order by disorder, spin-waves, chessboard estimates, Mermin-Wagner theorem





ORDER BY DISORDER, WITHOUT ORDER,
IN A TWO-DIMENSIONAL SPIN SYSTEM


WITH O(2)SYMMETRY


MAREK BISKUP,1 LINCOLN CHAYES1 AND STEVEN A. KIVELSON2


1Department of Mathematics, UCLA, Los Angeles, California, USA
2Department of Physics, UCLA, Los Angeles, California, USA


Abstract: We present a rigorous proof of an ordering transition for a two-component two-dimen-
sional antiferromagnet with nearest and next-nearest neighbor interactions. The low-temperature
phase contains two states distinguish by local order among columns or, respectively, rows. Overall,
there is no magnetic order in accord with the classic Mermin-Wagner theorem. The method of
proof employs a rigorous version of “order by disorder,” whereby a high degeneracy among the
ground states is lifted according to the differences in their associated spin-wave spectra.


1. INTRODUCTION


1.1 Background.


For two-dimensional spin systems, the celebrated Mermin-Wagner theorem [30, 32] (and its ex-
tensions [10, 25]) precludes the possibility of the spontaneous breaking of a continuous internal
symmetry. However, this result does not prevent such models from exhibiting phase transitions.
For example, in the usual XY-model there is a low-temperature phase, known as the Kosterlitz-
Thouless phase [27], characterized by power-law decay of correlations and, of course, vanish-
ing spontaneous magnetization [21, 29]. The existence and properties of this phase have been
of seminal importance for the understanding of various low-dimensional physical phenomena,
e.g., 2D superconductivity and superfluidity, 2D Josephson arrays, 2D melting, etc. It it widely
believed that no such phase exists forO(n)-models withn ≥ 3 although rigorous arguments for
(or against) this conjecture are lacking.


Of course, among such models there are other pathways to phase transitions aside from at-
tempting to break the continuous symmetry. One idea is to inject additionaldiscretesymmetries
into the model and observe the breaking of these “small” symmetries regardless of the (global)
status of the “big” one. As an example, at eachr ∈ Zd (whered ≥ 2) let us place a pair(σ r , πr )
of n-component unit-length spins whose interaction is described by the Hamiltonian


H = −J1


∑
〈r ,r ′〉


(σ r · σ r ′ + πr · πr ′) − J2


∑
r


(σ r · πr )
2, (1.1)
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where〈r , r ′
〉 denotes a pair of nearest neighbors onZd and J1, J2 > 0. Obviously, this model


has O(n) symmetry (rotating all spins) as well as a discreteZ2 symmetry (relative reflection
between theσ ’s and theπ ’s). It is not hard to show that at low temperatures, regardless of the
global status of theσ ’s andπ ’s, there is coexistence between a phase where theσ ’s andπ ’s are
locally aligned with one another and one where they are locally antialigned. A model not terribly
dissimilar to the one defined above was analyzed in [35] where the corresponding conclusions
were indeed established. We remark that these results hold even ifd = 2—and even ifn > 2.


Another “circumvention” is based on the adaptation of the large-entropy methods to systems
which happen to have continuous symmetry. These are distinguished from the more commonly
studied systems in and of the fact that there is no apparentorder paramtersignaling the existence
of a low-temperature phase. The key idea dates back to [11, 28] where some general principles
were spelt out that guarantee apoint of phase coexistence. Let us consider an attractive system
where there is an energetically favored alignment which confines the spin configurations to a
small portion of the spin space. Suppose that there are many other less favored alignments with
an approximately homogeneous energy. Under these conditions, a first-order transition at some
(intermediate) value of temperature is anticipated. This kind of transition was established for spe-
cific systems (including theq-state Potts model) in [11,28], see also [36]. The general philosophy
can easily be adapted to spin systems with a continuous symmetry, e.g., as in [2,7,8] where some
related problems were discussed.


To illustrate these matters let us consider an example from [2]. Here we have a two-component
spin of length one at each site ofZ2 which we parametrize by an angular variableθr ∈ (−π, π ].
Let V(x) denote the function which equals negative one if|x| < ε and zero otherwise, and let


H = J
∑
〈r ,r ′〉


V(θr − θr ′), (1.2)


where, of course, the arguments ofV are interpreted modulo 2π . Then, at some parameter
valueJ = Jt obeyingeJt ≈


√
ε, coexistence occurs between a phase where nearly all neighboring


spins are closely aligned and one where, locally, spins exhibit hardly any correlation. We reiterate
that the use ofn = 2 andd = 2 is not of crucial importance for proofs of statements along these
lines. Indeed, in [14,15], similar results have been established in much generality.


In all of the above examples a moment’s thought reveals that no violation of the Mermin-
Wagner theorem occurs. Indeed, this theorem does not preclude a phase transition, it only pre-
cludes a phase transition which is characterized by breaking of a continuous internal symmetry.


1.2 Foreground.


The purpose of this note is to underscore another route “around” Mermin-Wagner theorem. The
distinction here, compared to of all the abovementioned, is that it may take the readertwo mo-
ments to realize that our results are also is in accord with Mermin-Wagner theorem. Not unrelated
is the fact that in our example the mechanism for ordering is relatively intricate. Let us go right
to the Hamiltonian which reads


H = J
∑


r


(
Sr · Sr+êx+êy + Sr · Sr+êx−êy


)
+ Jγ


∑
r


(
Sr · Sr+êx + Sr · Sr+êy


)
. (1.3)
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FIGURE 1. An example of the ground state of the Hamiltonian (1.3) on a finite grid. Here both


sublattices exhibit Néel state with spins alternating between 30◦ and 210◦ on one sublattice and


between 110◦ and 290◦ on the other. Any other ground state can be obtained by an independent


rotation of all spins in each sublattice.


Herer denotes a site inZ2 and theSr are unit-length two-component spins, i.e.,Sr ∈ R2, |Sr | = 1,
for eachr ∈ Z2. The vectorŝex andêy are unit vectors in thex and y lattice directions,J—
the overall interaction strength—andγ—the relative strength of nearest neighbor couplings—are
positive numbers. Notice the sign of the coupling; there is antiferromagnetism all around.


In order to analyze the ground states, let us focus on the casesγ � 1. (Later we will only
requireγ < 2.) Notice, especially in this limit, that the interaction splits the lattice into an
even and odd sublattices. For the ground-state problem, say in an even-sided finite volume with
periodic boundary conditions, it is clear that both of the sublattices will be Neél (i.e., antiferro-
magnetically) ordered. However, once this Neél order is in place, it is clear that the energetics
are insensitive to the relative orientation of the spins on the two sublattices. Specifically, the spin
at any siter couples antiferromagnetically to thesumof Sr+êx , Sr+êy , Sr−êx andSr−êy which, in
any Néel state, is exactly zero. Thus we conclude that the set of ground states, i.e., the “order-
parameter space,” cf [31], of this model exhibits anO(2) ⊗ O(2) symmetry.


For convenience we will regard the first factor ofO(2)⊗O(2) as acting on all spins and the sec-
ond as acting on therelative orientationsof (the spins on) the two sublattices. The upshot of this
work (precise theorems will be stated in Section 2.2) is that, at small but positive temperatures,
the order parameter space is reduced toZ2. Although the firstO(2) is restored as required by the
Mermin-Wagner theorem, the remainingZ2 is a remnant of the secondO(2). Consequently, at







4 M. BISKUP, L. CHAYES AND S.A. KIVELSON


low temperatures, there are two Gibbs states: one where there is near alignment between nearest-
neighbor spins in every lattice column and the other featuring a similar alignment in every lattice
row. So the continuousO(2)⊗ O(2) symmetry is evidently broken; we have Gibbs state in which
all that acts is the singleO(2) factor. And all of this in two dimensions!


Having arranged for the requisite two moment’s via procrastination, we now reveal why this
does not violate the Mermin-Wagner theorem. The answer is that the enhancedO(2) ⊗ O(2)
symmetry was never a symmetry of theHamiltonian—this is both the hypothesis and the driving
force of the derivations in these references. Indeed, the large symmetry was only a symmetry of
the ground state space and as such there is noa priori reason to expect its persistence at finite
temperatures. So everything is all right. To further confuse matters, let us remark that although
the “Z2 remnant”—the one that does get broken—was not a symmetry of the Hamiltonian, it
is, somehow, more organic than theO(2) group that contained it. This particularZ2 may be
interpreted as the natural enactor of one of the lattice symmetries (here a 90◦-rotation) which are
typically associated with antiferromagnets.


The last observation is supported by the fact that there is an order parameter associated with
the above first-order phase transition. Indeed, consider the object


nr = (Sr+êx − Sr+êy) · Sr (1.4)


whose expectation is zero at sufficiently high temperatures and non-zero (in appropriate states)
at low temperatures. In another context, this sort of symmetry breaking has been referred to as
Ising nematic ordering [1,26].


1.3 Order by disorder.


In accordance with the title, the mechanism behind this ordering is called “order by disorder”
(or, in the older vernacular, “ordering due to disorder”). This concept of is, as of late, extremely
prevalent in the physics literature; most of the recent work concerns quantum large-S systems
where finiteSplays the role of thermal fluctuations, but the origin of this technique can be traced
to the study of classical systems, [37,38] and [23]. In particular, in the latter reference, it is exactly
the present model that was studied and this has since been referred to as the canonical model
of order by disorder. The key words are “spin waves” and “stabilization by finite temperature
excitations,” neither of which should be unfamiliar to the mathematical physicist but which, until
recently, have not been exploited in tandem.


Let us proceed with the key ideas, we will attend to the obligatory citations later. For ease of
exposition, let us imagine that somehow even at finite temperatures the two sublattices remain
locked in their Néel states. Thus there is an angle,φ?, which measures the relative orientation
of the states on the two sublattices. Next we perform aspin-wavecalculation to account for the
thermal perturbations about the ground state with fixedφ?. Although said instructions may have
profound implications in other contexts, for present purposes this simply means “pitch out all
interactions beyond quadratic order and perform the resulting Gaussian integral.” The upshot of
such a calculation is a quantity, thespin-wave free energy, which should then be minimized as a
function ofφ?. As we will see this minimum occurs exactly when the states are either horizontally
or vertically aligned, i.e.,φ?


= 0◦ or φ?
= 180◦.
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The reader may question the moral grounds for the working assumption of finite tempera-
ture Néel order which is the apparent basis of the spin-wave calculation. Of course, the cheap
way out—the final arbitrator—is the fact that herein is a rigorous proof. However, the spin-
wave conclusions are not so difficult to understand. Foremost, we reemphasize the fact that the
outcome is decided purely on the basis of free energetics. A cursory examination of the calcu-
lational mechanics then reveals that in fact only two ingredients are really needed. The first is
that Néel order is present locally—which is certainly true ifβ � 1. The second boils down
to the statement that the thermodynamic properties in these sorts of magnets are unaffected—to
first approximation—if the system is restricted to configurations that have magnetic order. In
particular, the long wave-length excitations which are ultimately responsible for the break-up of
ordering in two dimensions contribute insignificantly to the free energy.


Now let us discuss the historical perspective. The first phase in understanding of these prob-
lems is coming to terms with the degeneracy of the ground-state space. When these situations
arise, there is a selection at finite temperature according to the ability that each state has to harbor
excitations. The simplest cases, namely a finite number of ground states and a small effective
activity (e.g., a large “mass”) for the excitations have been understood by physicists for a long
time and are now the subject of essentially complete mathematical theorems [33, 34, 39]. Many
interesting situations with infinitely many ground states were introduced in late 1970s and early
1980s, e.g., [16, 38]. Here intricate and/or mysterious calculations are invoked to resolve the
degeneracies—often resulting in phantasmagorical phase diagrams, see e.g. [17]—but the upshot
in these situations is pretty much the same. In particular, with excruciating effort, some cases
can now be proclaimed as theorems [6, 9]. However, the cornerstone of any systematic analysis
(either mathematical or physical) is the existence of a substantial gap in the energy spectrum sep-
arating those excitations which resolve the ground-state degeneracy from the excitations that are
readily available to all ground states.


The degenerate ground-state problems look very different for the classicalO(n)-spin models.
Indeed, the continuous nature of the spins in combinations with their internal degrees of freedom
almost inevitably lead to a gapless excitation spectrum. Although this sounds a lot harder, the
necessary computations turn out to be far more palatable. To our knowledge, the first such ex-
ample, studied in [37], was a frustrated FCC antiferromagnet. The system is quite similar to the
one discussed here but with the ordering caused, mostly, by quantum effects. In [23], studying
exactly the model in (1.3), it was firmly established that these techniques also apply to classical
systems. In the present work we will transform these classical finite-temperature derivations into
a mathematical theorem. The proofs are quite tractable; all that is really required are some er-
ror estimates for the Gaussian approximations and a straightforward contour argument. To ease
our way through the latter we will employ the method of chessboard estimates. In some con-
current work [3, 4], a similar analysis is used to resolve some controversies concerning models
of transition-metal oxides. However, in these “TMO-problems,” the ground-state spaces have
additional intricacies so the beauty and simplicity of the method is obscured.


To make our historical perspective complete let us also relate to the existing mathematical work
on systems with continuous spins. A general approach to continuous spins with degeneracies has
been developed in [12, 40]. Here the method of resolution appears to be not terribly dissimilar
to ours; e.g., there are quadratic approximations, Gaussian integrals, etc. However, only a finite
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number of ground states are considered and we suspect that a detailed look at the “curvature con-
ditions” will reveal that again there is a substantial mass gap in the excitation spectrum. Finally,
from an earlier era, there are the methods based on infrared bounds [13,18–20]. However, the re-
flection symmetries required to get these arguments started do not seem to hold in system defined
by (1.3). And even if they did, due to the infrared divergence, this would only provide misleading
evidence—a la Mermin-Wagner—that the model under consideration has no phase transition.


The rest of this paper is organized as follows. In the next section, we define the Gibbs states
and state the main results concerning phase coexistence at low temperatures. The proofs will
come in Sections 3 and 4.


2. MAIN RESULTS


2.1 Gibbs states.


To state our results on phase coexistence in the model under consideration, we will first recall the
concept of infinite-volume Gibbs measures. We begin with finite-volume counterparts thereof,
also known as Gibbs specifications. LetS = (S3, S3c) be a spin configuration whereS3 andS3c


denote the corresponding restrictions to3 and3c, respectively. LetH3(S3, S3c) be the restric-
tion of (1.3) to pairs of sites at least one of which is in3. Then we letµ(S3c)


3 be the measure on
configurations in3 defined by


µ
(S3c)
3 (dS3) =


e−βH3(S3,S3c)


Z3(S3c)
�3(dS3). (2.1)


Here�3 denotes the product Lebesgue measure on the unit circle, one for eachr ∈ 3. Following
the “DLR-philosophy,” see [22], the infinite-volume Gibbs measures are those measures on full
configurations onZ2 whose conditional probability in a finite volume3 given the configuration
in the complement is exactly the object in (2.1).


In accord with the standard terminology, see [22], we will say that there is aphase coexistence
for parametersJ, γ andβ if there exists more than one infinite-volume Gibbs measure for the
interaction (1.3) and inverse temperatureβ. To adhere with mathematical-physics notation, we
will refer to the Gibbs measures asGibbs statesand we will denote the expectations with respect
to such states by symbol〈−〉β .


2.2 Phase coexistence.


Now we are in a position to state the main result of this paper.


Theorem 2.1 Consider the model as defined above with fixed J∈ (0, ∞) andγ ∈ (0, 2). For
eachδ > 0 there exists aβ0 ∈ (0, ∞) and a functionβ 7→ ε(β) satisfyingε(β) → 0 asβ → ∞,
uniformly inγ ∈ [δ, 2(1 − δ)], such that the following holds: For eachβ ≥ β0 there exist two
distinct Gibbs states〈−〉


(x)
β and〈−〉


(y)
β such that∣∣〈Sr · Sr ′〉


(α)
β + 1


∣∣ ≤ ε(β) (2.2)
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wheneverr , r ′ are such that|r − r ′
| =


√
2, and∣∣〈Sr · Sr ′〉


(α)
β − 1


∣∣ ≤ ε(β) (2.3)


wheneverr , r ′ are such thatr ′
= r + êα.


Let us informally describe the previous result. First, on both even and odd sublattice ofZ2 we
have a (local) antiferromagnetic order. The distinction between the two states is that in〈−〉


(x)
β


the nearest-neighbor spins onZ2 are aligned in thex direction and antialigned in they direction,
while in 〈−〉


(y)
β the two alignment directions are interchanged. In particular, it is clear that the


order parameternr , defined in (1.4), has positive expectation in thex-state〈−〉
(x)
β and negative


expectation in they-state〈−〉
(y)
β . Since, as mentioned previously, Gibbsian uniqueness guarantees


that 〈nr 〉β = 0 at sufficiently high temperatures, we have abone fidephase transition of the
“usual” type.


Despite the existence of multiple low-temperature Gibbs states, we emphasize that no claim
has been made about the actual direction that the spins will be aligned to. On the contrary, we
have the following easy corollary of the aforementioned Mermin-Wagner theorem:


Theorem 2.2 Consider the model as defined above with J, γ ∈ R fixed and let〈−〉β be any
infinite-volume Gibbs state at inverse temperatureβ. Then〈−〉β is invariant under the simulta-
neous rotation of all spins and, in particular,〈Sr 〉β = 0 for all r ∈ Z2.


The authors do not see any significant obstruction of Theorem 2.1 (appropriately modified) in
the casesn > 2 andd > 2. For the case under consideration, namely,n = 2 andd = 2, it
may be presumed that there is a slow decay of correlation at sufficiently low temperatures. Here
it is conceivable that, with great effort, this could be proved on the basis of technology that is
currently available [21]. The anticipation is that ford ≥ 3 andn ≥ 2 there are actual sublattice
Neél states while ford = 2 andn > 2 the decorrelations should be exponential. However, we do
not expect to see a proof of any statement along these lines in the near future.


3. SPIN-WAVE CALCULATIONS


The underpining of our proof of the main result is (the outcome of) the spin-wave free-energy
calculations—all relevant objects will be defined shortly. This calculation involves simply work-
ing with the harmonic approximation to the Hamiltonian (1.3) for deviations from a fixed ground
state. The calculation itself is straightforward although special attention must be paid to the “zero
mode.” For reasons that will become clear in Section 4—and also to make discrete Fourier trans-
form readily available—all of the derivations in this section will be carried out on the lattice
torusTL of L × L-sites. Here, for simplicity, we will takeL to be a multiple of four so that we
can assure an equal status of the two Neél states.


3.1 Harmonic approximation.


We will begin by an explicit definition of the torus Hamiltonian. Here and henceforth we will
parametrize the spins by angular variablesθθθθθθθθθθθθθθ = (θr ) which are related to theSr ’s by the usualSr =
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(cosθr , sinθr ). (Of course, theθr ’s are always to be interpreted only modulo 2π .) Up to irrelevant
constants, the corresponding torus HamiltonianHL can then be written as


HL(θθθθθθθθθθθθθθ) = J
∑
r∈TL


{
2 + cos(θr − θr+êx+êy) + cos(θr − θr+êx−êy)


}
+ Jγ


∑
r∈TL


{
cos(θr − θr+êx) + cos(θr − θr+êy)


}
. (3.1)


The spin-wave calculations are only meaningful in the situations where each of the sublattices is
more or less aligned with a particular Neél state. To describe the overall and relative orientation
of the spins on the even and odd sublattices we will need two anglesθ ? andφ?, respectively.
Depending on the parities of the coordinates ofr , we will write theθr for r = (x, y) in terms of
thedeviation variablesϑr as follows:


θr = ϑr +



θ ?, x, y-even,


θ ?
+ φ?, x-odd,y-even,


θ ?
+ π, x, y-odd,


θ ?
+ φ?


+ π, x-even,y-odd.


(3.2)


Obviously, only the relative angleφ? will appear in physically relevant quantities; the overall
orientationθ ? simply factors out from all forthcoming expressions.


The principal object of interest in this section is the finite-volume free energy, which will play
an important role in the estimates of “entropically-disfavored” situations in Section 4. For reasons
that will become clear later, we will define this quantity by the formula


FL ,1(φ?) = −
1


L2
log


∫
e−βHL (θθθθθθθθθθθθθθ)χL ,1(θθθθθθθθθθθθθθ)


∏
r∈TL


dθr
√


2πβ J
. (3.3)


HereχL ,1(θθθθθθθθθθθθθθ) is the indicator that the deviation quantitiesϑϑϑϑϑϑϑϑϑϑϑϑϑϑ , defined fromθθθθθθθθθθθθθθ as detailed in (3.2),
satisfy|ϑr | < 1 for all r ∈ TL . The factors of


√
2πβ J have been added for later convenience.


The goal of this section is to (approximately) evaluate the thermodynamic limit of the quan-
tity FL ,1(φ?) and characterize where it achieves its minima. As is standard in heuristic cal-
culations of this sort, we will first replace the Hamiltonian (3.1) by its appropriate quadratic
approximation. We will express the resulting quantity directly in variablesϑr :


IL ,φ?(ϑϑϑϑϑϑϑϑϑϑϑϑϑϑ) =
β J


2


∑
r∈TL


{
(ϑr − ϑr+êx+êy)


2
+ (ϑr − ϑr+êx−êy)


2
}


+
β J


2
γ cos(φ?)


∑
r∈TL


{
(ϑr − ϑr+êx)


2
+ (ϑr − ϑr+êy)


2
}
. (3.4)


This transformation turns the integral in (3.3) into a Gaussian integral. As we will see later, here
the indicator in (3.3) can be handled in terms of upper and lower bounds which allow “diago-
nalization” of the covariance matrix by means of Fourier variables. The result, expressed in the
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limit L → ∞, is the following momentum integral:


F(φ?) =
1


2


∫
[−π,π ]2


dk
(2π)2


log Dk(φ
?), (3.5)


where


Dk(φ
?) = |1 − ei(k1+k2)|


2
+ |1 − ei(k1−k2)|


2
+ γ cos(φ?)


(
|1 − eik1|


2
− |1 − eik1|


2
)
. (3.6)


Herek1 andk2 are the Cartesian components of vectork. The quantityF(φ?) has the interpre-
tation—justified via the preceding derivation—as thespin-wave free energy. As is checked by
direct calculation,Dk(φ


?) is positive for allk 6= 0 as long asγ ∈ [0, 2).


Having sketched the main strategy and defined the relevant quantities, we can now pass to the
statements of (admittedly dry) mathematical theorems. First, we express the conditions under
which the above approximate calculation can be performed:


Theorem 3.1 Givenε > 0 andγ ∈ [0, 2), there existsδ = δ(ε, γ) > 0 such that ifβ J , 1 andδ
satisfy the bounds


β J13
≤ δ and β J12


≥ 1/δ, (3.7)


then


lim sup
L→∞


∣∣FL ,1(φ?) − F(φ?)
∣∣ ≤ ε (3.8)


holds for everyφ?
∈ (−π, π ].


The proof of postponed to Section 3.2. Having demonstrated the physical meaning of the
functionφ?


7→ F(φ?), we can now characterize its absolute minimzers:


Theorem 3.2 For all J ∈ (0, ∞), all γ ∈ (0, 2), the absolute minima of functionφ?
7→ F(φ?)


occur (only) at the pointsφ?
= 0◦ andφ?


= 180◦.


Proof. The proof is an easy application of Jensen’s inequality. Indeed, leta ∈ [0, 1] be the
number such that 2a − 1 = cos(φ?). Then we can write


Dk(φ
?) = aDk(0


◦) + (1 − a)Dk(180◦). (3.9)


SinceDk(0◦) is not equal toDk(180◦) almost surely with respect to dk (this is where we need
thatγ > 0), the concavity of the logarithm and Jensen’s inequality imply thatF(φ?) > aF(0◦)+


(1 − a)F(180◦) whenevera 6= 0, 1. This shows that the only absolute minima thatF can have
are 0◦ and 180◦. Now F is continuous (under the assumption thatγ < 2) and periodic, and so
there exists at least one point in(−π, π ] where it attains its absolute minimum. ButF(0◦) =


F(180◦) and soφ?
7→ F(φ?) is minimized by bothφ?


= 0◦ andφ?
= 180◦. �


3.2 Proof of Theorem 3.1.


Throughout the proof we will fixJ ∈ (0, ∞) andγ ∈ [0, 2) and suppress these from our notation
whenever possible. Since everything is founded on harmonic approximation of the Hamiltonian,
the starting point is some control of the error that this incurs:
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Lemma 3.3 There exists a constant c1 ∈ (0, ∞) such that the following holds: For any1 ∈


(0, ∞), anyθ ?, φ?
∈ (−π, π ] and any configurationθθθθθθθθθθθθθθ = (θr ) of angle variables onTL , if the


correspondingϑϑϑϑϑϑϑϑϑϑϑϑϑϑ = (ϑr ) satisfy|ϑr | < 1 for all r ∈ TL , then∣∣βHL(θθθθθθθθθθθθθθ) − IL ,φ?(ϑϑϑϑϑϑϑϑϑϑϑϑϑϑ)
∣∣ < c1(1 + γ)β J13L2. (3.10)


Proof. We begin by noting that|ϑr | < 1 for all r ∈ TL implies that|ϑr − ϑr ′ | < 21 for all pairs
of nearest and next-nearest neighborsr , r ′


∈ TL . This and the uniform bound∣∣∣ cos(a + x) −
(
cos(a) − sin(a)x −


1
2 cos(a)x2


)∣∣∣ ≤
|x|


3


6
, (3.11)


show that, at the cost of an error as displayed in (3.10), we can replace all trigonometric factors
in (3.1) by their second-order Taylor expansion in differences ofϑr . Hence, we just need to show
that these Taylor polynomials combine into the expression forIL ,φ? .


It is easily checked that the zeroth order Taylor expansion inϑr exactly vanishes. This is a
consequence of the fact that forϑϑϑϑϑϑϑϑϑϑϑϑϑϑ ≡ 0 we are in a ground state where, as argued before, both
sublattices can be independently rotated. This means we can suppose thatθ ?


= φ?
= 0◦ in (3.1)


at which point it is straightforward to verify thatHL(θθθθθθθθθθθθθθ) actually vanishes. Similarly easy it is to
verify that the quadratic terms yield exactly the expression forIL ,φ? . It thus remains to prove
that there are no linear terms inϑr ’s.


First we will note that all next-nearest neighbor terms in the Hamiltonian certainly have this
property because there we haveθr − θr+êx±êy ≈ 0 or π , at which points the derivative of the
cosine vanishes. Hence we only need to focus on the nearest-neighbor part of the Hamiltonian—
namely, the second term in (3.1)—which we will denote byH nn


L . Here we will simply calculate
the derivative ofH nn


L with respect toϑr :


∂


∂ϑr
H nn


L (θθθθθθθθθθθθθθ)
∣∣∣
ϑϑϑϑϑϑϑϑϑϑϑϑϑϑ≡0


= sin(θr+êx − θr ) + sin(θr+êy − θr )


−
{
sin(θr − θr−êx) + sin(θr − θr−êy)


}
, (3.12)


where theθr on the right-hand side should be set to the “ground-state” values. To make the
discussion more explicit, suppose thatr has both coordinates even. Then an inspection of (3.2)
shows that the first sine is simply sin(φ?) while the second sine evaluates to sin(φ?


+ π) =


− sin(φ?). The net contribution of these two terms is thus zero. Similarly, the third and the four
sine also cancel out. The other possibilities forr are handled analogously. �


Using the harmonic approximation of the Hamiltonian, let us now consider the corresponding
Gaussian equivalent of the integral in (3.3):


QL ,1(φ?) =


∫
e−IL ,φ? (ϑϑϑϑϑϑϑϑϑϑϑϑϑϑ)χ̃L ,1(ϑϑϑϑϑϑϑϑϑϑϑϑϑϑ)


∏
r∈TL


dϑr
√


2πβ J
, (3.13)


whereχ̃L ,1(ϑϑϑϑϑϑϑϑϑϑϑϑϑϑ) is the indicatorχL ,1(θθθθθθθθθθθθθθ) expressed explicitly in terms of the variablesϑϑϑϑϑϑϑϑϑϑϑϑϑϑ . Our next
goal is to evaluated the effect of this indicator, which we will accomplish by proving an upper
and lower bound onQL ,1(φ?). We begin with the easier of the two, the upper bound:
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Lemma 3.4 For all β ∈ (0, ∞), all 1 ∈ (0, ∞) and allφ?
∈ (−π, π ],


lim sup
L→∞


log QL ,1(φ?)


L2
≤ −F(φ?). (3.14)


Proof. The argument is relatively straightforward; a more verbose argument along these lines can
be found in [3], so we will be correspondingly brief. Pick aλ > 0. We will invoke the exponential
Chebyshev inequality in the form


χ̃L ,1(ϑϑϑϑϑϑϑϑϑϑϑϑϑϑ) ≤ eβ Jλ1L2
exp


{
−β Jλ


∑
r∈TL


|ϑr |
2
}
. (3.15)


Next we plug this bound into (3.13), diagonalizeIL ,φ? by passing to the Fourier components
ϑ̂k = L−1 ∑


r∈TL
ϑr eir ·k and perform the Gaussian integrals with the result


QL ,1(φ?) ≤ eβ Jλ1L2 ∏
k∈T?


L


1


[λ + Dk(φ?)]1/2
. (3.16)


HereT?
L = {2π L−1(n1, n2) : ni = 1, 2, . . . , L} is the reciprocal lattice andDk(φ


?) is as defined
in (3.6). The result now follows by taking logarithm, dividing byL2 and invoking the limitsL →


∞ followed byλ ↓ 0—with the last limit justified by the Monotone Convergence Theorem.�


The corresponding lower bound is then stated as follows:


Lemma 3.5 For all β ∈ (0, ∞), all 1 ∈ (0, ∞), all φ?
∈ (−π, π ] and all λ > 0 satisfying


β J12λ > 1, we have


lim inf
L→∞


log QL ,1(φ?)


L2
≥ −F(φ?, λ) + log


(
1 −


1


β J12λ


)
. (3.17)


where F(φ?, λ) is given by the same integral as in(3.5)with Dk(φ
?) replaced byλ + Dk(φ


?).


Proof. Again, we will be fairly succinct. Letλ > 0. We begin by considering the Gaussian
measure defined by


Pλ(dϑϑϑϑϑϑϑϑϑϑϑϑϑϑ) =
1


QL(φ?, λ)
exp


{
−IL ,φ?(ϑϑϑϑϑϑϑϑϑϑϑϑϑϑ) − β Jλ


∑
r∈TL


|ϑr |
2
} ∏


r∈TL


dϑr
√


2πβ J
(3.18)


where QL(φ?, λ) is an appropriate normalization constant. LetEλ denote the corresponding
expectation. As a moment’s thought reveals, we have


QL ,1(φ?) ≥ QL(φ?, λ)Eλ(χ̃1,L), (3.19)


which reduces the desired estimates to two items: a calculation of the integralQL(φ?, λ) and a
lower bound onEλ(χ̃1,L).


The first problem on the list is dispensed with similarly as in the proof of Lemma 3.4, so we
just state the result:


lim
L→∞


log QL(φ?, λ)


L2
= −F(φ?, λ). (3.20)


As far as the second item on the list is concerned, here we use that by [5] the magnitudes of the
Gaussian field with distribution (3.18) are positively correlated. (An alternative approach uses
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reflection positivity.) Invoking the product structure ofχ̃1,L and translation invariance ofPλ, we
thus have


Eλ(χ̃1,L) ≥ Pλ


(
|ϑ0| < 1


)L2


, (3.21)


whereϑ0 is the variable at the origin of the torus.
It remains to boundPλ(|ϑ0| < 1) from below, which we will do by estimating the comple-


mentary probability from above. We will pass to the Fourier componentsϑ̂k defined as in the
proof of Lemma 3.4. Under the measure (3.18), these components have zero mean, the ran-
dom variableŝϑk and ϑ̂k′ for different k andk′ are uncorrelated, while for the autocorrelation
function we get


Eλ


(
|ϑ̂k|


2
)


=
1


β J


1


λ + Dk(φ?)
≤


1


β Jλ
. (3.22)


This allows us to use the (quadratic) Chebyshev inequality to derive


Pλ(|ϑ0| ≥ 1) ≤
Eλ(|ϑ0|


2)


12
=


1


L2


∑
k∈T?


L


Eλ(|ϑ̂k|
2)


12
≤


1


β J12λ
. (3.23)


Inserting this into (3.21) and applying (3.19) and (3.20), the rest of the proof boils down to taking
logs, dividing byL2 and lettingL → ∞. �


Now we are ready to prove the principal approximation theorem:


Proof of Theorem 3.1.We just assemble together the previously discussed ingredients. First, by
Lemma 3.3 we have the uniform bound∣∣∣ log QL ,1(φ?)


L2
− FL ,1(φ?)


∣∣∣ ≤ c1(1 + γ)β J13. (3.24)


Second, Lemmas 3.4-3.5 ensure that


lim sup
L→∞


∣∣∣ log QL ,1(φ?)


L2
− F(φ?)


∣∣∣ ≤
∣∣F(φ?) − F(φ?, λ)


∣∣ + log
(
1 −


1


β J12λ


)
. (3.25)


By the assumptions in (3.7), given anε > 0 we can chooseδ > 0 such that the right-hand side
of (3.24) is smaller thanε/2. On the other hand, sinceF(φ?, λ) increases toF(φ?) asλ ↓ 0 and
sinceβ12


≥ 1/δ, we can certainly choose aλ > 0 (satisfyingβ J12λ > 1) and adjustδ such
that also the right-hand side of (3.25) is less thanε/2. Combining these observations, the desired
bound (3.8) is proved. �


Remark 1. Physically motivated readers will notice that in both Lemmas 3.4 and 3.5 we have
introduced a “mass” into the spin-wave spectrum before (or while) removing the indicatorχ̃L ,1.
The primary reason for this is the bad behavior of the zero Fourier mode for which the “spin-wave
Hamiltonian”IL ,φ? provides no decay in the Gaussian weight.


4. PROOF OF PHASE COEXISTENCE


Having discussed the spin-wave approximations (which are quintessential for the arguments in
this section), we are now ready to start with the proof of phase coexistence. Our basic tool in this
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section will be the chessboard estimates, so we will begin by introducing the notation needed for
applications of this technique.


4.1 Chessboard estimates.


As mentioned previously, in order use chessboard estimates, for technical reasons, we have to
confine our technical considerations to toroidal geometries. Again we will useTL to denote the
torus of L × L sites. We will consider several events which will all take place in a box3B


of (B+1)× (B+1) sites (which, for definiteness, we will assume to be placed with its lower-left
corner at the torus “origin”). Since we want to be able to coverTL by translates of3B, we will
assume thatL is an integer multiple ofB. Thus, ifA is an event in3B, then its translate byt1B
lattice units in thex-direction andt2B units in they-lattice direction will be denoted byτt(A),
wheret = (t1, t2). Heret takes values in a factor torus, namely,t ∈ TL/B. Note that events in the
“neighboring” translates of3B may both depend on the shared side of the corresponding boxes.


Let PL ,β denote the Gibbs measure onTL defined from the appropriate torus version of the
Hamiltonian (1.3) and inverse temperatureβ. Specifically, using the spin-version of the Hamil-
tonian (3.1), the Radon-Nikodym derivative ofPL ,β with respect to thea priori spin measure�TL


is e−βHL (S)/ZL ,β , whereZL ,β is the partition function. The statement of the chessboard estimates
will be considerably easier if we restrict our attention to reflection symmetric events, which are
thoseA for which S ∈ A implies that the corresponding reflectionS? through any coordinate
plane passing through the center of3B satisfiesS?


∈ A. For these events we will also define the
constrained partition function


ZL ,β(A) = ZL ,β


〈 ∏
t∈TL/B


1τt(A)


〉
L ,β


. (4.1)


Here1τt(A) is the indicator ofτt(A) and〈−〉L ,β denotes the expectation with respect toPL ,β .


Then we have:


Theorem 4.1(Chessboard estimates)Consider the thermal measurePL ,β as defined above. Let
A1, . . . ,Am be a collection of (not necessarily distinct) reflection-symmetric events in3B and
let t1, . . . , tm be distinct vectors fromTL/B. Then


PL ,β


( m⋂
j =1


τt j (A j )
)


≤


m∏
j =1


( ZL ,β(A j )


ZL ,β


)(B/L)2


. (4.2)


Proof. This is the standard chessboard estimate implied by the reflection positivity condition
[18–20]. Here we consider reflection positivity in planes “through” sites, which holds in our case
because we have only nearest and next-nearest neighbor interactions. �


Unfortunately, as often happens with chessboard estimates, we may not be able to estimate
directly the quantityZL ,β(A) for the desired event under consideration. Instead, we will decom-
poseA into a collection of more elementary events for which this estimation is easier. Here
chessboard estimates can be used to establish the following standard (and often implicitly used)
subadditivity property:
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Lemma 4.2(Subadditivity) Let the torusTL and the block3B be as above and let us consider
reflection-symmetric eventsA and(Ak)k∈K in 3B. If A ⊂


⋃
k∈K Ak, then


ZL ,β(A)(B/L)2
≤


∑
k∈K


ZL ,β(Ak)
(B/L)2


. (4.3)


Proof. See, e.g., Lemma 6.3 in [3]. �


Our succinct recount of the chessboard estimates is now complete. Readers wishing to obtain
more details on this and related topics are referred to (still succinct) Section 6.1 of [3] or the
classic references [18–20] and [36].


4.2 Good and bad events.


Here we introduce the notion of good and bad blocks and events. Roughly speaking, a block
is good if all spins on both sublattices are tollerably close to a Neél state and where the relative
orientation of the two Néel states is near one of the two optimal values predicted by the spin-wave
approximation. The bad blocks will of course be all those that are not good. Both these notions
will involve two parameters: the spin-deviation scale1 encountered already in Section 3, and the
scaleκ marking the distance to a spin-wave minimum which is still considered good. We will
keepκ small but fixed, while1 will have to be decreased (and the block scaleB will have to be
increased, albeit only slowly) asβ goes to infinity.


The precise definition is as follows:


Definition 1 We say that a translate of3B by Bt, t ∈ TL/B, is agood block, or that thegood
blockevent occurred in this translate if there exist two anglesθ ? andφ? such that:


(1) The angleφ? satisfies either|φ?
| ≤ κ or |φ?


− 180◦
| ≤ κ.


(2) The collection of deviation anglesϑϑϑϑϑϑϑϑϑϑϑϑϑϑ = (ϑr ) defined from the angle variablesθθθθθθθθθθθθθθ = (θr ) and
the anglesθ ? andφ? via (3.2) obeys


|ϑr | < 1 (4.4)


for all r ∈ TL .


Let G0 be the notation for good-block event withφ?
≈ 0◦ and letG180 be the good-block event


for φ? in theκ-neighborhood of 180◦. The bad-block event will be denoted byB. We remark that
all these events depend only on the spin configuration (angle variables) in3B.


Our goal is to use chessboard estimates to show that, with overwhelming probability, any given
block is good and that, if one block is good with a known type of goodness, any other given block
(regardless of the spatial separation) will exhibit the same type of goodness. As it turns out, on the
basis of Theorem 4.1, both of these will boil down to an efficient estimate of the quantityZL ,β(B)
defined in Section 4.1. Unfortunately, here we will have to introduce a further partitioning: We
letBE denote the event that, for somenext-nearestneighbor pairr , r ′


∈ 3B, we have∣∣|θr − θr ′ | − π
∣∣ ≥


1


2B
. (4.5)
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This event marks the presence of an energetic “catastrophy” somewhere in the block. As we will
see, the complementary part ofB,


BSW = B \ BE (4.6)


denotes the situations where the energetics—and the spin-wave approximation—are good but
where the configuration is not particularly near either of the spin-wave free-energy minima.


The eventBSW will be further split according to the relative angle between the two near-Neél
states on even and odd sublattices. Specifically, we letφ?


i , i = 1, . . . , s, bes angles uniformly
spaced on the unit circle. Then we letB(i )


SW denote the event that the block3B is bad but such that
there exists an angleθ ? for which the deviation anglesϑϑϑϑϑϑϑϑϑϑϑϑϑϑ = (ϑr ) defined usingθ ? andφ?


= φ?
i


satisfy|ϑr | < 1 at eachr ∈ 3B. (Note that the second part is essentially the definition of the
good block with part (1) in Definition 1 replaced byφ?


= φ?
i .) It remains to show that theB(i )


SW
indeed coverBSW:


Lemma 4.3 Let s be such that s1 > 4π . Then


BSW ⊆


s⋃
i =1


B(i )
SW. (4.7)


Proof. Consider a configuration of angle variablesθθθθθθθθθθθθθθ = (θr ) such thatBSW occurs. Since this
rules out the occurrence ofBE, we have


π − 1/(2B) < |θr − θr ′ | < π + 1/(2B) (4.8)


for any next-nearest neighbor pairr , r ′
∈ 3B. But any two sites on the even sublattice in3B can


be reached in less thanB steps and soθr ′ for any evenr ′
∈ 3B is within 1/2 of θ0 or θ0 + π ,


depending on the parity ofr ′ in the sublattice. Hence, the overall deviations from the appropriate
Neél state in directionθ ?


= θ0, whereθ0 is the variable at the torus “origin,” are not more
than1/2 throughout the even sublattice. Similar considerations apply to the odd sublattice where
we use the positivex-neighbor of the origin to define the angleθ ?


+ φ?.
It remains to show that the above implies that the spin configuration is contained in one of


the eventsB(i )
SW. Let i = 1, . . . , s be the unique index such thatφ?


i ≤ φ? < φ?
i +1, whereφ?


r +1
is to be interpreted asφ?


1. Then|φ?
− φ?


i | < 2π/s which by our assumption is less than1/2.
Consequently, all spins on the even sublattice are within1 of eitherθ ? or θ ?


+ π , depending on
the parity, while those on the odd sublattice are within1 of eitherθ ?


+ φ?
i or θ ?


+ φ?
+ π , again


depending on the parity. In particular, the eventB(i )
SW occurs, thus proving (4.7). �


4.3 Proofs of Theorems 2.1 and 2.2.


As alluded to in the paragraph before (4.5), the computational part of the proof boils down to
estimates of the partition functions for eventsBE andBSW. These will be provided in next two
lemmas. We begin with the eventBE:
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Lemma 4.4 There existsδ > 0 and constants c2, c3 ∈ (0, ∞) such that ifβ ∈ (0, ∞) and
1 ∈ (0, 1) satisfy the bounds(3.7), then we have


lim sup
L→∞


( ZL ,β(BE)


ZL ,β


)(B/L)2


≤ 2B2(c3β J)B2/2e−c2(β J)12/B2
. (4.9)


Proof. WhenBE occurs, the exists a next-nearest neighbor bond in3B where the associated
angle variables satisfy (4.5). An easy calculation shows that the energy originating from such a
bond to the Hamiltonian in (3.1)—which gives zero energy to the Neél ground states—exceeds
the J-multiple of


1 + cos
(
π −


1
2B


)
= 2 sin2


(
1
2B


)
. (4.10)


Bounding the sine by a linear function, which is justified because1/B ≤ π/2, the right-hand
side is not less than a numerical constant times(1/B)2. We thus get


ZL ,β(BE)(B/L)2
≤ 2B2e−c2(β J)12/B2


, (4.11)


wherec2 ∈ (0, ∞) is a constant and where 2B2 counts the number of ways to choose the “excited”
bond in each translate of3B.


Our next task is to derive a lower bound on the full partition function. A simple way to get such
a bound is to insert the indicator that all angle variablesθr are within1 of one of the spin-wave
free energy minima, say, 0◦. This gives


ZL ,β ≥ (2πβ J)L2/2e−L2FL ,1(0◦), (4.12)


whereFL ,1 is as in (3.3). Fixε > 0 and letδ > 0 be as in Theorem 3.1. Then our assumptions
onβ, 1 andδ and the conclusion (3.5) tell us that


lim inf
L→∞


(ZL ,β)1/L2
≥ (2πβ J)1/2e−F(0◦)−ε . (4.13)


Let us write the right-hand side as(c3β J)1/2, wherec3 is a positive constant independent ofβ
and1. Raising this bound to theB2 power and combining it with (4.11) the bound (4.9) is now
proved. �


Next we will attend to the eventBSW:


Lemma 4.5 For eachκ � 1 and eachγ ∈ (0, 2) there exist numbersρ(κ) > 0 andδ > 0 such
that if 1 � κ and ifβ J and1 satisfy the bound(3.7), then


lim sup
L→∞


( ZL ,β(BSW)


ZL ,β


)(B/L)2


≤ 8π1−1e−ρ(κ)B2
. (4.14)


Moreover,ρ(κ) is bounded uniformly from zero on any compact interval ofγ in (0, 2).


Proof. Let φ?
i , i = 1, . . . , s, be s angles uniformly spaced on the unit circle. Suppose thats


and1 satisfy 4π < s1 < 8π . In light of the decomposition (4.7) subadditivity property from
Lemma 4.2, it suffices to show that, under the conditions of the lemma,


lim sup
L→∞


( ZL ,β(B(i )
SW)


ZL ,β


)(B/L)2


≤ e−ρ(κ)B2
(4.15)
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for everyi = 1, . . . , s.
First we note that forφ?


i nearer thanκ − 1 to either 0◦ or 180◦ we automatically haveB(i )
SW ⊂


G0 ∩ G180. But thenB(i )
SW = ∅ because the eventB(i )


SW is a subset ofB. By our assumption
that1 � κ we just need to concentrate only oni = 1, . . . , s such thatφ?


i is at least, say,κ/2
from 0◦ or 180◦. Here we will use thatZL ,β(B(i )


SW) is exactly the(2πβ J)−L2/2 multiple of the
integral in (3.3) withφ?


= φ?
i , while ZL ,β can be bounded from below by a similar quantity


for φ?
= 0◦, i.e., ( ZL ,β(B(i )


SW)


ZL ,β


)1/L2


≤ exp
{
−FL ,1(φ?


i ) + FL ,1(0◦)
}
. (4.16)


Let now ε > 0—whose size is to be determined momentarily—and choose aδ > 0 so that
Theorem 3.1 holds. Then the quantitiesFL ,1(φ?) on the right-hand side are, asymptotically
asL → ∞, to within ε of the actual spin-wave free energy. Hence, we will have


lim sup
L→∞


( ZL ,β(B(i )
SW)


ZL ,β


)1/L2


≤ exp
{
−F(φ?


i ) + F(0◦) + 2ε
}
. (4.17)


This proves (4.10) withρ(κ) given as the minimum ofF(φ?
i ) − F(0◦) − 2ε over all relevanti .


Next we recall that Theorem 3.2 guarantees thatF(φ?) is minimized only byφ?
= 0◦, 180◦.


Since all of the relevantφ?
i are bounded away from these minimizers by at leastκ/2, choosing


ε = ε(κ) > 0 sufficiently small impliesρ(κ) > 0 as desired. The uniform bound onρ(κ)
originates from the fact thatF(φ?


i ) − F(0◦) is uniformly positive as long asγ is bounded away
from 0 and 2. These facts are implied by Theorem 3.2 and the continuity ofF(φ?). �


Now we are ready to prove our main result:


Proof of Theorem 2.1.As usual, the desired Gibbs states will be extracted from the torus mea-
surePL ,β defined in Section 4.1. Throughout the proof we will letβ be sufficiently large and
let 1 scale as a power ofβ with exponent strictly between 1/4 and 1/6, andB grow slower than
any power ofβ, e.g., as in


1 = β
5
12 and B = logβ. (4.18)


We note that these relations ensure the validity of the bounds (3.7) and thus make the bounds in
Lemmas 4.4-4.5 readily available.


First we will show that in any typical configuration fromPL ,β most blocks are good. LetηL


denote the sum of the ratios on the left-hand side of (4.9) and (4.14), i.e.,


ηL =


( ZL ,β(BE)


ZL ,β


)(B/L)2


+


( ZL ,β(BSW)


ZL ,β


)(B/L)2


, (4.19)


and letη = lim supL→∞ ηL . By Theorem 4.1 and Lemma 4.2, the probability of a good block is
then asymptotically in excess of 1− η. On the basis of Lemmas 4.4-4.5,η is bounded by the sum
on the right-hand sides of (4.9) and (4.14) which under the assumptions from (4.18) can be made
as small as desired by increasingβ appropriately.


It remains to show that blocks with distinct types of goodness are not likely to occur in one
configuration. To this end let us first observe that, onceκ is small, no block can simultaneously
satisfy both eventsG0 andG180. Since neighboring blocks share a line of sites, this immediately
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implies that in any given connected component of good blocks the type of goodness is homo-
geneous throughout the component. (Here the notion of connectivity is defined viaTL/B, i.e.,
blocks sharing a line of sites in common, but other definitions would work as well.) We conclude
that two blocks exhibiting distinct types of goodness must be separated by a closed surface (here
∗-connected) consisting of bad blocks.


We will now employ a standard Peierls’ estimate. For anyt ∈ TL/B the eventG0 ∩ τt(G180)
is contained in the union of events that their respective blocks are separated by a∗-connected
surface involving, say,m bad blocks. Using our choice ofη, Lemma 4.2 and Theorem 4.1, the
probability of any surface of this size is bounded byηm. Estimating the number of such surfaces
by cm, for some sufficiently largec < ∞, and noting thatm is at least 4, we get


PL ,β


(
G0 ∩ τt(G180)


)
≤


∑
m≥4


(cη)m. (4.20)


We note that the right-hand side tends to zero asη ↓ 0.
Thus, informally, not only are most blocks good, but most of them are of particular type of


goodness. To finish the argument, we can condition on a block farthest from the origin to be,
say, ofG180-type. This tells us, uniformly inL, that with overwhelming probability the block
at the origin is of typeG180 and similarly for the other type of goodness. The conditional state
still satisfies the DLR condition for subsets not intersecting the block at the “back” of the torus.
Taking the limit L → ∞ establishes the existence of two distinct infinite-volume Gibbs states
which clearly satisfy (2.2–2.3) withε(β) directly related toη. �


Proof of Theorem 2.2.This is, of course, just a Mermin-Wagner theorem. Indeed, the Hamil-
tonian (1.3) satisfies the hypotheses of, e.g., Theorem 1 in [25], which prohibits breaking of any
continuous symmetry of the model. �
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[24] P. Holický and M. Zahradńık, Stratified low temperature phases of stratified spin models: A general Pirogov-
Sinai approach, mp-arc 97-616.


[25] D. Ioffe, S. Shlosman and Y. Velenik,2D models of statistical physics with continuous symmetry: The case of
singular interactions, Commun. Math. Phys.226(2002), no. 2, 433–454.


[26] S.A. Kivelson, E. Fradkin and V.J. Emery,Electronic liquid-crystal phases of a doped Mott insulator, Nature
393(1998) 550–553.


[27] J.M. Kosterlitz and D.J. Thouless,Ordering, metastability and phase transitions in two-dimensional systems,
J. Phys. C: Solid State Phys.6 (1973) 1181-1203.
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