Schr\"odinger operators, eigenvalue estimates, complex potentials





EIGENVALUE ESTIMATES FOR SCHRÖDINGER
OPERATORS WITH COMPLEX POTENTIALS


ARI LAPTEV AND OLEG SAFRONOV


1. Introduction
Throughout the paper, f± denotes either the positive or the negative


part of f , which is, in its turn, either a function or a selfadjoint operator.
The symbols <z and =z denote the real and the imaginary part of z.
Finally, if a is a function on Rd, then a(i∇) is the operator whose
integral kernel is (2π)−d


∫
eiξ(x−y)a(ξ)dξ.


We consider the Schrödinger operator H = −∆ + V with a com-
plex potential V and then we say something about the distribution
of eigenvalues of H in the complex plane. Assume for simplicity that
lim|x|→∞ V (x) = 0.


The main result of [4] tells us, that for any t > 0, the eigenvalues zj


of H lying outside the sector {z : |=z| < t <z} satisfy the estimate
∑


|zj|γ ≤ C


∫
|V (x)|γ+d/2dx, γ ≥ 1,


where the constant C depends on t, γ and d.
A natural question that appears in relation to this result is what


estimates are valid for the eigenvalues situated inside the conical sector
{z : |=z| < t<z}, where the eigenvalues might be close to the positive
half-line? Our theorems provide some information about the rate of
accumulation of eigenvalues to the set R+ = [0,∞). Namely, Theorems
1.1-1.4 give sufficient conditions on V that guarantee convergence of
the sum ∑


a<<zj<b


|=zj|γ <∞


for 0 ≤ a < b <∞.


Theorem 1.1. Let H = −∆ + V be the Schrödinger operator acting in
L2(Rd) with d ≥ 2 and letW = (|V |2+4=V )+. Let zj be the eigenvalues
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of the operator H lying inside the semi-infinite strip Πb = {z : 0 <
<z < b, =z > 0}. Then for any γ > 3/2 and r ∈ (γ − 1


2
, γ)


∑
zj∈Πb


|=zj|γ ≤ C|Ψb(W )| 2γ−1
2r−1 (b+ |Ψb(W )| 1


2r−1 )


where


Ψb(W ) =


∫


Rd


W d/4−1/2+rdx+ bd/2−1


∫


Rd


W rdx, d ≥ 2.


The constant in this inequality depends on d, γ and r.


Applying the same method one can prove the following statement.


Theorem 1.2. Let zj be the eigenvalues of the operator H = −d2/dx2+
V lying inside the semi-infinite strip Π = {z : a < <z < b, =z > 0}
with a > 0. Let W = (|V |2 + 4=V )+. Then for any γ > 3/2 and
r ∈ (γ − 1


2
, γ)


∑
zj∈Π


|=zj|γ ≤ C|Ψa(W )| 2γ−1
2r−1 (b+ |Ψa(W )| 1


2r−1 )


where
Ψa(W ) = a−1/2


∫


R
W rdx.


The constant in this inequality depends on γ and r.


An interesting property of Theorems 1.1 and 1.2 is that the lower
borderline for γ is always 3/2 in any dimension. Now we will try to
formulate some results that are valid for smaller values of γ.


Theorem 1.3. Let <V ≥ 0 be a bounded function. Assume that =V ∈
Lp(Rd), where p > d/2 if d ≥ 2 and p ≥ 1 if d = 1. Then the eigenvalues
λj of the operator H = −∆ + V satisfy the estimate


(1.1)
∑


j


( =λj


|λj + 1|2 + 1


)p


+
≤ C


∫


Rd


=V p
+(x) dx.


The constant C in this inequality can be computed explicitly:


(1.2) C = (2π)−d


∫


Rd


dξ


(ξ2 + 1)p
.


The right hand side of the estimate (1.1) does not contain the po-
tential <V . This means that the conditions on <V can be drastically
relaxed. It is not the case when we try to obtain an estimate of the
sum


∑
j(=λj/(|λj + 1|2 + 1))p


+ for p ≤ d/2. A certain regularity of <V
is required in this case because of an essential reason.
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Theorem 1.4. Let <V ≥ 0 and =V be two bounded real valued func-
tions. Assume that =V ∈ Lp(Rd), where p > d/4 if d ≥ 4 and p ≥ 1
if d ≤ 3. Then the eigenvalues λj of the operator H = −∆ + V satisfy
the estimate


(1.3)
∑


j


( =λj


|λj + 1|2 + 1


)p


+
≤ (1 + ||V ||∞)2pC


∫


Rd


=V p
+(x) dx.


The constant C in this inequality can be computed explicitly:


(1.4) C = (2π)−d


∫


Rd


dξ


((ξ2 + 1)2 + 1)p
.


One should mention, that the paper [4] in its turn was motivated by
the question of E.B. Davies about an integral estimate for eigenvalues
of H (see [1] and [3]). If d = 1 then all eigenvalues λ of H which do not
belong to R+ satisfy


|λ| ≤ 1


4


(∫
|V (x)|dx


)2


.


The question is whether a similar integral estimate holds in dimension
d ≥ 2. By the word “similar”, we mean an estimate by the Lp norm of
the potential V with p > d/2. So, the problem can be formulated as a
hypothesis in the following way:


Conjecture 1.1. Let d ≥ 2 and let γ > 0 be given. There is a
positive constant C such that


(1.5) |λ|γ ≤ C


∫


Rd


|V (x)|d/2+γdx,


for every complex valued potential V ∈ C∞0 and every eigenvalue λ /∈
R+ of the operator −∆ + V .


So far, we are able to prove only the following result related to this
conjecture:


Theorem 1.5. Let V be a function from Lp(Rd), where p ≥ d/2, if
d ≥ 3>; p > 1, if d = 2, and p ≥ 1, if d = 1. Then every eigenvalue
λ of the operator H = −∆ + V with the property <λ > 0 satisfies the
estimate


(1.6) |=λ|p−1 ≤ |λ|d/2−1C


∫


Rd


|V |pdx.


The constant C in this inequality depends only on d and p. Moreover,
C = 1/2 for p = d = 1.


3







The relation (1.6) was established in [1] in the case d = p = 1. We
prove it in higher dimensions and in dimension d = 1 for p > 1.


We also know the elementary estimate (see Theorem 8.2)


|=
√
λ|2γ ≤ C


∫


R3


|V |3/2+γdx, γ > 0, d = 3,


however it is not quite the same as (1.5). While we do not prove Con-
jecture 1.1 directly, we find some interesting information about the
location of eigenvalues of the operator −∆+ iV with a positive V ≥ 0.
In particular, in d = 3, we obtain that if


∫
V dx is small and λ /∈ R+ is


an eigenvalue of −∆ + iV , then |λ| must be large. It might seem that
eigenvalues do not exist at all for small values of


∫
V dx, however their


presence in such cases can be easily established with the help of the
following statement.


Proposition 1.1. Let d ≥ 3. Then there is a sequence of positive
functions Vn ≥ 0 such that the “largest modulus” eigenvalue λn /∈
R+ of the operator −∆ + iVn satisfies |λn| → ∞ as n → ∞, while
limn→∞


∫
Vn(x)dx = 0.


Proof. If λ is an eigenvalue of −∆+ iV (x), then n2λ is an eigenvalue
of −∆+n2iV (nx). It remains to note that


∫
n2V (nx)dx = Cn2−d. The


proof of existence of a non-real eigenvalue of −∆ + iV (x) at least for
one V ≥ 0 is left to the reader. ¤


Remark The proposition does not contradict Conjecture 1.1.
Note that our theorems imply also that the eigenvalues of −∆ + iV


can not accumulate to zero in d = 3, if V ≥ 0 is integrable.


2. Preliminaries
1. Consider a non self-adjoint operator T = R+ iB where R and B


are self-adjoint operators. Suppose that R is semibounded from below
and has a discrete negative spectrum. If B(R − i)−1 is compact, then
the operator T has only discrete set of eigenvalues in the left half of
the plane Cleft = {z : <z < 0}. Moreover, suppose that λj ∈ Cleft


are eigenvalues of the operator T , and sj are negative eigenvalues of R
enumerated in the order of increasing real parts. Then


∣∣∣<
n∑
1


λj


∣∣∣ ≤
n∑
1


|sj|
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for all n. Indeed, let P be the orthogonal projection onto the span of
eigenvectors corresponding to λj, 1 ≤ j ≤ n. Then


trTP =
n∑
1


λj


Consequently,


(2.1) <
n∑
1


λj = trRP ≥ min
P


trRP


where the minimum is taken over all orthogonal projections of rank n.
Thus,


(2.2)
n∑
1


<λj ≥
n∑
1


sj


since the minimum in the right hand side of (2.1) coincides with the
sum in the right hand side of (2.2)


Corollary 2.1. Let γ > 0. Then
n∑
1


(<λj + γ)− ≤
n∑
1


(sj + γ)−


2. Let T be a bounded operator in a Hilbert space, whose spectrum
outside the unit circle {z : |z| > 1} is discrete. Suppose also that the
essential spectrum of the operator (T ∗T )1/2 is contained in [0, 1] Let
λj be the eigenvalues of the operator T lying outside of the unit circle,
and let sj > 1 be the eigenvalues of (T ∗T )1/2. If we enumerate the
sequences |λj| and sj in the decreasing order, then


(2.3)
n∏
1


|λj| ≤
n∏
1


sj


for all values of n. One should mention also that, if one of the sequences
ends at j = j0, we extend it for j > j0 by 1-s.


This inequality has been discovered for compact operators by H.
Weyl. Weyl’s proof is carried over to the case of bounded operators
without any difference. Indeed, let P be the orthogonal projection onto
the span of eigenvectors corresponding to λj, 1 ≤ j ≤ n. Then for any
α > 0


det (I + P (αT ∗T − I)P ) = αn


n∏
1


|λj|2
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Consequently,


αn


n∏
1


|λj|2 ≤ det (I+P (αT ∗T−I)+P ) ≤ det (I+(αT ∗T−I)1/2
+ P (αT ∗T−I)1/2


+ ).


Removing the orthogonal projection, we obtain


αn


n∏
1


|λj|2 ≤ det (I + (αT ∗T − I)+) =
∏


αs2
j>1


αs2
j


It remains to choose α = s−1
n . Note that if the number of sj > 1 is


finite, we can take α = 1 to obtain that
n∏
1


|λj|2 ≤
∏


s2
j>1


s2
j


for all n.


Corollary 2.2. Let γ ≥ 1. Then
n∑
1


(|λj|2 − 1)γ ≤
n∑
1


(s2
j − 1)γ


for all n.


Proof. Consider first the case γ > 1. As a consequence of (2.3), we
obtain that


(2.4)
n∑
1


log |λj| ≤
n∑
1


log sj.


Moreover,


(2.5)
n∑


j=1


(log |λj| − η)+ ≤
n∑


j=1


(log sj − η)+


for any −∞ < η <∞. Note now that the function φ(t) = (e2t − 1)γ is
representable in the form


φ(λ) =


∫ ∞


0


(λ− t)+φ
′′(t) dt and φ′′(t) ≥ 0 for t ≥ 0.


Since φ(log λ) = (λ2 − 1)γ, the statement of Corollary 2.2 for γ > 1
follows from (2.5).


If γ = 1, then one only needs to prove that
n∑
1


|λj|2 ≤
n∑
1


s2
j
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In order to do that we consider the function ψ(t) = e2t, which is rep-
resentable in the form


ψ(λ) = 1 + 2λ+


∫ ∞


0


(λ− t)+ψ
′′(t) dt with ψ′′(t) > 0.


Since ψ(log λ) = λ2, the statement of Corollary 2.2 for γ = 1 follows
from (2.4) and (2.5). ¤
3. Let T be a compact operator in a Hilbert space. Then the square


roots of eigenvalues of T ∗T are called s-numbers. Let us introduce the
distribution function n(s, T ) of s-numbers sj of an operator T by the
equality


n(s, T ) = card{j : sj > s}, s > 0.


Note that n satisfies the so called Ki-Fan inequality
n(s1 + s2, T1 + T2) ≤ n(s1, T1) + n(s2, T2),


for any pair of compact operators T1 and T2 and any pair of positive
numbers s1 and s2. The class of operators T for which the following
quantity


[T ]pp := sup
s>0


spn(s, T ) <∞
is finite, is called the weak Neumann-Schatten class Σp.


Theorem 2.1 ( M.Cwikel [2]). Let Φ be the operator of Fourier trans-
formation and let α and β be the operators of multiplication by the
functions α(ξ) and β(x). Suppose that β is in the space Lq(Rd) with
q > 2 and


[α]qq = sup
t>0


tqmeas{ξ ∈ (Rd : |α(ξ)| > t} <∞.


Then the operator T = αΦβ as (well as the operator βΦ∗α) is in Σp


and


(2.6) [T ]qq ≤ C[α]qq


∫
|β(x)|q dx.


The main applications of Theorem 2.1 in mathematical physics are
related to the following fact:


Proposition 2.1 (Birman-Schwinger principle). Let A and V be two
positive self-adjoint operators acting in the same Hilbert space. Suppose
that V is bounded and the operator


√
V (A + I)−1/2 is compact. Then


the number N(E) of eigenvalues of the operator A−V lying to the left
of a negative point −E satisfies the relation


N(E) = n(1,
√
V (A+ E)−1


√
V ).
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In applications, A is a differential operator and V is the operator of
multiplication by a function.
4. Let T be a compact operator in a Hilbert space. Then the square


roots of eigenvalues of T ∗T are called s-numbers. The class of compact
operators T for which the following quantity


||T ||pp =
∑


j


sp
j <∞, p ≥ 1,


is finite, is called the Neumann-Schatten class Sp. It is easy to see that
the functional ||T ||p =


(
tr(T ∗T )p/2


)1/p has all properties of a norm on
Sp.


The next theorem gives a sufficient condition guaranteeing that an
operator of the form b(x)a(i∇) belongs to the class Sp.


Theorem 2.2. Let Φ be the operator of Fourier transformation and
let a and b be the operators of multiplication by the functions a(ξ) and
b(x). Suppose that a and b are in the space Lp(Rd) where p ≥ 2 Then
the operator T = bΦ∗a is in Sp and


(2.7) ||T ||pp ≤ (2π)−d


∫
|a(ξ)|p dξ


∫
|b(x)|p dx.


This theorem can be found in [6]. See also [5] and [7].
5. Below, we will need the following result about eigenvalue esti-


mates for a certain operator with constant coefficients perturbed by a
potential V . It is one of the consequences of the inequality (2.6).


Proposition 2.2. Let a(ξ) = (ξ2 − µ)2, ξ ∈ Rd, and V (x) ≥ 0 be two
functions on Rd. Suppose that V ∈ C∞0 (Rd). Let N(E) be the number
of eigenvalues of the operator a(i∇)−V (x) lying to the left of the point
−E where E > 0. Then, for any p > 1/2,
(2.8)
N(E) ≤ C


Ep


(∫


Rd


V p+d/4dx+ µd/2−1


∫


Rd


V p+1/2dx
)
, if d ≥ 2;


(2.9) N(E) ≤ C


Epµ1/2


∫


Rd


V p+1/2dx, if d = 1.


Proof. The reasoning is based on the elementary application of the
Cwikel estimate. Indeed, according to Birman-Schwinger principle


N(E) = n(1, X),


where X is the compact operator defined by the equality


X =
√
V (a(i∇) + E)−1


√
V .
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Let χ be the characteristic function of the ball {ξ ∈ Rd : ξ2 ≤ µ}.
Represent X in the form X = X1 +X2, where


X1 =
√
V (a(i∇) + E)−1χ(i∇)


√
V .


According to the Ki-Fan inequality,
(2.10) n(1, X) ≤ n(1, 2X1) + n(1, 2X2).


Therefore it is sufficient to estimate each term in the right hand side of
(2.10) separately. We begin with the first term. Set α = p+ d/4. Then,
according to (2.6),


n(1, 2X1) ≤ C0


∫
V αdx


∫


ξ2>µ


dξ


((ξ2 − µ)2 + E)α
≤


≤ C1


∫
V αdx


∫ ∞


µ


sd/2−1ds


((s− µ)2 + E)α
≤ C2


∫
V αdx


∫ ∞


0


sd/2−1ds


(s2 + E)α
=


=
C


Ep


∫


Rd


V p+d/4dx.


Let us now estimate the second term in (2.10). Set β = p + 1/2.
According to (2.6),


n(1, 2X2) ≤ C3


∫
V βdx


∫


ξ2<µ


dξ


((ξ2 − µ)2 + E)β
≤


≤ C4


∫
V βdx


∫ µ


0


sd/2−1ds


((s− µ)2 + E)β
≤ C5


∫
V βdx


∫ ∞


−∞


µd/2−1ds


(s2 + E)β
=


=
Cµd/2−1


Ep


∫


Rd


V p+1/2dx.


Thus,


n(1, 2X1) ≤ C


Ep


∫


Rd


V p+d/4dx and n(1, 2X2) ≤ Cµd/2−1


Ep


∫


Rd


V p+1/2dx.


Therefore (2.10) implies the estimate (2.8) for d ≥ 2.
Consider now the case d = 1. The arguments for d = 1 are different


from the arguments for d ≥ 2. First of all, note that (ξ2 − µ)2 =
(|ξ| − √µ)2(|ξ|+√


µ)2 ≥= (|ξ| − √µ)2µ. Consequently, for any β > 1,
∫ ∞


∞


dξ


((ξ2 − µ)2 + E)β
≤


∫ ∞


∞


dξ


((ξ − µ)2µ+ E)β
=


C√
µEβ−1/2


.


Set now β = p+ 1/2. We obtain according to (2.6) that


N(E) ≤ C
∫
V βdx√


µEβ−1/2
=
C


∫
V p+1/2dx√
µEp


,


which means that (2.9) is also proven. ¤
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3. Proof of Theorem 1.1. Some relates results
Proof of Theorem 1.1. The central role in the proof is played by


Corollary 2.1. The second trick which we apply in the proof is that
we use the relation between some of the eigenvalues of the operator
−∆ + V and the eigenvalues of the operator (−∆ + 2i − µ + V )2,
µ > 0, situated to the left of the line <z = −4. Indeed, let zj be
eigenvalues of the operator −∆ + V lying in the hyperbolic domain
Dµ = {z : (=z + 2)2 − (<z − µ)2 ≥ 4, =z > 0}, then (zj − µ + 2i)2


are eigenvalues of the operator (−∆ − µ + 2i + V )2, and it is easy to
see, that


<(zj − µ+ 2i)2 = (<zj − µ)2 − (=zj)
2 ≤ −4, ∀zj ∈ Dµ.


Consequently, due to Corollary 2.1,


(3.1)
n∑
1


∣∣∣<(zj − µ+ 2i)2 + 4
∣∣∣ ≤


∣∣∣
n∑
1


sj


∣∣∣,


where sj are eigenvalues of the operator


T1 = (−∆− µ)2 + V1(−∆− µ) + (−∆− µ)V1 + V 2
1 − V 2


2 − 4V2


where V1 = <V and V2 = =V are the real and the imaginary parts
of the potential. The estimate (3.1) takes into account all eigenvalues
from the domain Dµ. It turns out that we do not need all of them,
we need only the eigenvalues zj lying inside the domain Ωµ = {z :
(=z+1)2− (<z−µ)2 ≥ 1, =z > 0}. Note that the boundaries of both
domains Dµ and Ωµ touch the real line at the point z = µ. Note also
that Ωµ ⊂ Dµ. That might imply that the estimates for eigenvalues
lying in Ωµ are better than the estimates for the eigenvalues in Dµ.


It turns out that the imaginary parts of eigenvalues in Ωµ can be
very well estimated in terms of real parts of eigenvalues of the operator
(H − µ+ 2i)2 + 4.


Let us investigate the relation between the spectra of operators H
and (H − µ + 2i)2 in more detail. Assume that zj ∈ Ωµ and =zj > s.
Then


2(=zj − s) ≤ (=zj + 1)2 − (<z − µ)2 − 1 + 2(=z − s) =


(=zj + 2)2 − (<zj − µ)2 − 4− 2s = −<(zj − µ+ 2i)2 − 4− 2s


Due to Corollary2.1 it means that


2
∑


zj∈Ωµ


(=zj − s)+ ≤ tr
(
<(H − µ+ 2i)2 + 4 + 2s


)
−
≤ tr


(
T1 + 2s


)
−


10







Now, we represent the operator T1 in the form


T1 =
1


2
(−∆− µ)2 + (


1√
2
(−∆− µ) +


√
2V1)


2 − 4V2 − V 2
1 − V 2


2


Since the operator


(
1√
2
(−∆− µ) +


√
2V1)


2 ≥ 0


is positive, we obtain that the spectrum of the operator T1 can be
estimated by the spectrum of the operator


T2 =
1


2
(−∆− µ)2 − |V |2 − 4V2.


Thus,


(3.2) 2
∑


zj∈Ωµ


(=zj − s)+ ≤ tr
(
T2 + 2s


)
−


It is clear now that we have to obtain an estimate for the negative
eigenvalues λj of the operator T2. In order to do that and in order to
estimate the right hand side of (3.2) we need to apply Proposition 2.2
according to which the number N(E) of eigenvalues of T2 lying to the
left of the point −E satisfies the estimate


(3.3) N(E) ≤ C


Ep


(∫


Rd


W d/4+pdx+ µd/2−1


∫


Rd


W 1/2+pdx
)


with p > 1/2 and d ≥ 2.
If λj are negative eigenvalues of the operator T2, then


∑
j


|λj|q = q


∫ ∞


0


Eq−1N(E)dE ≤ C
(∫


Rd


W d/4+pdx+µd/2−1


∫


Rd


W 1/2+pdx
)
|λ1|q−p


for q > p > 1/2. Note that according to (3.3) the lowest eigenvalue λ1


satisfies the relation


|λ1|r−1/2 ≤ C
(∫


Rd


W d/4+r−1/2dx+ µd/2−1


∫


Rd


W rdx
)


= CΨ(W ).


Therefore
∑


j


|λj|q ≤ C
(∫


Rd


W d/4+pdx+µd/2−1


∫


Rd


W 1/2+pdx
)
|Ψµ(W )|2(q−p)/(2r−1)


for q > p > 1/2 and r > 1.
Recall the inequality


2
∑


zj∈Ωµ


(=zj − s)+ ≤
∑


j


(λj + 2s)−.
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It follows from this relation that∑
zj∈Ωµ


(=zj − s)+ ≤


(3.4)
C


(∫


Rd


(W − 2s)
d/4+p
+ dx+ µd/2−1


∫


Rd


(W − 2s)
1/2+p
+ dx


)
|Ψµ(W )| 2(1−p)


2r−1 =


=: F (s, µ)


with 1/2 < p < 1 and r > 1.
Let now Πb be the strip {z : 0 < <z < b}. Since the boundary of


a domain Ωµ touches the real line in the parabolical way, it is obvious,
that for small values of s < ε0, the set of all points z ∈ Πb whose =z > s
can be covered by not more than m(b) = [Cb/


√
s] + 1 sets of the form


Ωµ. Since Ωµ contains the sector =z > |<z − µ|, we obtain that the
number of domains Ωµ covering the strip Πb can be also estimated by
[b/s] + 1 for any s > 0. Finally, note that 1/


√
s ≥ √


ε0/s for s ≥ ε0.
Therefore without loss of generality one can assume that


m(b) = [Cb/
√
s] + 1, ∀s > 0.


Since there is no zj ∈ Πb with the property =zj > C|Ψb(W )| 2
2r−1 , we


obtain
∑


zj∈Πb


(=zj − s)+ ≤
m(b)∑


l=1


∑
zj∈Ωµl


(=zj − s)+ ≤ C
(b+ |Ψb(W )| 1


2r−1 )√
s


F (s, b)


Observe now that
∑


zj∈Πb


|=zj|γ = γ(γ − 1)
∑


zj∈Πb


∫ ∞


0


(=zj − s)+s
γ−2ds,


which leads to
∑


zj∈Πb


|=zj|γ ≤ (b+ |Ψb(W )| 1
2r−1 )C


∫ ∞


0


sγ−5/2F (s, b)ds


The integral in the right hand side converges only if γ > 3/2 and the
previous relation means that
∑


zj∈Πb


|=zj|γ ≤ C|Ψb(W )| 2δ
2r−1 (b+ |Ψb(W )| 1


2r−1 )
(∫


Rd


|W |d/4−1/2+γ−δdx+


+bd/2−1


∫


Rd


|W |γ−δdx
)


with 0 < δ < 1/2. It remains to set r = γ − δ to complete the proof.
¤


12







In Theorem 1.1 and Theorem 1.2, we estimate the eigenvalue sum of
the form


∑ |=zj|γ with γ > 3/2. If we restrict the set and consider not
all eigenvalues but only those that belong to a certain domain, then
one can estimate even the sum of the first powers.


Corollary 3.1. Let zj be the eigenvalues of the operator −∆+V lying
inside the domain {z : (=zj + 1)2 − (<z − µ)2 ≥ 1, =z > 0} and let
d ≥ 2. Then


∑
j


|=zj| ≤ C
(∫


Rd


W d/4+pdx+ µd/2−1


∫


Rd


W 1/2+pdx
)
||W ||1−p


∞


for 1/2 < p < 1.


Corollary 3.1 does not follow immediately from the Theorem 1.1,
however it follows from a relation that is similar to (3.4).


In the same way, one can prove


Corollary 3.2. Let d = 1 and let zj be the eigenvalues of the operator
−d2/dx2 + V lying inside the domain {z : (=zj + 1)2 − (<z − µ)2 ≥
1, =z > 0}. Then


∑
j


|=zj| ≤ C||W ||1−p
∞ µ−1/2


∫


Rd


W 1/2+pdx


for 1/2 < p < 1.


There is an open gap in this theory in the case d = 1, where we
are forced to keep away from the point z = 0 and deal with the strip
a < <z < b where a > 0. Probably, the reason why we have to do that is
hidden in a special behaviour of the spectrum near zero. This approach
is unable to say anything about the sums of the form


∑
0<<zj<b |=zj|γ


for γ close to 3/2, nevertheless the situation changes as soon as γ >
7/4. Thus, if we study the behaviour of the eigenvalues in the semi-
infinite strip {z : 0 < <zj < b, =z > 0} by this method, we lose the
information about the sums


∑
0<<zj<b |=zj|γ for 3/2 < γ ≤ 7/4.


Theorem 3.1. Let zj be the eigenvalues of the operator H = −d2/dx2+
V lying inside the semi-infinite strip Πb = {z : 0 < <z < b, =z > 0}.
Then for any γ > 7/4 and r ∈ (γ − 1


2
, γ)


∑
zj∈Πb


|=zj|γ ≤ C||W ||γ−r
∞ (b+ ||W ||1/2


∞ )
(∫


Rd


|W |r−1/4dx
)
,


where W = (|V |2 + 4=V )+.
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Proof. We start with a modification of the relation (3.4) which can
be easily changed and transformed into the form
(3.5)∑


zj∈Ωµ


(=zj − s) ≤ C
(
µ−1/2


∫


Rd


(W − 2s)
1/2+p
+ dx


)
||W ||1−p


∞ =: F (s, µ),


with 1/2 < p < 1. The second factor in the middle part of (3.5) con-
taining the norm of W in L∞ appears when we estimate the lowest
eigenvalue λ1 of T2 = 1


2
(−d2/dx2 − µ)2 −W .


Now consider the part of the strip Πb = {z : 0 < <z < b, =z > 0}
whose points satisfy the conditions =z > s where s > 0. Let us cover
this part by the sets Ωµ, µ ∈ R+. While doing this, we will avoid
the value µ = 0 and take µ as large as possible. It is obvious that
it impossible to avoid the value µ = µ0 satisfying (s + 1)2 − µ2


0 = 1,
and if we choose the covering in the optimal way then µ0 will be the
minimal value of µ. Thus, without loss of generality, we can assume
that µ ≥ √


s2 + 2s = µ0.
By the same argument as in the proof of Theorem 1.1, the set of


all points z ∈ Πb whose =z > s can be covered by not more than
m(b) = [Cb/


√
s] + 1 sets of the form Ωµ.


Since there is no zj ∈ Πb with the property =zj > ||W ||∞, we obtain


∑
zj∈Πb


(=zj − s)+ ≤
m(b)∑


l=1


∑
zj∈Ωµl


(=zj − s)+ ≤ C
b+ ||W ||1/2


∞√
s


F (s, µ0)


Observe now that
∑


zj∈Πb


|=zj|γ = γ(γ − 1)
∑


zj∈Πb


∫ ∞


0


(=zj − s)+s
γ−2ds,


which leads to
∑


zj∈Πb


|=zj|γ ≤ (b+ ||W ||1/2
∞ )C


∫ ∞


0


sγ−5/2F (s,
√
s)ds


The integral in the right hand side converges only if γ > 7/4 and the
previous relation means that


∑
zj∈Πb


|=zj|γ ≤ C||W ||1−p
∞ (b+ ||W ||1/2


∞ )
(∫


Rd


|W |γ−5/4+pdx
)


with 1/2 < p < 1. It remains to set r = γ+p−1 to complete the proof.
¤
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4. Proof of Theorem 1.3
The main tool of the proof is the linear fractional mapping that takes


the upper half-plane {z : =z > 0} into the compliment of the unit
disk {z : |z| > 1}. This transformation is given by the formula


z 7→ z + i+ 1


z − i+ 1
.


Insert the operator H = −∆ + V instead of z into this formula, i.e.
consider the operator


U = (H + I + i)(H + I − i)−1 = I + 2i(H + I − i)−1.


The number z /∈ R is an eigenvalue of the operator H if and only if the
point (z + i+ 1)/(z − i+ 1) is an eigenvalue of U . Let us now find the
operator U∗U . It is easy to see that


U∗ = I − 2i(H∗ + I + i)−1.


Therefore
U∗U = I+2i(H+I−i)−1−2i(H∗+I+i)−1+4(H∗+I+i)−1(H+I−i)−1.


Using the Hilbert identity, we obtain
U∗U = I + 2i(H∗ + I + i)−1(H∗ −H)(H + I − i)−1


or, put it differently,
U∗U = I + 4(H∗ + I + i)−1=V (H + I − i)−1.


Thus, we obtain that
U∗U − I ≤ 4Y ∗Y,


where Y =
√=V +(H+ I− i)−1. According to Corollary 2.2, the eigen-


values λj of the operator H satisfy the estimate
∑


j


(∣∣λj + 1 + i


λj + 1− i


∣∣2 − 1
)p


+
≤ tr (U∗U − I)p


+ ≤ 4ptr (Y ∗Y )p = 4p||Y ||2p
2p.


It follows from this inequality that


(4.1)
∑


j


( =λj


|λj + 1|2 + 1


)p


+
≤ ||Y ||2p


2p


Indeed, denote a = 2=λj/(|λj + 1|2 + 1) and suppose that =λj > 0.
Then ∣∣∣λj + 1 + i


λj + 1− i


∣∣∣
2


− 1 =
(1 + a


1− a


)
− 1 ≥ 2a.


We come to the conclusion that one needs to estimate the norm of the
operator


Y =
√
=V +(H + I − i)−1
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in the class S2p. Let us represent this operator in the form


Y =
√
=V +(−∆+ I)−1/2B, where B = (−∆+ I)1/2(H+ I− i)−1.


We will show that the operator B is bounded and its norm does not
exceed 1. In other words, we will show that


(4.2) ||(−∆ + I)1/2(H + I − i)−1f ||2 ≤ ||f ||2,
for all f ∈ L2.


Denote u = (H + I − i)−1f . It is obvious that
∫


Rd


(|∇u|2 + (1 + <V (x))|u|2) dx = <
∫


Rd


fū dx.


Due to the condition <V ≥ 0, we obtain from this relation that
∫


Rd


(|∇u|2 + |u|2) dx ≤ 1


2


∫


Rd


(|f |2 + |u|2) dx.


The latter inequality can be written in the form
∫


Rd


(2|∇u|2 + |u|2) dx ≤
∫


Rd


|f |2 dx.


Replacing 2 by a smaller number we will make the inequality weaker.
As a result we obtain the estimate


(4.3) ||(−∆ + I)1/2u||2 ≤ ||f ||2.
It remains to note that (4.3) is equivalent to (4.2).


Let us summarize the results. Since


Y =
√
=V +(H + I − i)−1 =


√
=V +(−∆ + I)−1/2B and ||B|| = 1,


we have the relation


(4.4) ||Y ||2p ≤ ||
√
=V +(−∆ + I)−1/2||2p.


On the other side, according to Theorem 2.2,


||
√
=V +(−∆ + I)−1/2||2p


2p ≤ (2π)−dC0


∫
=V p


+dx,


where C0 =
∫
Rd(ξ


2 + 1)−p dξ. Combining (4.4) with (4.1), we obtain
(1.1).
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5. Proof of Theorem 1.4
The arguments repeat the proof of Theorem 1.3 with the only ex-


ception that the estimate for the norm ||Y ||2p is carried out differently.
Recall that


(5.1)
∑


j


( =λj


|λj + 1|2 + 1


)p


+
≤ ||Y ||2p


2p


where Y =
√=V +(H + I − i)−1.


In order to estimate the s-numbers of the operator Y we represent
it in the form


Y =
√
=V +(−∆ + I − i)−1(I − V (H + I − i)−1)


In the previous proof we have shown that
(H + I − i)−1 = (−∆ + I)−1/2B and ||B|| ≤ 1.


Consequently,
||(H + I − i)−1|| ≤ 1,


and this means that
||Y ||2p ≤ ||


√
=V +(−∆ + I − i)−1||2p(1 + ||V ||∞).


An estimate for the norm of
√=V +(−∆ + I − i)−1 does not represent


any difficulty. According to Theorem 2.2,


||
√
=V +(−∆+I−i)−1||2p


2p ≤ (2π)−dC0


∫
=V p


+dx, C0 =


∫
dξ


((ξ2 + 1)2 + 1)p
,


for any p > d/4. Consequently,


(5.2) ||Y ||2p
2p ≤ (2π)−d(1 + ||V ||∞)2pC0


∫
=V p


+dx.


Combining (5.1) and (5.2), we obtain (1.3).


6. Proof of Theorem 1.5
Theorem 1.5 was proven before for d = p = 1 (see[1], [3]). Con-


sider first the case when p > max{1, d/2}. The reader can easily check
that λ /∈ R+ is an eigenvalue of the operator H if and only if 1 is an
eigenvalue of the operator


X = |V |1/2(−∆− λ)−1|V |−1/2V.


But then ||X|| ≥ 1. Note now that
||X|| ≤ ||X||p ≤ ||Q||22p


where
Q = |V |1/2| −∆− λ|−1/2.
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Therefore we can use Theorem 2.2 to obtain that


1 ≤ ||Q||2p
2p ≤ (2π)−d


∫


Rd


|V |pdx
∫


Rd


dξ


|ξ2 − λ|p .


It remains to estimate the integral


J =


∫


Rd


dξ


|ξ2 − λ|p , p > d/2.


Using homogeneity one can easily obtain that


J = |λ|d/2−p


∫


Rd


dξ


|ξ2 − eiφ|p ,


where φ = arg λ. Therefore the question about an estimate of J is
reduced to the problem of estimating the integral


∫
Rd |ξ2 − eiφ|−pdξ,


which behaves as∫


Rd


dξ


|(ξ2 − 1)2 + φ2|p/2
∼ C


∫


R


dt


(t2 + φ2)p/2
∼ Cφ1−p.


In other words, ∫


Rd


dξ


|ξ2 − eiφ|p ≤ C| sinφ|1−p.


Consequently,
J ≤ C|λ|d/2−p| sinφ|1−p = C|=λ|1−p|λ|d/2−1.


It remains to note that


1 ≤ (2π)−dJ


∫


Rd


|V |pdx.


The proof in the case p = d/2 > 1 is similar to the proof in the case
p > d/2 with the only exception that instead of Theorem 2.2 one needs
to use Theorem 2.1.


Indeed, let


a(ξ) =
1


|ξ2 − λ| and p = d/2 > 1.


Then, using homogeneity, one can easily obtain that


[a]pp = [a0]
p
p, where a0 =


1


|ξ2 − eiφ|
and φ = arg λ. Therefore the question about an estimate of [a]pp is
reduced to the problem of estimating the quantity [a0]


p
p which is not


bigger than


C1


∫


|ξ|<2


dξ


|(ξ2 − 1)2 + φ2|p/2
+ C2 ∼ C


∫


R


dt


(t2 + φ2)p/2
∼ Cφ1−p.
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In other words,


[a]pp = [a0]
p
p ≤ C| sinφ|1−p = C


∣∣=λ
λ


∣∣1−p
.


It remains to note that, if λ is an eigenvalue of H, then


1 ≤ C[a]pp


∫


Rd


|V |pdx p = d/2.


7. Individual eigenvalue estimates
Consider the operator H = −∆ + iV (x) with V ≥ 0. Assume for


simplicity that lim|x|→∞ V (x) = 0.
Our first result is devoted to the case d = 3. It shows, in particular,


that if the integral of V is small, then the real part of the square root of
the eigenvalue of H is large. That implies that the non-real eigenvalues
of −∆ + itV escape any compact subset of C, as t → 0, in the sense
that the compact subset will not contain non-real eigenvalues for small
values of t. It does not necessary imply that the eigenvalues tend to
infinity as t→ 0, because they might simply reach the positive real line
for some t > 0 (see Theorem 8.1 for that matter).
Theorem 7.1. Let d = 3 and z = k2 /∈ R+ be an eigenvalue of H.
Then


(7.1) <k
4π


∫
V (x) dx ≥ 1.


Proposition 7.1. A number z = k2 /∈ R+ is an eigenvalue of the
operator H if and only if the point 1 is the eigenvalue of the operator


X = −i
√
V (−∆− z)−1


√
V .


The proof of this proposition is left to the reader.


Proof of the theorem. Suppose that =z > 0. Note that the real part of
the operator X is positive. Consequently, the spectrum of this operator
lies in the right half plane. Therefore whenever z is the eigenvalue of
H the sum of the real parts of the eigenvalues ζj of X is greater than
or equal 1, i.e. ∑


j


<ζj ≥ 1.


On the other side,
∑


j


<ζj ≤ tr<X =


∫
τ(x, x) dx,


where τ(x, y) is the integral kernel of the operator <X.
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Since the kernel of the operator (−∆− z)−1 is


g(x, y) =
eik|x−y|


4π|x− y| ,


we obtain that the operator =(−∆ − z)−1 has a kernel g0(x, y) =


(2i)−1(g(x, y)− g(y, x)) whose value on the diagonal is


g0(x, x) =
k + k̄


8π
=
<k
4π


.


Therefore


tr<X =


∫
V (x)g0(x, x) dx =


<k
4π


∫
V (x) dx


Thus, (7.1) follows. ¤
Corollary 7.1. Let d = 3 and let V ∈ L1(R3) be a positive function.
Then non-real eigenvalues of −∆ + iV do not accumulate to zero.


The same arguments work in d = 1 and in d = 2. We begin with the
case d = 1


Theorem 7.2. Let d = 1. Let z = k2 /∈ R+ be an eigenvalue of H.
Then <k


2|k|2
∫
V (x) dx ≥ 1,


which means that k lies inside the circle of radius 4−1
∫
V (x) dx around


the point 4−1
∫
V (x) dx


Unlike the previous cases the eigenvalues in d = 2 do not appear at
all if the integral of V is small


Theorem 7.3. Let d = 2. Let z /∈ R+ be an eigenvalue of H. Then
1


2


(π
2


+ arctan(<z/=z)
) ∫


V (x) dx ≥ 1.


In particular, the spectrum of −∆ + iV is real if
π


2


∫
V (x) dx < 1.


Indeed,
tr<X =


∫
V (x) dx


∫


R2


=
[ 1


2π(ξ2 − z)


]
dξ.


The case d ≥ 4 is similar to the case d = 3. We illustrate it with the
help of the following
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Theorem 7.4. Let d ≥ 4 and let z /∈ R+ be an eigenvalue of H =
−∆ + iV with V ≥ 0. Then


(7.2) (2π)−d+1ωd


∣∣∣<z + 2||V ||∞
∣∣∣
(d−2)/2


∫
V (x) dx ≥ 2,


where ωd is the area of the unit sphere.


Proof. As before, we denote


X = −i
√
V (−∆− z)−1


√
V .


Suppose that z is an eigenvalue of the operator H. Then 1 is an eigen-
value of the operator X. It follows trivially from this that 1/2 is an
eigenvalue of the operator X − 1/2. Consequently,


tr (<X − 1/2)+ ≥ 1/2.


Indeed, for the eigenvalues λj of the operator X we have
∑


(<λj − 1/2)+ ≤ tr (<X − 1/2)+.


It remains to note that the eigenvalue sum in the left hand side is not
less than 1/2. Obviously,


(<X − 1/2)+ ≤
(
<X − V


2||V ||∞
)


+
,


since V
||V ||∞ ≤ 1.


On the other hand,
(
<X − V


2||V ||∞
)


+
≤
√
V


(
=(−∆− z)−1 − 1


2||V ||∞
)


+


√
V .


Consequently,


1/2 ≤ (2π)−d


∫
V (x) dx


∫


Rd


( =z
(ξ2 −<z)2 + (=z)2


− 1


2||V ||∞
)


+
dξ.


The integration in the last integral is done over the domain where


ξ2 ≤ <z +
√


(2||V || − =z)+=z ≤ <z + 2||V ||∞.
Thus, we obtain (7.2), since
(7.3)
ω−1


d


∫


Rd


( =z
(ξ2 −<z)2 + (=z)2


− 1


2||V ||∞
)


+
dξ ≤ 2−1π


∣∣∣<z+2||V ||∞
∣∣∣
(d−2)/2


.


¤
In all theorems formulated above, we work with the L1 norm of


the potential V . Actually, this restriction is excessive and it does not
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completely agree with Conjecture 1.1. It is better to work with integrals
of the form ∫


V d/2+γdx,


and this is exactly what we do in the following statement.
Theorem 7.5. Let d ≥ 3 and let V ≥ 0. Suppose that z /∈ R is an
eigenvalue of H = −∆ + iV . Then there are positive constants C1 and
C2 depending only on d and γ ≥ 0 such that


(7.4) |=z|γ ≤ (C1 + C2(
<z
=z )d/2−1)


∫
V d/2+γdx


Proof. Set, as before,
X = −i


√
V (−∆− z)−1


√
V .


If z is an eigenvalue of H, then 1 is an eigenvalue of X. Consequently,
one can find at least one eigenvalue of the operator <X that is not less
than 1. It means in particular that supremum
sup
s>0


s−(d/2+γ) card{j : sj > s, where sj are eigenvalues of <X}
is not less then 1. This supremum is related to the norm in the weak
Neumann-Schatten class Σd/2+γ and, due to Theorem ??, can be esti-
mated by the expression


(7.5)
∫
V d/2+γdx


∫


Rd


( =z
(ξ2 −<z)2 + =z2


)d/2+γ


dξ.


Indeed, <X is representable in the form <X = Q∗Q where


Q =
[ =z
(ξ2 −<z)2 + =z2


]1/2


Φ
√
V


(here [a] denotes the operator of multiplication by a). Consequently,
n(s,<X) = n(


√
s,Q) which leads to the fact that [<X]


d/2+γ
d/2+γ is less


than the expression (7.5) multiplied by a constant depending only on
d and γ.


It remains to estimate the integral∫


Rd


( =z
(ξ2 −<z)2 + =z2


)d/2+γ


dξ ≤


C


∫ ∞


−∞


( =z
s2 + =z2


)d/2+γ


sd/2−1ds+ C


∫ ∞


−∞


( =z
s2 + =z2


)d/2+γ


|<z|d/2−1ds


≤ (C1 + C2


∣∣∣<z=z
∣∣∣
d/2−1


)|=z|−γ.


The relation (7.4) follows. ¤
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Corollary 7.2. Let d ≥ 3 and let C1 be the constant in (7.4) written
for γ = 0. If C1


∫
V d/2dx < 1, then the eigenvalues of −∆ + iV are


situated in the conical sector {z : 0 ≤ arg z ≤ α}, which opens with
the angle α satisfying


(C1 + C2( cotα)d/2−1)


∫
V d/2dx = 1.


The proof of the next statement is exactly the same as the one of
Theorem 7.5.


Corollary 7.3. Let d = 2 and let V ≥ 0. Suppose that z /∈ R is
an eigenvalue of H = −∆ + iV . Then there is a positive constant C
depending only on γ > 0 such that


|=z|γ ≤ C


∫
V 1+γdx, γ > 0.


8. Additional remarks
In conclusion of this paper, we mention two rather obvious facts,


that are valid for an arbitrary complex potential V . For the sake of
simplicity, we restrict our study to the case d = 3. As before, H =
−∆ + V is the Schrödinger operator and ω3 is the area of the unit
sphere.


Theorem 8.1. Let d = 3. If V ∈ L∞∩L1 and ω3||V ||∞+2||V ||1 < 8π,
then the spectrum of the operator H is real. The same is true under the
condition that


sup
x


∫


R3


|V (x)|
|x− y|dy < 4π.


Theorem 8.2. Let d = 3 and let z = k2 /∈ R+ be an eigenvalue of the
operator H = −∆ + V , =k > 0. Then there is a positive constant C
depending only on γ > 0, such that


(=k)2γ ≤ C


∫


R3


|V |3/2+γdx.


Proof of both theorems. Suppose that z = k2 is an eigenvalue of the
operatorH. Then the norm of the operatorX = |V |1/2(−∆−z)−1|V |1/2


is not smaller then 1. It remains to estimate the norm of X in terms
of z and V . In order to do that we use the Schur estimate. It says that
the square of the norm of an integral operator with the kernel g(x, y)
does not exceed the product of the quantities


m1 = sup
x


∫
|g(x, y)| dy


ρ(x, y)
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and
m2 = sup


y


∫
|g(x, y)|ρ(x, y) dx


where ρ is a positive weight. Since the kernel of the operator X equals


|V (x)|1/2 eik|x−y|


4π|x− y| |V (y)|1/2,


applying the Schur estimate with the weight ρ =
√
V (x)/V (y), we


obtain that


||X|| ≤ 1


4π
sup


x


∫
e−=k|x−y|


|x− y| |V (y)| dy
The assertion of the first theorem follows from the trivial estimate


1 ≤ ||X|| ≤ 1


4π
sup


x


∫


R3


|V (x)|
|x− y|dy ≤


1


8π
(ω3||V ||∞ + 2||V ||1).


The assertion of the second theorem follows from the Hölder inequality


1 ≤ 1


4π


∫


R3


|V (x)|
|x− y|e


−=k|x−y|dy ≤ C0||V ||p
(∫


R3


e−q=k|y|


|y|q dy
)1/q


=


= C
||V ||p


(=k)2γ/p
, where p = 3/2 + γ and q = p/(p− 1). ¤


Remark. By the same means, one can show that
∣∣∣
√
z


=√z
∣∣∣
γ+1/2


|=√z|2γ ≤ C


∫


R
|V |1/2+γdx, γ ≥ 1/2,


for all eigenvalues z /∈ R+ of the one-dimensional Schrödinger operator
H = −d2/dx2 +V . The constant C in this inequality can be computed
explicitly:


C =
1


2


(2γ − 1


2γ + 1


)γ−1/2


.
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