ◦ gq − (A+ Z0) − {A+ Z0, εq+1Gq}
+ εq+1(Rq ◦ gq − Rq) + εq+1(Rq − Rq(·, 0))


:= A + Zq + εq+1R̄q + εq+2Rq+1,


where


R̄q = {A+ Z0, Gq} +Rq(·, 0), (65)


and


εq+2Rq+1 = (Zq − Z0) ◦ gq − (Zq − Z0)


+ (A+ Z0) ◦ gq − (A + Z0) − {A+ Z0, εq+1Gq}
+ εq+1(Rq ◦ gq − Rq) + εq+1(Rq − Rq(·, 0)). (66)


We first see that the the normal form term εq+1R̄q is bounded in the ‖·‖Cℓ,L norm


by εq+1−α(2q), for ℓ = 0, . . . , n− 2q.


Indeed, using (38) and (39) from Lemma 3.3 we have:


i. If B /∈ ⋃−l/k∈R[≤q+1]
I−l/k, then


R̄q(B, φ, s) = Rq
0,0(B; 0) (67)
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for any (B, φ, s) ∈ Dq+1
nr and, by formula (40) and the second part of hypothesis 2


for i = q of Lemma 3.18, we have
∥∥εq+1R̄q


∥∥
Cℓ,L


≤
∥∥εq+1Rq(·; 0)


∥∥
Cℓ,L


� εq+1−α(2q), (68)


for ℓ = 0, . . . , r − 2q.


ii. If B ∈ I−l0/k0, for some −l0/k0 ∈ Ri \R1 ∪ · · · ∪Ri−1 for some 1 ≤ i ≤ q+ 1, then,


by equation (39) in Lemma 3.3,


R̄q(B, φ, s) = Rq
0,0(B; 0) +


∑


t∈Z2−{0},
|t|(|k0|+|l0|)≤Mq


Rq
tk0,tl0


(−l0/k0; 0)eitθ (69)


for any (B, φ, s) ∈ Dr,i, where Rq
k,l(J ; 0) are the Fourier coefficients of the function


Rq(J, ϕ, s; 0) with respect to (ϕ, s).


As before, by formula (40) from Lemma 3.3 and the second part of hypothesis 2 of


this Lemma for i = q, we have
∥∥εq+1R̄q


∥∥
Cℓ,L


�
∥∥εq+1Rq(·; 0)


∥∥
Cℓ,L


� εq+1−α(2q) (70)


for ℓ = 0, . . . , r − 2q.


Note that, since α < 1/n and 2q < n, the power of ε in the bounds obtained in


(68) and (70), is a positive number greater than q.


To finish the proof, we only need to estimate the remainder term εq+2Rq+1 in (66)


and its Taylor expansion coefficients with respect to ε.


We will first estimate the the remainder term εq+2Rq+1 in (66). Since it is not


a trigonometric polynomial we will estimate it in terms of the supremum norm |·|Cℓ .


Using the integral bound for the Taylor remainder and definitions (65) and (66) of R̄q


and εq+2Rq+1, respectively, we have


∣∣εq+2Rq+1
∣∣
Cℓ ≤


∫ 1


0


∣∣{Zq − Z0, εq+1Gq} ◦ gq,t


∣∣
Cℓ dt


+


∫ 1


0


∣∣(1 − t)({{A+ Z0, εq+1Gq}, εq+1Gq} ◦ gq,t)
∣∣
Cℓ dt


+


∫ 1


0


∣∣{εq+1Rq, εq+1Gq} ◦ gq,t


∣∣
Cℓ dt


+
∣∣εq+1(Rq − Rq(·; 0))


∣∣
Cℓ


=


∫ 1


0


∣∣{Zq − Z0, εq+1Gq} ◦ gq,t


∣∣
Cℓ dt


+


∫ 1


0


∣∣(1 − t){εq+1(R̄q − Rq(·; 0)), εq+1Gq} ◦ gq,t


∣∣
Cℓ dt


+


∫ 1


0


∣∣{εq+1Rq, εq+1Gq} ◦ gq,t


∣∣
Cℓ dt


+
∣∣εq+1(Rq − Rq(·; 0))


∣∣
Cℓ ,


for ℓ = 0, . . . , n− 2(q + 1).
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Using Faa-di Bruno formulae (C.4) we obtain


∣∣εq+2Rq+1
∣∣
Cℓ �


∣∣{Zq − Z0, εq+1Gq}
∣∣
Cℓ


∫ 1


0


|gq,t|ℓCℓ dt


+
∣∣{εq+1(R̄q − Rq(·; 0)), εq+1Gq}


∣∣
Cℓ


∫ 1


0


(1 − t) |gq,t|ℓCℓ dt


+
∣∣{εq+1Rq, εq+1Gq}


∣∣
Cℓ


∫ 1


0


|gq,t|ℓCℓ dt (71)


+
∣∣εq+1(Rq − Rq(·; 0))


∣∣
Cℓ ,


for ℓ = 0, . . . , n− 2(q + 1).


By formula (41) from Lemma 3.3, the second part of hypothesis 2 for i = q of this


Lemma, and using that L ∼ εα, we get that
∥∥εq+1Gq


∥∥
Cℓ,L


≤ C


L


∥∥εq+1Rq(·; 0)
∥∥
Cℓ+1,L


� εq+1−α(2q+1),


for ℓ = 0, . . . , r− 2q− 1. Hence, using the equivalence relation (31) between ‖·‖Cℓ,L and


|·|Cℓ norms, εq+1Gq satisfies
∣∣εq+1Gq


∣∣
Cℓ � εq+1−α(ℓ+2q+1), (72)


for ℓ = 0, . . . , n − 2q − 1, and the power of ε, ηℓ = q + 1 − α(ℓ + 2q + 1) > q + 1 − αn


in equation (72) is positive. So, we can apply Lemma 3.15 with G = εq+1Gq in


D = (I−, I+) × T2, and we have that gq,t = OCℓ(1) and gq,t − Id = OCℓ(εq+1−α(ℓ+2(q+1)))


for t ∈ [0, 1) and ℓ = 0, . . . , n− 2(q + 1).


In the expression (71), the terms Zq − Z0, Gq, R̄
q and Rq(·; 0) are trigonometric


polynomials in the variables (ϕ, s). In order to bound their corresponding Poisson


brackets in the |·|Cℓ norm, we will first estimate their ‖·‖Cℓ,L norm and apply Lemma


3.16. Finally, using the equivalence relation (31) between |·|Cℓ and ‖·‖Cℓ,L norms, we


will bound their corresponding Poisson bracket in the |·|Cℓ norm. On the other hand,


the terms Rq and therefore Rq − Rq(·; 0) are not trigonometric polynomials, so we can


not use the ‖·‖Cℓ,L norm. For this reason we will bound the |·|Cℓ norm for the Poisson


brackets directly.


The terms εq+1Rq(·; 0) and εq+1R̄q in (71) are both bounded in the ‖·‖Cℓ,L norm by


εq+1−α(2q), for ℓ = 0, . . . , r − 2q, because of the second part of hypothesis 2 for i = q


and points (i) and (ii) already proved, respectively. Note that both terms are of type


εq+1F q, according to Remark 3.17.


The term Zq−Z0 = εR̄0 +ε2R̄1 + . . ., is a polynomial with respect to ε, so it can be


bounded by its main term εR̄0. Hence, using the bound for the term of order 1 (p = 0)


of Zq given in hypotheses 1b and 1c, we have
∥∥Zq − Z0


∥∥
Cℓ,L


�
∥∥εR̄0


∥∥
Cℓ,L


� ε, (73)


for ℓ = 0, . . . , r − 2(q − 1). Note that εR̄0 is of type εF 0, according to Remark 3.17.


The estimate for the |·|Cℓ norm of the term (Rq − Rq(·; 0)) can be obtained from


the bound for the Taylor remainder and the first part of hypothesis 2. More precisely,
∣∣εq+1(Rq − Rq(·; 0))


∣∣
Cℓ ≤ εq+2 |Rq|Cℓ+1 � εq+2−α(ℓ+1+2q), (74)
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for ℓ = 0, . . . , n− 2q − 1.


Moreover using the bounds for εq+1Rq and εq+1Gq in the |·|Cℓ norm, and Leibniz


rule for derivatives we have
∣∣{εq+1Rq, εq+1Gq}


∣∣
Cℓ


�
ℓ∑


i=0


(
ℓ


i


)(∣∣∣∣ε
q+1∂R


q


∂ϕ


∣∣∣∣
Ci


∣∣∣∣ε
q+1∂Gq


∂J


∣∣∣∣
Cℓ−i


+


∣∣∣∣ε
q+1∂R


q


∂J


∣∣∣∣
Ci


∣∣∣∣ε
q+1∂Gq


∂ϕ


∣∣∣∣
Cℓ−i


)


�
ℓ∑


i=0


(
ℓ


i


)
∣∣εq+1Rq


∣∣
Ci+1


∣∣εq+1Gq


∣∣
Cℓ−i+1 .


Hence, using that |R0|Cℓ+1 � 1 and |G0|Cℓ+1 � ε−α(ℓ+2) from (72), we have
∣∣{εR0, εG0}


∣∣
Cℓ � εε1−α(ℓ+2) � ε2−α(ℓ+2),


otherwise,


∣∣{εq+1Rq, εq+1Gq}
∣∣
Cℓ �


ℓ∑


i=0


(
ℓ


i


)
εq+1−α(i+1+2q)εq+1−α(ℓ−i+1+2q+1)


� ε2(q+1)−α(ℓ+2(2q+1)+1),


for ℓ = 0, . . . , n− 2(q − 1).


Putting together in (71) the estimates in (72), (73) and (74), as well as the estimate


for {εq+1Rq, εq+1Gq} and εq+1R̄q (these last two not relevant for q 6= 0), and using Lemma


3.16 and the equivalence relation (31) one gets the following bound for (66):
∣∣εq+2Rq+1


∣∣
Cℓ � εq+2−α(ℓ+2(q+1)),


for ℓ = 0, . . . , n− 2(q + 1).


Finally, all the terms in the Taylor expansion of εq+2Rq+1(B, φ, s, ε) with respect to


ε, are obtained from a finite number of algebraic operations and a process of “εq+1Gq


Poisson bracketing”, as stated in Remark 3.17, to the Taylor coefficients in ε of Zq and


of εq+1Rq, which are all of them of the form εp+1F p. Applying Lemma 3.16 iteratively,


we conclude that the Taylor expansion coefficient of order i + 1 of εq+2Rq+1(B, φ, s, ε)
with respect to ε is of the type εi+1F i according to Remark 3.17, that is a trigonometric


polynomial of order Mi = (i+1)M in the angle variables, satisfying OCℓ,L(εi+1−α(2i)) for


ℓ = 0, . . . , r − q − i and for i = q, . . . , r − q. Again, by condition α < 1/n, the power of


ε is a positive number greater than i. �


Proof of Theorem 3.11


The proof is by induction in q. To begin induction process, we consider R[≤M ], which is


the truncated Fourier series of the perturbation R up to some order M0 = M as in (25).


The order of truncation M is M ∼ ε−ρ, with ρ satisfying hypothesis (51). We want to


apply Lemma 3.18 for q = 0 to the Hamiltonian


k0(J, ϕ, s; ε) = Z0(J, ϕ, s; ε) + εR0(J, ϕ, s; ε),


where Z0(J, ϕ, s; ε) = J2/2 and R0(J, ϕ, s; ε) = R[≤M ](J, ϕ, s; ε).
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We introduce the finite set


R1 = {−l/k ∈ Q ∩ (I−, I+), |k| + |l| ≤ M, k 6= 0, R0
k,l(−l/k; 0) 6= 0},


where R0
k,l are the Fourier coefficients of R0. According to Definition 3.4 we will refer


to resonances of order 1 the elements of the set R1.


Since Z0 = J2/2 and R0 satisfy trivially hypothesis 1 and 2 of Lemma 3.18


and hypothesis (55) holds, we can apply Lemma 3.18 for q = 0, which provides a


symplectic change of variables (B, φ, s) 7→ (J, ϕ, s) = g0(B, φ, s) of class Cr−2 and we get


a Hamiltonian of the form


k1(J, ϕ, s; ε) = Z1(J, ϕ, s; ε) + ε2R1(J, ϕ, s; ε),


where Z1 is a Cr function and ε2R1 is a Cr−2 function, verifying properties 1b,1c and 2


of Lemma 3.18 with q = 1.


In particular, in the resonant regions of order 1 Dr,1 defined in (49), expression (64)


in Lemma 3.18 for q = 0 provides that Z1 has the form (58) for i = m = 1, that is


Z1(B, φ, s; ε) =
1


2
B2 + εZ̃1(B) + εUk0,l0


1 (k0φ+ l0s; ε),


where Uk0,l0
1 is given by expression (59).


Proceeding by induction, we assume that we have applied Lemma 3.18 up to order


q, for 0 < q < m, so that in adequate symplectic coordinates, the Hamiltonian kq of this


Theorem takes the form


kq(J, ϕ, s; ε) = Zq(J, ϕ, s; ε) + εq+1Rq(J, ϕ, s; ε),


and satisfies hypotheses 1 and 2 of Lemma 3.18, so that it can be applied again to the


Hamiltonian kq, providing a Hamiltonian


kq+1(J, ϕ, s; ε) = Zq+1(J, ϕ, s; ε) + εq+2Rq(J, ϕ, s; ε)


satisfying properties 1 and 2 of Lemma 3.18 replacing q by q + 1 and a new constant


C = Cq in L = Cεα to accommodate new resonances.


Applying the inductive Lemma m times, we get a Hamiltonian km


km(J, ϕ, s; ε) = Zm(J, ϕ, s; ε) + εm+1Rm(J, ϕ, s; ε),


that consists of an integrable Hamiltonian Zm, which already satisfies thesis 1 and 2 of


Theorem 3.11 for Z̄m = Zm, plus a perturbation εm+1Rm of order OCℓ(εm+1−α(ℓ+2m)),


0 ≤ ℓ ≤ n− 2m.


Moreover, Lemma 3.18 gives us estimates for the terms of the integrable part Z̄m


of the Hamiltonian km in the Fourier weighted norm ‖·‖Cℓ,L defined in (30). More


precisely, we know that Z̄m is a polynomial of degree m in ε, whose term of order q+ 1


is OCℓ,L(εq+1−α(2q)), for ℓ = 0, . . . , r − 2q and q = 0, . . . , m − 1. By the equivalence


relation (31) we immediately also have that this term of order q+1 is OCℓ(εq+1−α(ℓ+2q)),


for ℓ = 0, . . . , n− 2q and q = 0, . . . , m− 1.


It remains to prove the estimates of thesis 3 of Theorem 3.11 on Z̄m and R̄m in the


supremum norm | · |Cℓ .
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The estimation for Z̃m follows from the ones obtained for Z̄m and we will


concentrate on the ones for Uk0,l0
m .


In particular, in Dr,i, we can obtain a better estimate for the | · |Cℓ norm of the term


εiUk0,l0
m (θ; ε) in expression (64), which is the one claimed in point 3 of the Theorem. In


order to check this, we first notice that the function Uk0,l0
m (θ; ε) in expression (58) is a


polynomial of degree m − i in ε and a trigonometric polynomial in θ = k0φ + l0s. So,


εiUk0,l0
m (θ; ε) can be bounded by its main term εiUk0,l0


m (θ; 0), which is a trigonometric


polynomial in the variable θ = k0φ+ l0s and independent of the action variable B. Using


that
∥∥εiUk0,l0


m (·; 0)
∥∥
Cr−2(i−1),L


=� εi−α(2(i−1)),


and the definition of the Fourier weighted norm in (30), we have
∥∥εiUk0,l0


m (·; 0)
∥∥
Cr−2(i−1),L


= εi
∑


t∈Z−{0}
|t|(|k0|+|l0|)≤Mq


|Utk0,tl0 |C0|t(k0, l0)|r−2(i−1) � εi−α(2(i−1)),


where Uk,l are the Fourier coefficients of the function Uk0,l0
m (θ; 0), Mq = (q + 1)M and


|(k, l)| = max(|k|, |l|). From this expression it is clear that


|Utk0,tl0|C0 ≤ Cεi−α(2(i−1))/|t(k0, l0)|r−2(i−1),


for some constant C independent of ε. Hence, bounding derivatives with respect to the


variable θ we have


|Uk0,l0
m (·; ε)|Cℓ,θ �


∑


t∈Z−{0}
|t|(|k0|+|l0|)≤Mq


|Utk0,tl0 |C0 |t|ℓ


�
∑


t∈Z−{0}
|t|(|k0|+|l0|)≤Mq


εi−α(2(i−1))


|t(k0, l0)|r−2(i−1)
|t|ℓ


� εi−α(2(i−1))


|(k0, l0)|r−2(i−1)


∑


t∈Z−{0}
|t|(|k0|+|l0|)≤Mq


1


|t|r−2(i−1)−ℓ


� εi−α(2(i−1))


|(k0, l0)|r−2(i−1)
,


for ℓ = 0, . . . , n− 2(i− 1), as claimed in point 3 of Theorem 3.11.


Finally, it remains to prove that the tail εR[>M ] of the Fourier series of the


perturbation εR that we have truncated at order M ∼ ε−ρ at the beginning of this proof


is OCℓ(εm+1−α(ℓ+2m)), for 0 ≤ ℓ ≤ n−2m. Since the perturbation R in Hamiltonian (53)


of Theorem 3.11 is a OCr(1) function, the Fourier coefficients Rk,l(J, ε) of R(J, ϕ, s, ε)


decrease at a rate of order 1/|(k, l)|r, for (k, l) −→ ∞. So, by equation (A.2) in


Proposition A.2 we have the following bound for εR[>M ],


|εR[>M ]|Cℓ � ε


M r−ℓ−2
� ε1+ρ(r−ℓ−2), (75)


for ℓ = 0, . . . , n− 2m.
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From Lemma 3.18 and equation (61), we know that the changes of coordinates


gq satisfy, for q = 0, . . . , m − 1, gq = Oℓ(1) and gq − Id = Oℓ(ε
q+1−α(ℓ+2(q+1))), for


ℓ = 0, . . . , n − 2(q + 1). Therefore, the total change of coordinates of Theorem 3.11


(J, ϕ, s) = g(B, φ, s) where g = gm−1 ◦ · · · ◦ g0, satisfies g = Oℓ(1) and g − Id =


Oℓ(ε
1−α(ℓ+2)), for ℓ = 0, . . . , n− 2m. Then, using this fact and formula (75), by Faadi-


Bruno formula (C.4) we have


|R[>M ] ◦ g|Cℓ � ε1+ρ(r−ℓ−2).


To get |εR[>M ] ◦ g|Cℓ � εm+1−α(ℓ+2m), we need ε1+ρ(r−ℓ−2) ≤ εm+1−α(ℓ+2m), that is


ρ ≥ m− α(ℓ+ 2m)


(r − ℓ− 2)
, (76)


for ℓ = 0, . . . , n− 2m. In order that bounds (55) and (76) were compatible, we need to


choose r ≥
(


1
ρ
− 2
)
m+ 2, which is condition (52) in the hypotheses of this Theorem.


Finally the choice Z̄ = Zm and R̄ = Rm + R[>M ] ◦ g, with g = gm ◦ · · · ◦ g0, gives


the desired averaged Hamiltonian (56) which satisfies theses 1,2 and 3. �


Remark 3.20. Choosing ρ = 1/(n + δ), with 0 < δ < 1/m, so that condition (55) is


fulfilled for any α between ρ and 1/n, we have that r must satisfy


r ≥ (n− 2 + δ)m+ 2,


where m is the number of steps of averaging performed. So, as long as the regularity r


of the Hamiltonian satisfies


r > rmin := (n− 2)m+ 2, (77)


there exist ρ, α satisfying condition (55) and therefore (51) of Theorem 3.11 and


henceforth, m steps of averaging can be performed to provide estimates of class Cn−2m,


contained in the theses of Theorem 3.11.


Remark 3.21. It is important to note that the averaging procedure is valid in the full


domain (I−, I+) × T2 ⊂ Λ̃ε. Indeed, we have performed an averaging procedure to the


Hamiltonian k(J, ϕ, s; ε) in all (I−, I+) × T2, except at the subsets Dt(L), where


Dt(L) = {(J, ϕ, s) ∈ (I−, I+) × T2;Lk ≤ |J + l/k| ≤ 2Lk, for − l/k ∈ R[≤m]}.
To provide an averaging procedure in the full domain (I−, I+) × T2, we apply again


Theorem 3.11 with L̃k = L̃/|k|, where L̃ = L/2. The region Dt(L) is now contained in


the non resonant region corresponding to L̃k, Dm
nr(M, L̃) defined in Definition 3.7. So


the averaged Hamiltonian in Dt is also given by Theorem 3.11, with slightly different


constants.


3.3. KAM theorem


Up to this point, once we choose m, by Theorem 3.11 we can perform m steps of


averaging and we obtain a Cr−2m Hamiltonian (56) which consists of an integrable


Hamiltonian Z̄m plus a perturbation εm+1R̄m which is Cn−2m small, more precisely
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it is OCℓ(εm+1−α(ℓ+2m)), for ℓ = 0, . . . , n − 2m. Notice that n ≥ 2m is required as well


as a large r and that the integrable Hamiltonian has different expressions in resonant


regions and non-resonant regions as specified in Theorem 3.11.


The integrable part of the Hamiltonian gives us an approximate equation Z̄m = cte


for the invariant tori in Λ̃ε. To finish the proof of Theorem 3.1 it remains to determine


which tori survive and what is the distance between them when we add the perturbation


term εm+1R̄m. By choosing an adequate m large enough the goal is to show that we can


cover the whole region (I−, I+) × T2 ⊂ Λ̃ε with invariant tori which are O(ε1+η)-closely


spaced, for some η > 0, and obtain an approximate expression for them.


To that end, we will use KAM Theorem 3.22 stated in Section 3.3.1, which is a


result about the existence of invariant tori for a periodic perturbation of a Hamiltonian


expressed in action-angle variables. It is a direct adaptation of Theorem 8.12 in


[DLS06a].


Since the integrable Hamiltonian (56) has different expressions in the resonant and


non-resonant regions, we perform this study separately.


Non-resonant regions are studied in Section 3.3.2. In Proposition 3.24, we apply


Theorem 3.22 directly to Hamiltonian (56) for m ≥ 2 and we conclude that for these


regions there exist primary KAM tori which are O(ε1+η)-closely spaced, for some η > 0.


Resonant regions are studied in Section 3.3.3. As it has been described in Section


2.3.3, we will see that for these regions, gaps of different sizes are created in the foliation


of primary KAM tori. According to the size of the gaps, we will distinguish two types


of resonant regions: the resonant regions with big gaps, where gaps are of size greater


or equal than ε, which is the size of the heteroclinic jumps provided by the scattering


map, and the resonant regions with small gaps, where gaps are of size smaller than ε.


In the referred Section 3.3.3, we will see that the resonant regions with big gaps


introduced in (21) correspond to the resonances J = −l/k of order 1 such that


|(k, l)| < MBG = ε−(1+ν)/r, for 1/(r/6 − 1) < ν ≤ 1/16, whereas resonant regions


with small gaps correspond to the rest of the resonances.


The case of resonant regions with small gaps is studied in Section 3.3.4. It will not be


different from the non-resonant case and it will be enough to apply KAM Theorem 3.22


to Hamiltonian (56) for m ≥ 2 to obtain primary tori O(ε1+η)-closely spaced, for some


η > 0. This is done in Proposition 3.26. Resonant regions with small gaps constitute,


jointly with the non resonant regions, what we call the flat tori region introduced in


Section 2.3.3.


The case of resonant regions with big gaps is significantly different and it will be


studied in Section 3.3.5. In this case the integrable Hamiltonian Z̄m is like a pendulum,


and we will need to write it first in action-angle variables before applying KAM Theorem


3.22 to Hamiltonian (56) for m ≥ 10. We will see that in these regions we can find other


invariant objects, the secondary tori, which fill the region inside the gaps and they get


rather close to the frontier of the gaps among the primary KAM tori. The precise result,


jointly with the approximate equations for the invariant tori is given in Proposition 3.28.


Finally, Theorem 3.1 follows directly from Propositions 3.24, 3.26 and Theorem
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3.28.


3.3.1. The KAM Theorem The following result is about the existence of invariant tori


for a periodic perturbation 2πk0-periodic in the variable ϕ and 2π-periodic in the variable


s, of a Hamiltonian system expressed in action-angle variables and it is standard in KAM


theory (see [Lla01] for a tutorial on this theory). We skip its proof since it is simply an


adaptation of Theorem 8.12 in [DLS06a], where the explicit dependence of the constants


on k0 is given, since k0 will be chosen depending on ε. It relies on a quantitative KAM


Theorem of Herman [Her83, Theorem 5.4, p. 198] for exact symplectic mappings of the


annulus.


Theorem 3.22. Let K(I, ϕ, s; ε) be Hamiltonian of the form


K(I, ϕ, s; ε) = K0(I; ε) +K1(I, ϕ, s; ε), (78)


for (I, ϕ, s) ∈ I × (R/2πk0Z) × T, for some k0 ∈ N. Assume that


i. K is a Cn0+β function of the variables (I, ϕ, s), with n0 ≥ 5 and 0 < β < 1,


ii. For any s ∈ T, |K1(·, s; ε)|Cn0+β ≤ δ and
∣∣K ′′


0 (·; ε)
∣∣
C0 ≥M > 0, where δ = δ(ε) and


M = M(ε) depend on ε.


Then, for ε sufficiently small and fixed, there exists a constant C(k0) =


cte |k0|(n0+β)/2 and a finite set of values Ii ∈ I, such that the Hamiltonian K(I, ϕ, s; ε)


has invariant tori Ti, such that:


a. The torus Ti can be written as a graph of the variable I over the angle variables


(ϕ, s):


Ti = {(I, ϕ, s) ∈ I × T2 : I = Ii + Ψi(ϕ, s; ε)},
where Ψi(ϕ, s; ε) is a Cn0−2+β function and |Ψi(·; ε)|Cn0−2+β ≤ C(k0)M


−1δ1/2.


b. The motion on the torus is Cn0−4+β conjugate to a rigid translation of frequency


(ω(Ii), 1), where ω(Ii) is a Diophantine number of constant type and Markov


constant κ = C(k0)δ
1/2, that is


|ω(Ii)k − l|−1 ≤ Cκ−1|(k, l)| ∀(k, l) ∈ Z2 \ {(0, 0)}.
c. The union of neighborhoods of size C(k0)M


−1δ1/2 of these tori cover all the region


I × (R/2πkZ) × T.


Remark 3.23. This version of KAM Theorem requires to have the system written in


action angle variables. We would like to mention that recently there have appeared


some quantitative results on KAM theory without action angle variables (see [LGJV05]


and [FLS07]) for analytic maps, which could be adapted but some extra work is required.
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3.3.2. Non-resonant region In this section we apply directly Theorem 3.22 to the


averaged Hamiltonian (56) in the non-resonant region up to order m Dm
nr introduced in


(48). According to Remark 3.21, we use L/2 instead of L, so that


Dm
nr = Dm


nr(M,L/2) = {(J, ϕ, s) ∈ (I−, I+) × T2 : |J + l/k| ≥ Lk, for − l/k ∈ R[≤m]},
where Lk = L/|k|, with L = Cεα and α < 1/n, as required in Theorem 3.11.


Going back to the original variables (I, ϕ, s), using the changes given by Theorem


3.11 and equation (22), we obtain the following result about the existence of invariant


tori of Hamiltonian (1):


Proposition 3.24 (Invariant tori in the non-resonant region). Assume that m ≥ 2,


n ≥ 2m+6 and r > (n− 2)m+2. Choose any 0 < η ≤ (m− 1−αn)/2, where α < 1/n


as required in Theorem 3.11. Then, for ε small enough, in any connected component of


the non resonant region up to order m Dm
nr, there exists a finite set of values Ei such


that:


i. For any Ei there exists a torus Ti invariant by the flow of Hamiltonian (1) contained


in Λ̃ε, which is given in Λ̃ε by the equation F (I, ϕ, s; ε) ≡ Ei, where F is a


Cn−2m−2−̺ function F , for any ̺ > 0, of the form


F (I, ϕ, s; ε) = I + OC2(ε1+η). (79)


ii. The torus Ti contained in Λ̃ε can also be written as a graph of the variable I over


the angle variables (ϕ, s):


Ti = {(I, ϕ, s) ∈ Dm
nr, I = λEi


(ϕ, s; ε)},
with


λE(ϕ, s; ε) = E + UE(ϕ, s; ε); (80)


where UE(ϕ, s; ε) is a Cn−2m−2−̺ function, for any ̺ > 0, and UE = OC2(ε1+η).


iii. These tori are O(ε1+η)-closely spaced in terms of the variable I.


Proof: By equations (56) and (57) in Theorem 3.11, in one connected component of


the non-resonant region Dm
nr, the Hamiltonian (23) expressed in the averaged variables


(B, φ, s) has the following expression


km(B, φ, s; ε) =
B2


2
+ εZ̃m(B, ε) + εm+1R̄m(B, φ, s; ε), (81)


where εZ̃m(B; ε) is a polynomial of degree m in ε, whose coefficient in terms of ε


of order q + 1, for q = 0, . . . , m − 1, is a Cr−2q function and is OCℓ(εq+1−α(ℓ+2q)),


for ℓ = 0, . . . , n − 2q. Moreover, εm+1R̄m(B, φ, s; ε) is a Cr−2m function, which is


OCℓ(εm+1−α(ℓ+2m)) for ℓ = 0, . . . , n− 2m.


Our next step is to apply KAM Theorem 3.22 to the Hamiltonian (81), which is of


the form (78), for K0 = B2/2 + εZ̃m(B, ε) and K1 = εm+1R̄m(B, φ, s; ε) and 2π-periodic


in ϕ and s, so that k0 = 1. Assuming that n ≥ 2m+6, it satisfies properties (i) and (ii)


with n0 = n − 2m − 1, β = 1 − ̺, for any ̺ > 0, δ = εm+1−αn and M independent of
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ε. Therefore we can apply KAM Theorem 3.22 and we conclude that the non-resonant


region Dm
nr contains KAM tori given by


B = Bi + Ψi(φ, s; ε),


where Ψi is a Cn−2m−2−̺ function, for any ̺ > 0, and |Ψi|C2 � ε(m+1−αn)/2. These tori


are O(ε(m+1−αn)/2)-closely spaced in terms of the averaged variable B.


For a fixed value of ε ≪ 1, we have that ε(m+1−αn)/2 ≤ ε1+η, where η =


1/2(m− 1 − αn) is positive by hypotheses m ≥ 2 and α < 1/n for n ≥ 2m+ 6.


After applying KAM Theorem to Hamiltonian (81), we can go back to the original


variables (I, ϕ, s). Using that the change (J, ϕ, s) 7→ (B, φ, s) is ε1−α(ℓ+2)-close to the


identity in the Cℓ sense for ℓ = 0, . . . , n− 2m by Theorem 3.11 and (I, ϕ, s) 7→ (J, ϕ, s)


is ε-close to the identity in the Cr−1 sense by equation (22), the invariant tori obtained


in the region Dm
nr are given by


I = Ii + Ui(ϕ, s; ε)


where the function Ui verifies the same properties as Ψi, and they are O(ε1+η)-closely


spaced in terms of the variable I. We get the results claimed for Ei = Ii. �


3.3.3. Resonant region In this section, we analyze Hamiltonian (23) in the resonant


region up to order m Dm
r defined in (50).


We will perform an accurate study in this resonant region Dm
r and we will estimate


the size of the gaps created in the foliation of primary KAM tori. We will see that this


size depends on the order j of the resonance, for 1 ≤ j ≤ m, and on the size of the


harmonic associated to the corresponding resonance. According to this, we define two


types of regions: the small gaps regions DSG where the size of the gap is smaller than ε


and the big gaps regions DBG where the size of the gap is bigger or equal than ε.


We will work in one connected component of the resonant domain Dm
r which,


according to (50), is of the form


{(J, ϕ, s) ∈ [−l0/k0 − Lk0,−l0/k0 + Lk0 ] × T2}, (82)


for some −l0/k0 ∈ Rj \ (R1 ∪ · · · ∪ Rj−1), for 1 ≤ j ≤ m, where Lk0 = L/|k0|, with


L = Cεα and α < 1/n, as required in Theorem 3.11.


By formulas (56) and (58) of Theorem 3.11, in component (82), Hamiltonian (23)


expressed in the averaged variables (B, φ, s), can be written as


km(B, φ, s; ε) =
1


2
B2 + εZ̃m(B; ε) + εjUk0,l0


m (k0φ+ l0s; ε) + εm+1R̄m(B, φ, s; ε),
:= Z̄m(B, φ, s; ε) + εm+1R̄m(B, φ, s; ε), (83)


where Z̃m(B; ε) and Uk0,l0
m (k0φ+ l0s; ε) are polynomials of degree m− 1 and m− j in ε,


respectively, and Uk0,l0
m (k0φ+ l0s; ε) is a trigonometric polynomial in θ = k0φ+ l0s.


For q = 0, . . . , m−1, the coefficient of order q+1 in ε of εZ̃m is a Cr−2q function which


is OCℓ(εq+1−α(ℓ+2q)) for ℓ = 0, . . . , n− 2q. The function εjUk0,l0
m (θ; ε), for θ = k0φ + l0s,


satisfies
∣∣εjUk0,l0


m (·; ε)
∣∣
Cℓ � εj−2α(j−1)|(k0, l0)|−r+2(j−1), (84)
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for ℓ = 0, . . . , n− 2(j − 1) and |(k0, l0)| = max(|k0|, |l0|).
Moreover, εm+1R̄m is a Cr−2m function which is OCℓ(εm+1−α(ℓ+2m)), for ℓ = 0 . . . n−


2m.


From expression (83) it is clear that the integrable part Z̄m is like a pendulum. The


integrable pendulum has rotational and librational orbits as well as separatrices, which


separate these two types of motion. It is straightforward to see that the size of the gap,


created by the separatrix loop, associated to the resonance −l0/k0 ∈ Rj \R1∪· · ·∪Rj−1,


in terms of the J variables, can be bounded from above by
√


2εj/2
∣∣Uk0,l0


m (·; ε)
∣∣1/2


C0 .


From expression (84), we have that the size of the gap for a resonance −l0/k0 of


order j is


O(ε(j−2α(j−1))/2|(k0, l0)|(−r+2(j−1))/2). (85)


Expression (85) shows that the gaps form a heterogeneous sea since their size


depends on the order j ≥ 1 of the resonance and the size of the harmonic |(k0, l0)|.
Among them, the biggest gaps are those of order j = 1 and harmonic |(k0, l0)| ≤ MBG,


where MBG = ε−(1+ν)/r was introduced in Theorem 2.1 and satisfies MBG > M , where


M is the order of truncation. Indeed, in the particular case of a resonance −l0/k0 of


order 1 (j = 1), the size of the gap is


O(ε1/2|(k0, l0)|−r/2), (86)


so that for any ν > 0, the resonances of order 1 such that |(k0, l0)| ≥ MBG = ε−(1+ν)/r,


create gaps of size O(ε1+ν/2), that is, smaller than ε.


On the other hand, we know that resonances −l0/k0 of order greater than 1 satisfy


MBG ≤ |(k0, l0)| ≤ mM (see Remark 3.5). Hence, according to (85) the size of the gap


created by a resonance −l0/k0 or order j, for j = 2, . . . , m is


O(ε(j+1+ν−(α+(1+ν)/r)2(j−1))/2)).


Using the condition α < 1/n, with r > n ≥ 2m and m ≥ 2, the size of the gap is


O(ε(j+1−4α(j−1))/2).


For j ≥ 2 the size of the gaps is smaller than ε1+η, for η = (1 − 4α)/2. Notice that


η > 0 thanks to the condition on α.


As we already said, we will distinguish between two types of resonant regions


depending whether the size of the gaps created in the foliation of primary KAM tori are


bigger or smaller than the size ε of the heteroclinic jumps provided by the scattering


map (17).


• Resonant regions with big gaps DBG. Gaps of size of order equal or greater


than ε are created in the foliation of primary invariant tori. According to (86)


they correspond to resonances −l0/k0 of order 1 with gcd(k0, l0) = 1, satisfying


|(k0, l0)| < MBG, where MBG = ε−(1+ν)/r, for 1/(r/6−1) < ν ≤ 1/16. See definition


(21).
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• Resonant regions with small gaps DSG. Gaps between primary tori are smaller


than ε. They correspond to the resonant regions of resonances −l0/k0 of order 1


such that |(k0, l0)| ≥ MBG, and resonances of order greater or equal than 2 (which


also satisfy |(k0, l0)| ≥MBG, see Remark 3.5).


Remark 3.25. We would like to emphasize that our result about resonances is remarkably


different from the one obtained in [DLS06a], where it was considered the case of a


perturbation h with a finite number of harmonics. In that case there was a uniform size


for the gaps created by the resonances. For instance, the gaps created by the resonances


of order 1 and 2 were Cε1/2 and Cε, respectively. In our case we have a heterogeneous


sea of gaps of different sizes. Moreover, in our case the resonances that create big gaps


are just the resonances of order 1 up to some order MBG, whereas in [DLS06a], both


resonances of order 1 and 2 created big gaps.


3.3.4. Resonant regions with small gaps In this section, we will study the resonant


regions with small gaps DSG, which correspond to resonances −l0/k0 such that |(k0, l0)| ≥
MBG, where MBG was introduced in Theorem 2.1, of order j greater or equal than 1.


We will work in one connected component, and we will apply directly Theorem 3.22


to Hamiltonian (83) in order to prove that this component is covered by primary tori


which are O(ε1+η)-closely spaced, for some η > 0.


Going back to the original variables (I, ϕ, s) using the changes given by Theorem


3.11 and equation (22), we obtain the following result about the existence of invariant


primary KAM tori of Hamiltonian (1):


Proposition 3.26 (Invariant tori in the small gaps region). Assume that m ≥ 2,


n ≥ 2m+6 and r > (n− 2)m+2. Choose any 0 < η ≤ 1/2 min(ν− 6(1+ ν)/r,m− 1−
α(6+2m)), for ν > 1/(r/6−1). Then, for ε small enough, in any connected component


of DSG, which is of the form (82) for some −l0/k0 ∈ R[≤m] with |(k0, l0)| ≥ MBG and


Lk0 = L/|k0| with L = Cεα and α < 1/n, as required in Theorem 3.11, there exists a


finite set of values Ei such that:


i. For any Ei there exists a torus Ti invariant by the flow of Hamiltonian (1) contained


in Λ̃ε, which is given in Λ̃ε by the equation F (I, ϕ, s; ε) ≡ Ei, where F is a


Cn−2m−2−̺ function, for any ̺ > 0, of the form


F (I, ϕ, s; ε) = I + OC2(ε1+η). (87)


ii. The torus Ti can be written as a graph of the variable I over the angle variables


(ϕ, s):


Ti = {(I, ϕ, s) ∈ DSG; I = λEi
(ϕ, s; ε)},


with


λE(ϕ, s; ε) = E + UE(ϕ, s; ε) (88)


where UE is a Cn−2m−2−̺ function, for any ̺ > 0, and UE = OC2(ε1+η).


iii. These tori are O(ε1+η)-closely spaced in terms of the variable I.
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Proof: By Theorem 3.11, in any connected component of DSG, Hamiltonian (23)


expressed in the averaged variables (B, φ, s) has the expression (83).


Hamiltonian (83) is of the form (78), with K0(B; ε) = 1
2
B2 + εZ̃m(B; ε), which is a


Cr−2m+2 function and


K1(B, φ, s; ε) = εj(Uk0,l0
m (k0φ+ l0s; ε) + εm+1−jR̄m(B, φ, s; ε)), (89)


which is a Cr−2m function and 2π-periodic in both angle variables φ and s.


Our aim is to apply KAM Theorem 3.22. It is clear that |K ′′
0 (·; ε)| ≥ M > 0, for


M independent of ε. We now will see that K1 in (89) satisfies |K1(·, ·, s; ε)|C6 ≤ δ, for


δ = ε2+2η, for η > 0.


Recall from Theorem 3.11 that Uk0,l0
m (k0φ + l0s; ε) is a polynomial in ε of degree


m− j and a trigonometric polynomial in θ = k0φ+ l0s, which has the following bound


with respect to θ


|εjUk0,l0
m (·; ε)|Cℓ,θ � εj−2α(j−1)|(k0, l0)|−r+2(j−1), (90)


and therefore


|εjUk0,l0
m (·; ε)|Cℓ,(φ,s) � εj−2α(j−1)|(k0, l0)|−r+2(j−1)+ℓ (91)


for ℓ = 0, . . . , n− 2m. Moreover, εm+1R̄m is a Cr−2m function with a bounded Cℓ norm


up to ℓ = n− 2m given by
∣∣εm+1R̄m(·; ε)


∣∣
Cℓ � εm+1−α(ℓ+2m). (92)


Hence, from the estimates for the Cℓ norm of functions εjUk0,l0
m in (91) and εm+1R̄m


in (92) with ℓ = 6, one gets


|K1(·, ·, s; ε)|C6 � εj−2α(j−1)|(k0, l0)|−r+2(j−1)+6 + εm+1−α(6+2m),


for any 1 ≤ j ≤ m. Taking into account that |(k0, l0)| ≥ MBG = ε−(1+ν)/r and that the


worse estimate comes from j = 1, one gets


|K1(·, ·, s; ε)|C6 � εε
1+ν


r
(r−6) + εm+1−α(6+2m) = ε2+η1 + ε2+η2 ,


where η1 = ν − 6(1 + ν)/r and η2 = m − 1 − α(6 + 2m) are both positive. Indeed, by


hypotheses m ≥ 2 and α < 1/n ≤ 1/(2m+ 6), we have η2 > 0 and η1 > 0 is equivalent


to ν > 1/(r/6 − 1).


So, for any η ≤ 1/2 min(η1, η2) we have |K1(·, ·, s; ε)|C6 � ε2+2η and we can apply


KAM Theorem 3.22 with n0 = 5, β = 1−̺, for any ̺ > 0, δ = ε2+2η and M independent


of ε. Therefore, we conclude that for a constant C(k0) = cte because k0 = 1, regions


DBG contain KAM tori given by


B = Bi + Ψi(φ, s; ε),


where Ψi(φ, s; ε) is a C4−̺ function, for any ̺ > 0, and


|Ψi|C2 � ε1+η.


These tori are O(ε1+η)-closely spaced in terms of the variable B.


As in the non-resonant regions we can go back to the original variables (I, ϕ, s).


Using that the change (J, ϕ, s) 7→ (B, φ, s) is ε1−α(ℓ+2)-close to the identity in the Cℓ
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sense for ℓ = 0, . . . , n − 2m by Theorem 3.11 and (I, ϕ, s) 7→ (J, ϕ, s) is ε-close to the


identity in the Cr−1 sense by equation (22), the invariant tori obtained in the region Dm
nr


are given by


I = Ii + Ui(ϕ, s; ε)


where the function Ui verifies the same properties as Ψi, and they are O(ε1+η)-closely


spaced in terms of the variable I. We get the results claimed for Ei = Ii. �


Remark 3.27. Notice that invariant tori in the small gaps region DSG are given by a


certain function F in (87) that, as in the case of non-resonant regions (see (79)), is of


the form


F (I, ϕ, s; ε) = I + OC2(ε1+η), (93)


for some η > 0.


3.3.5. Resonant regions with big gaps In this section, we will see that the resonant


regions with big gaps DBG which correspond to resonances of order 1 such that


|(k0, l0)| < MBG are covered with invariant objects (either primary tori or secondary


tori) which are O(ε1+η)-closely spaced in terms of the action variable I, for some η > 0.


To that end, we will apply Theorem 3.22 to Hamiltonian (81) as we did in the


previous cases. The main difference is that in this case the integrable Hamiltonian is


not written down into action angle variables, so we will need to perform a change of


coordinates before applying KAM theorem. Furthermore, we will perform two useful


changes of coordinates, which are not symplectic but conformally symplectic.


Finally, going back to the original variables (I, ϕ, s) using the changes given by


Theorem 3.11 and equation (22), we obtain the following result about the existence of


invariant tori of Hamiltonian (1):


Theorem 3.28 (Invariant tori in the big gaps region). Assume that m ≥ 10, n ≥ 2m+6


and r > (n − 2)m + 2. Assume that the function Uk0,l0
m (k0φ + l0s; 0) in Hamiltonian


(83) has a global maximum which is non degenerate (this assumption corresponds to


the hypothesis H3’ on (k0, l0) in Theorem 2.1). Choose any 0 < η ≤ ν/2 and assume


ν ≤ 1/16.


Then, for ε small enough, in any connected component of DBG, which is of the form


(82), for some −l0/k0 of order 1 such that |(k0, l0)| < MBG, Lk0 = L/|k0| with L = Cεα


and α < 1/n, as required in Theorem 3.11, there exists a finite set of values Ei in some


range of energies −ε|(k0, l0)|−r+2 ≤ E ≤ L2 such that:


i. For any Ei there exist invariant objects by the flow of Hamiltonian (1) contained


in Λ̃ε, which are given in Λ̃ε by the equation F (I, ϕ, s; ε) ≡ Ei, where F is a C4−̺


function, for any ̺ > 0, of the form


F (I, ϕ, s; ε) =
(k0I + l0)


2


2
(1 + εk2


0h̃(k0I + l0; ε)) + εk2
0U


k0,l0
m (k0ϕ+ l0s; ε)


+ OC2(k4
0|(k0, l0)|−r/2ε3/2+η), (94)
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where h̃ satisfies (106). For values of Ei > 0, equation F ≡ Ei consists of two


invariant objects that are primary KAM tori T ±
Ei


, whereas for Ei < 0 consists of an


invariant object which is a secondary KAM torus TEi
. In this case we denote T ±


Ei


each of the components of


TEi
∩ {(I, ϕ, s) ∈ DBG; ρ ≤ k0ϕ+ l0s ≤ 2π − ρ},


for some 0 < ρ < 2π.


ii. There exists ρ ≥ 0, such that the two primary KAM tori (components of the


secondary tori) T ±
Ei


contained in Λ̃ε can be written as graphs of the variable I over


the angle variables (ϕ, s):


T ±
Ei


= {(I, ϕ, s) ∈ [−l0/k0 − Lk0 ,−l0/k0 + Lk0 ] × [ρ, 2π − ρ] × T; I = λ±Ei
(ϕ, s; ε)},


where


λ±E(ϕ, s; ε) = − l0
k0


+
1


k0
Y±(θ, E) + OC2(ε1+η), (95)


for ρ ≤ θ = k0ϕ + l0s ≤ 2π − ρ, where


Y±(x,E) = ±(1 + εb)ℓ(θ, E) + εỸ±(ℓ(θ, E)), (96)


ℓ(θ, E) =
√


2(E − εk2
0U


k0,l0
m (θ; ε)) and Ỹ± satisfies (118).


iii. These invariant tori are O(ε1+η)-closely spaced in terms of the variable I and


O(ε3/2+η|(k0, l0)|−r/2+1) in terms of energies Ei.


Remark 3.29. In Remark 3.12 we already pointed out that the function Uk0,l0
m (k0ϕ+l0s; 0)


given explicitly in (59) is the function Uk0,l0(θ) for θ = k0ϕ + l0s in hypothesis H3 on


(k0, l0) in Theorem 2.1.


3.3.6. Proof of Theorem 3.28 The proof of this theorem is organized in three parts.


Invariant tori given by the averaged Hamiltonian


By Theorem 3.11, in any connected component of the resonant domain DBG, which


is of the form (82), Hamiltonian (23) expressed in the averaged variables (B, φ, s) is of


the form (83) with j = 1, so it can be written as


km(B, φ, s; ε) =
1


2
B2 + εZ̃m(B; ε) + εUk0,l0


m (k0φ+ l0s; ε) + εm+1R̄m(B, φ, s; ε)
:= Z̄m(B, φ, s; ε) + εm+1R̄m(B, φ, s; ε), (97)


on the domain


{(B, φ, s) ∈ R × T2; |B + l0/k0| ≤ L̄k0}, (98)


where |Lk0 − L̄k0 | ≤ cte ε.


In this domain, εZ̃m(B; ε) is a Cr−2m+2 function in the variable B and it is a


polynomial of degree m in ε, whose coefficient of order q + 1, for q = 1, . . . , m − 1 is a


Cr−2q function and OCℓ(εq+1−α(ℓ+2q)), for ℓ = 0, . . . , n − 2q, so that Z̄m has a bounded
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norm up to ℓ = n−2m+2. Its main term Z̃m(B; 0) is equal to h0,0(0, 0,B; 0) by Remark


3.12.


Moreover Uk0,l0
m (k0φ+l0s; ε) is a polynomial of degree m−1 in ε and a trigonometric


polynomial in θ = k0φ+ l0s, satisfying εUk0,l0
m (θ; ε) = OCℓ(ε|(k0, l0)|−r), for ℓ = 0, . . . , n.


Its main term Uk0,l0
m (θ; 0) is given in expression (60) in Remark 3.12.


Finally, εm+1R̄m is a Cr−2m function in the variables (B, φ, s) with a bounded Cℓ


norm up to ℓ = n− 2m, which is
∣∣εm+1R̄m(·; ε)


∣∣
Cℓ � εm+1−α(ℓ+2m). (99)


By the hypothesis in Theorem 3.28, the function Uk0,l0
m (θ, 0) (the first order term


in ε of the function Uk0,l0
m (θ, ε)) has a global maximum which is non-degenerate and


this implies that the integrable part Z̄m of the Hamiltonian (97) is like an integrable


pendulum.


As it has been done in Section 8.5.2 in [DLS06a], we perform two useful changes of


coordinates which are not symplectic but conformally symplectic. The first one depends


on the time s and the resonance (k0, l0) and is given by:


b = k0(B + l0/k0), θ = k0φ+ l0s, s = s, (100)


hence the system of equations verified by (b, θ, s) is also Hamiltonian of Hamiltonian:


K̄(b, θ, s; ε) = K̄0(b; ε) + εV̄ (θ; ε) + εm+1K̄1(b, θ, s; ε), (101)


with


K̄0(b, ε) = b2/2 + εk2
0Z̃


m(−l0/k0 + b/k0; ε),


V̄ (θ; ε) = k2
0U


k0,l0
m (θ; ε), (102)


K̄1(b, θ, s; ε) = k2
0R̄


m(−l0/k0 + b/k0,
θ − l0s


k0


, s; ε).


Note that K̄0 is of class Cr−2m+2 with a bounded Cℓ norm up to ℓ = n−2m+2 and V̄ is


analytic because it is a trigonometric polynomial in θ and a polynomial of degree m− 1


in ε. K̄1 is a function of class Cr−2m with a bounded Cℓ norm up to ℓ = n− 2m, which


is 2πk0-periodic in θ and 2π-periodic in s. Notice that V̄ is 2π-periodic in θ, whereas


K̄1 is 2πk0-periodic in θ.


The integrable part K̄0(b; ε) + εV̄ (θ; ε) of the Hamiltonian (101) is a one degree of


freedom Hamiltonian close to a pendulum-like Hamiltonian


b2


2
+ εV̄ (θ; 0) =


b2


2
+ εk2


0U
k0,l0
m (θ; 0),


where Uk0,l0
m (θ; 0) is given in (60). By hypothesis H3’ on (k0, l0) this pendulum-like


Hamiltonian has a hyperbolic saddle at (0, θ1) and by the implicit function theorem


the whole integrable Hamiltonian K̄0(b; ε) + εV̄ (θ; ε) has also a saddle at (b(ε), θ1(ε)).


Since Z̃m(B; 0) = h(0, 0,B; 0) does not depend on ε, the function b(ε) is of class Cr−2m+1


in ε and of the form b(ε) = O(|k0|ε) whereas θ1(ε) is analytic in ε and of the form


θ1(ε) = θ1 + O(ε).
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To make the analysis of this system easier we perform a second change of variables,


which depends on ε and consists of the following translation


y = b− b(ε), x = θ − θ1(ε), s = s, (103)


in such a way that the integrable part of the Hamiltonian expressed in these new


variables has a saddle point at (0, 0) and the energy of the saddle and the separatrices


is 0. More precisely, we obtain the Cr−2m Hamiltonian with respect to (y, x, s) with a


bounded Cℓ norm up to ℓ = n− 2m


K(y, x, s; ε) = h0(y; ε) + εU(x; ε) + εm+1S(y, x, s; ε) (104)


which consists of an integrable part corresponding to the terms up to order εm, which


is the following Cr−2m+2 function with a bounded Cℓ norm up to ℓ = n− 2m+ 2,


K0(y, x; ε) = h0(y; ε) + εUk0,l0(x; ε), (105)


and a perturbation εm+1S(y, x, s; ε), which is a Cr−2m function with a bounded Cℓ norm


up to ℓ = n− 2m.


The function h0(y; ε) in the integrable part K0 is a Cr−2m+2 function in y with a


bounded Cℓ norm up to ℓ = n− 2m+ 2 of the form


h0(y; ε) =
y2


2
ĥ(y; ε) =


y2


2
(1 + εk2


0h̃(y; ε)), (106)


for some Cr−2m function in (y, ε), h̃(y; ε), with a bounded Cℓ norm up to ℓ = n− 2m in


y. The function U in K0 is given by


U(x; ε) = k2
0(U


k0,l0
m (x+ θ1(ε); ε) − Uk0,l0


m (θ1(ε); ε)), (107)


and it satisfies


|εU(·; ε)|Cℓ � ε|k0|2|(k0, l0)|−r (108)


for ℓ = 0, . . . n.


We also notice that the following conditions are satisfied,


h0(0; ε) =
∂h0


∂y
(0; ε) = 0, U(0; ε) =


∂U


∂x
(0; ε) = 0,


∂2U


∂x2
(0; ε) < 0,


as well as that x = 0 is a global maximum of U .


The perturbation term εm+1S(y, x, s; ε) is given by


S(y, x, s; ε) = k2
0R̄


m


(
− l0
k0


+
y + b(ε)


k0
,
x+ θ1(ε) − l0s


k0
, s; ε


)


and by equation (99) it can be bounded in the variables (y, x) by
∣∣εm+1S(·, s; ε)


∣∣
Cℓ � |k0|2−ℓεm+1−α(ℓ+2m) (109)


for ℓ = 0, . . . , n− 2m.


Since we will want to apply some of the results in [DLS06a], it will be convenient for


us to have K0 written in another way adapted to the notation in [DLS06a]. Motivated
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by the size ε|k0|2|(k0, l0)|−r of εU estimated in formula (108), we introduce here the


parameter γ ∈ R, 2 > γ ≥ 1, depending on (k0, l0) and ε, such that


εγ = ε|k0|2|(k0, l0)|−r, (110)


in such a way that εU(·; ε) = OCℓ(εγ), for ℓ = 0, . . . , n.


Notice that γ = 1 for small values of (k0, l0), that is |(k0, l0)| ∼ 1, and in general


1 < γ < 2 + ν for |(k0, l0)| ∼ ε−̺, for any 0 < ̺ < (1 + ν)/r, where 0 < ν ≤ 1/16.


With this choice of γ, we will denote K0 the one degree of freedom Cr−2m+2


Hamiltonian in (y, x)


K0(y, x; ε) = h0(y; ε) + εγŨ(x; ε), (111)


where


εγŨ(x; ε) = εU(x; ε), (112)


with 2 + ν > γ ≥ 1 and Ũ(·; ε) = OCℓ(1), for ℓ = 0, . . . , n.


The energy level K0(y, x; ε) = 0 consists of the saddle (0, 0) and its separatrices.


The Hamiltonian K(y, x, s; ε) introduced in (104) is 2πk0-periodic in x and 2π-


periodic in s and is defined in the domain Dk0 given by


Dk0 = {(y, x, s) ∈ R × R/(2πk0Z) × T, |y| ≤ L̄}, (113)


where L̄ = k0L̄k0, whereas the integrable part K0(y, x; ε) in (111) is 2π-periodic in x


and independent of s, therefore the region Dk0 can be seen as k0 copies of the region


D = {(y, x, s) ∈ R × T2, |y| ≤ L̄}.
This effect is colloquially described as saying that the resonance −l0/k0 has k0 eyes. As


k0 increases, these eyes form long necklaces.


The region D (and also Dk0) is filled by the energy surfaces of the Hamiltonian K0,


T 0
E = {(y, x, s) ∈ [−L̄, L̄] × T2 : K0(y, x; ε) = E}


which are invariant under the flow of Hamiltonian K0.


As we already said, the energy surface T 0
0 corresponding to E = 0 consists of the


saddle (0, 0) and its separatrices forming a separatrix loop. Therefore, this separatrix


loop T 0
0 separates two types of topological invariant objects. The energy surfaces


corresponding to the values E > 0 are primary tori and the ones corresponding to


the the values E < 0 are called secondary tori, which are tori of different topology than


the primary ones because they are contractible to points. Secondary tori cover all the


region inside the separatrix loop T 0
0 . In the next section we will discuss the persistence


of primary and secondary tori when we add the perturbation term.


KAM Theorem


In this section, we will show that many of the invariant tori T 0
E of the Hamiltonian


K0(y, x; ε) in (111), inside the region Dk0 given in (113), both primary and secondary,


survive when we add the perturbation term εm+1S(y, x, s; ε) to consider the Hamiltonian







Geography of resonances and Arnold diffusion 58


K given in equation (104). Moreover, we will estimate the number of steps of averaging


m required to get invariant tori with a distance of O(ε1+η) between them, for some


η > 0, in terms of the original variables (I, ϕ, s).


To establish this we will write the Hamiltonian (111) into action-angle variables


and apply KAM Theorem 3.22. Since the unperturbed Hamiltonian K0(y, x; ε) is


a pendulum, we can not define global action-angle variables because the change of


coordinates becomes singular on the separatrix. Therefore, we will define different


action-angle variables inside and outside the separatrix and we will exclude a thin


neighborhood around it.


We will find convenient to consider different regions in the domain Dk0 in terms of


the values of the energy E, in which the behavior of the tori is different.


Recall that tori T 0
E in Dk0 are given approximately by the energy surfaces of


Hamiltonian K0, that is


K0(y, x; ε) = E,


and we will see that excluding an small interval they can be seen as a graph of the action


variable y over the angle variables (x, s).


Introducing δ = εγ, we consider the foliation given by the level sets


h0(y; ε) + δŨ(x; ε) = E, (114)


where h0(y; ε) is of the form (106) and Ũ(·; ε) = OCℓ(1) for ℓ = 0, . . . , n satisfies also


that on x = 0 there is a non-degenerate global maximum of Ũ(x; ε), which verifies


−c ≤ Ũ(·; ε) ≤ 0 and Ũ(·; ε) ≃ −ax2 as x→ 0, with a > 0.


Since h0(y; ε) + δŨ(x; ε) ≃ y2


2
+ δŨ(x; ε), the main term in the solution of (114) is


y = ±ℓ(x,E), (115)


where


ℓ(x,E) =


√
2(E − δŨ(x; ε)). (116)


Writing y in (114) as a function of (115), we can apply the implicit function theorem


to equation (114) and we get a solution y = Y±(x,E) given by


Y±(x,E) = ±(1 + εb)ℓ(x,E) + εỸ±(ℓ(x,E)), (117)


where


i. b = O(|k0|ε) and independent of δ. Moreover, Ỹ±(0) = Ỹ ′
±(0) = 0.


ii. εỸ± is a Cr−2m+2 function and
∣∣∣εỸ± ◦ ℓ


∣∣∣
Cs(IE0


)
� |k0|ε, s = 0, 1,


∣∣∣εỸ± ◦ ℓ
∣∣∣
Cs(IE0


)
� |k0|εE−s+1/2


0 , 2 ≤ s ≤ n− 2m+ 2, (118)


where IE0 := {(x,E), x ∈ T, E ≥ E0 > 0}.
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This result is stated explicitly in Lemma 8.34 in [DLS06a]. For more details and a


rigorous proof we refer the reader to it.


From expression (116) it is clear that the size of the energy determines the dominant


terms in ℓ(x,E). Thus, if E ≫ δ = εγ the tori T 0
E are rather flat because the term


εγŨ(x; ε) is very small compared with E, whereas if E ≤ εγ, the term


√
E − εγŨ(x; 0)


and therefore the size of y oscillates between E and εγ and it has the effect of bending


the tori up to the point that they are bunched near the critical point (see Figure 1).


Df


DoDin


Figure 1. Schematic representation for the bending effect


Hence Dk0 will be divided in three regions in a similar way as in [DLS06a]: Df is


the region far from the separatrix, Do close to the separatrix but outside the region


bounded by the separatrix loop and Din close to the separatrix but inside the separatrix


loop, in the following way:


Df = {(y, x, s) ∈ Dk0 : K0(y, x; ε) = E, εγ ≤ E ≤ L̄2} (119)


Do = {(y, x, s) ∈ Dk0 : K0(y, x; ε) = F, εβ ≤ F ≤ εγ} (120)


Din = {(y, x, s) ∈ Dk0 : K0(y, x; ε) = G,−εγ ≤ G ≤ −εβ} (121)


where 1 ≤ γ < 2 + ν as in (110) and β is arbitrary provided that β > γ (see Figure 1).


Theorem 3.30 establishes the existence of primary tori in Df∪Do and secondary tori


in Din at a certain distance between them that depends on the number m of averaging


steps and close to the level sets of the averaged Hamiltonian K0(y, x; ε).


Theorem 3.30 (KAM Theorem in the big gaps region). Consider the Cr−2m reduced


Hamiltonian K(y, x, s; ε) given in (104) inside the region Dk0 defined in (113). Consider


β > γ, with γ as in (110) and assume that r > (n − 2)m + 2, n ≥ 2m + 6 and


m ≥ 14(β − γ) + 3γ/2. Then, for |ε| small enough, one has:
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1. Primary tori far from resonance. There exists a set of values E1 < · · · < ElE


verifying εγ ≤ Ei ≤ L̄2 ∼ ε2α and α < 1/n, such that


(a) The frequencies ω(Ei) are Diophantine numbers of constant type and Markov


constant cteE
−1/4
i ε


m+1−α(6+2m)
2 |k0|.


(b) For any value Ei, there exist two primary invariant tori T ±
Ei


of Hamiltonian


(104) contained in Df .


(c) The motion of the tori T ±
Ei


is C1-conjugated to a rigid translation of frequencies


(ω(Ei), 1).


(d) This tori can be written as


T +
Ei


= {(y, x, s) ∈ Df , KEi
(y, x, s; ε) = Ei, y > 0}


T −
Ei


= {(y, x, s) ∈ Df , KEi
(y, x, s; ε) = Ei, y < 0}


where KEi
(y, x, s; ε) is a C4−̺ function, for any ̺ > 0, given by


KEi
(y, x, s; ε) = K0(y, x; ε) + OC2


(
ε


m+1−α(6+2m)
2 E


1/4
i |k0|


)
(122)


(e) Df ⊂
⋃


iB(T ±
Ei
, ε


m+1−α(6+2m)
2 E


1/4
i |k0|), where


B(T ±
E , δ) = {(y, x, s) ∈ Dk0, |K0(y, x; ε) −E| ≤ δ}


2. Primary tori close to resonance. There exists a set of values F1 < · · · < FlF


verifying εβ ≤ Fi ≤ εγ, such that


(a) The frequencies ω(Fi) are Diophantine numbers of constant type and Markov


constant cte ε
m+1−α(6+2m)−γ/2+6γ


2 F−3
i |k0|.


(b) For any value Fi, there exist two primary invariant tori T ±
Fi


of Hamiltonian


(104) contained in Do.


(c) The motion of the tori T ±
Fi


is C1-conjugated to a rigid translation of frequencies


(ω(Fi), 1).


(d) This tori can be written as


T +
Fi


= {(y, x, s) ∈ Do, KFi
(y, x, s; ε) = Fi, y > 0}


T −
Fi


= {(y, x, s) ∈ Do, KFi
(y, x, s; ε) = Fi, y < 0}


where KFi
(y, x, s; ε) is a C4−̺ function, for any ̺ > 0, given by


KFi
(y, x, s; ε) = K0(y, x; ε) + OC2


(
ε


m+1−α(6+2m)+γ/2+14γ
2 F−7


i |k0|
)


(123)


(e) Do ⊂
⋃


iB(T ±
Fi
, ε


m+1−α(6+2m)+γ/2+10γ
2 F−5


i |k0|), where


B(T ±
E , δ) = {(y, x, s) ∈ Dk0, |K0(y, x; ε) −E| ≤ δ}


3. Secondary tori close to resonance. There exists a set of values G1 < · · · < GlG


verifying −εγ ≤ Gi ≤ −εβ, such that


(a) The frequencies ω(Gi) are Diophantine numbers of constant type and Markov


constant cte ε
m+1−α(6+2m)−γ/2+6γ


2 |Gi|−3|k0|.
(b) For any value Gi, there exist a secondary invariant torus T ±


Gi
of Hamiltonian


(104) contained in Din, contractible to the set


{(0, a, s), a ∈ R, s ∈ R/(2πk0Z)} ⊂ Din







Geography of resonances and Arnold diffusion 61


(c) The motion on the torus TGi
is C1-conjugated to a rigid translation of


frequencies (ω(Gi), 1).


(d) This torus can be written as


TGi
= {(y, x, s) ∈ Din, KGi


(y, x, s; ε) = Gi}
where KGi


(y, x, s; ε) is a C4−̺ function, for any ̺ > 0, given by


KGi
(y, x, s; ε) = K0(y, x; ε) + OC2


(
ε


m+1−α(6+2m)+γ/2+14γ
2 |Gi|−7|k0|


)
(124)


(e) Din ⊂ ⋃iB(T ±
Gi
, ε


m+1−α(6+2m)+γ/2+10γ
2 |Gi|−5|k0|).


The following Corollary makes more explicit the assertions about the proximity of


these tori as a function of m, and it also gives properties of the KAM tori when expressed


as graphs of the action y in terms of the angle variables (x, s).


Corollary 3.31. Consider the Cr−2m reduced Hamiltonian K(y, x, s; ε) given in (104)


inside the region Dk0 defined in (113). Consider β = γ/2 + 1 + ν/2, with 1 ≤ γ < 2 + ν


as in (110) and ν ≤ 1/16. Assume that r > (n − 2)m + 2, n ≥ 2m + 6 and m ≥ 10.


Then, the tori obtained in Theorem 3.30 verify:


1. For any value Ei, the primary tori T ±
Ei


can be written as graphs of the action y over


the angles (x, s):


T ±
Ei


= {(y, x, s) ∈ Df , y = f±
Ei


(x, s; ε)}.
2. For any value Fi, the primary tori T ±


Fi
can be written as graphs of the action y over


the angles (x, s):


T ±
Fi


= {(y, x, s) ∈ Do, y = f±
Fi


(x, s; ε)}.
3. There exists ρ0 > 0 such that for any 0 < ρ0 ≤ ρ ≤ π, and for any value Gi, each


of the components of


TGi
∩ {(y, x, s) : x ∈ Iρ}, Iρ =


k0−1⋃


l=0


[2πl + ρ, 2π(l + 1) − ρ],


that we will denote by T ±,ρ
Gi


, can be written as a graph of the action y over the angles


(x, s):


T ±,ρ
Gi


= {(y, x, s) ∈ Di, x ∈ Iρ, y = f±
Gi


(x, s; ε)}
4. All these functions fv = f±


v are at least of class C2 with respect to (x, s), and,


denoting by D the derivatives with respect to x and s, for v = Ei, i = 1, . . . , lE,


v = Fi, i = 1, . . . , lF , and v = Gi, i = 1, . . . , lG, they verify:


(a) There exists a function Y(x,E) given explicitly in (117) such that:


|fv − Y(x, v)|C1 � |k0|ε1+ν/2 (125)


(b) |Dfv| � εγ/2, |D2fv| � εγ/2.


(c) For any two consecutive values v and v we have:


|v − v̄| � |k0|εβ,
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and


|fv − fv|C1 � |v − v|
εγ/2


� |k0|ε1+ν/2.


Proof of Theorem 3.30


The proof follows the strategy established in [DLS06a], with the same scaling in


the domains Do and Din. The main difference is that we will perform a sequence of


scalings in the far domain Df , whereas in [DLS06a] there was no scaling in this region.


This sequence of scalings in Df will reduce the number of averaging steps m needed to


get tori close enough in the region Df , and therefore the required differentiability r.


We will first give a detailed proof of part 1) of this Theorem. Notice that in Df


defined in (119), the energy E ranges from εγ to L̄2 ∼ ε2α. Hence, we consider a value


of E, let us say El, in the interval [εγ , ε2α] and a small neighborhood around it of the


form [caEl, cbEl] ⊆ [εγ, ε2α], where ca, cb are constants independent of ε and El, such


that ca < 1 and cb > 1. Thus, we introduce the following domain contained in Df :


DEl
= {(y, x, s) ∈ Df : K0(y, x; ε) = E, caEl ≤ E ≤ cbEl} . (126)


By the equation of K0 in (111) and the expression of h0 in (106), the main term in y is


given in (116). Therefore, in DEl
the coordinate y is of size O(


√
Ei) and it is natural to


perform the scaling


y =
√
ElY, (127)


which transforms the Hamiltonian system of Hamiltonian K(y, x, s; ε) given in (104),


which is Cr−2m with respect to the variables (y, x, s) with a bounded Cℓ norm up to


ℓ = n − 2m, into a Hamiltonian system of Cr−2m Hamiltonian with respect to (Y, x, s)


with a bounded Cℓ norm up to ℓ = n− 2m,


K(Y, x, s;
√
El, ε) =


1√
El


K(
√
ElY, x, s; ε)


=
√
ElK0(Y, x;


√
El, ε) +


εm+1


√
El


S(
√
ElY, x, s; ε), (128)


with


K0(Y, x;
√
El, ε) =


1


El
K0(


√
ElY, x; ε)


=
Y 2


2
ĥ(
√
EiY ; ε) +


εγ


Ei
Ũ(x; ε), (129)


where ĥ(y; ε) = 1 + O(|k0|2ε) is given in (106) and, consequently, K0 is a Cr−2m+2


function with respect to (Y, x) with a bounded Cℓ norm up to ℓ = n− 2m+ 2, because


ĥ(y; ε) is Cr−2m+2 with respect to y with a bounded Cℓ norm up to ℓ = n− 2m+ 2.


The scaling (127) transforms the domain DEl
in (126) into


D̃ = {(Y, x, s) ∈ R × R/2πk0Z × T : K0(Y, x;
√
El, ε) = E/El, caEi ≤ E ≤ cbEi}


= {(Y, x, s) ∈ R × R/2πk0Z × T : K0(Y, x;
√
El, ε) = e, ca ≤ e ≤ cb}. (130)


Next we will define the action-angle variables (A,ψ) associated to the Hamiltonian


K0(Y, x;
√
El, ε) in the domain D̃. Note that the Hamiltonian K(Y, x, s;


√
El, ε) is 2πk0-


periodic in x and 2π-periodic in s, whereas K0(Y, x;
√
El, ε) is 2π-periodic in x and
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independent of s. Therefore, the domain D̃ is nothing else but k0 copies of the domain


D∗ × T, where


D∗ = {(Y, x) ∈ R × T : K0(Y, x;
√
El, ε) = e, ca ≤ e ≤ cb}. (131)


Notice that, by expression (129) for K0, the equation


K0(Y, x;
√
El, ε) = e


has the same form as equation (114) with δ = εγ/El and it defines two functions


Y = Y±(x, e) on D∗, given in (117), which are of the form


Y±(x, e) = ±
√


2


(
e− εγ


El
Ũ(x; ε)


)
(1 + OCn−2m+2(|k0|ε)).


Since, by construction of Ũ(x; ε), on x = 0 there is a global maximum such that


−c ≤ Ũ(x; ε) ≤ 0, in the domain D∗ we have


0 ≤ ca ≤ e ≤ e− εγ


El


Ũ(x; ε) ≤ e+ c
εγ


El


≤ cb + cte ,


where we have used El ≥ εγ and therefore c̃a ≤ Y±(x, e) ≤ c̃b+cte and Y± is OCn−2m+2(1),


for some constants c̃a and c̃b.


We consider in D∗ the action angle variables


A =
1


2π


∫ 2π


0


Y±(x, e)dx,


ψ =
2π


T (e)
τ(x, e),


(132)


where τ(x, e) is the time along the orbit of the Hamiltonian K0(Y, x;
√
El, ε) with energy


e given by


τ(x, e) =


∫ x


0


∂Y±


∂e
(u, e)du. (133)


We have chosen the origin of time at x = 0 and with this choice T (e) = τ(2π, e) is the


period of the periodic orbit.


From expression (132) it is obvious that A satisfies c̃a ≤ A ≤ c̃b and that A is


OCn−2m+3(1).


The action-angle variables (A,ψ) introduced in (132) have already been studied in


Proposition 8.35 of [DLS06a] for the case when they become singular, that is when the


domain D∗ depends on ε. In our case, we can adapt the result in Proposition 8.35 of


[DLS06a] for the domain D∗ not depending on ε. We obtain that we can express the


integrable Hamiltonian
√
ElK0(Y, x;


√
El, ε) in (129) into action-angle variables (A,ψ)


in the domain D∗ and the change of coordinates is away from the singularity in this


domain. More precisely, there exists a Cr−2m+2 change of variables in D∗


X : D∗∗ → D∗


(A,ψ) 7→ (Y, x)
(134)


given in (132) with D∗∗ = {(A,ψ) : c̃a ≤ A ≤ c̃b, ψ ∈ T} = [c̃a, c̃b]×T and c̃a, c̃b, suitable


constants independent of ε and El, such that:
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i. K0(X (A,ψ);
√
El, ε) = G(A;


√
El, ε).


ii. |X |Cn0 (D∗∗) � 1,
∣∣X−1


∣∣
Cn0 (D∗)


� 1, 0 ≤ n0 ≤ n− 2m+ 2.


iii. |G|C3(D∗∗) � 1 and
∣∣∣G ′′
∣∣∣
C0(D∗∗)


� 1


where the constants in above inequalities do not depend on ε and El.


Now, we consider the Hamiltonian K in (128) expressed in action-angle variables,


K̃(A,ψ, s;
√
El, ε) =


√
ElG(A;


√
El, ε) +


εm+1


√
El


S̃(A,ψ, s;
√
El, ε), (135)


where K̃ = K ◦ X and S̃ = S ◦ X .


The Hamiltonian (135) is of the form (78) with K0 =
√
ElG(A;


√
El, ε) and


K1 = εm+1E
−1/2
l S̃(A,ψ, s;


√
El, ε) and 2πk0-periodic in ψ.


The functions G and S̃ are Cr−2m+2 and Cr−2m with bounded Cℓ norms up to


ℓ = n−2m+2 and ℓ = n−2m in the variables (A,ψ), respectively. Since by hypotheses


of Theorem 3.30 we have that r > n ≥ 2m+6, G and S̃ have a bounded C6 norm in the


variables (A,ψ). Therefore, using Faa-di Bruno formula (C.3) and the bound for the C6


norm in the variables (y, x) for εm+1S in expression (109) jointly with the bounds for


the change of coordinates X in item ii) we have that, for any s ∈ T,
∣∣∣∣
εm+1


√
El


S̃(·, s;
√
El, ε)


∣∣∣∣
C6(D∗∗


k0
)


� |k0|−4E
−1/2
l εm+1−α(6+2m),


where D∗∗
k0


= [c̃a, c̃b] × R/2πk0Z. Moreover, by item iii) in this proof we have that
√
El


∣∣∣G′′(·;
√
El, ε)


∣∣∣
C0(D∗∗)


�
√
El.


Therefore, we can apply KAM Theorem 3.22 to Hamiltonian (135) with n0 = 5,


β = 1−̺, for any ̺ > 0, δ = δ(ε) = |k0|−4E
−1/2
l εm+1−α(6+2m) and M = M(ε) = cte


√
El


and we obtain:


1. There exist a set of values Al, such that the Hamiltonian K ◦ X has invariant tori


given by


Tl = {(A,ψ, s) ∈ D∗∗
k0


× T : A = Al + Al(ψ, s;
√
El, ε)}


where Al are C4−̺ functions in the variables (ψ, s), for any ̺ > 0 and
∣∣∣Al(·;


√
El, ε)


∣∣∣
C2(R/2πk0Z×T)


� |k0|E−3/4
l ε(m+1−α(6+2m))/2.


2. The motion of these tori is C2−̺-conjugate to a rigid translation of frequencies


(ω(Al), 1), where ω(Al) is a Diophantine number of constant type and Markov


constant cte |k0|E−1/4
l ε(m+1−α(6+2m))/2.


3. The union of neighborhoods of size |k0|E−3/4
l ε(m+1−α(6+2m))/2 of these tori cover all


the region D∗∗
k0
× T.


In the variables (Y, x, s) = (X (A,ψ), s), the torus Tl satisfies K0(Y, x;
√
El, ε) =


G(Al + Al(ψ, s;
√
El, ε);


√
El, ε), so that, introducing G(Al;


√
El, ε) = el and using the
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estimates in items (ii) and (iii) in this proof as well as Faa-Di Bruno formulae, one


obtains that the tori are given by


K0(Y, x;
√
El, ε) = G(Al;


√
El, ε) + +OC2


(
|G|C3 |Al|C2


∣∣X−1
∣∣2
C2


)


= el + OC2


(
|k0|E−3/4


l ε(m+1−α(6+2m))/2
)


(136)


Going back to the variables (y, x, s) performing the scaling y =
√
ElY and using


the expression for K0 given in (129) one obtains that the tori are given by


K0(y, x; ε) = Ei + OC2


(
|k0|E1/4


i ε
m+1−α(6+2m)


2


)
,


where Ei = Elel.


By compactness of Df , the covering {int(DEi
)}∞i=1 of Df admits a finite subcovering


Df =
⋃N


i=0 int(DEi
), and we get the claimed results in part 1 of Theorem 3.30.


The proof of parts 2) and 3) of this Theorem follows as in [DLS08]. The only


difference is that we introduce a sequence of domains as we did in this proof in the far


region and we perform adequate scalings which allow us to get better estimates for the


functions describing the searched tori. More precisely, consider the region Do (the case


for Din is analogous) and introduce the domain


DFl
= {(y, x, s) ∈ Do : K0(y, x; ε) = F, caFl ≤ F ≤ cbFl},


analogous to (126) in part 1). Since the energy Fl ≤ εγ in Do (see (120)), from the


expression for the main term of y given by ℓ(x,E) in (116), the coordinate y ranges


from
√
Fl to εγ/2. Hence we perform the scaling y = εγ/2Y and we proceed as in Lemma


8.36 in [DLS06a]. We obtain that the original system is transformed into a Hamiltonian


system of Cr−2m Hamiltonian with respect to (Y, x, s) of the form


K(Y, x, s; εγ/2, ε) = εγ/2K0(Y, x; ε
γ/2, ε) + εm+1−γ/2S(εγ/2Y, x, s; ε),


with


K0(Y, x; ε
γ/2, ε) =


Y 2


2
ĥ(
√
EiY ; ε) + Ũ(x; ε)


where ĥ(y; ε) = 1 + O(|k0|2ε) is given in (106). The Hamiltonian is defined now on the


domain


D̃ = {(Y, x, s) ∈ R × R/2πk0Z × T : K0(Y, x; ε
γ/2) = F/Fl, c


0
aFi ≤ F ≤ c0bFi}


= {(Y, x, s) ∈ R × R/2πk0Z × T : K0(Y, x; ε
γ/2) = e, c0aFl/ε


γ ≤ e ≤ c0bFl/ε
γ}


Next, we define the action angle variables in the domain D̃ by formulas (132). The


only change is that we need to take into account that instead of expression (8.77) in


[DLS06a] we have


ca
Fl


εγ
≤ e− Ũ(x; ε) ≤ cb


Fl


εγ
+ c ≤ cte ,


and by (109) the perturbation εm+1−γ/2S(εγ/2Y, x, s; εγ/2) can be bounded in the C6


norm in the variables (Y, x) by ε−γ/2εm+1−α(6+2m)|k0|−4.
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Therefore we can apply Proposition 8.38 in [DLS06a] and proceed as in the proof


of parts 2) and 3) of Theorem 8.30 in [DLS06a] replacing in the estimates in terms of


ε in (2.1), equation (8.50) and (2.5), εj by εγ, εm+1 by εm+1−α(6+2m)|k0|−4 and εα−j by


Flε
−γ, and multiplying by the constant Ck0 = cte |k0|3 of KAM Theorem 3.22, to obtain


the estimates in 2.(a), equation (123) and 2.(e). Finally, by compactness of Do, we get


the claimed results. We skip the proof of these two parts and we refer the reader to


Section 8.5.4 in [DLS06a] for it. �


Proof of Corollary 3.31. It is totally analogous to the proof of corollary 8.31 in


[DLS06a] and it follows from Theorem 3.30 just applying the implicit function theorem.


We apply Theorem 3.30, with m ≥ 10 and β = γ/2+ 1 + ν/2, where 1 ≤ γ < 2 + ν


and ν ≤ 1/16. From these conditions it follows that β > γ and m ≥ 14(β − γ) + 3γ/2


and therefore, we obtain that the invariant tori in the domains Df , Do and Din are given


by the implicit equations (122), (123) and (124), which are of the form


K0(y, x, s; ε) = E + δg(y, x, s, E; ε) (137)


with |g|C2 ≤ cte and


E = Ei, δ = ε
m+1−α(6+2m)


2 E
1/4
i |k0|,


E = Fi, δ = ε
m+1−α(6+2m)+γ/2+14γ


2 F−7
i |k0|, (138)


E = Gi, δ = ε
m+1−α(6+2m)+γ/2+14γ


2 |G|−7
i |k0|,


respectively.


Equation (137) is equivalent to equation


M(y, x, s, t; δ, ε) ≡ y − Y±(x, t) = 0,


where t = E + δg(y, x, s, E; ε) and Y±(x, t) is given in equation (117). The above


equation has been studied in full detail in Lemma 8.39 of [DLS06a]. It is not difficult


to check that one has∣∣∣∣
∂M


∂y
− 1


∣∣∣∣ ≤ cte δε−γ/2,


which is a bound analogous to (8.95) in Lemma 8.39 in [DLS06a], where the factor εγ


comes directly from the expression (111)of K0. So, as long as δε−γ/2 ≤ δ0 ≪ 1, for some


constant δ0 independent of ε, we can apply the implicit function Theorem in order to


get the invariant tori of items 1,2 and 3 written as graphs of the action y over the angles


(x, s) as


y = f±
v (x, s; ε)


where v = Ei, Fi, Gi, respectively and


f±
v (x, s; ε) = Y±(x, v) + OC1(δε−γ/2).


Let us check first that condition δε−γ/2 ≪ 1 is fulfilled. Notice, first, that by


the choice m ≥ 10 and β = γ/2 + 1 + ν/2, where ν ≤ 1/16, Ei � ε2α and


Fi, Gi ≥ εβ, one obtains in the three cases of (138), that |δ| ≤ |k0|εβ, which clearly
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implies δε−γ/2 ≤ |k0|ε1+ν/2 ≤ δ0, for some constant δ0 ≪ 1 since, by expression (110),


|k0| ≤ ε−(1+ν)/r ≤ ε−1. Thus, we obtain results in items 1), 2), 3) and


|fv −Y(x, v)|C1 � δε−γ/2 � |k0|εβ−γ/2 = |k0|ε1+ν/2,


as claimed in 4a). In an analogous way one gets 4b).


Finally, from results 1e), 2e) and 3e) in Theorem 3.30 and definitions of Df , Do and


Din given in (119), (120) and (121) we have


|Ei − Ei+1| � ε
m+1−α(6+2m)


2 (E
1/4
i + E


1/4
i+1)|k0|


|Fi − Fi+1| � ε
m+1−α(6+2m)+γ/2+10γ


2 (F−5
i + F−5


i+1)|k0|
|Gi −Gi+1| � ε


m+1−α(6+2m)+γ/2+10γ
2 (|Gi|−5 + |Gi+1|−5)|k0|


and taking into account that E1 ∼ FlF ∼ εγ and F1 ∼ GlG ∼ εβ we get


|E1 − FlF | � ε
m+1−α(6+2m)+γ/2


2 |k0|
|F1 −GlG | � (εβ + ε


m+1−α(6+2m)+γ/2−10(β−γ)
2 )|k0|.


Since β = γ/2 + 1 + ν/2, m ≥ 10, all these exponents are bigger than β as claimed


in item 4c). The last estimate in item 4c) follows from the inequalities above and the


following bounds
∣∣∣∣
∂fE


∂E


∣∣∣∣ � ε−γ/2,


∣∣∣∣
∂DfE


∂E


∣∣∣∣ � ε−γ/2.


analogous to (8.91) given by Lemma 8.39 in [DLS06a]. �


Remark 3.32. In the case considered in [DLS06a], where the perturbation h in (1) was


assumed to be a trigonometric polynomial in the angular variables (ϕ, t), there exist


a finite number of resonances so L can be chosen independently of ε, that is α = 0.


Moreover γ is simply replaced by the values j = 1, 2 in [DLS06a] corresponding to


resonances of order 1 and 2, respectively. In this case, Corollary 3.31 only requires


m ≥ 9 and r = n ≥ 24 since there is no need of truncation process, so that Hamiltonian


in (1) only needs to be C26. This improves substantially the regularity required in


[DLS06a], since Hamiltonian (1) was assumed to be C60 because m was chosen m = 26.


Invariant tori in the original variables


Theorem 3.30 gives KAM tori, both primary and secondary, in the variables (y, x, s).


From equations (122), (123) and (124) in Theorem 3.30, we know that these tori are


given approximately by the level sets of the Hamiltonian K0(y, x; ε) in (111).


We can write them in the original variables (I, ϕ, s) using the change of coordinates


given by Theorem 3.11 and changes (22), (100) and (103). More precisely, we have that


the relation with the original variables is given by


y = k0I + l0 + OC2(|k0|ε1−4α), x = k0ϕ+ l0s+ OC2(|k0|ε1−4α),


whose inverse in terms of the I variable can be written in the form


I = − l0
k0


+
1


k0
y + ζ(y, x, s; ε),
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where ζ is OC2(ε1−4α).


Using expression (105) and (106) these invariant objects are given by the level sets


of a C4−̺ function F , for any ̺ > 0, which has the form


F (I, ϕ, s; ε) =
(k0I + l0)


2


2
(1 + εk2


0h̃(k0I + l0; ε)) + εγŨ(θ; ε)


+ OC2(|k0|3εγ/2+1+ν/2), (139)


where θ = k0ϕ+ l0s. By the definition of γ in (110) jointly with Ũ and U in (112) and


(107), respectively, we get the expression (94) given in Theorem 3.28.


Moreover, from items (1), (2) and (3), together with the estimates in item (4a) in


Corollary 3.31 we have that KAM tori can be written as graphs in the variables (y, x, s)


of functions of the form


y = f±
E (x, s; ε) = Y±(x,E) + OC1(|k0|ε1+η).


Using the mentioned changes, we obtain that the tori inside the region DBG, are given


in the original variables (I, ϕ, s) by


I = λ±E(ϕ, s; ε) = − l0
k0


+
1


k0
Y±(θ, E) + OC0(ε1+η)


with θ = k0ϕ+ l0s, where Y± is given (117).


Finally, from Corollary 3.31 we know that there exist invariant tori TE, TE′ of


energies E,E ′ such that


|E −E ′| = O(|k0|εγ/2+1+ν/2) = O(|k0|2ε3/2+ν/2|(k0, l0)|−r/2)


and there exist also points (y1, x, s) ∈ TE and (y2, x, s) ∈ TE′ with


|y1 − y2| = OC1(|k0|ε1+ν/2),


so in term of their I variables it follows that


|I1 − I2| ≤
1


|k0|
|y1 − y2| +


1


|k0|


∣∣∣∣
∂ζ


∂y


∣∣∣∣ |y1 − y2|


� ε1+ν/2 + |k0|ε1−4αε1+ν/2


� ε1+ν/2.


and by the definition of γ given in (110), we obtain the claimed results in item (iii) of


Theorem 3.28. �


3.4. Proof of Theorem 3.1


The proof of Theorem 3.1 follows directly from the results obtained in Propositions 3.24,


3.26 and Theorem 3.28.


Choosing n = 2m + 6 and assuming m ≥ 10 and r > 2(m + 1)2, the hypotheses


on r, n and m in the mentioned Propositions and Theorem are satisfied. Moreover, the


choice η = min((m − 1 − αn)/2, ν/2 − 3(1 + ν)/r) with 1/(r/6 − 1) < ν ≤ 1/16, fits


clearly with the assumptions on η in Propositions 3.24 and 3.26, and also with the one


in Theorem 3.28.
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By Propositions 3.24 and 3.26, the tori obtained in the non resonant region and in


the resonant region with small gaps are primary and they are given by the level sets of


the same function F = I + OC2(ε1+η), so they are flat up to OC2(ε1+η). Both regions


form the flat tori region. The explicit approximate expressions for the invariant tori are


given implicitly by the function (87) and as a graph of the action I over the variables


(ϕ, s) by (88), both functions in Proposition 3.26.


By hypotheses H3’, Theorem 3.28 provides a sequence of invariant KAM tori (both


primary and secondary) for the big gaps region. In a connected component of this


region of the form (82), these tori are given by the level sets of a function F in (94)


and as a graph of the action I over the angle variables (ϕ, s), in (95). Moreover,


the distance between consecutive tori is O(ε1+η) in terms of the action variable and


O(ε3/2+η|(k0, l0)|−r/2+1) in terms of the energy. �


4. Construction of a transition chain


In the previous section, we have proved that in the NHIM Λ̃ε there exists a discrete


foliation of invariant tori Ti (primary and secondary) with graphs at a distance


OC1(ε1+η), for some η > 0. We have also shown that these tori are close to being the


level sets of the averaged Hamiltonian, and we have given its first order perturbative


calculation for the flat tori region DF and the big gaps region DBG.


The goal of this section is to prove Proposition 4.1, which states that, assuming that


the non-degeneracy conditions H2”, H3” and H3”’ in Theorem 2.1 hold, there exists


transversality between the foliation of invariant tori in Λ̃ε provided by Theorem 3.1 and


its image under the scattering map Sε given in (20) and it is possible to construct a


transition chain.


Recall that, as we said in Section 2.3.4, by Lemma 10.4 in [DLS06a] two


submanifolds, like the invariant tori Ti, Ti+1 of the NHIM Λ̃ε, have a transverse


heteroclinic intersection provided they are transversal under the scattering map Sε as


submanifolds of Λ̃ε:


Sε(Ti) ⋔Λ̃ε
Ti+1 ⇒ W u


Ti
⋔ W s


Ti+1


.


Hence, Proposition 4.1 provides a transition chain through applications of the


scattering map.


Proposition 4.1. Consider Hamiltonian (1) satisfying the hypotheses of Theorem 2.1.


Pick two KAM tori T± such that |I(x±)−I±| ≤ ε1+η for some x± ∈ T± and η > 0 (these


tori exist thanks to Theorem 3.1). Then, there exists a transition chain {Ti}N(ε)
i=0 , where


N(ε) = C/ε, in such a way that


1. The transition chain is obtained through applications of the scattering map. That


is,


Sε(Ti) ⋔Λ̃ε
Ti+1.







Geography of resonances and Arnold diffusion 70


2. T0 = T−, TN(ε) = T+.


Proof. The proof of Proposition 4.1 is postponed to Section 4.2 and is based on the


results in the following Section 4.1.


4.1. The scattering map and the transversality of heteroclinic intersections


The main result of this section is Lemma 4.2, stated below, which considers a foliation


FF whose leaves are the level sets of a certain function F and provides an expression


for the action of the scattering map Sε on this foliation in terms of the Hamiltonian


function Sε given in (19), generating its deformation. Moreover, it gives criteria to


establish transversality between the foliation FF and its image under the scattering


map Sε.


Lemma 4.2. Consider the foliation FF whose leaves LF
E are the level sets of a certain


function F :


LF
E = {(I, ϕ, s) ∈ (I−, I+) × T2, F (I, ϕ, s; ε) = E}, E ∈ (E1, E2).


Let Sε be the scattering map introduced in (17), and Sε = S0 + εS1 + O(ε2) its


Hamiltonian function given in (19) with S0 = −L∗, where L∗ is the reduced Poincaré


function introduced in (11). Then, Sε(L
F
E), the image sets of the leaves LF


E of FF under


the scattering map Sε, satisfy Sε(L
F
E) = LF◦S−1


ε
E and therefore the equation F ◦S−1


ε = E,


where the expression F ◦ S−1
ε is given by


F ◦ S−1
ε = F − ε{F,S0} +


ε2


2
({{F,S0},S0} − {F,S1}) + O(ε3), (140)


where {F,Si} = ∂ϕF∂ISi − ∂IF∂ϕSi is the Poisson bracket of the functions F and Si.


Moreover, the image of a leaf LF
E under the scattering map Sε intersects another leaf


LF
E′, for some E ′, if and only if there exist x ∈ LF


E such that F ◦ Sε(x) = E ′, where the


expression F ◦ Sε is given by


F ◦ Sε = F + ε{F,S0} +
ε2


2
({{F,S0},S0} + {F,S1}) + O(ε3). (141)


Assuming that


|{F, F ◦ S−1
ε }|


|∇F |2 ≥ Cε, (142)


where C is a constant independent of ε and E, the angle between the surfaces LF
E′ and


Sε(L
F
E) at the intersection points is bounded from below by Cε. Therefore, foliations FF


and FF◦S−1
ε


intersect transversally.


Remark 4.3. For the case of a function F which is OC2(1), the scattering map increases


(decreases) the energy E by order ε, provided that the first order term {F,L∗} in (141)


satisfies


{F,L∗} 6≡ 0.
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Remark 4.4. Using expression (140) and S0 = −L∗, the condition for the transversality


of the foliations (142) reads out


|{F, {F,L∗}} + ε/2(−{F, {{F,L∗},L∗}} + {F, {F,S1}}) + O(ε2)|
|∇F |2 ≥ C. (143)


Notice that if F is OC2(1) the term ε can be neglected and the condition reduces to


|{F, {F,L∗}}|
|∇F |2 ≥ C. (144)


Also notice that an equivalent condition to (142) is


|{F, F ◦ Sε}|
|∇F |2 ≥ Cε. (145)


Proof: In Section 2.3.2 we have shown that there exists a Hamiltonian function


Sε generating the deformation of the scattering map Sε and we have given its first


order perturbative computation in equation (19). Hence, taking into account that


Sε = S0 + εS1 + O(ε2), it is clear that (see [CH82] for instance) F ◦ Sε is given by


F ◦ Sε = F + ε{F,S0} +
ε2


2
({{F,S0},S0} + {F,S1}) + O(ε3),


with S0 = −L∗. The expression for F ◦ S−1
ε follows identically.


In order to show the transversality between the foliations FF and FF◦S−1
ε


, we need


to obtain lower bounds for the angle of intersection. More precisely, the angle α between


the normal vectors to the tangent planes to the surfaces Sε(L
F
E) and LF


E′ is given by


sin(α) =
|∇(F ◦ S−1


ε ) ×∇F |
|∇(F ◦ S−1


ε )||∇F | =
|{F, F ◦ S−1


ε }|
|∇(F ◦ S−1


ε )||∇F | ,


where F ◦S−1
ε is given in expression (140). From this expression one can see that sin(α)


is O(ε) and condition (142) gives the required transversality. �


As we have argued in the previous section the tori in Λ̃ε have different behavior


depending whether they are close to or far from the separatrix. Thus, the tori in the


flat tori region and in the big gaps region far from the resonance are rather flat, whereas


they are bent in the big gaps region close to a resonance. The fact that the tori are


not flat has the consequence that the dominant effect of comparing a torus with the


image under the scattering map of another torus, will include some extra terms. For


this reason, we will divide the study in three cases: on the one hand, the flat tori region


and on the other hand the resonant region with big gaps, where we will distinguish


between far from and close to the resonance.


4.1.1. The flat tori region In Lemma 4.5, we apply Lemma 4.2 to the flat tori region


DF. By Theorem 3.1, in one connected component of this region the invariant tori are


given by the leaves LF
E of a foliation FF , where F is of the form (87). Moreover they


can be written as a graph of the action I over the angle variables (ϕ, s): I = λE(ϕ, s; ε),


where λE is given in (88).
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Lemma 4.5. Let us consider a foliation FF contained in a connected component of


the flat tori region DF, where the function F is of the form (87), so that the equation


F (I, ϕ, s; ε) = E defines a smooth surface given as a graph λE(ϕ, s; ε), with λE as in


(88).


Assume that hypothesis H2” is fulfilled. More precisely, the reduced Poincaré


function L∗ defined in (11) verifies, for any value of (I, ϕ, s) ∈ H+ ∩ DF that the


function


θ̃ 7→ ∂L∗


∂θ̃
(I, θ̃)


for θ̃ = ϕ− Is is positive (resp. negative) and non-constant for θ̃ on some set J ∗
E (see


(12)). Then the foliations FF and FF◦S−1 intersect transversally.


More precisely, any surface Sε(L
F
E) intersects at some point the surface LF


E′ for any


E ′ > 0 (resp. E ′ < 0), |E ′−E| = O(ε). The angle between the surfaces Sε(L
F
E) and LF


E′


at the intersection can be bounded from below by Cε, where C is a constant independent


of ε and E.


Proof: We will apply Lemma 4.2 with F (I, ϕ, s; ε) = I + OC2(ε1+η) and I =


λE(I, ϕ, s; ε) = E + OC2(ε1+η) for some η > 0. We will see that provided hypothesis


H2” is fulfilled, condition (142) of Lemma 4.2 is satisfied.


We first apply the scattering map to the implicit surface


LF
E = {(I, ϕ, s) ∈ DF, F (I, ϕ, s) = E},


and recall that Sε(L
F
E) intersects a leaf LF


E′ at a point (I, ϕ, s) ∈ LF
E if F ◦Sε(I, ϕ, s; ε) =


E ′, where, using expression (141), F ◦ Sε is given by


F ◦ Sε = E − ε{F,L∗} + O(ε2). (146)


with,


{F,L∗} = − ∂L∗


∂ϕ


∂F


∂I
+
∂F


∂ϕ


∂L∗


∂I


= − (1 + OC1(ε1+η))
∂L∗


∂θ̃
+ OC1(ε1+η)


= − ∂L∗


∂θ̃
+ OC1(ε1+η)


with θ̃ = ϕ− Is. Evaluating on I = E + OC0(ε1+η), equation (146) reads out


(F ◦ Sε)(I, ϕ, s; ε) = E + ε
∂L∗


∂θ̃
(E,ϕ− Es) + O(ε1+η).


By hypothesis H2” in Theorem 2.1 the scattering map increases for (I, ϕ, s) ∈
H+ ∩ DF (resp. decreases) the energy by order ε. In particular, the surface Sε(L


F
E)


intersects all surfaces LF
E′ such that |E ′ −E| = O(ε).


Moreover, in order to see that they intersect transversally we need to check that


condition (142) is satisfied. Notice that in this case, by Remark 4.4, condition (144)
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implies (142). Thus, we first compute


{F, {F,L∗}} =


(
∂F


∂I


)2
∂2L∗


∂ϕ2
+ OC0(ε1+η)


= (1 + OC0(ε1+η))2∂
2L∗


∂θ̃2
+ OC0(ε1+η)


=
∂2L∗


∂θ̃2
+ OC0(ε1+η).


Since, by assumption, the function ∂L∗


∂θ̃
(E, θ̃) is non-constant for θ̃ in J ∗


E, there


exists an interval J̄E ⊂ J ∗
E where


∣∣∣∣
∂2L∗


∂θ̃2


∣∣∣∣ ≥ C > 0,


and using


|∇F | = 1 + OC1(ε1+η),


we have that condition (142) is satisfied and the angle between the surfaces Sε(L
F
E)


and LF
E′ at the intersection can be bounded from below by Cε, where C is a constant


independent of ε and E. �


Remark 4.6. By Theorem 3.1, two consecutive tori are, at most, at distance of O(ε1+η),


for some η > 0, in terms of the I variable. Moreover, these tori are OC0(ε1+η) close to


the level sets of the action I.


Hence, we conclude that the image under the scattering map of a torus Ti in the


flat tori region, given by I = Ii + O(ε1+η) intersects transversally another torus of this


region given by I = Ii+1 + O(ε1+η) with |Ii+1 − Ii| = O(ε):


Sε(Ti) ⋔ Ti+1.


4.1.2. Big gaps region In Lemma 4.7 we are going to apply Lemma 4.2 in one connected


component of the big gaps region DBG. By Theorem 3.1, the invariant tori are given by


the leaves LF
E of a foliation FF for a certain function F of the form (94). Moreover, they


can be written as a graph of the action I over the angle variables (ϕ, s): I = λ±E(ϕ, s; ε),


with λ±E as in (95). Recall that in this foliation, the leaves with E > 0 are primary


KAM tori whereas the leaves with E < 0 are secondary.


The dominant terms in F and in the expressions λ±E of these tori depend on the


resonance −l0/k0 and the distance to the separatrix, which is measured in terms of E.


Thus, on the one hand tori are bent when they approach the separatrix, that is, when


E → 0, and on the other hand tori are flatter when the size ε|(k0, l0)|−1/r of the gap


decreases, which is controlled by k0 and therefore by γ (see (110) for a definition of γ).


In the following Lemma 4.7 we consider the different cases and we prove that


conditions H2”, H3” and H3”’ ensure the existence of a transversal intersection


between the foliation FF and its image under the scattering map FF◦S−1
ε


.
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Lemma 4.7. Let us consider a connected component of the big gaps region DBG defined


in (82). Recall from formula (94) together with expressions (110) and (112) that, in this


component, the function F defining the foliation is of the form


F (I, ϕ, s; ε) =
(k0I + l0)


2


2
(1 + εk2


0h̃(k0I + l0; ε)) + εγŨ(θ; ε) + OC2(|k0|3εγ/2+1+η), (147)


where θ = k0ϕ + l0s, and for some 0 ≤ ρ < π and some range of energies −εγ ≤
E ≤ L2, the equation F (I, ϕ, s; ε) = E defines two smooth surfaces LF±


E given as graphs


I = λ±E(ϕ, s; ε), with λ±E given in (95), which are of the form


λ±E(ϕ, s; ε) = − l0
k0


+
1


k0
Y±(θ, E) + OC0(ε1+η), (148)


where


Y±(θ, E) = ±(1 + εb)ℓ(θ, E) + εỸ±(ℓ(θ, E)), (149)


for ρ ≤ θ = k0ϕ + l0s ≤ 2π − ρ and ℓ(θ, E) =


√
2(E − εγŨ(θ; 0)) with Ũ(θ; ε) defined


in (112) and Ỹ± satisfying (118).


Assume that hypothesis H2” is fulfilled, more precisely, that the reduced Poincaré


function L∗ verifies, for any value of (I, ϕ, s) ∈ H+ ∩ DBG, that the function


θ̃ 7→ ∂L∗


∂θ̃
(I, θ̃) (150)


for θ̃ = ϕ− Is is positive (resp. negative) and non-constant for θ̃ ∈ J ∗
I .


For |(k0, l0)| ≺ ε−1/r assume hypothesis H3” on (k0, l0) in Theorem 2.1, which is


that the function


θ →
k0Ũ


′k0,l0(θ; 0)∂L∗


∂θ̃


(
−l0
k0
, θ


k0


)
+ 2Ũ(θ; 0)∂2L∗


∂θ̃2


(
−l0
k0
, θ


k0


)


2∂2L∗


∂θ̃2


(
−l0
k0
, θ


k0


) (151)


is non-constant.


For |(k0, l0)| ∼ ε−1/r we assume the following hypothesis, which is condition H3”’


on (k0, l0) in Theorem 2.1:


There exists a constant C, independent of E and ε, and an interval J ⊂ J ∗
−l0/k0


such that given any E, ε in this region and θ ∈ J ,
∣∣∣∣∣


1


2(E − εγŨ(θ; 0))


(
2E


∂2L∗


∂θ̃2
(− l0
k0


,
θ


k0


)


−εγ


[
k0Ũ


′k0,l0(θ; 0)
∂L∗


∂θ̃
(− l0
k0


,
θ


k0


) + 2Ũ(θ; 0)
∂2L∗


∂θ̃2
(− l0
k0


,
θ


k0


)


]


±εk0


√
2(E − εγŨ(θ; 0))


∂L∗


∂θ̃
(− l0
k0


,
θ


k0


)
∂2L∗


∂θ̃2
(− l0
k0


,
θ


k0


)
)∣∣∣∣ ≥ C.


(152)


Then, the foliations FF and FF◦S−1
ε


intersect transversally.


More precisely, any surface Sε(L
F,−
E ) intersects at some point the surface LF,−


E′ for


any E ′ < E (resp. E ′ > E) such that |E ′ −E| ≤ C|k0|εmax(|E|1/2, εγ/2). Analogously,


any surface Sε(L
F,+
E ) intersects at some point the surface LF,+


E′ for any E ′ > E (resp.
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E ′ < E) such that |E ′ − E| ≤ C|k0|εmax(|E|1/2, εγ/2). (In some cases, it is also


possible that a certain surface Sε(L
F,−
E ) intersects the surface LF,+


E′ with E ′ such that


|E ′ − E| ≤ C|k0|εmax(|E|1/2, εγ/2)).


The angle between the surfaces Sε(L
F,±
E ) and LF,±


E′ at the intersection is bounded


from below by Cε, where C is a constant independent of ε and E.


Remark 4.8. Lemma 10.16 in [DLS06a] gives a computable sufficient condition that


guarantees that hypothesis H3”’ on (k0, l0) is verified independently of ε and E. Indeed,


let


a(θ) =
∂2L∗


∂θ̃2
(− l0
k0
,
θ


k0
),


b(θ) = − 1


2


(
k0Ũ


′k0,l0(θ; 0)
∂L∗


∂θ̃
(− l0
k0


,
θ


k0


) + 2Ũ(θ; 0)
∂2L∗


∂θ̃2
(− l0
k0


,
θ


k0


)


)
,


c(θ) = ±
√


2


2


∂L∗


∂θ̃
(− l0
k0
,
θ


k0
)
∂2L∗


∂θ̃2
(− l0
k0
,
θ


k0
),


if there exist θ1, θ2 and θ3 in some interval J verifying
∣∣∣∣∣∣∣


ã(θ1) ã(θ2) ã(θ3)


b̃(θ1) b̃(θ2) b̃(θ3)


c̃(θ1) c̃(θ2) c̃(θ3)


∣∣∣∣∣∣∣
6= 0, (153)


where


ã(θ) = a(θ)2


b̃(θ) = 2a(θ)b(θ) − c(θ)2


c̃(θ) = b(θ)2 − c(θ)2Ũ(θ; 0),


(154)


then there exists a constant C and three intervals θi ∈ Ji ⊂ J , i = 1, 2, 3 such that for


any θ ∈ Ji
∣∣∣∣∣∣


a(θ)E + b(θ)εγ + c(θ)εk0


√
E − εγŨ(θ; 0)


E − εγŨ(θ; 0)


∣∣∣∣∣∣
≥ C,


which is hypothesis H3”’ on (k0, l0).


Proof: We will apply Lemma 4.2 to the foliation FF given by the function F in (147).


We first apply the scattering map to the implicit surface


LF
E = {(I, ϕ, s) ∈ DBG, F (I, ϕ, s; ε) = E},


and recall that Sε(L
F
E) intersects a leaf LF


E′ at a point (I, ϕ, s) ∈ LF
E if F ◦Sε(I, ϕ, s; ε) =


E ′, where, using expression (141) with S0 = −L∗, F ◦ Sε on LF
E is given by


(F ◦ Sε)(I, ϕ, s; ε) = E − ε{F,L∗} +
ε2


2
({{F,L∗},L∗} + {F,S1}) + O(ε3). (155)


Notice that the terms in expression (155) involve the derivatives of F on LF
E. Using


the expression for F in (147) and the expression of the leaf LF,±
E as a graph of I over
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the angle variables given in (148), we have that


∂F


∂I
(I, ϕ, s; ε) = k0(k0I + l0)(1 + εk2


0h̃(k0I + l0; ε)) +
(k0I + l0)


2


2
εk3


0h̃
′(k0I + l0; ε)


+ OC1(|k0|3εγ/2+1+η)


= ± k0ℓ(θ, E) + O(|k0|3ε|ℓ| + k2
0ε


1+η) (156)


and


∂F


∂ϕ
(I, ϕ, s; ε) = εγk0Ũ


′k0,l0(θ, ε) + OC1(|k0|3εγ/2+1+η). (157)


Hence,


{F,L∗} = − ∂F


∂I


∂L∗


∂ϕ
+
∂F


∂ϕ


∂L∗


∂I


= ∓ k0ℓ(θ, E)
∂L∗


∂θ̃


(
− l0
k0


+
1


k0


ℓ(θ, E), ϕ−
(
− l0
k0


+
1


k0


ℓ(θ, E)


)
s


)


+ O(|k0|2ε|ℓ| + k2
0ε


1+η + |k0|εγ). (158)


Regarding the term of order ε2 in the expression (155), we will see that among all


the terms in ε2/2({{F,L∗},L∗} + {F,S1}) there is a dominant one. To that end we


notice first that all the terms that appear in the derivatives up to second order for F


with respect to (I, ϕ, s) on LF,±
E are O(|k0||ℓ|, k2


0ε
γ), except


∂2F


∂I2
= k2


0(1 + O(|k0|2ε)). (159)


Hence, in the expression {{F,L∗},L∗}+{F,S1} on LF,±
E , all the terms are of order k2


0ε
̺,


for some ̺ > 0, except


∂2F


∂I2


(
∂L∗


∂θ̃
(I, θ̃)


)2


.


Therefore, using this feature and (158), the expression (155) for F ◦Sε on LF,±
E , is given


by


F ◦ Sε(I, ϕ, s; ε) = E ± εk0ℓ(θ, E)
∂L∗


∂θ̃
(− l0
k0


,
θ


k0


)


+
ε2


2
k2


0


(
∂L∗


∂θ̃
(− l0
k0
,
θ


k0
)


)2


+ O(k2
0ε


2+̺, |k0|εγ+1, ε|ℓ|2) (160)


= E + εM±(θ; ε) + O(k2
0ε


2+̺, |k0|εγ+1, ε|ℓ|2),
where


M±(θ; ε) = k0
∂L∗


∂θ̃
(− l0
k0


,
θ


k0


)


(
±
√


2(E − εγŨ(θ; 0)) + εk0
1


2


∂L∗


∂θ̃
(− l0
k0


,
θ


k0


)


)
. (161)


Therefore, the size of the heteroclinic jumps provided by the scattering map is


determined by the size of the term M± in (161).


In order to check the transversality of the heteroclinic intersections we use condition


(142), which involves, in any case, the computation of the Poisson bracket {F, {F,L∗}}
and the gradient of F (see formula (143)).
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From expressions (156) and (157) it follows that on LF,±
E ,


∇F (I, ϕ, s; ε) = k0ℓ(θ, E) + O(|k0|3ε|ℓ| + k2
0ε


1+η + |k0|εγ)). (162)


On the other hand, the computation of {F, {F,L∗}} involves several terms.


However, using the expression for {F,L∗} obtained in (158) and the expression and


estimates for the derivatives up to second order for F with respect to (I, ϕ, s) given in


(156)-(157)-(159), one can see that the dominant terms in {F, {F,L∗}} involve
(
∂F


∂I


)2
∂2L∗


∂ϕ2
− ∂F


∂ϕ


∂2F


∂I2


∂L∗


∂ϕ


and therefore we have that on LF,±
E ,


{F, {F,L∗}} = k2
0ℓ(θ, E)2∂


2L∗


∂θ̃2
(θ̃, E) − k0ε


γŨ
′k0,l0(θ, ε)k2


0


∂L∗


∂θ̃
(θ̃, E)


+ O(|k0|2|ℓ|(εγ + |k0|2ε|ℓ| + |k0|2ε1+η)). (163)


In the expression (161) there appear two quantities that can be comparable or not


depending on k0 and E. Notice first that |ℓ(·, E)| = max(E1/2, εγ/2), with 1 ≤ γ < 2+ν,


for some ν > 0. In consequence, when the size of the energy is big (|E| > εγ),


we have ℓ(θ;E) = O(E1/2) and therefore the term involving ℓ(θ, E) in expression


(161) dominates. On the other hand, if the energy is small, that is |E| is smaller


than or comparable to εγ/2, then ℓ(θ;E) = O(εγ/2), which by expression (110) is also


O(|k0|ε1+ν/2), for some ν > 0. In this case we, the dominant term in expression (161)


will depend on the size of k0.


Hence, we choose µ such that 0 < µ < γ and we distinguish two cases: the case


when tori are close to the resonance, which corresponds to small values of the energy


(−εγ ≤ E ≤ εµ) and the case when they are reasonably far from a resonance, which


corresponds to greater values of the energy (εµ ≤ E ≤ L2).


Far from the resonance: εµ ≤ E ≤ L2.


The case far from a resonance is analogous to the flat tori region, studied in the


previous section, because in this case


ℓ(θ, E) =


√
2(E − εγŨ(θ; ε)) =


√
2E


√
1 − εγ


E
Ũ(θ; ε)


=
√


2E(1 + O(εγ−µ)).


Consequently, since
√


2E ≥
√


2εµ/2 and εµ/2 > εγ/2 ≥ |k0|ε1/2, the expression (160) can


be written as


F ◦ Sε(I, ϕ, s; ε) = E ± εk0


√
2E


∂L∗


∂θ̃


(
− l0
k0
,
θ


k0


)
+ O(k0|E|1/2ε1+γ−µ, ε|E|).


Therefore, by the hypothesis H2” on ∂L∗


∂θ̃
(I, θ̃), we have that image of LF,±


E under


the scattering map, for E large, intersects all surfaces LF,±
E′ such that |E ′ − E| =


O(ε|k0||E|1/2).


In order to prove the transversality of intersections, we need to check condition


(144). Using that the term involving ℓ(θ, E) is the dominant one in expression (163) for







Geography of resonances and Arnold diffusion 78


{F, {F,L∗}} and the expression (162) for ∇F , condition (144) for the transversality of


the intersections is∣∣∣∣
∂2L∗


∂θ̃2


∣∣∣∣ ≥ C > 0,


which is clearly satisfied by the hypothesis on H2” on ∂L∗


∂θ̃
(I, θ̃).


Close to the resonance: −εγ ≤ E ≤ εµ.


The case close to a resonance is more technical because the size of the energy is


now comparable to the term εγŨ and therefore ℓ(·, E) = O(εγ/2). Hence, in expression


(161) there appear two quantities that can be comparable or not depending on k0. On


the one hand, there is


√
2(E − εγŨ(θ; 0)), which is related to the size of the gap and the


other one there is εk0
1
2


∂L∗


∂θ̃
(− l0


k0
, θ


k0
), which is related to the size of the heteroclinic jumps


provided by the scattering map Sε. Hence we distinguish three situations depending on


k0:


i. If εγ/2 ≺ k0ε, that is |(k0, l0)| ≻ ε−1/r (see definition for γ in (110)) we have that


the expression (160) reduces to


F ◦ Sε(I, ϕ, s; ε) = E +
ε2


2
k2


0


(
∂L∗


∂θ̃


(
− l0
k0
,
θ


k0


))2


+ O(k2
0ε


2+̺),


for any ̺ > 0. So, tori are essentially flat and this is equivalent to the flat tori case.


Hence, condition H2” assures that the foliations intersect transversally.


ii. If k0ε ≺ εγ/2, that is |(k0, l0)| ≺ ε−1/r (see definition for γ in (110)), we have that


the expression (160) reduces to


F ◦ Sε(I, ϕ, s; ε) = E ± εk0


√
2(E − εγŨ(θ; 0))


∂L∗


∂θ̃


(
− l0
k0
,
θ


k0


)
+ O(k2


0ε
2). (164)


This is the case when the size of the gaps in the foliation of primary tori is bigger


than the size of the heteroclinic jumps provided by the scattering map. Hence, if


we consider the surface LF,−
E , by hypothesis H2” we have that


−εk0


√
2(E − εγŨ(θ; 0))


∂L∗


∂θ̃


(
− l0
k0


,
θ


k0


)


is a negative function, and therefore by equation (164) S(LF,−
E ) intersects surfaces


LF,−
E′ with E ′ < E (resp. E ′ > E) such that |E ′ − E| � |k0|ε1+γ/2. An analogous


result is obtained for LF,+
E with E ′ > E (resp. E ′ < E).


iii. If εγ/2 ∼ k0ε, which is the case when |(k0, l0)| ∼ ε−1/r we have that the terms√
2(E − εγŨ(θ; 0)) and 1


2
εk0


∂L∗


∂θ̃
(− l0


k0
, θ


k0
) in the expression (161) are comparable.


This case is the hardest to study because the size of the gap has the same order than


the heteroclinic jumps. This causes that there are different geometries for Sε(L
F,±
E )


that could happen depending on the numerical values of the leading coefficients.


We focus in the case of Sε(L
F,−
E ) and the function (150) positive. The case for


Sε(L
F,+
E ) and the function (150) negative is analogous. Hence, by hypothesis H2”,


the main term M− in F given in (161) can have different signs depending on the


size of ℓ(θ; ε). According to that, we distinguish the following cases:
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(a) The first case is when∣∣∣∣−
√


2(E − εγŨ(θ; 0)) + εk0
1


2


∂L∗


∂θ̃
(− l0
k0


,
θ


k0


)


∣∣∣∣
C1


≤ ε1+̺.


This case corresponds to points in LF,−
E that are OC2(ε2+̺)-close to homoclinic


jumps Sε(L
F,−
E ) ⋔ LF,−


E . They are not good for diffusion.


(b) The second case is when∣∣∣∣−
√


2(E − εγŨ(θ; 0)) + εk0
1


2


∂L∗


∂θ̃
(− l0
k0
,
θ


k0
)


∣∣∣∣
C1


> ε1+̺.


This case corresponds to points in heteroclinic jumps Sε(L
F,−
E ) ⋔ LF,−


E′ and we


can distinguish two situations that can take place.


On the one hand, if


−
√


2(E − εγŨ(θ; 0)) > εk0
1


2


∂L∗


∂θ̃
,


which is the case when the heteroclinic jumps are smaller than


the gap, Sε(L
F,−
E ) intersects surfaces LF,−


E′ with E ′ < E and


|E ′ − E| � |k0|ε1+γ/2. Thus, for small values of energy E > 0, the scatter-


ing map will connect a surface with energy E > 0 with a surface E ′ < 0, which


corresponds to a heteroclinic connection of a primary tori with a secondary


one.


On the other hand, when


−
√


2(E − εγŨ(θ; 0)) < εk0
1


2


∂L∗


∂θ̃
,


which is the case when the heteroclinic jumps are bigger than the gaps created


between primary tori, we obtain that Sε(L
F,−
E ) will intersect the surfaces LF,−


E′


with E ′ > E (resp. E ′ < E) and |E ′ − E| � |k0|ε1+γ/2. In this case the


scattering map will connect two tori with positive energy, that is, two primary


tori, and cross the gap with just one application of the scattering map.


Once we have a heteroclinic connection that crosses the separatrix loop, we


can consider Sε(L
F,+
E ), which corresponds to the upper branch of the level set


F (I, ϕ, s; ε) = E, E > 0. In this case, by hypothesis H2”, in expression (160)


the main term M+ in F given in (161) is always positive, so Sε(L
F,+
E ) will intersect


surfaces LF,+
E′ with E ′ > E (resp. E ′ < E)and |E ′ − E| � |k0|ε1+γ/2.


Now, we want to check that the intersections for the cases (ii) and (iii) take


place transversally by means of condition (142). For the case described in item (ii)


in this proof, condition (144) implies condition (142). So, using expression (163) for


{F, {F,L∗}} and expression (162) for ∇F on LF
E , we have that the condition (142) is


satisfied provided that∣∣∣∣∣
±1


2(E − εγŨ(θ; 0))


(
2E


∂2L∗


∂θ̃2
(− l0
k0
,
θ


k0
)


−εγ


[
k0Ũ


′k0,l0(θ; 0)
∂L∗


∂θ̃
(− l0
k0
,
θ


k0
) + 2Ũ(θ; 0)


∂2L∗


∂θ̃2
(− l0
k0
,
θ


k0
)


])∣∣∣∣ ≥ C
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By Lemma 10.10 in [DLS06a], hypothesis H3” on (k0, l0) implies the previous


condition and therefore the angle between the surfaces Sε(L
F
E) and LF


E′ at the intersection


can be bounded from below by Cε, for some suitable constant independent of ε.


For the particular case |(k0, l0)| ∼ ε−1/r described in item (iii), we need to check


condition (143). Using the expression (161) for the dominant term M± in F , it is not


difficult to see that the dominant term in the numerator of (142) involves the terms
(
∂F


∂I


)2
∂2L∗


∂ϕ2
− ∂F


∂ϕ


∂2F


∂I2


∂L∗


∂ϕ
+ ε


∂F


∂I


∂L∗


∂ϕ


∂2L∗


∂ϕ2


= (k0I + l0)
2k2


0


∂2L∗


∂θ̃2
(θ̃, E) − εγŨ


′k0,l0(θ, ε)k0k
2
0


∂L∗


∂θ̃
(θ̃, E)


+ ε(k0I + l0)k
2
0


∂L∗


∂ϕ
(θ̃, E)


∂2L∗


∂ϕ2
(θ̃, E)


Using the expression for ∇F in (162), we have that the condition (142) is satisfied


provided that
∣∣∣∣∣


±1


2(E − εγŨ(θ; 0))


(
2E


∂2L∗


∂θ̃2
(− l0
k0
,
θ


k0
)


−εγ


[
k0Ũ


′k0,l0(θ; 0)
∂L∗


∂θ̃
(− l0
k0


,
θ


k0


) + 2Ũ(θ; 0)
∂2L∗


∂θ̃2
(− l0
k0


,
θ


k0


)


]


±εk0


√
2(E − εγŨ(θ; 0))


∂L∗


∂θ̃
(− l0
k0


,
θ


k0


)
∂2L∗


∂θ̃2
(− l0
k0


,
θ


k0


)
)∣∣∣∣ ≥ C,


for some constant C. By hypothesis H3”’ on (k0, l0) in Theorem 2.1 we know that


the previous condition is satisfied for θ ∈ J ⊂ J ∗
−l0/k0


. Consequently, the angle


of intersection can be bounded again from below by Cε, for some suitable constant


independent of ε. �


Remark 4.9. By Theorem 3.1 we know that the tori in a connected component of the big


gaps region are given by the expression I = λ±E(ϕ, s; ε), for E = Ei and −εγ ≤ Ei ≤ L2,


with λ±E given in (95). Moreover, they satisfy


|Ei − Ei+1| ≤ |k0|εγ/2+1+η ≤ |k0|max(|Ei|1/2, εγ/2)


and they are O(ε1+η)-closely spaced, in terms of the I variable.


Hence, we conclude that the image under the scattering map of a torus Ti, Sε(Ti) in


the big gaps region, given by I = λ±Ei
(ϕ, s; ε), intersects transversally another torus Ti+1


of this region given by Ī = λ±Ei+1
(I, ϕ, s; ε), with |Ei+1−Ei| = O(εγ/2+1+η) (equivalently


|I − Ī| ≤ ε1+η):


Sε(Ti) ⋔ Ti+1.


4.2. Proof of Proposition 4.1


The proof is just a combination of the results obtained in Section 4.1.







Geography of resonances and Arnold diffusion 81


We start with a torus T0, which is O(ε1+η)-close to the submanifold I = I−. Assume


that this torus belongs to the flat tori region with averaged energy E0. The case when T0


belongs to a big gaps region is analogous. Then, we apply Lemma 4.5 and Remark 4.6


and we get that Sε(T0) intersects transversally all primary tori with averaged energy in


the mentioned interval (E0 −Cε,E0 +Cε). We pick a primary KAM torus T1 provided


by Theorem 3.1 with energy E1 in the interval and we repeat the argument until we


reach a big gaps region. Assuming that we have applied it K times, we have that the


torus T0 has heteroclinic connections with all the tori whose energy lies in the interval


(E0−KCε,E0 +KCε), or equivalently, in the interval (I−−K∗Cε, I−+K∗Cε) in terms


of action variables.


When the domain (I− − K∗Cε, I− + K∗Cε) × T2 for which the torus T0 has a


heteroclinic connection overlaps with a big gaps region [−l0/k0−Lk0 ,−l0/k0 +Lk0]×T2


we use Lemma 4.7 and Remark 4.9 to show that we can cross the gap created by the


resonance −l0/k0 just connecting either a primary KAM torus with a secondary one and


again with a primary one or two primary KAM tori. Hence, we can construct a piece of


chain that starts in T0 and reaches all the way to Ti, where Ti is a primary KAM torus


whose equation is I = −l0/k0 +Lk0 +O(ε) and is contained again in the flat tori region.


Therefore, we can keep constructing a transition chain just repeating the procedure


stated before for the primary KAM torus Ti until we reach TN(ε). �


5. Example


Consider the Hamiltonian


Hε(p, q, I, ϕ, t) = ±
(
p2


2
+ cos q − 1


)
+
I2


2
+ ε cos q g(ϕ, t), (165)


which is a generalization of the famous example introduced by V.I. Arnol’d in [Arn64].


This is the same Hamiltonian in the example discussed in [DLS06a], except that the


function g is chosen as a periodic function with an infinite number of harmonics in the


angles (ϕ, t),


g(ϕ, t) =
∑


(k,l)∈N2


ak,l cos(kϕ+ lt), (166)


where, for simplicity, we have chosen g to be an even function and with an explicit


formula for its Fourier coefficients, say ak,l = ρkrl and 0 < ρ, r < 1 real numbers to be


chosen small enough. Notice that


g(ϕ, t) =
1 + ρr cos(ϕ+ t) − ρ cosϕ− r cos t


(1 − 2ρ cosϕ+ ρ2)(1 − 2r cos t+ r2)
.


The Hamiltonian of one degree of freedom P±(p, q) = ± (p2/2 + cos q − 1) is the


standard pendulum when we choose the + sign, and its separatrix for positive p is given


by


q0(t) = 4 arctan e±t, p0(t) = 2/cosh t.
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An important feature of the Hamiltonian (165) is that the 3-dimensional NHIM


Λ̃ = {(0, 0, I, ϕ, s) : (I, ϕ, s) ∈ R × T2}
is preserved without any deformation for any ε: p = q = 0 ⇒ ṗ = q̇ = 0. However, in


contrast with the example in [Arn64], the perturbation does not vanish on Λ̃. Indeed,


the Hamiltonian (165) restricted to Λ̃ takes the form I2/2 + εg(ϕ, t). Hence, the 2-


dimensional whiskered tori


T 0
I = {(0, 0, I, ϕ, s) : (ϕ, s) ∈ T2}


are not preserved for ε 6= 0, and resonances (47) take place at I = −l/k for each


(k, l) ∈ N2, gcd(k, l) = 1. Therefore, we have a dense set of gaps of size O(ε1/2√ak,l)


centered at I = −l/k and, among them the ones such that
√
ak,l < ε1/2 give rise to


resonances with big gaps and the example (165) presents the large gap problem for


I < 0.


Hence, for any finite range of I, [I−, I+] ⊂ R− we will prove the existence of diffusing


orbits.


The Melnikov potential (9) of the Hamiltonian (165) is given by


L(I, ϕ, s) =
∑


(k,l)∈N2


Ak,l(I) cos(kϕ+ ls),


with


Ak,l(I) = 2π
(kI + l)


sinh π
2
(kI + l)


ak,l. (167)


Next, we will see that for 0 < ρ < r ≪ 1 we can find open sets of (I, ϕ, s) ∈
[I−, I+] × T2, such that the function τ ∈ R 7→ L(I, ϕ − Iτ, s − τ) has non-degenerate


critical points at τ = τ ∗(I, ϕ, s) which verify the hypothesis H2’.


Recall that hypothesis H2’ deals with the existence of transverse intersections of


the stable and unstable manifolds of Λ̃ε. Hence, the non-degenerate critical points of


the function τ 7→ L(I, ϕ− Iτ, s− τ) give rise to transverse intersections.


In order to check hypothesis H2’, we will use the results in the example given


in Section 13 of [DLS06a] by means of the following argument. Assuming that ρ, r


are small enough, the function g(ϕ, s) is well approximated by its truncated first order


trigonometric polynomial g[≤1](ϕ, s) = 1 + ρ cosϕ+ r cos s. More precisely,


g(ϕ, s) = 1 + ρ cosϕ+ r cos s+ O2(ρ, r)


:= g[≤1](ϕ, s) + g[>1](ϕ, s).


Hence, as long as 0 < ρ, r ≪ 1, if hypothesis H2’ is verified for the trigonometric


polynomial g[≤1](ϕ, s), it will be also verified for the perturbation g(ϕ, s).


Notice that the Fourier coefficients Ak,l(I) are nothing else but the Fourier


coefficients ak,l multiplied by a certain function depending on I that decreases


exponentially as |I| goes to infinity. Hence, arguing as we did for the perturbation
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Figure 2. Graph and level curves of the Melnikov potential L[≤1](I, ϕ, s) with


ρ = 1/16, r = 1/8 and I = 0. In this case, A0,0 = 4, A1,0 = 4ρ = 1/4 and


A0,1 = 4r = 1/2.


g, we approximate the function L(I, ϕ, s) by its first order trigonometric polynomial


L[≤1](I, ϕ, s) = A0,0 + A1,0(I) cosϕ+ A0,1 cos s, that is


L(I, ϕ, s) = A0,0 + A1,0(I) cosϕ+ A0,1 cos s+ O2(ρ, r)


:= L[≤1](I, ϕ, s) + L[>1](I, ϕ, s). (168)


Recall that we are looking for non-degenerate critical points of


L(τ) := L(I, ϕ− Iτ, s− τ) =
∑


(k,l)∈N2


Ak,l(I) cos(kϕ+ ls− τ(Ik+ l)),(169)


with Ak,l(I) as in (167).


Using that the Melnikov function L is well approximated by L[≤1], fixed (I, ϕ, s),


we only need to study the evolution of L[≤1] along the straight lines


R : τ ∈ R 7→ (ϕ− Iτ, s− τ) ∈ T2 (170)


on the torus.


This study has already been performed in the example in Section 13 in [DLS06a],


where the reader can find more details. We just mention that since 0 < ρ < r, for any


fixed I, we have A0,1 > A1,0(I) > 0 and therefore the function (ϕ, s) 7→ L[≤1](I, ϕ, s)


possesses exactly four non-degenerate critical points: a maximum at (0, 0), a minimum


at (π, π) and two saddles at (0, π) and (π, 0) (see Figure 2). Around the two extremum


points, its level curves are closed (and indeed convex) curves which fill out a basin ending


at the level curve of one of the saddle points.
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Therefore, any straight line (170) that enters into some extremum basin is tangent


to one of the convex closed level curves, giving rise to a non-degenerate extremum of


τ ∈ R 7→ L[≤1](I, ϕ−Is, s−τ). So, degenerate extrema of τ ∈ R 7→ L[≤1](I, ϕ−Is, s−τ)
can only exist for straight lines that never enter inside such extremum basins. It is clear


that this never happens for irrational values of I because it implies a dense straight


line (and infinite non-degenerate extrema for τ ∈ R 7→ L[≤1](I, ϕ− Is, s− τ)). On the


other hand, the straight lines with rational slopes enter inside both extremum basins


at least twice, except for the slopes I = 0,±1. In these cases, one can check directly,


using that A0,1 > A1,0(I) > 0, that the function τ ∈ R 7→ L[≤1](I, ϕ− Is, s− τ) has one


non-degenerate maximum and one non-degenerate minimum in any interval of length


2π.


When we take into account L[>1] in the Melnikov potential L in (168), it is clear


that in the compact subset [I−, I+] × T2, as long as 0 < ρ, r ≪ 1, the function


τ ∈ R 7→ L(I, ϕ − Iτ, s − τ) has non-degenerate extrema, and for every I we can


find a smooth function τ = τ ∗(I, ϕ, s) defined in an open set of (ϕ, s) ∈ T2.


Moreover, since L is periodic with respect to (ϕ, s) and non-constant with non-


degenerate extrema along any straight line, ∂ϕL∗, where L∗ is given in (11), is also


periodic and non-constant and indeed changes sign. Therefore, for every I, there exists


a nonempty set JI where ∂ϕL∗ > 0 (and a nonempty set J −
I where ∂ϕL∗ < 0), so


hypothesis H2” is fulfilled. Indeed the set of points where ∂ϕL∗ vanishes is a discrete


set.


Conditions H3’, H3” and H3”’ can also be checked in the example (166) at the


resonances I = −l0/k0.


If we consider I = −l0/k0 for any (k0, l0) ∈ N2, k0 6= 0 and gcd(k0, l0) = 1, the


function Uk0,l0 in hypothesis H3 on (k0, l0) has the following expression


Uk0,l0(θ) =
M∑


t=1


atk0,tl0 cos(tθ) = ak0,l0 cos(θ) + O2(ρ
k0, rl0), (171)


where θ = k0ϕ+ l0s.


Therefore, θ1 = 0 and θ2 = π are the unique critical points for the function Uk0,l0(θ).


Hence hypothesis H3’ on (k0, l0) is clearly verified.


Next, for I = −l0/k0 we want to check hypothesis H3” on (k0, l0). This condition


requires to show that the function f in (13) is not constant. To that end, we will consider


two values of θ and we will show that their images for this function are different. For


instance, notice that the function f in (13) takes the same values as Uk0,l0 evaluated on


its critical points θ1 and θ2 as long as ∂2L∗


∂ϕ2 (I, θi/k0) 6= 0, for i = 1, 2. Hence, hypothesis


H3” on (k0, l0) is clearly satisfied if the function Uk0,l0 has two extrema θi taking different


values which satisfy ∂2L∗


∂ϕ2 (I, θi/k0) 6= 0, which is the case as can be checked just looking


at non-degenerate extrema of the function L. They give rise to non-degenerate extrema


of the function L∗, which coincide with the ones of the function Uk0,l0.


Similarly, we can check hypothesis H3”’ on (k0, l0). In this case we need to show


that the determinant (153) given in Remark 4.8 does not vanish. It is clearly non-zero
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if we choose, for the two first columns, the two critical points θ1 and θ2 discussed above,


and for the third column θ3 6= 0, π, such that ∂2L∗


∂ϕ2 (−l0/k0, θ3/k0) = 0, but otherwise


U
′k0,l0(θ3) 6= 0 and ∂L∗


∂ϕ
(−l0/k0, θ3/k0) 6= 0. The existence of this point θ3 is guaranteed


by the fact that if one considers the first order trigonometric polynomial of the reduced


Poincaré function L∗[≤1], one can see that its critical points are always non-degenerate.


Hence, we apply Theorem (2.1) and we conclude that


Proposition 5.1. Given the Hamiltonian (165) with g as in (166), 0 < ρ < r ≪ 1 and


[I−, I+] ⊂ R−, for |ε| ≤ ε∗(ρ, r) there exist orbits following the mechanism described in


this paper and such that I(0) ≤ I−, I(T ) ≥ I+, for any T > 0.
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Appendix A. Double Fouries Series


Proposition A.1. Let f be a Cr function with respect to (J, ϕ, s, ε), r ≥ 1 and 2π-


periodic with respect to (ϕ, s). Then its Fourier coefficients fk,l(J, ε), (k, l) ∈ Z2, satisfy,


for ℓ = 0, . . . , r


|fk,l|Cℓ ≤ C
|f |Cr


|(k, l)|r−ℓ
, (A.1)


where C is a constant that depends only on r and ℓ and |(k, l)| = max(|k|, |l|).
Proof. From the expression for the Fourier coefficients of a function f


fk,l(J ; ε) =
1


(2π)2


∫


T2


f(J, ϕ, s; ε)ei(kϕ+ls)dϕds,


taking into account that f is Cr in the variables (ϕ, s), we can integrate r = n + m


times by parts (n times with respect to ϕ and m times with respect to s) and express


the Fourier coefficient fk,l(J, ε), with (k, l) 6= (0, 0) in the form


fk,l(J ; ε) = (−1)r 1


(2π)2


1


(ik)n(il)m


∫


T2


∂rf(J, ϕ, s; ε)


∂ϕn∂sm
ei(kϕ+ls)dϕds,


so that,


|fk,l|C0 ≤ 1


|k|n|l|m
∣∣∣∣


∂rf


∂ϕn∂sm


∣∣∣∣
C0


≤ n!m!|f |0,r


|k|n|l|m ,
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for any 0 ≤ n,m ≤ r such that n +m = r, where |·|Cℓ is the standard Cℓ norm defined


in (2) and |·|ℓ1,ℓ2
is the seminorm defined in (3). Therefore,


|fk,l|C0 ≤ r!|f |0,r


|(k, l)|r ≤ r!|f |Cr


|(k, l)|r .


where |(k, l)| = max(|k|, |l|).
Now, taking into account that Dℓfk,l(J ; ε) is the Fourier coefficient of the function


∂ℓf(J,ϕ,s;ε)
∂Jℓ , which is a Cr−ℓ function, and using the same argument as before we have that


|Dℓfk,l|C0 ≤ ℓ!(r − ℓ)!|f |ℓ,r−ℓ


|(k, l)|r−ℓ
≤ ℓ!(r − ℓ)!|f |Cr


|(k, l)|r−ℓ
.


From the definition of | · |Cℓ norm in (2) we have the estimate


|fk,l|Cℓ =


ℓ∑


i=0


|Difk,l|C0


i!
≤


ℓ∑


i=0


(r − i)!|f |Cr


|(k, l)|r−i
≤ C


|f |Cr


|(k, l)|r−ℓ
,


where C is a constant that only depends on ℓ and r, C = r! + (r − 1)! + . . .+ (r − ℓ)!,


as we wanted to see. �


We consider the truncation of its Fourier series at order M in the following way:


f(J, ϕ, s; ε) = f [≤M ](J, ϕ, s; ε) + f [>M ](J, ϕ, s; ε),


where


f [≤M ](J, ϕ, s; ε) =
∑


(k,l)∈Z2,
|k|+|l|≤M


fk,l(J ; ε)ei(kϕ+ls),


and


f [>M ](J, ϕ, s; ε) =
∑


(k,l)∈Z2


|k|+|l|>M


fk,l(J ; ε)ei(kϕ+ls).


Proposition A.2. Let f be of class Cr with respect to (J, ϕ, s, ε), r ≥ 1 and 2π-periodic


with respect to (ϕ, s). The M-th order remainder f [>M ] of the Fourier series of f is


bounded in the standard Cℓ norm, for ℓ = 0, . . . , r − 3 by


∣∣f [>M ]
∣∣
Cℓ ≤ C


|f |Cr


M r−(ℓ+2)
, (A.2)


where C is a constant that depends only on r and ℓ.


Proof. The proof is very simple and follows from the estimate (A.1) for the Fourier
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coefficients of a Cr function obtained in the previous propositon. More precisely,
∣∣f [>M ]


∣∣
Cℓ ≤


∑


(k,l)∈Z2,
|k|+|l|>M


|fk,l|Cℓ


≤ C
∑


(k,l)∈Z2,
|k|+|l|>M


|f |Cr


|(k, l)|r−ℓ


≤ C
∞∑


t=M+1


4t
|f |Cr


tr−ℓ


≤ 4C |f |Cr


∫ ∞


M


tℓ−r+1dt


= 4
C


r − ℓ− 2
|f |Cr M


ℓ−r+2,


where C is a constant that depends only on r and ℓ. �


Appendix B. Weighted norms


We consider functions u ∈ τM (I × T2), where I ⊂ R, introduced in (28), and we can


consider the different types of norms introduced in this paper: the standard Cr norm


introduced in (2), the Fourier norm introduced in (29) and the Fourier norm with a


weight introduced in (30).


The equivalence relations between all these norms are given in the following


Lemmas:


Lemma B.1. The norms |·|Cℓ and ‖·‖Cℓ defined in (2) and (29), respectively, are


equivalent and satisfy the following equivalence relation for u ∈ τM(I × T2) and


0 < L ≤ 1,


Lℓ|u|Cℓ ≤ ‖u‖Cℓ,L ≤ CM2|u|Cℓ


where C is a constant depending on ℓ.


Proof. The first inequality is obvious using that L ≤ 1. For the second one, using again


that L ≤ 1 we have


|uk,l|Cn,L =
n∑


i=0


Li |Diuk,l|C0


i!
≤


n∑


i=0


|Diuk,l|C0


i!
= |uk,l|Cn,


for 0 ≤ n ≤ ℓ. Therefore, the result follows directly from the estimate (A.1) for the Cℓ
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norm of the Fourier coefficients of a Cr function u, for ℓ = 0, . . . , r. More precisely,


‖u‖Cℓ,L =


ℓ∑


m=0


m∑


n=0


2ℓ
∑


(k,l)∈Z
2,


|k|+|l|≤M


|uk,l|Cn,L |(k, l)|m−n


≤
ℓ∑


m=0


m∑


n=0


2ℓ
∑


(k,l)∈Z2,
|k|+|l|≤M


|uk,l|Cn |(k, l)|m−n


≤
ℓ∑


m=0


m∑


n=0


2ℓ
∑


(k,l)∈Z
2,


|k|+|l|≤M


C̃
|u|Cℓ


|(k, l)|ℓ−n
|(k, l)|m−n


≤
ℓ∑


m=0


m∑


n=0


2ℓ
∑


(k,l)∈Z2,
|k|+|l|≤M


C̃ |u|Cℓ


≤ CM2 |u|Cℓ


as we wanted to prove. �


Lemma B.2. For the seminorm |·|j,ℓ−j defined in (2), one has that for all 0 ≤ j ≤ ℓ,


Lj |u|j,ℓ−j ≤ ‖u‖Cℓ,L (B.1)


Proof. Again, It follows directly from the fact that L < 1 and therefore,


Lj |uk,l|Cn ≤
n∑


i=0


Li |Diuk,l|C0


i!
= |uk,l|Cn,L.


for 0 ≤ n ≤ j. �


Lemma B.3. For 0 < L ≤ 1, and 0 ≤ ℓ ≤ r we have that for any u ∈ τM(I × T2) and


v ∈ τN (I × T2)


‖uv‖Cℓ,L ≤ ‖u‖Cℓ,L ‖v‖Cℓ,L . (B.2)


Proof. Let us define


‖u‖n,m =
∑


(k,l)∈Z
2,


|k|+|l|≤M


|uk,l|Cn,L|(k, l)|m−n,


then,


‖u‖Cℓ,L =


ℓ∑


m=0


m∑


n=0


2ℓ‖u‖n,m. (B.3)


The α− th Fourier coefficient of uv, where α ∈ Z2, is


(uv)α =
∑


β∈Z2,|β|≤N
|α−β|≤M


uα−βvβ.
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Using the Leibniz rule for derivatives we have


|(uv)α|Cn,L =


n∑


i=0


1


i!
Li|Di(uv)α|C0


≤
n∑


i=0


1


i!


∑


β∈Z2,|β|≤N
|α−β|≤M


Li|Diuα−βvβ|C0


≤
n∑


i=0


1


i!


∑


β∈Z
2,|β|≤N


|α−β|≤M


i∑


j=0


(
i


j


)
Li−j |Di−juα−β|C0Lj |Djvβ|C0


=
n∑


i=0


∑


β∈Z2,|β|≤N
|α−β|≤M


i∑


j=0


Li−j |Di−juα−β|C0


(i− j)!
Lj |Djvβ|C0


j!


=
∑


β∈Z
2,|β|≤N


|α−β|≤M


n∑


i=0


i∑


j=0


Li−j |Di−juα−β|C0


(i− j)!
Lj |Djvβ|C0


j!


≤
∑


β∈Z2,|β|≤N
|α−β|≤M


|uα−β|Cn,L |vβ |Cn,L .


On the other hand, we have


|α|m−n ≤ (|α− β| + |β|)m−n =
m−n∑


i=0


(
m− n


i


)
|α− β|i|β|m−n−i


≤ max


(
|α|m−n,


m−n∑


i=0


(
m− n


i


)
|α− β|m−n|β|m−n


)


= max(|α|m−n, 2m−n|α− β|m−n|β|m−n).


Hence, using these two inequalities, we have that


‖uv‖n,m =
∑


α∈Z
2,


|α|≤M+N


|(uv)α|Cn,L|α|m−n


≤
∑


α∈Z
2,


|α|≤M+N


∑


β∈Z
2,|β|≤N


|α−β|≤M


|uα−β|Cn,L |vβ|Cn,L |α|m−n


≤
∑


α∈Z2,
|α|≤M+N


|u0|Cn,L |vα|Cn,L |α|m−n + |uα|Cn,L |α|m−n |v0|Cn,L


+
∑


β∈Z2,|β|≤N
|α−β|≤M


|uα−β|Cn,L |vβ|Cn,L 2m−n|α− β|m−n|β|m−n


≤ 2m−n
∑


α∈Z2,
|α|≤M


|uα|Cn,L |α|m−n
∑


β∈Z2


|β|≤M


|vβ |Cn,L |β|m−n


= 2m−n‖u‖n,m‖v‖n,m.
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Going back to the definition of ‖uv‖Cℓ,L in (B.3), we have


‖uv‖Cℓ,L =
ℓ∑


m=0


m∑


n=0


2ℓ‖uv‖n,m


≤
ℓ∑


m=0


m∑


n=0


2ℓ2m−n‖u‖n,m‖v‖n,m


≤
ℓ∑


m=0


m∑


n=0


2ℓ2ℓ‖u‖n,m‖v‖n,m


≤ ‖u‖Cℓ,L ‖v‖Cℓ,L ,


as claimed. �


Appendix C. Faa-di Bruno formula


Let g be a Cs(U, V ) function, with U ⊂ R and g(U) ⊂ W ⊂ R and f be a Cr(W,R)


function with r, s > 0. Then f ◦ g is a Ct(U,R) function, where t = min(r, s). By a


repeated application of the chain rule, one gets


Dℓ(f ◦ g)(x) =
ℓ∑


k=1


∑


j1+···+jk=ℓ


ck,j1,···,jk
Dkf(g(x))Dj1g(x) · · ·Djkg(x), (C.1)


for ℓ = 1, . . . , t, where ck,j1,···,jk
are combinatorial coefficients. The formula (C.1) is


called Faa-di Bruno formula (see [LO99]).


From equation (C.1), it is easy to see that there exists a constant Ct depending on


t such that


|f ◦ g|Ct ≤ Ct |f |Ct |g|tCt . (C.2)


Since we are interested in multi-valued functions, we introduce now a generalized


bound. Thus, let us consider a function g in Cs(U, V ), with U ⊂ Rn and g(U) ⊂W ⊂ Rm


and a function f in Cr(W,R) with r, s > 0. As before, f ◦g is a Ct(U,R) function, where


t = min(r, s). Similarly, we can get an expression for the derivatives of f ◦ g, such that


for ℓ = 1, . . . , t,


|f ◦ g|Cℓ ≤ Cℓ


ℓ∑


k=1


∑


j1+···+jk=ℓ


|f |Ck |g|Cj1 · · · |g|Cjk , (C.3)


for ℓ = 0, . . . , t, where Cℓ is a constant depending on ℓ. As before, we can consider the


following less precise but more compact bound,


|f ◦ g|Cℓ ≤ Cℓ |f |Cℓ |g|ℓCℓ , (C.4)


for ℓ = 1, . . . , t, where Cℓ is a constant depending on ℓ.


For some other results related to this, we refer the reader to [LO99].
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In some cases, it will be more convenient to use another estimate for the |·|Cℓ


norm instead of the one obtained in (C.4). In formula (C.3) we can separate the term


corresponding to k = 1 in the following way


|f ◦ g|Cℓ ≤ Cℓ


(
|f |C1 |g|Cℓ +


ℓ∑


k=2


∑


j1+···+jk=ℓ


|f |Ck |g|Cj1 · · · |g|Cjk


)
,


for ℓ = 1, . . . , t and we can bound it in the |·|Cℓ norm


|f ◦ g|Cℓ ≤ Cℓ(|f |C1 |g|Cℓ + |f |Cℓ |g|ℓCℓ−1), (C.5)


for ℓ = 1, . . . , t, where Cℓ is a constant depending on ℓ.
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