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Abstract


Two results are presented: First, we solve the problem of persistence of dis-


sipation for reduction of kinetic models. Kinetic equations with thermodynamic


Lyapunov functions are studied. Uniqueness of thermodynamic projector is proven:


There exists only one projector which transforms the arbitrary vector �eld equipped


with the given Lyapunov function into a vector �eld with the same Lyapunov func-


tion for a given anzatz manifold which is not tangent to the Lyapunov function


levels. Moreover, from the requirement of persistence of the sign of dissipation


follows that the value of dissipation (the entropy production) persists too. The


explicit construction of this thermodynamic projector is described. In example we


apply this projector to derivation the equations of reduced kinetics for the Fokker-


Planck equation. This equation describes the polymer dynamics in ow. The new


class of closures is developed: The kinetic multipeak polyhedrons. Distributions


of this type are expected to appear in each kinetic model with multidimensional


instability as universally, as Gaussian distribution appears for stable systems. The


number of possible relatively stable states of polymer molecules grows as 2m, and


the number of macroscopic parameters is in order mn, where n is the dimension


of con�guration space, and m is the number of independent unstable directions in


this space. The elaborated class of closures and equations pretends to describe the


e�ects of \molecular individualism". This is the second result.
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Introduction


Reduction of description for dissipative kinetics assumes (explicitly or implicitly) the fol-


lowing picture: There exists a manifold of slow motions in the space of distributions. From


the initial conditions the system goes quickly in a small neighborhood of the manifold,


and after that moves slowly along it.


There are three basic problems in the model reduction:


1. How to construct the slow manifold;


2. How to project the initial equation onto the constructed slow manifold, i.e. how


to split motions into fast and slow;


3. How to improve the constructed manifold and the projector in order to make the


manifold more invariant and the motion along it slower.


The �rst problem is often named \the closure problem", and its solution is the closure


assumption; the second problem is \the projection problem". Sometimes these problems


are discussed and solved simultaneously (for example, for quasiequilibrium, or, what is


the same, for MaxEnt closure assumptions [1, 2, 3, 4, 5]). Sometimes the time required for


the solution of the projection problem after construction of anzatz may be rather long,


as in the known case of the Tamm{Mott-Smith approximation in the theory of shock


waves (see, for example, [6]). If one has constructed the closure assumption which is the


invariant manifold [6, 7, 8], then the projection problem disappears, because the vector


�eld is tangent to the invariant manifold.


Let us discuss the initial kinetic equation as the abstract ordinary di�erential equation,


d	


dt
= J(	); (1)


where 	 = 	(q) is the distribution function, q is the point in the con�guration (for the


Fokker-Planck equation) or phase (for the Liouville equation) space.


Let the closure assumption be given:


	 = 	(M jq); (2)


where M is the set of macroscopic variables, which are coordinates on the manifold (2).


The tangent space TM0
for the manifold (2) in the pointM0 is the image of the di�erential:


TM0
= im(DM(	(M jq))M0


: (3)


How to construct the dynamic equation for the variables M? This is the projection prob-


lem. The equivalent setting is: how to project J(	(M0jq)) onto TM0
? If dM=dt = F (M)


is the equation for M , then the equation on the manifold is d	(M jq)=dt = (DM	(M jq)) �
F (M):


There exist three common ways to construct the projector onto TM0
:


1. Moment parametrization;


2. Spectral projectors of Jacobians for equation (1);


3. Spectral projectors of \symmetric part" of Jacobians for this equation.
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The moment parametrization is the best way to \hide" the projector problem in a


natural way: Let the macroscopic variables be de�ned not only on the manifold 	(M jq),
but in the neighborhood of this manifold: M = m(	), with the identitym(	(M jq)) � M .


Then we can de�ne dM=dt in a natural way:


dM


dt
= (D	m(	(M jq)))J(	(M jq)): (4)


As it will be demonstrated below, this simple formula is appropriate only for the quasiequi-


librium (MaxEnt) approximation, because in other cases it leads to entropy decreasing


for some initial conditions and, hence, to a perpetuum mobile of the second kind (this


happens in reduced equations, of course, and not in reality).


The idea of slow-fast decomposition through spectral decomposition of Jacobian seems


very attractive (see, for example, the theory of the so-called intrinsic low-dimensional


manifold (ILDM) [9]): Let the spectrum ofD	J(	) can be separated in two parts: Re�sl <


A � B < Re�fst < 0. There are two invariant subspaces which correspond to slow (Esl)


and to fast (Efst) points of the spectrum. The suggested solution of the projection problem


is: The tangent space TM of the slow manifold should be not very di�erent from the slow


invariant subspace Esl, and the projection of J onto TM should be done parallel to the


fast invariant subspace Efst.


The eigenvectors and eigenprojectors of the non-selfadjoint operators may be very


unstable in calculations. So, it may be better to use the selfadjoint operator and it's


spectral decomposition.


Dynamics of distances depends not on the Jacobian, but on the symmetrized Jacobian:


d(�	;�	)


dt
= (�	; [D	J(	) + (D	J(	))


+]�	) + o(�	);


where ( ; ) is usual scalar product, �	 is di�erence between two solutions of equation (1),


	 = 	(t) is one of these solutions.


In the theory of inertial manifolds [10, 11, 12], for example, one usually uses the


following form of equation (1) with selfadjoint linear operator A: _	 + A	 = R(	); and


spectral decomposition of A rules the fast-slow splitting.


There are di�erent physically motivated ways to select the scalar product and create


the symmetrization [13, 14, 15]. But symmetrization does not provide termodinamicity


and the entropy for the projected equations can decrease.


The construction of the thermodynamic projector which always preserve the dissipa-


tion is simple and transparent. We shall describe it now, in the introduction, and it's


uniqueness will be proved in the next section. The proof of uniqueness will give us a


demonstration, that all other ways of projection are thermodynamically inconsistent, and


lead to entropy decrease, and, hence, to the perpetuum mobile of the second kind.


Let for the system (1) the entropy S(	) exist, and


dS


dt
= (D	S)J(	) � 0: (5)


We introduce the entropic scalar product h j i	:


ha j bi	 = �(a; (D2
	S)(b)); (6)
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where D2
	 is the second di�erential of the entropy.


The thermodynamic projector is de�ned for a given point 	 and a subspace T (the


tangent space to an anzatz manifold). Let us consider a subspace T0 � T which is annulled


by the di�erential S in the point 	: (D	S)T0 = 0. If T0 = T , then the thermodynamic


projector is the orthogonal projector on T with respect to the entropic scalar product hji	.
Suppose that T0 6= T . Let eg 2 T , eg ? T0 with respect to the entropic scalar product


h j i	, and (D	S)(eg) = 1. These conditions de�ne vector eg uniquely. The projector onto


T is de�ned by the formula


P (J) = P0(J) + eg(D	S)(J); (7)


where P0 is the orthogonal projector onto T0 with respect to the entropic scalar product


h j i	.
For example, if T a �nite-dimensional space, then the projector (7) is constructed in


the following way. Let e1; ::; en be a basis in T , and for de�niteness, (D	S)(e1) 6= 0.


1) Let us construct a system of vectors


bi = ei+1 � �ie1; (i = 1; ::; n� 1); (8)


where �i = (D	S)(ei+1)=(D	S)(e1), and hence (D	S)(bi) = 0. Thus, fbign�11 is a basis


in T0.


2) Let us orthogonalize fbign�11 with respect to the entropic scalar product h j i	. We get


an orthonormal with respect to h j i	 basis fgign�11 in T0.


3) We �nd eg 2 T from the conditions:


heg j gii	 = 0; (i = 1; ::; n� 1); (D	S)(eg) = 1: (9)


and, �nally we get


P (J) =


n�1X
i=1


gihgi j Ji	 + eg(D	S)(J) (10)


If (D	S)(T ) = 0, then the projector P is simply the orthogonal projector with respect


to the h j i	 scalar product. This is possible if 	 is the global maximum of entropy point


(equilibrium). Then


P (J) =


nX
i=1


gihgijJi	; hgijgji	 = Æij: (11)


The entropy production for projected vector �eld (10) is the same, as for the initial


vector �eld (1):


(D	S)(P (J)) = (D	S)(eg)(D	S)(J): (12)


The signi�cance of the case (D	S)(T ) = 0 may be not clear at the �rst glance, because


such a state 	 should be the equilibrium point with J(	) = 0. Nevertheless, this case is


important as a limit of nonequilibrium 	, and for discussion of persistence of the Onsager


relations1 as well, as for the proof of uniqueness the thermodynamic projector.


1The preservation of the Onsager reciprocity relations for projected equations follows from the re-


quirement of persistence of the sign of dissipation. This seems surprising, because these relations do not


follow from the entropy grows. It should be stressed, that only the conditional statement can be proved:


if for the initial system hold the Onsager reciprocity relations, then these relations hold for the projected


system.
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In this paper we do not discuss the third main problem of model reduction: How to


improve the constructed manifold and the projector in order to make the manifold more


invariant and the motion along it more slow. This discussion can be found in di�erent


works [6, 7, 8, 10, 11, 15].


The discovery of the molecular individualism for dilute polymers in the ow [16] was


the challenge to theory from the very beginning. \Our data should serve as a guide in


developing improved microscopic theories for polymer dynamics"... was the concluding


sentence of the paper [16]. P. de Gennes invented the term \molecular individualism" [17].


He stressed that in this case the usual averaging procedures are not applicable. At the


highest strain rates distinct conformation shapes with di�erent dynamics were observed


[16]. Further works for shear ow demonstrated not only shape di�erences, but di�erent


large temporal uctuations [18].


Equation for the molecules in a ow are known. These are the Fokker-Planck equations


with external force. The theory of the molecular individualism is hidden inside these


equations. Following the logic of model reduction we should solve two problems: to


construct the slow manifold, and to project the equation on this manifold. The second


problem is solved: the thermodynamic projector is necessary for this projection. Why


should we use this projector also for driven systems? These systems can be formally


written as
d	


dt
= J(	) + Jex; (13)


where Jex is the external �eld (driven force).


The entropy for system (13) can decrease, but the thermodynamic processes modeled


by the term J(	) should always produce the entropy (both in the initial and in the


projected systems). This is the reason to use the thermodynamic projector also for open


systems.


How to solve the �rst problem? We can �nd a hint in the paper [19]. The Gaussian


distributions form the invariant manifold for the FENE-P model of polymer dynamics,


but, as it was discovered in [19], this manifold can become unstable in the presence of a


ow. We propose to model this instability as dissociation of the Gaussian peak into two


peaks. This dissociation describes appearance of an unstable direction in the con�guration


space.


In the classical FENE-P model of polymer dynamics a polymer molecule is represented


by one coordinate: the stretching of molecule (the connector vector between the beads).


There exists a simple mean �eld generalized models for multidimensional con�guration


spaces of molecules. In these models dynamics of distribution functions is described by


the Fokker-Planck equation in a quadratic potential well. The matrix of coeÆcients of this


quadratic potential depends on the matrix of the second order moments of the distribution


function. The Gaussian distributions form the invariant manifold for these models, and


the �rst dissociation of the Gaussian peak after appearance of the unstable direction in


the con�guration space has the same nature and description, as for the one-dimensional


models of molecules considered below.


At the highest strain there can appear new unstable directions, and corresponding


dissociations of Gaussian peaks form a cascade of dissociation. For m unstable directions


we get the Gaussian parallelepiped: The distribution function is represented as a sum of


2m Gaussian peaks located in the vertixes of parallelepiped:
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i=1


"i&i


!!
;(14)


where n is dimension of con�guration space, 2&i is the vector of the ith edge of the


parallelepiped, � is the one peak covariance matrix (in this model � is the same for all


peaks). The macroscopic variables for this model are:


1. The covariance matrix � for one peak;


2. The set of vectors &i (or the parallelepiped edges).


The family of distributions (14) can be improved to include the proper equilibrium


(this is important condition: the equilibrium should belong to the anzatz manifold). There


may be di�erent further re�nements, some of them are discussed below.


1 Uniqueness of thermodynamic projector


In this section, the uniqueness theorem for thermodynamic projector will be proved.


1.1 Projection of linear vector �eld


Let E be a real Hilbert space with the scalar product h j i, Q be a set of linear bounded


operators in E with negatively de�nite quadratic form hAx j xi � 0 for every A 2 Q,


T  E be a nontrivial (T 6= f0g) closed subspace. For every projector P : E ! T


(P 2 = P ) and linear operator A : E ! E we de�ne the projected operator P (A) : T ! T


in such a way:


P (A)x = PAx � PAPx for x 2 T: (15)


The space T is the Hilbert space with the scalar product h j i. Let QT be a set of linear


bounded operators in T with negatively de�ne quadratic form hAx j xi � 0.


Proposition 1. The inclusion P (Q) � QT for a projector P : E ! T holds if and


only if P is the orthogonal projector with respect to the scalar product h j i.
Proof. If P is orthogonal (and, hence, selfadjoint) and hAx j xi � 0, then


hPAPx j xi = hAPx j Pxi � 0:


If P is not orthogonal, then Px 6= 0 for some vector x 2 T? in orthogonal complement


of T . Let us consider the negatively de�ned selfadjoint operator


Ax = � j Px� axihPx� ax j


(Axy = �(Px� ax)hPx� ax j yi): The projection of Ax on T is:


P (Ax) = (a� 1) j PxihPx j :


This operator is not negatively de�nite for a > 1. �


Immediately from this proof follows the Corollary 1.
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Corollary 1. Let Qsym � Q be a subset of selfadjoint operators in E. The inclusion


P (Qsym) � QT for a projector P : E ! T holds if and only if P is the orthogonal projector


with respect to the scalar product h j i. �
Corollary 2. Let Q


sym
T


� QT be a subset of selfadjoint operators in T . If P (Q) � QT


for a projector P : E ! T , then P (Qsym) � Q
sym
T


.


It follows from the Proposition 1 and the obvious remark: If operators A and P are


selfadjoint, then operator PAP is selfadjoint too. �


The Proposition 1 means that a projector which transforms every linear vector �eld Ax


with Lyapunov function hx j xi into projected vector �eld PAPx with the same Lyapunov
function is orthogonal with respect to the scalar product h j i.


According to the Corollary 1, the conditions of the Proposition 1 can be made weaker:


A projector which transforms every selfadjoint linear vector �eld Ax with Lyapunov func-


tion hx j xi into projected vector �eld PAPx with the same Lyapunov function is orthog-


onal with respect to the scalar product h j i. In physical applications it means, that we can
deal with requirement of dissipation persistence for vector �eld with Onsager reciprocity


relations. The consequence of such a requirement will be the same, as for the class of all


continuous linear vector �eld: The projector should be orthogonal.


The Corollary 2 is a statement about persistence of the reciprocity relations.


1.2 The uniqueness theorem


In this subsection we will discuss �nite-dimensional systems. There are technical details


which make the theory of nonlinear in�nite-dimensional case too cumbersome: the Hilbert


space equipped with entropic scalar product h j i	 (12) for di�erent 	 consists of di�erent


functions. Of course, there exists a common dense subspace, and geometrical sense re-


mains the same, as for the �nite-dimensional space, but we prefer to defer the discussion


of all these details till a special mathematical publication.


Let E be n-dimensional real vector space, U � E be a domain in E, and a m-


dimensional space of parameters L be de�ned, m < n, and let W be a domain in L. We


consider di�erentiable maps, F : W ! U , such that, for every y 2 W , the di�erential


of F , DyF : L ! E, is an isomorphism of L on a subspace of E. That is, F are the


manifolds, immersed in the phase space of the dynamic system (1), and parametrized by


parameter set W .


Let the twice di�erentiable function S on U be given (the entropy). We assume that


S is strictly concave in the second approximation: The quadratic form de�ned by second


di�erential of the entropy D2
	S(x; x) is strictly negative de�nite in E for every 	 2 U .


We will use the entropic scalar product (6). Let S have the interior point of maximum in


U : 	eq 2 intU:


The function S is Lyapunov function for a vector �eld J in U , if (D	S)(J(	)) � 0 for


every 	 2 U .


First of all, we shall study vector �elds with Lyapunov function S in the neighborhood


of 	eq. Let 0 2 intW; F : W ! U be an immersion, and F (0) = 	eq: Let us de�ne


Ty = imDyF (y) for each y 2 W: This Ty is the tangent space to F (W ) in the point y.


Suppose that the mapping F is suÆciently smooth, and F (W ) is not tangent to entropy


levels:


Ty * D	Sj	=F (y)
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for every y 6= 0. The thermodynamic projector for a given F is a projector-valued function


y 7! Py; where Py : E ! Ty is a projector. The thermodynamic conditions reads: For


every smooth vector �eld J(	) in U with Lyapunov function S the projected vector �eld


Py(J(F (y))) on F (W ) has the same Lyapunov function S(F (y)).


Proposition 1 and Corollaries 1, 2 make it possible to prove uniqueness of the ther-


modynamic projector for the weakened thermodynamic conditions too: For every smooth


vector �eld J(	) in U with Lyapunov function S and selfadjoint Jacobian operator for


every equilibrium point (zero of J(	)) the projected vector �eld Py(J(F (y))) on F (W )


has the same Lyapunov function S(F (y)). We shall not discuss it separately.


Proposition 2. Let the thermodynamic projector Py be a smooth function of y. Then


P0 = P?0 and Py = P?
y
+O(y); (16)


where P?
y


is orthogonal projector onto Ty with respect to the entropic scalar product hjiF (y).
Proof. A smooth vector �eld in the neighborhood of F (0) = 	eq can be presented as


A(	�	eq)+o(k	�	eqk), where A is a linear operator. If S is Lyapunov function for this


vector �eld, then the quadratic form hAx j xi	eq is negatively de�nite. Py = P0 + O(y),


because Py is a continuous function. Hence, for P0 we have the problem solved by the


Proposition 1, and P0 = P?0 . �


Theorem. Let the thermodynamic projector Py be a smooth function of y. Then


Py = P0y + egD	Sj	=F (y); (17)


where notations of formula (7) are used: T0y is the kernel of linear functional D	Sj	=F (y)
in Ty, P0y : T0y ! E is the orthogonal projector with respect to the entropic scalar product


h j iF (y) (12). Vector eg 2 T is proportional to the Riesz representation gy of linear


functional D	Sj	=F (y) in Ty with respect to the entropic scalar product:


hgy j xiF (y) = (D	Sj	=F (y))(x)
for every x 2 Ty, eg = gy=hgy j gyiF (y).


Proof. Let y 6= 0. Let us consider auxiliary class of vector �elds J on U with


additional linear balance (D	S)	=F (y))(J) = 0. If such a vector �eld has Lyapunov


function S, then 	 = F (y) is its equilibrium point: J(F (y)) = 0. The class of vector


�elds with this additional linear balance and Lyapunov function S is suÆciently rich and


we can use the Propositions 1, 2 for dynamics on the auxiliary phase space


fx 2 U j(D	Sj	=F (y))(x� F (y)) = 0g:
Hence, the restriction of Py on the hyperplane kerD	Sj	=F (y) is P0y. Formula (17) gives


the unique continuation of this projector on the whole E. �


1.3 Thermodynamic projector, quasiequilibrium, and entropy


maximum


The thermodynamic projector projects any vector �eld which satis�es the second law


of thermodynamics into the vector �eld which satis�es the second law too. Another


projectors violate the second law. But what does it mean? Each projector P	 onto


tangent space to an anzatz manifold in a point 	 induces the fast-slow motion splitting:
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Fast motion is the motion parallel to kerP	 (on the aÆne subspace 	 + kerP	 in the


neighborhood of 	), slow motion is the motion on the slow manifold and in the �rst order


it is parallel to the tangent space T	 in the point 	 (in the �rst order this slow manifold


is the aÆne subspace 	+ imP	, T	 = imP	), and velocity of the slow motion in point 	


belongs to image P	.


If P	 is the thermodynamic projector, then 	 is the point of entropy maximum on


the aÆne subspace of fast motion 	 + kerP	. It gives the solution to the problem


S(x)! max; x 2 	+ kerP	: (18)


This is the most important property of thermodynamic projector [6]. Let us call it for


nonequilibrium points 	 the property A:


A: kerP	 � kerD	S: (19)


If the projector P	 with the property A can be continued to the equilibrium point,


	eq, as a smooth function of 	, then in this point kerP	 ? imP	. If this is valid for all


systems (including systems with additional linear balances), then the following property


B holds:


B: (kerP	


\
kerD	S) ? (imP	


\
kerD	S): (20)


Of course, orthogonality in formulae (19,20) is considered with respect to the entropic


scalar product in point 	.


The property A means that the value of entropy production persists for all nonequi-


librium points. The sense of property B is: each point of the slow manifold can be made


an equilibrium point (after the deformation of the system which leads to appearance on


additional balance). And for equilibrium points the orthogonality condition (20) follows


from the property A:


If P	 does not have the property A, then 	 is not the point of entropy maximum on


the aÆne subspace of fast motion 	+kerP	, so either the fast motion along this subspace


does not leads to 	 (and, hence, the point 	 does not belong to slow manifold), or this


motion violates the second law, and the entropy decreases. This is the violation of the


second law of thermodynamics during the fast motion. If P	 does not have the property


A, then such a violation is expected for almost every system.


On the other hand, if P	 is not the thermodynamic projector, then there exists a ther-


modynamic vector �eld J , with non-thermodynamic projection: S is Lyapunov function


for J (it increases), and is not Lyapunov function for P	(J) (it decreases in the neigh-


borhood of 	). The di�erence between violation of the second law of thermodynamics in


fast and slow motions for a projector without the property A is: for the fast motion this


violation typically exists, for the slow (projected) motion there exist some thermodynamic


systems with such a violation. On the other hand, the violation in slow motion is more


important for applications, if we use the slow dynamics as an answer (and assume that


the fast dynamics is relaxed).


If P	 does not have the property B, then there exist systems with violation of the


second law of thermodynamics in fast and slow motions. Here we can not claim that the


second law violates for almost every system, but such systems exist.


One particular case of thermodynamic projector is known during several decades. It


is the quasiequilibrium projector on the tangent space of the quasiequilibrium (MaxEnt)


manifold.
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Let a set of macroscopic (slow) variables be given: M = m(	). The vector of macro-


scopic variables M is a continuous linear function of microscopic variables 	. Let the


anzatz manifold be the manifold of conditional entropy maximum:


S(	)! max; m(	) = M: (21)


The solution of the problem (21) 	
qe
M
parametrized by values of the macroscopic variables


M is the quasiequilibrium manifold.


The projector on the tangent space to the quasiequilibrium manifold is:


�
qe
M
= (DM	


qe
M
)
M
m =


�
D2


	S
��1
	
qe
M


mT


�
m
�
D2


	S
��1
	
qe
M


mT


��1
m: (22)


This formula was essentially obtained by Robertson [20].


First of all, the thermodynamic projector (22) for the quasiequilibrium manifold (21)


is the orthogonal projector with respect to the entropic scalar product (6). In this case


both terms in the thermodynamic projector (7) are orthogonal projectors with respect to


the entropic scalar product (6). The �rst term, P0, is orthogonal projector by construc-


tion. For the second term, eg(D	S), it means that the Riesz representation of the linear


functional D	S in the whole space E with respect to the entropic scalar product belongs


to the tangent space of the quasiequilibrium manifold. This Riesz representation is the


gradient of S with respect to h j i	. The following Proposition gives simple and important
condition of orthogonality of the thermodynamic projector (7). Let M be an anzatz


manifold, and let V be some quasiequilibrium manifold, 	 2M T
V , T	 be the tangent


space to the anzatz manifoldM in the point 	. Suppose that there exists a neighborhood


of 	 where V �M . We will use the notation grad	S for the Riesz representation of the


linear functional D	S in the scalar product h j i	: hgrad	Sjfi	 � (D	S)(f) for f 2 E.


Proposition 3. Under given assumptions, grad	S 2 T	, and the thermodynamic


projector P	 is the orthogonal projector onto T	 with respect to the entropic scalar product


(6). �


So, if a point 	 on the anzatz manifoldM belongs to some quasiequilibrium subman-


ifold V �M , then the thermodynamic projector in this point is simply the orthogonal


projector with respect to the entropic scalar product (6).


Proposition 3 is useful in the following situation. Let the quasiequilibrium approxi-


mation be more or less satisfactory, but the \relevant degrees of freedom" depend on the


current state of the system. It means that for some changes of the state we should change


the list of relevant macroscopic variables (moments of distribution function for genera-


tion the quasiequilibrium). Sometimes it can be described as presence of hidden degrees


of freedom, which are not moments. In these cases the manifold of reduced description


should be extended. We have a family of systems of moments M� = m�(	), and a family


of corresponding quasiequilibrium manifoldsM�: The manifoldM� consist of solutions


of optimization problem S(	)! max, m�(	) = M for given � and all admissible values


for M . To create a manifold of reduced description it is possible to join all the moments


M� in one family, and construct the corresponding quasiequilibrium manifold. Points on


this manifold are parametrized by the family of moments values fM�g for all possible �.
It leads to a huge increase of the quasiequilibrium manifold. Another way to extension


of the quasiequlibrium manifold is a union of all the manifolds M� for all �. In accor-


dance with the Proposition 3, the thermodynamic projector for this union is simply the


orthogonal projector with respect to the entropic scalar product. This kind of manifolds
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gives a closest generalization of the quasiequilibrium manifolds. An example of such a


construction will be described below.


Quasiequilibrium approximation became very popular after works of Jaynes [1]2.


Thermodynamic projector gives the presentation of almost arbitrary anzatz as the


quasiequilibrium manifold. This property opens the natural �eld for applications of


thermodynamic projector: construction of Galerkin approximations with thermodynamic


properties. Of course, there is a \law of the diÆculty conservation": for the quasiequilib-


rium with the moment parameterization the slow manifold is usually not explicitly given,


and it can be diÆcult to calculate it. Thermodynamic projector completely eliminates


this diÆculty. On the other side, on the quasiequilibrium manifold with the moment


parameterization (if it is found) it is easy to �nd the dynamics: simply write _M = m(J).


The building of the thermodynamic projector may require some e�orts. Finally, for each


of the distributions 	 it is easy to �nd its projection on the classical quasiequilibrium


manifold 	 ! 	
qe


M(	)
: it requires just calculation of the moments M(	). The analogue


projection for the general thermodynamic projector is not so easy: 	! f with the con-


dition Pf(	� f) = 0. This equation de�nes the projection of some neighborhood of the


manifold 
 on 
, but the solution of this equation is rather diÆcult. Fortunately, we need


to build such operators only to analyze the fast processes of the initial relaxation layer,


and it is not necessary to investigate the slow dynamics.


Is it necessary to use the thermodynamic projector everywhere? The persistence of


dissipation is necessary, because the violation of the second law may lead to strange non-


physical e�ects. If one creates a very accurate method for solution of initial equation (1),


then it may be possible to expect that the persistence of dissipation will hold without


additional e�orts. But this situation yet have not appeared. All methods of model


reduction need a special tool to control the persistence of dissipation.


In order to summarize, let us give three reasons to use the thermodynamic projector:


1. It guarantees the persistence of dissipation: all the thermodynamic processes which


should product the entropy conserve this property after projecting, moreover, not


only the sign of dissipation conserves, but the value of entropy production and the


reciprocity relations too;


2. The coeÆcients (and, more generally speaking, the right hand part) of kinetic equa-


tions are known signi�cantly worse then the thermodynamic functionals, so, the


2From time to time it is discussed in the literature, who was the �rst to introduce the quasiequilibrium


approximations, and how to interpret them. At least a part of the discussion is due to a di�erent role


the quasiequilibrium plays in the entropy{conserving and the dissipative dynamics. The very �rst use of


the entropy maximization dates back to the classical work of G. W. Gibbs [21], but it was �rst claimed


for a principle by E. T. Jaynes [1]. Probably the �rst explicit and systematic use of quasiequilibria to


derive dissipation from entropy{conserving systems is due to the works of D. N. Zubarev. Recent detailed


exposition is given in [2]. For dissipative systems, the use of the quasiequilibrium to reduce description


can be traced to the works of H. Grad on the Boltzmann equation [22]. The viewpoint of the present


authors was inuenced by the papers by L. I. Rozonoer and co-workers, in particular, [3, 4, 23]. A


detailed exposition of the quasiequilibrium approximation for Markov chains is given in the book [24]


(Chapter 3, Quasiequilibrium and entropy maximum, pp. 92-122), and for the BBGKY hierarchy in the


paper [5]. We have applied maximum entropy principle to the description the universal dependence the 3-


particle distribution function F3 on the 2-particle distribution function F2 in classical systems with binary


interactions [25]. A general discussion of the maximum entropy principle with applications to dissipative


kinetics is given in the review [26]. The methods for corrections the quasiequilibrium approximations are


developed in [6, 7, 27, 28]
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universality of the thermodynamic projector (it depends only on thermodynamic


data) makes the thermodynamic properties of projected system as reliable, as for


the initial system;


3. It is easy (much more easy than spectral projector, for example).


2 The art of anzatz: Multi-peak polyhedrons in ki-


netic systems with instabilities


2.1 How to evaluate the anzatz?


Thermodynamic projector transforms almost arbitrary ansatz into thermodynamically


consistent model. So, the simplest criteria of quality of an anzatz (entropy grows, reci-


procity relations, etc.) are satis�ed by the construction of the projector. How to evaluate


the anzatz now?


First of all, we can estimate the defect of invariance � = J(	)�P	(J(	)): If � is not


small (in comparison with the typical value of J), then the anzatz should be improved (for


details see, for example, [29, 30]). It is possible to use � for error estimation and correction


of an anzatz after solution of projected equations too (it is so-called post-processing


[31, 15]). Let 	0(t); (t 2 [0; T ]) be the solution of projected equations d	(t)=dt =


P	(J(	)); and �(t) = J(	0(t))� P	0(t)(J(	
0(t))): Then the following formula


	1(t) = 	0(t) +


Z
t


0


�(�)d� (23)


gives the Picard iteration for solution of the initial kinetic equation d	(t)=dt = J(	); with


initial approximation 	0(t): The integral in the right hand side of equation (23) gives the


estimation of the deviation the anzatz solution 	0(t) from the true solution as well, as


the correction for this anzatz solution. For a better estimation we can take into account


not only �(t), but the linear part of the vector �eld J(	) near 	0(t), and use di�erent


approximations of this linear part [15]. The following representation gives us one of the


simplest approximations: 	1(t) = 	0(t) + Æ	(t);


d(Æ	(t))


dt
= �(t) +


h�(t)j(DJ)	0(t)�(t)i	0(t)


h�(t)j�(t)i	0(t)


Æ	(t): (24)


where �(t) = J(	0(t)) � P	0(t)(J(	
0(t))); (DJ)	0(t) is the di�erential of J(	(t)) in the


point 	0(t), h j i	0(t) is the entropic scalar product (6) in the point 	0(t).


The solution of equation (24) is


Æ	(t) =


Z
t


0


exp


�Z
t


�


k(�)d�


�
�(�)d�; (25)


where


k(t) =
h�(t)j(DJ)	0(t)�(t)i	0(t)


h�(t)j�(t)i	0(t)


:


The right hand side of equation (25) improves the simplest Picard iteration (23) and gives


both the estimation of the error of the anzatz, and the correction for the solution 	0(t).
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The projection of � on the slow motion anzatz is zero, hence, for post-processing


analysis of the slow motion, the estimation (25) should be supplemented by one more


Picard iteration:


Æ	sl(t) = P	0(t)Æ	(t) +


Z
t


0


P	0(�)((DJ)	0(�))Æ	(�)d�; (26)


where Æ	(t) is calculated by formula (25).


The thermodynamic projector guarantees the thermodynamic consistence of anzatz,


and post-processing gives both the estimations of the error and correction for the solution.


So, the main requirement to an anzatz now is: to capture the essence of the phenomenon.


This is the art of anzatz. Is it possible to formalize this art? In the next subsection we


discuss two special anzatz which are known for several decades and mysteriously are at


the same time simplest and reliable nonperturbative approximations in the domains of


their application. The requested formalization seems to be possible, at least, partially.


2.2 Two-peak approximations


2.2.1 Tamm{Mott-Smith approximation for kinetics of shock waves


Shock waves in gas ows are important from practical, as well, as from theoretical points of


view. Some integral parameters of the shock wave front can be obtained by gas dynamics


equations with additional thermodynamic relations, for weak shocks the hydrodynamic


approach can give the shock front structure too [32]. For strong shocks it is necessary


to use the kinetic representation, for rare�ed gases the Boltzmann kinetic equation gives


the framework for studying the structure of strong shocks [33]. This equation describes


the dynamics of the one-particle distribution function f(v;x); where v is the vector of


particle velocity, and x is the particle position in space. One of the common ways to use


the Boltzmann equation in physics away from exact solutions and perturbation expansions


consists of three steps:


1. Construction of a speci�c anzatz for the distribution function for a given physical


problem;


2. Projection of the Boltzmann equation on the anzatz;


3. Estimation and correction of the anzatz (optional).


The �rst and, at the same time, the most successful anzatz for the distribution function


in the shock layer was invented in the middle of the XX century. It is the bimodal


Tamm{Mott-Smith approximation (see, for example, the book [33]):


f(v;x) = fTMS(v; z) = a�(z)f�(v) + a+(z)f+(v); (27)


where z is the space coordinate in the direction of the shock wave motion, f�(v) are the


downstream and the upstream Maxwellian distributions, respectively.


Direct molecular dynamics simulation for the Lennard-Jones gas shows good quanti-


tative agreement of the Tamm{Mott-Smith anzatz (27) with the simulated velocity dis-


tribution functions in the shock fronts for a wide range of Mach number (between 1 and


8.19) [35]. For di�erent points in the shock front the bimodal approximation (27) of the
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simulated velocity distribution function has appropriate accuracy, but the question about


approximation of the a�(z) remained open in the paper [35], because the authors of this


paper had \no way to decide which of the equations proposed in the literature yields


better results".


The thermodynamic projector gives the unique thermodynamically consistent equation


for the Tamm{Mott-Smith approximation (27) [6]. These equations have a simple form


for the variables:


n(z) =


Z
fTMS(v; z)d


3v; s(z) = �kB
Z


fTMS(v; z) ln fTMS(v; z)d
3v:


The particles density n(z) is linear function of a�(z). The entropy density s is a more


complicated function of a�, but there are simple expansions both for weak and for strong


shocks [6, 34].


The equations for n(z; t); s(z; t) in the Tamm{Mott-Smith approximation have the


form:
@s


@t
+
@js


@z
= �;


@n


@t
+
@jn


@z
= 0; (28)


where


js(z) = �kB
Z


vzfTMS(v; z) ln fTMS(v; z)d
3v; jn(z) =


Z
vzfTMS(v; z)d


3v;


and � is the Boltzmann density of entropy production for the TMS distribution (27):


� = �kB
Z


J(fTMS)(v; z) ln fTMS(v; z)d
3v;


where J(f) is the Boltzmann collision integral.


The stationary version of equations (28) was �rst introduced by M. Lampis [34]. in the


ad hoc manner. Direct numerical simulation demonstrated that all other known equations


for the Tamm{Mott-Smith anzatz violate the second law [36].


2.2.2 Langer{Baron{Miller approximation for spinodal decomposition


The spinodal decomposition is the initial stage of a phase separation in thermodynam-


ically unstable solid solution. It requires no activation energy (unstable does not mean


metastable). The order parameter is the composition variable (concentration c of one of


components, for example). Hence, the rate of the spinodal decomposition is limited by


di�usion processes.


The process of spinodal decomposition was described quantitatively in the paper [37].


This model consists of two coupled equations: for the single-point distribution function of


uctuations, and for the pair correlation function. The uctuation u(r) = c(r)� c0 is de-


viation of the concentration c from the average concentration c0. The time evolution of the


single-point distribution density of uctuation, �1(u) is described by the one-dimensional


Fokker-Planck equation:


@�1


@t
=M


@


@u


�
�1
@F (u)


@u
+ kBTb


@�1


@u


�
; (29)
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where b is a constant, F (u) is a mean-�eld free energy which depends on the value of


u, on the whole function �1 (because F (u) includes some averages in the mean �eld


approximation), and on the two-point correlation function (because it depends on average


square of ru(r)). The assumption
�2[u(r); u(r0)] �= �1[u(r)]�1[u(r0)]f1 + (jr � r0j)u(r)u(r0)g (30)


allows to truncate the in�nite chain of equations for all correlation functions, and to write


the equation for the two-point correlation function. Details are presented in the paper


[37].


The mean-�eld free energy function F (u) is non-stationary and may be non-convex.


Thus, the one-peak representations for �1(u) are far from a physical sense, but it is possible


to try the two-peak anzatz:


�1(u) = a1G�(u� &1) + a2G�(u+ &2); (31)


where a1 = &2=(&1+ &2), a2 = &1=(&1+ &2) (because obvious normalization conditions), and


G�(u) is the Gaussian distribution: G�(u) =
1


�
p
2�
exp


�
� u


2


2�2


�
:


The systematic use of this two-peak anzatz (31) allowed to get the satisfactory quanti-


tative description for some features of spinodal decomposition. The authors of the paper


[37] mentioned that the present computational scheme does appear to be accurate enough


to justify its use in the study of realistic metallurgical systems. Instead of thermody-


namic projector which was not known in 1975, they used the projection onto the �rst


three non-trivial moments (hu2i; hu3i; hu4i).


2.3 Multi-peak anzatz and mean-�eld theory of molecular indi-


vidualism


2.3.1 Two-peak approximation for polymer stretching in ow, and explosion


of the Gaussian manifold


We shall consider the simplest case of dilute polymer solutions represented by dumbbell


models. The dumbbell model reects the two features of real{world macromolecules to


be orientable and stretchable by a owing solvent [39].


Let us consider the simplest one-dimensional kinetic equation for the con�guration


distribution function 	(q; t), where q is the reduced vector connecting the beads of the


dumbbell. This equation is slightly di�erent from the usual Fokker-Planck equation. It


is nonlinear, because of the dependence of potential energy U on the moment M2[	] =R
q2	(q)dq. This dependence allows us to get the exact quasiequilibrium equations on


M2, but this equations are not solving the problem: this quasiequilibrium manifold may


become unstable when the ow is present [19]. Here is this model:


@t	 = �@qf�(t)q	g+ 1


2
@2
q
	: (32)


Here


�(t) = �(t)� 1


2
f(M2(t)); (33)


�(t) is the given time-independent velocity gradient, t is the reduced time, and the function


�fq is the reduced spring force. Function f may depend on the second moment of the
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distribution function M2 =
R
q2	(q; t)dq. In particular, the case f � 1 corresponds to


the linear Hookean spring, while f = [1 �M2(t)=b]
�1 corresponds to the self-consistent


�nite extension nonlinear elastic spring (the FENE-P model, �rst introduced in [40]).


The second moment M2 occurs in the FENE-P force f as the result of the pre-averaging


approximation to the original FENE model (with nonlinear spring force f = [1�q2=b]�1).


The parameter b changes the characteristics of the force law from Hookean at small


extensions to a con�ning force for q2 ! b. Parameter b is roughly equal to the number of


monomer units represented by the dumbell and should therefore be a large number. In


the limit b ! 1, the Hookean spring is recovered. Recently, it has been demonstrated


that FENE-P model appears as �rst approximation within a systematic self-con�dent


expansion of nonlinear forces [29].


Equation (32) describes an ensemble of non-interacting dumbells subject to a pseudo-


elongational ow with �xed kinematics. As is well known, the Gaussian distribution


function,


	G(M2) =
1p


2�M2


exp


�
� q2


2M2


�
; (34)


solves equation (32) provided the second moment M2 satis�es


dM2


dt
= 1 + 2�(t)M2: (35)


Solution (34) and (35) is the valid macroscopic description if all other solutions of the


equation (32) are rapidly attracted to the family of Gaussian distributions (34). In other


words [7], the special solution (34) and (35) is the macroscopic description if equation (34)


is the stable invariant manifold of the kinetic equation (32). If not, then the Gaussian


solution is just a member of the family of solutions, and equation (35) has no meaning of


the macroscopic equation. Thus, the complete answer to the question of validity of the


equation (35) as the macroscopic equation requires a study of dynamics in the neighbor-


hood of the manifold (34). Because of the simplicity of the model (32), this is possible to


a satisfactory level even for M2-dependent spring forces.


In the paper [19] it was shown, that there is a possibility of \explosion" of the Gaussian


manifold: with the small initial deviation from it, the solutions of the equation (32) are


very fast going far from, and then slowly come back to the stationary point which is


located on the Gaussian manifold. The distribution function 	 is stretched fast, but


looses the Gaussian form, and after that the Gaussian form recovers slowly with the new


value of M2. Let us describe briey the results of [19].


Let M2n =
R
q2n	dq denote the even moments (odd moments vanish by symmetry).


We consider deviations �2n = M2n �MG
2n, where M


G
2n =


R
q2n	Gdq are moments of the


Gaussian distribution function (34). Let 	(q; t0) be the initial condition to the Eq. (32)


at time t = t0. Introducing functions,


p2n(t; t0) = exp


�
4n


Z
t


t0


�(t0)dt0
�
; (36)


where t � t0, and 2n � 4, the exact time evolution of the deviations �2n for 2n � 4 reads


�4(t) = p4(t; t0)�4(t0); (37)
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and


�2n(t) =


�
�2n(t0) + 2n(4n� 1)


Z
t


t0


�2n�2(t
0)p�12n (t


0; t0)dt
0
�
p2n(t; t0); (38)


for 2n � 6. Equations (36), (37) and (38) describe evolution near the Gaussian solution


for arbitrary initial condition 	(q; t0). Notice that explicit evaluation of the integral in


the Eq. (36) requires solution to the moment equation (35) which is not available in the


analytical form for the FENE-P model.


It is straightforward to conclude that any solution with a non-Gaussian initial condi-


tion converges to the Gaussian solution asymptotically as t!1 if


lim
t!1


Z
t


t0


�(t0)dt0 < 0: (39)


However, even if this asymptotic condition is met, deviations from the Gaussian solution


may survive for considerable �nite times. For example, if for some �nite time T , the


integral in the Eq. (36) is estimated as
R
t


t0
�(t0)dt0 > �(t � t0), � > 0, t � T , then the


Gaussian solution becomes exponentially unstable during this time interval. If this is the


case, the moment equation (35) cannot be regarded as the macroscopic equation. Let us


consider speci�c examples.


For the Hookean spring (f � 1) under a constant elongation (� = const), the Gaussian


solution is exponentially stable for � < 0:5, and it becomes exponentially unstable for


� > 0:5. The exponential instability in this case is accompanied by the well known


breakdown of the solution to the Eq. (35) due to in�nite stretching of the dumbbell. The


situation is much more interesting for the FENE-P model because this nonlinear spring


force does not allow the in�nite stretching of the dumbbell.


Eqs. (35) and (37) were integrated by the 5-th order Runge-Kutta method with adap-


tive time step. The FENE-P parameter b was set equal to 50. The initial condition was


	(q; 0) = C(1 � q2=b)b=2, where C is the normalization (the equilibrium of the FENE


model, notoriously close to the FENE-P equilibrium [41]). For this initial condition, in


particular, �4(0) = �6b2=[(b + 3)2(b + 5)] which is about 4% of the value of M4 in the


Gaussian equilibrium for b = 50. In Fig. 1 we demonstrate deviation �4(t) as a function


of time for several values of the ow. Function M2(t) is also given for comparison. For


small enough � we �nd an adiabatic regime, that is �4 relaxes exponentially to zero. For


stronger ows, we observe an initial fast runaway from the invariant manifold with j�4j
growing over three orders of magnitude compared to its initial value. After the maximum


deviation has been reached, �4 relaxes to zero. This relaxation is exponential as soon as


the solution to Eq. (35) approaches the steady state. However, the time constant for this


exponential relaxation j�1j is very small. Speci�cally, for large �,


�1 = lim
t!1


�(t) = � 1


2b
+O(��1): (40)


Thus, the steady state solution is unique and Gaussian but the stronger is the ow, the


larger is the initial runaway from the Gaussian solution, while the return to it thereafter


becomes ow-independent. Our observation demonstrates that, though the stability con-


dition (39) is met, signi�cant deviations from the Gaussian solution persist over the times


when the solution of Eq. (35) is already reasonably close to the stationary state. If we


accept the usually quoted physically reasonable minimal value of parameter b of the order
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Figure 1: Deviations of reduced moments from the Gaussian solution as a function of


reduced time t in pseudo-elongation ow for the FENE-P model. Upper part: Reduced


second moment X = M2=b. Lower part: Reduced deviation of fourth moment from


Gaussian solution Y = ��1=24 =b. Solid: � = 2, dash-dot: � = 1, dash: � = 0:75, long


dash: � = 0:5. (The �gure from the paper [19], computed by P. Ilg.)


20 then the minimal relaxation time is of order 40 in the reduced time units of Fig. 1.


We should also stress that the two limits, � ! 1 and b ! 1, are not commutative,


thus it is not surprising that the estimation (40) does not reduce to the above mentioned


Hookean result as b ! 1. Finally, peculiarities of convergence to the Gaussian solution


are even furthered if we consider more complicated (in particular, oscillating) ows �(t).


Further numerical experiments are presented in [42]. The statistics of FENE-P solutions


with random strains was studied recently by J.-L. Thi�eault [43]


In accordance with [38] the anzatz for 	 can be suggested in the following form:


	An(f�; &g; q) = 1


2�
p
2�


�
e�


(q+&)2


2�2 + e�
(q�&)2


2�2


�
: (41)


Natural inner coordinates on this manifold are � and &. Note, that now �2 6= M2. The


value �2 is a dispersion of one of the Gaussian summands in (41),


M2(	
An(f�; &g; q)) = �2 + &2:
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To build the thermodynamic projector on the manifold (41), the thermodynamic Lya-


punov function is necessary. It is necessary to emphasize, that equations (32) are non-


linear. For such equations, the arbitrarity in the choice of the thermodynamic Lyapunov


function is much smaller than for the linear Fokker Planck equation. Nevertheless, such


a function exists. It is the free energy


F = U(M2[	])� TS[	]; (42)


where


S[	] = �
Z


	(ln	� 1)dq;


U(M2[	]) is the potential energy in the mean �eld approximation, T is the temperature


(further we assume that T = 1).


Note, that Kullback-form entropy Sk = � R 	 ln
�
	
	�


�
also has the form Sk = �F=T :


	� = exp(�U);
Sk[	] = �hUi �


Z
	 ln	dq:


If U(M2[	]) in the mean �eld approximation is the convex function of M2, then the free


energy (42) is the convex functional too.


For the FENE-P model U = � ln[1�M2=b].


In accordance to the thermodynamics the vector of ow of 	 must be proportional to


the gradient of the corresponding chemical potential �:


J = �B(	)rq�; (43)


where � = ÆF


Æ	
, B � 0. From the equation (42) it follows, that


� =
dU(M2)


dM2


� q2 + ln	


J = �B(	)
�
2
dU


dM2


� q +	�1rq	


�
: (44)


If we suppose here B = D


2
	, then we get


J = �D
�
dU


dM2


� q	+
1


2
rq	


�
@	


@t
= divqJ = D


dU(M2)


dM2


@q(q	) +
D


2
@2q	; (45)


When D = 1 this equations coincide with (32) in the absence of the ow: due to equation


(45) dF=dt � 0.


Let us construct the thermodynamic projector with the help of the thermodynamic


Lyapunov function F (42). Corresponding entropic scalar product in the point 	 has the


form


hf jgi	 =
d2U


dM2
2


����
M2=M2[	]


�
Z


q2f(q)dq �
Z


q2g(q)dq +


Z
f(q)g(q)


	(q)
dq (46)
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During the investigation of the anzatz (41) the scalar product (46), constructed for the


corresponding point of the Gaussian manifold with M2 = �2, will be used. It will let us


to investigate the neighborhood of the Gaussian manifold (and to get all the results in


the analytical form):


hf jgi�2 = d2U


dM2
2


����
M2=�2


�
Z


q2f(q)dq �
Z


q2g(q)dq + �
p
2�


Z
e


q2


2�2 f(q)g(q)dq (47)


Also we will need to know the functional DF in the point of Gaussian manifold:


DF�2(f) =


�
dU(M2)


dM2


����
M2=�2


� 1


2�2


!Z
q2f(q)dq; (48)


(with the condition
R
f(q)dq = 0). The point


dU(M2)


dM2


����
M2=�2


=
1


2�2
;


corresponds to the equilibrium.


The tangent space to the manifold (41) is spanned by the vectors


f� =
@	An


@(�2)
; f& =


@	An


@(&2)
;


f� =
1


4�3
p
2�


�
e�


(q+&)2


2�2
(q + &)2 � �2


�2
+ e�


(q�&)2


2�2
(q � &)2 � �2


�2


�
; (49)


f& =
1


4�2&
p
2�


�
�e� (q+&)2


2�2
q + &


�
+ e�


(q�&)2


2�2
(q � &)


�


�
;


The Gaussian entropy (free energy) production in the directions f� and f& (48) has a very


simple form:


DF�2(f&) = DF�2(f�) =
dU(M2)


dM2


����
M2=�2


� 1


2�2
: (50)


The linear subspace kerDF�2 in linff�; f&g is spanned by the vector f& � f�.


Let us have the given vector �eld d	=dt = �(	) in the point 	(f�; &g). We need to


build the projection of � onto the tangent space T�;& in the point 	(f�; &g):
P th


�;&
(�) = '�f� + '&f& : (51)


This equation means, that the equations for �2 and &2 will have the form


d�2


dt
= '�;


d&2


dt
= '& (52)


Projection ('�; '&) can be found from the following two equations:


'� + '& =


Z
q2�(	)(q)dq;


h'�f� + '&f& jf� � f&i�2 = h�(	)jf� � f&i�2 ; (53)
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Figure 2: Phase trajectories for the two-peak approximation, FENE-P model. The vertical


axis (& = 0) corresponds to the Gaussian manifold. The triangle with �(M2) > 0 is the


domain of exponential instability.


where hf jgi�2 = h�(	)jf� � f&i�2 , (46). First equation of (53) means, that the time


derivative dM2=dt is the same for the initial and the reduced equations. Due to the


formula for the dissipation of the free energy (48), this equality is equivalent to the


persistence of the dissipation in the neighborhood of the Gaussian manifold.


The second equation in (53) means, that � is projected orthogonally on kerDS
T
T�;& .


Let us use the orthogonality with respect to the entropic scalar product (47). The solution


of equations (53) has the form


d�2


dt
= '� =


h�jf� � f&i�2 +M2(�)(hf& jf&i�2 � hf�jf&i�2)
hf� � f& jf� � f&i�2 ;


(54)


d&2


dt
= '& =


�h�jf� � f&i�2 +M2(�)(hf�jf�i�2 � hf�jf&i�2)
hf� � f& jf� � f&i�2 ;


where � = �(	), M2(�) =
R
q2�(	)dq.


It is easy to check, that the formulas (54) are indeed de�ning the projector: if f�
(or f&) is substituted there instead of the function �, then we will get '� = 1; '& = 0
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Figure 3: Phase trajectories for the two-peak approximation, FENE model: a) A stable


equilibrium on the vertical axis, one stable peak; b) A stable equilibrium with & > 0,


stable two-peak con�guration.


(or '� = 0; '& = 1, respectively). Let us substitute the right part of the initial kinetic


equations (32), calculated in the point 	(q) = 	(f�; &g; q) (see the equation (41)) in the


equation (54) instead of �. We will get the closed system of equations on �2; &2 in the


neighborhood of the Gaussian manifold.


This system describes the dynamics of the distribution function 	. The distribution


function is represented as the half-sum of two Gaussian distributions with the averages


of distribution �& and mean-square deviations �. All integrals in the right-hand part of


(54) are possible to calculate analytically.


Basis (f�; f&) is convenient to use everywhere, except the points in the Gaussian man-


ifold, & = 0, because if & ! 0, then


f� � f& = O


�
&2


�2


�
! 0:


Let us analyze the stability of the Gaussian manifold to the \dissociation" of the


Gaussian peak in two peaks (41). To do this, it is necessary to �nd �rst nonzero term


in the Taylor expansion in &2 of the right-hand side of the second equation in the system


(54). The denominator has the order of &4, the numerator has, as it is easy to see, the


order not less, than &6 (because the Gaussian manifold is invariant with respect to the


initial system).


With the accuracy up to &4:


1


�2
d&2


dt
= 2�


&2


�2
+ o


�
&4


�4


�
; (55)
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where


� = �� dU(M2)


dM2


����
M2=�2


:


So, if � > 0, then &2 grows exponentially (& � e�t) and the Gaussian manifold is


unstable; if � < 0, then &2 decreases exponentially and the Gaussian manifold is stable.


Near the vertical axis d�2=dt = 1+ 2��2. The form of the phase trajectories is shown


qualitative on Fig. 2. Note that this result completely agrees with equation (37).


For the real equation FPE (for example, with the FENE potential) the motion in


presence of the ow can be represented as the motion in the e�ective potential well
~U(q) = U(q) � 1


2
�q2. Di�erent variants of the phase portrait for the FENE potential


are present on Fig. 3. Instability and dissociation of the unimodal distribution functions


(\peaks") for the FPE is the general e�ect when the ow is present.


The instability occurs when the matrix @2 ~U=@qi@qj starts to have negative eigenvalues


( ~U is the e�ective potential energy, ~U(q) = U(q)� 1
2


P
i;j
�i;jqiqj).


2.3.2 Polymodal polyhedron


The stationary polymodal distribution for the Fokker-Planck equation corresponds to the


persistence of several local minima of the function ~U(q). The multidimensional case is


di�erent from one-dimensional because it has the huge amount of possible con�gurations.


All normal forms of the catastrophe of \birth of the critical point" are well investigated


and known [44]. Every dissociation of the peak is connected with such a catastrophe. The


number of the new peaks is equal to the number of the new local minima of U .


The possible cascade of peaks dissociation is presented qualitatively on Fig. 4. The


important property of this qualitative picture is the linear complexity of dynamical de-


scription with exponential complexity of geometrical picture. Let m be the number of


bifurcation steps in the cascade. Then


� For description of parallelepiped it is suÆcient to describe m edges;


� There are 2m�1 geometrically di�erent conformations associated with 2m vertex of


parallelepiped (central symmetry halved this number).


Another important property is the threshold nature of each dissociation: It appears in


points of stability loss for new directions, in these points the dimension of unstable direc-


tion increases.


The simplest multidimensional dynamic model is the Fokker-Planck equation with


quadratic mean �eld potential. This is direct generalization of the FENE-P model: the


quadratic potential U(q) depends on the tensor of second moments M 2 = hqiqji (here
the angle brackets denote the averaging). This dependence should provide the �nite


extensibility. This may be, for example, a simple matrix generalization of the FENE-P


energy:


U(q) =
X
ij


Kijqiqj; K =K0 + �(M 2=b); hU(q)i = tr(KM 2=b)


where b is a constant (the limit of extensibility),K0 is a constant matrix,M 2 is the matrix


of second moments, and � is a positive analytical monotone increasing function of one


variable on the interval (0; 1), �(x)! 1 for x ! 1 (for example, �(x) = � ln(1� x)=x,


or �(x) = (1� x)�1).
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Figure 4: Cartoon representing the steps of molecular individualism. Black dots are ver-


tices of Gaussian parallelepiped. Zero, one, and four-dimensional polyhedrons are drawn.


Dashed is the three-dimensional polyhedron used to draw the four-dimensional object.


Each new dimension of the polyhedron adds as soon as the corresponding bifurcation


occurs. Quasi-stable polymeric conformations are associated with each vertex. First bi-


furcation pertinent to the instability of a dumbbell model in elongational ow is described


in the text.
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For quadratic multidimensional mean �eld models persists the qualitative picture of


Fig. 2: there is non-stationary moleqular individualism for stationary \molecular collec-


tivism". The stationary distribution is the Gaussian distribution, and on the way to this


stationary point there exists an unstable region, where the distribution dissociates onto


2m peaks (m is the number of unstable degrees of freedom).


Dispersion of individual peak in unstable region increases too. This e�ect can deform


the observed situation: If some of the peaks have signi�cant intersection, then these peaks


join into new extended classes of observed molecules. The stochastic walk of molecules be-


tween connected peaks can be observed as \large non-periodical uctuations". This walk


can be unexpected fast, because it can be e�ectively a motion in a low-dimensional space,


for example, in one-dimensional space (in a neighborhood of a part of one-dimensional


skeleton of the polyhedron).


2.4 Generalization: neurons and particles


The Gaussian parallelepiped (14) seems to be a \rigid" structure: the possibilities to ex-


tend this anzatz, to make it more exact, but with preservation of more or less transparent


structure, are not obvious. The simple transformation can improve this situation. Let


us mention the obvious relation: exp(�(x� a)2) = exp(�x2) exp(2ax) exp(�a2): We can


write the simple generalization of equation (14):


	(q) = 	�(q)


mY
i=1


'i((&i; q)); (56)


where 	�(q) is the distribution density for one peak, for example, it may be the mul-


tidimensional Gaussian distribution 	�(q) = 1


(2�)n=2
p
det �


exp
��1


2
(��1q; q)


�
; &i, (i =


1; : : : ; m) are vectors in the con�guration space, (&i; q) is the usual scalar product, 'i(x)


are nonnegative functions of one variable x. for example, 'i(x) = Aich(�ix+ �i).


The form (56) is more exible then original Gaussian parallelepiped (14). It gives the


possibility to extend the space for model adaptation. Functions of one variable 'i(x) are


additional variables. They can form a �nite-parametric family: For example, 'i(x) =


Aich(�ix) give the Gaussian peaks, and if we use 'i(x) = A+
i
exp(�+


i
x) + A�


i
exp(��


i
x),


then we obtain a non-symmetric picture of shifted peaks. On following steps we may use


di�erent spaces (or manifolds) of functions 'i(x) to extend the approximation capacity of


the anzatz (56).


Let us describe the tangent space T for the anzatz (56) with functions �i(x) = ln'i(x)


from some space L. The space of functions of n variables


L((&; q)) = f�((&; q))j' 2 Lg


corresponds to a given vector & and the space L: The tangent space T	 for the anzatz


(56) in a point 	 has a form:


T	 = 	


"
mX
i=1


L((&i; q)) +


mX
i=1


�
d�i(x)


dx


�
x=(&i;q)


E�


#
; (57)


where E� is the space of linear functions of q.
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If the space L includes all suÆciently smooth functions, then to avoid intersection


between L((&i; q)) and
�
d�i(x)


dx


�
x=(&i;q)


E� it is convenient to change in equation (57) the


space of all linear functions E� to the space of linear functions orthogonal to (&i; q),


E�
i
= f(&; q)j& ? &ig (without any change in the resulting space):


T	 = 	


"
mX
i=1


L((&i; q)) +


mX
i=1


�
d�i(x)


dx


�
x=(&i;q)


E�
i


#
: (58)


It means that for suÆciently rich spaces L the vectors &i in the anzatz (56) could be chosen


on the sphere, (&i; &i) = 1, to provide the independence of variables.


The form (56) appears as a quasiequilibrium distribution density in the following


particular case of the problem (21):


S(	)! max;


Z
Æ(x� (&i; q))	(q)d


nq = fi(x); i = 1; : : : ; m; (59)


where S(	) is the Kullback-form Bolzmann-Gibbs-Shannon entropy which measures a


deviation of the distribution density 	(q) from the equilibrium density 	�(q):


S(	) = �
Z


	(q) ln


�
	(q)


	�(q)


�
dnq: (60)


Hence, for �xed values of &i and for a space of arbitrary nonnegative smooth functions


'i(x) the anzatz (56) is the quasiequilibrium approximation with macroscopic variables


fi(x) =


Z
Æ(x� (&i; q))	(q)d


nq:


Let us de�ne the anzatz manifold (56) as a union of the quasiequilibrium manifolds


(59) for all sets of values f&igmi=1 on the unit sphere. In this case we can apply Proposition
3: The thermodynamic projector is the orthogonal projector on T	 with respect to the


entropic scalar product in the point 	: In the space of density functions


hf jgi	 =


Z
f(q)g(q)


	(q)
dq; (61)


and in the conjugated space (for example, for functions � from space L in (57),(58))


h�j�ic	 =


Z
�(q)�(q)	(q)dq; (62)


where the scalar product for the conjugated space is marked by the upper index c.


The orthogonal projector P on the direct sum of subspaces


mX
i=1


L((&i; q)) +


mX
i=1


�
d�i(x)


dx


�
x=(&i;q)


E�
i


(63)


is a sum of operators: P =
P


m


i=1(P�i
+ P&i


), where


imP�i
= L((&i; q)); imP&i


=


�
d�i(x)


dx


�
x=(&i;q)


E�
i
: (64)
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Operators P�i
, P&i can be founded from the de�nition of their images (64) and the con-


ditions: P 2 = P; P+ = P; where P+ is the conjugated to P operator with respect of


the scalar product h j ic (62). From the �rst equation of (P 2 = P ) it follows that each


operator A from the set Q = fP�i
gm
i=1


SfP&j
gm
j=1 is a projector, A2 = A (it may be not


orthogonal), and for any pair of distinct projectors A;B 2 Q the following inclusions


hold: imA � kerB, imB � kerA.


In a general case, the constructive realization of orthogonal projector requires solution


of systems of linear equations, or orthogonalization of systems of vectors, etc. We shall not


discuss the details of computational algorithms here, but one important possibility should


be stressed. The orthogonal projection P (J) can be computed by adaptive minimization


of a quadratic form :


hJ � P (J)jJ � P (J)i	 ! min for P (J) 2 T	 (65)


The gradient methods for solution of the problem (65) are based on the following simple


observation: Let a subspace L � E of the Hilbert space E be the direct sum of subspaces


Li: L =
P


i
Li. The orthogonal projection of a vector J 2 E onto L has an unique


representation in a form: P (J) = x =
P


i
xi; xi 2 Li. The gradient of the quadratic form


(J � x; J � x) in the space L has the form:


gradx(J � x; J � x) = 2
X
i


P?
i
(J � x); (66)


where P?
i
is the orthogonal projector on the space Li. It means: if one has the orthogonal


projectors on the spaces Li, then he can easy write the gradient method for the problem


(65).


The projected kinetic equations, _	 = x, x 2 T	, with the equations for this adaptive


method, for example _x = �hgrad
x
hJ � xjJ � xi	, can be solved together. For a rational


choice of the step h this system is stable, and has a Lyapunov functional (for closed


systems). This functional can be found as a linear combination of the entropy and the


minimized quadratic form hJ � xjJ � xi	.
We consider the FPE of the form


@	(q; t)


@t
= rq fD(q) [	(q; t)(rqU(q)� Fex(q; t)) +rq	(q; t)]g : (67)


Here 	(q; t) is the probability density over the con�guration space q, at the time t,


while U(q) and D(q) are the potential and the positively semi-de�nite ((r;D(q)r) � 0)


symmetric di�usion matrix, Fex(q; t) is an external force (we omit here such multipliers


as kBT , friction coeÆcients, etc). Another form of equation (67) is:


@	(q; t)


@t
= rq


�
D(q)	�(q)(rq � Fex(q; t))


�
	(q; t)


	�(q)


��
; (68)


where 	�(q) is the equilibrium density: 	�(q; t) = exp(�U(q))= R exp(�U(p))dp: For the
anzatz (56) 	(q; t) = 	�(q) exp


P
i
�i((&i; q); t). For this anzatz the left hand side of


equation (68) has the form


J(	) = 	


"X
i


(&i; D(q)&i)


�
@2�i


@x2


�
x=(&i;q)


+
X
i;j


(&j; D(q)&i)


�
@�i


@x


�
x=(&i;q)


�
@�j


@x


�
x=(&j ;q)


�
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X
i


�
@�i


@x


�
x=(&i;q)


((&i; D(q)(rqU(q) + Fex(q; t)))� (rq; D(q)&i)) +


(rqU(q); D(q)Fex(q; t))� (rq; D(q)Fex(q; t))] ; (69)


where �i = �i(x; t), and ( ; ) is the usual scalar product in the con�guration space.


The projected equations have the form:


@�i


@t
= P�i


J(	);
d&i


dt
= P&i


J(	); (70)


where the vector �eld J(	) is calculated by formula (69), and the projectors P�i
; P&i


are


de�ned by equations (64). For adaptive methods the right hand parts of equations (70)


are solutions of auxiliary equations.


We can return from the anzatz (56) to the polymodal polyhedron: It corresponds to a


�nite-dimensional multimodal approximation for each of equations (70). If the number of


maxima in the approximation of �i(x) is ki, then the number of peaks in the polymodal


polyhedron is k =
Q


i
ki.


For the further development of the approximation (56) it is possible add some usual


moments to the system (59). These additional moments can include a stress tensor, and


some other polynomial moments. As a result of such an addition the equilibrium density


in anzatz (56) will be replaced to a more general nonconstant quasiequilibrium density.


The anzatz (56) can be discussed and studied from di�erent points of view:


1. It is a uncorrelated particles representation of kinetics: The distribution density


function (56) is a product of equilibrium density and one-particle distributions,


'i. Each particle has it's own one-dimensional con�guration space with coordinate


x = (&i; q). The representation of uncorrelated particles is well known in statistical


physics, for example, the Vlasov equation is the projection of the Liouville equation


onto uncorrelated anzatz [51]. There are three signi�cant di�erences between the


anzatz (56) and usual uncorrelated anzatz: First, the anzatz (56) is not symmetric


with respect to particles permutation, second, the con�guration spaces of particles


for this anzatz are dynamic variables. The third di�erence is: The anzatz (56)


includes the equilibrium density function explicitly, hence, the uncorrelated particles


represent the nonequlibrium factor of distribution, and equilibrium correlations are


taken into account completely.


2. It is a version of a neural-network approximation [45]. The components of the vector


&i are input synaptic weights for the ith neuron of the hidden layer, and ln'i(x)


is the activation function of this neuron. The activation function of the output


neuron is exp(x). There is no need in di�erent input synaptic weights for the output


neuron, because possible activation functions of the neurons of the hidden layer form


the linear space L, and any real multiplier can be included into ln'i(x). The only


di�erence from usual neural networks is a relatively big space of activation functions


on the hidden layer. Usually, the most part of network abilities is hidden in the net of


connections, and the only requirement to the activation function is their nonlinearity,


it is suÆcient for the approximation omnipotence of connectionism [46, 47, 48].


Nevertheless, the neural networks with relatively rich spaces of activation functions


are in use too [49, 50].
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Conclusion: POET and the di�erence between ellip-


soid and parallelepiped


Let us introduce an abbreviation \POET" (Projection-Of-Everything-Thermodynamic)


for the thermodynamic projector. POET transforms the arbitrary vector �eld equipped


with the given Lyapunov function into a vector �eld with the same Lyapunov function. It


projects each term in kinetic equations into the term with the same entropy production.


Moreover, POET conserves the reciprocity relations: if initial kinetics satis�es the Onsager


relations, then the projected system satis�es these relations too. Thus, the problem of


persistence of thermodynamical properties in model reduction is solved. POET is unique


operator which always preserves the sign of dissipation, any other important features of


this operator follow from this preservation.


It is necessary to use POET even for reduction of kinetic models for open systems,


because the processes which produce the entropy in a closed system should produce the


entropy in open system too: The di�erence between open and closed systems is the


presence of entropy outow (or, what is the same, of the free energy inow), and the


dissipative processes preserve their dissipativity.


One of the most important impact of POET on the model reduction technology is the


new possibility of constructing thermodynamically consistent reduced model with almost


arbitrary anzatz.


In this paper we discussed the important example of such an anzatz: the multi-


peak models. Two examples of these type of models demonstrated high eÆciency during


decades: the Tamm{Mott-Smith bimodal anzatz for shock waves, and the the Langer{


Baron{Miller approximation for spinodal decomposition.


The multimodal polyhedron appears every time as an appropriate approximation for


distribution functions for systems with instabilities. We create such an approximation for


the Fokker{Planck equation for polymer molecules in a ow.


The usual point of view is: The shape of the polymers in a ow is either a coiled ball,


or a stretched ellipsoid, and the Fokker{Planck equation describes the stretching from the


ball to the ellipsoid. It is not the whole truth, even for the FENE-P equation, as it was


shown in ref. [19, 38]. The Fokker-Planck equation describes the shape of a probability


cloud in the space of conformations. In the ow with increasing strain this shape changes


from the ball to the ellipsoid, but, after some thresholds, this ellipsoid transforms into


a multimodal distribution which can be modeled as the peak parallelepiped. The peaks


describe the �nite number of possible molecule conformations. The number of this distinct


conformations grows for a parallelepiped as 2m with the numberm of independent unstable


direction.


These models pretend to be the kinetic basis for the theory of molecular individualism.


The detailed computations will be presented in following works, but the qualitative fea-


tures of the models are in good agreement with qualitative picture observed in experiment


[16, 17, 18]. Some questions remain open:


� Of course, appearance of 2m peaks in the Gaussian parallelepiped is possible, but


some of these peaks can join in following dynamics, hence the �rst question is:


what is the typical number of signi�cantly di�erent peaks for a m�dimensional
instability?
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� How can we decide what scenario is more realistic from the experimental point of


view: the proposed universal kinetic mechanism, or the scenario with long living


metastable states (for example, the relaxation of knoted molecules in the ow can


give an other picture than the relaxation of unknoted molecules)?


� The analysis of random walk of molecules from peak to peak should be done, and


results of this analysis should be compared with observed large uctuations.


May be, the most important result of this paper is the systematic discussion of a di�er-


ence between the Gaussian elipsoid (and its generalizations) and the Gaussian multipeak


polyhedron (and its generalizations). This polyhedron appears generically as the e�ective


anzatz for kinetic systems with instabilities.
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