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Abstract


A general geometrical framework of nonequilibrium thermodynamics is devel-


oped. The notion of macroscopically de�nable ensembles is developed. The thesis


about macroscopically de�nable ensembles is suggested. This thesis should play the


same role in the nonequilibrium thermodynamics, as the Church-Turing thesis in


the theory of computability. The primitive macroscopically de�nable ensembles are


described. These are ensembles with macroscopically prepared initial states. The


method for computing trajectories of primitive macroscopically de�nable nonequi-


librium ensembles is elaborated. These trajectories are represented as sequences of


deformed equilibrium ensembles and simple quadratic models between them. The


primitive macroscopically de�nable ensembles form the manifold in the space of en-


sembles. We call this manifold the �lm of nonequilibrium states. The equation for


the �lm and the equation for the ensemble motion on the �lm are written down.


The notion of the invariant �lm of non-equilibrium states, and the method of its


approximate construction transform the the problem of nonequilibrium kinetics into


a series of problems of equilibrium statistical physics. The developed methods al-


low us to solve the problem of macro-kinetics even when there are no autonomous


equations of macro-kinetics.
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Introduction


The goal of this paper is to discuss the nonlinear problems of irreversibility, and to revise


the previous attempts to solve them. The interest to the problem of irreversibility persists


during decades. It has been intensively discussed in the past, and nice accounts of these


discussions can be found in the literature (see, for example, [1, 2, 4, 3]). Here, we intend


to develop a more geometrical viewpoint on the subject. The paper consists of two


parts. First, in section 1, we discuss in an informal way the origin of the problem, and


demonstrate how the basic constructions arise. Second, in section 2, we give a consistent


geometric formalization of these constructions. Our presentation is based on the notion of


the natural projection introduced in section 3. We discuss in detail the method of natural


projector as the consistent formalization of Ehrenfest's ideas of coarse-graining.


In section 3.2 we introduce a one-dimensional model of nonequilibrium states. In the


background of many derivations of nonequilibrium kinetic equations there is present the


following picture: Above each point of the quasiequilibrium manifold there is located a


huge subspace of nonequilibrium distributions with the same values of the macroscopic


variables, as in the quasiequilibrium point. It is as if the motion decomposes into two


projections, above the point on the quasiequilibrium manifold, and in the projection on


this manifold. The motion in each layer above the points is highly complicated, but fast,


and everything quickly settles in this fast motion.


However, upon a more careful looking into the motions which start from the quasiequi-


librium points, we will observe that, above each point of the quasiequilibrium manifold


it is located just a single curve, and all the nonequilibrium (not-quasiequilibrium) states


which come into the game form just a one-dimensional manifold.


The novel approach developed in section 3 allows to go beyond limitations of the short


memory approximations through a study of stability of the quasiequilibrium manifold.


The one-dimensional models of nonequilibrium states form a �lm of nonequilibrium


states over the quasiequilibrium manifold. In section 4 we present a collection of methods


for the �lm construction. One of the bene�ts from this new technic is the possibility to


solve the problem of macro-kinetic in cases when there are no autonomous equations of


macro-kinetic for moment variables. The notion of the invariant �lm of non-equilibrium


states, and the method of its approximate construction transform the the problem of


nonequilibrium kinetics into a series of problems of equilibrium statistical physics. To


describe a dynamics of nonequilibrium ensemble one should �nd series of deformed equi-


librium ensembles.


In Appendix a short presentation of the method of invariant manifold for kinetic


problems is given.


The most important results of the paper are:


1. The notion of macroscopically de�nable ensembles is developed.


2. The primitive macroscopically de�nable ensembles are described.
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3. The method for computing trajectories of primitive macroscopically de�nable nonequi-


librium ensembles is elaborated. These trajectories are represented as series of de-


formed equilibrium ensembles and simple quadratic models between them.


Let us give here an introductory description of these results.


The notion of macroscopically de�nable ensembles consists of three ingredients:


1. Macroscopic variables, the variables which values can be controlled by us;


2. Quasiequilibrium state, the conditional equilibrium state for �xed values of the


macroscopic variables;


3. Natural dynamics of the system.


We use the simplest representation of the control: For some moments of time we


�x some values of the macroscopic variables (of all these variables, or of part of them;


for the whole system, or for macroscopically de�ned part of it; the current \natural", or


some arbitrary value of these variables), and the system obtains corresponding conditional


equilibrium state. We can also keep �xed values of some macroscopic variables during a


time interval.


These control operations are discrete in time. The continuous control can be cre-


ated by the closure: the limit of a sequence of macroscopically de�nable ensembles is


macroscopically de�nable too.


The role of the macroscopic variables for the irreversibility problem became clear to M.


Leontovich and J. Lebowitz several decades ago [5, 6, 7, 8, 9]. But this was the �rst step.


Now we do need the elaborate notion of ensembles which can be obtained by macroscopic


tools. The Maxwell Demon gives the �rst clear picture of a di�erence between macroscopic


and microscopic tools for ensembles control (there are books devoted to analysis of this


Demon [10, 11]). Nevertheless, the further step to the analysis of the notion of macroscopic


de�nability in context of constructive transition from microdynamics to macrokinetics


equations had not done before the paper [12]. Our analysis pretends to be an analogue


of the Church-Turing thesis [13, 14]. This thesis concerns the notion of an e�ective (or


mechanical) method in mathematics. As a \working hypothesis", Church proposed: A


function of positive integers is e�ectively calculable only if recursive.


We introduce a class of \macroscopically de�nable ensembles" and formulate the the-


sis: An ensemble can be macroscopically obtained only if macroscopically de�nable in


according to the introduced notion. This is a thesis about success of the formalization, as


the Church-Turing thesis, and nobody can prove or disprove it in rigorous sense, as well,


as this famous thesis.


Another important new notion is the \macroscopically de�nable transformation" of


the ensemble: If one get an ensemble, how can he transform it? First, it is possible just


let them evolve, second, it can be controlled by the macroscopic tools on the de�ned way


(it is necessary just to keep values of some macroscopic variables during some time).
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The primitive macroscopically de�nable ensembles are ensembles with quasiequilibrium


initial states and without further macroscopic control. These ensembles are prepared


macroscopically, and evolve due to natural dynamics. The signi�cance of this class of


ensembles is determined by the hypothesis about the primitive macroscopically de�nable


ensembles: Any macroscopically de�nable ensemble can be approximated by primitive


macroscopically de�nable ensembles with appropriate accuracy. Now we have no other


e�ective way to decribe the nonequilibrium state.


The primitive macroscopically de�nable ensembles form the manifold in the space of


ensembles. We call this manifold the \�lm of nonequilibrium states". The equation for


the �lm and the equation for the ensemble motion on the �lm are written down.


The �lm of nonequilibrium states is the trajectory of the manifold of initial quasiequi-


librium states due to the natural (microscopic) dynamics. For every value of macroscopic


variables this �lm gives us a curve. The curvature of this curve de�nes kinetic coeÆcients


and entropy production.


The main technical problem is the computation of this curve for arbitrary value of the


macroscopic variables. We represent it as a sequence of special points and second-order


polynomial (Kepler) models for trajectory between these points. The method elaborated


for the computation is the further development of the method for initial layer problem in


the Boltzmann kinetics [15, 16]. For dissipative Boltzmann microkinetics it was suÆcient


to use the �rst-order models (with or without smoothing). For conservative microkinetics


it is necessary to use the highest-order models. Application of this method to the lattice


kinetic equations gave the following possibilities:


� To create the Lattice-Boltzmann kinetics with H-theorem [17];


� To transform the Lattice-Boltzmann method into the numerically stable computa-


tional tool for uid ows and other dissipative systems out of equilibrium [18];


� To develop the Entropic Lattice Boltzmann method as a starting basis for the for-


mulation of a new class of turbulence models based on genuinely kinetic principles


[19].


Now we extend the method elaborated for dissipative systems [15, 16] to the higher-


order models for conservative systems. The iteration method for improvement of obtained


approximations is proposed too. It is a version of the Method of invariant manifold for


kinetic problems, developed in the series of papers [20, 21] (the almost exhaustive review


of these works can be �nd in the paper [22]) . The summary of this method is given in


Appendix.


The constructing of the method of physically consistent computation is the central


part of our paper. It is neither a philosophical opus, nor only discussion of foundations


of science.


The main results of this paper were presented in the talk given on the First Mexican


Meeting on Mathematical and Experimental Physics, Mexico City, September 10-14, 2001,
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and in the lectures given on the V Russian National Seminar \Modeling of Nonequilibrium


systems", Krasnoyarsk, October 18-20, 2002 [48].


1 The problem of irreversibility


1.1 The phenomenon of the macroscopic irreversibility


The \stairs of reduction" (Fig. 1) lead from the reversible microdynamics to irreversible


macrokinetics. The most mysterious is the �rst step: the appearance of irreversibility.


The best way to demonstrate the problem of irreversibility is the following Gedanken-


experiment: Let us watch the movie: It's raining, people are running, cars rolling. Let


us now wind this movie in the opposite direction, and we will see a strange and funny


picture: Drops of the rain are raising up to the clouds, which next condensate into the


vapor on the pools, on the surfaces of rivers, people run with their backs forward, cars


behave also quite strange, and so forth. This cannot be, and we \know" this for sure, we


have never seen anything like this in our life. Let us now imagine that we watch the same


movie with a magnitude of 108 � 109 so that we can resolve individual particles. And all


of the sudden we discover that we cannot see any substantial di�erence between the direct


and the reverse demonstration: Everywhere the particles are moving, colliding, reacting


according to the laws of physics, and nowhere there is a violation of anything. We cannot


tell the direct progressing of the time from the reversed. So, we have the irreversibility of


the macroscopic picture under the reversibility of the microscopic one.


Rain, people, cars - this all is too complicated. One of the most simple examples of


the irreversible macroscopic picture under the apparent reversibility of the microscopic


picture (the \thermal ratchet") is given by R. Feynman in his lectures on the character


of physical law [23]. We easily label it as self-evident the fact that particles of di�erent


colors mix together, and we would see it as a wonder the reverse picture of a spontaneous


decomposition of their mixture. However, itself an appreciation of one picture as usual,


and of the other as unusual and wonderful - this is not yet the physics. It is desirable to


measure somehow this transition from order to disorder.


1.2 Phase volume and dynamics of ensembles


Let there be n blue and n white particles in a box, and let the box is separated in two


halves, the left and the right. Location of all the particles in the box is described by the


assembly of 2n vectors of locations of individual particles. The set of all the assemblies


is a \box" in the 6n-dimensional space. A point in this 6n-dimensional box describes a


con�guration. The motion of this point is de�ned by equations of mechanics.


\Order" is the con�guration in which the blue particles are all in the right half, and all


the white particles are in the left half. The set of all such con�gurations has a rather small


volume. It makes only (1=2)2n of the total volume of the 6n-dimensional box. If n = 10,


this is of the order of one per million of the total volume. It is practically unthinkable
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Figure 1: The stairs of reduction, step by step.
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to get into such a con�guration by chance. It is also highly improbable that, by forming


more or less voluntary the initial conditions, we can observe that the system becomes


ordered by itself. From this standpoint, the motion goes from the states of \order" to the


state of \disorder", just because there are many more states of \disorder".


However, we have de�ned it in this way. The well known question of where is more


order, in a �ne castle or in a pile of stones, has a profound answer: It depends on which


pile you mean. If \piles" are thought as all con�gurations of stones which are not castles,


then there are many more such piles, and so there is less order in such a pile. However,


if these are specially and uniquely placed stones (for example, a garden of stones), then


there is the same amount of order in such a pile as in the �ne castle. Not a speci�c


con�guration is important but an assembly of con�gurations embraced by one notion.


This transition from single con�gurations to their assemblies (ensembles) play the


pivotal role in the understanding of irreversibility: The irreversible transition from the


ordered con�guration (blue particles are on the right, white particles are on the left)


to the disordered one occurs simply because there are many more of the disordered (in


the sense of the volume). Here, strictly speaking, we have to add also a reference to the


Liouville theorem: The volume in the phase space which is occupied by the ensemble does


not change in time as the mechanical system evolves. Because of this fact, the volume V


is a good measure to compare the assemblies of con�gurations. However, more often the


quantity lnV is used, this is called the entropy.


The point which represents the con�guration, very rapidly leaves a small neighborhood


and for a long time (in practice, never) does not come back into it. In this, seemingly


idyllic picture, there are still two rather dark clouds left. First, the arrow of time has not


appeared. If we move from the ordered initial state (separated particles) backwards in


time, then everything will stay the same as when we move forward in time, that is, the


order will be changing into the disorder. Second, let us wind the �lm backwards, let us


shoot the movie about mixing of colored particles, and then let us watch in the reverse


order their demixing. Then the initial con�gurations for the reverse motion will only seem


to be disordered. Their \order" is in the fact that they were obtained from the separated


mixture by letting the system to evolve for the time t. There are also very few such


con�gurations, just the same number as of the ordered (separated particles) states. If we


start with these con�gurations, then we obtain the ordered system after the time t. Then


why this most obvious consequence of the laws of mechanics looks so improbable on the


screen? Perhaps, it should be accepted that states which are obtained from the ordered


state by a time shift, and by inversion of particle's velocities (in order to initialize the


reverse motion in time), cannot be prepared by using macroscopic means of preparation.


In order to prepare such states, one would have to employ an army of Maxwell's daemons


which would invert individual velocities with suÆcient accuracy (here, it is much more


into the phrase \suÆcient accuracy" but this has to be discussed separately and next


time).


For this reason, we lump the distinguished initial conditions, for which the mixture
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decomposes spontaneously (\piles" of special form, or \gardens of stones") together with


other con�gurations into macroscopically de�nable ensembles. And already for those en-


sembles the spontaneous demixing becomes improbable. This way we come to a new


viewpoint: (i). We cannot prepare individual systems but only representatives of ensem-


bles. (ii) We cannot prepare ensembles at our will but only \macroscopically de�nable


ensembles". What are these macroscopically de�nable ensembles? It seems that one has


to give some constructions, the universality of which can only be proven by the time and


experience.


1.3 Macroscopically de�nable ensembles and quasiequilibria


The main tool in the study of macroscopically de�nable ensembles is the notion of the


macroscopic variables, and of the quasiequilibria. In the dynamics of the ensembles, the


macroscopic variables are de�ned as linear functionals (moments) of the density distri-


bution of the ensemble. Macroscopic variables M usually include hydrodynamic �elds,


density of particles, densities of momentum, and density of the energy, also the list may


include stress tensor, reaction rates and other quantities. In the present context, it is


solely important that the list the macroscopic variables is identi�ed for the system under


consideration.


A single system is characterized by a single point x in the phase space. The ensemble


of the systems is de�ned by the probability density F on the phase space. Density F must


satisfy a set of restrictions, the most important of which are: Nonnegativity, F (x) � 0,


normalization, Z
X


F (x)dV (x) = 1; (1)


and that the entropy is de�ned, that is, there exists the integral,


S(F ) = �


Z
X


F (x) lnF (x)dV (x): (2)


(Function F lnF is continuously extended to zero values of F : 0 ln 0 = 0). Here dV (x) is


the invariant measure (phase volume).


The quasiequilibrium ensemble describes the \equilibrium under restrictions". It is


assumed that some external forcing keeps the given values of the macroscopic variables


M , with this, \all the rest" comes the corresponding (generalized) canonic ensemble F


which is the solution to the problem:


S(F )! max; M(F ) =M: (3)


where S(F ) is the entropy, M(F ) is the set of macroscopic variables.


The thesis about the macroscopically de�nable ensembles. Macroscopically


de�nable ensembles are obtained as the result of two operations:


(i). Bringing the system into the quasiequilibrium state corresponding to either the


whole set of the macroscopic variables M , or to its subset.
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(ii). Changing the ensemble according to the microscopic dynamics (due to the Liou-


ville equation) during some time t.


These operations can be applied in the interchanging order any number of times, and


for arbitrary time segments t. The limit of macroscopically de�nable ensembles will also


be termed the macroscopically de�nable. One always starts with the operation (i).


In order to work out the notion of macroscopic de�nability, one has to pay more


attention to partitioning the system into subsystems. This involves a partition of the phase


space X with the measure dV on it into a direct product of spaces, X = X1 � X2 with


the measure dV1dV2. To each admissible (\macroscopic") partition into sub-systems, it


corresponds the operation of taking a \partial quasiequilibrium", applied to some density


F0(x1; x2):


S(F )! max; (4)


M(F ) =M;


Z
X2


F (x1; x2)dV2(x2) =


Z
X2


F0(x1; x2)dV2(x2):


where M is some subset of macroscopic variables (not necessarily the whole list of the


macroscopic variables). In Eq. (4), the state of the �rst subsystem is not changing,


whereas the second subsystem is brought into the quasiequilibrium. In fact, the problem


(4) is a version of the problem (3) with additional \macroscopic variables",Z
X2


F (x1; x2)dV2(x2): (5)


The extended thesis about macroscopically de�nable ensembles allows to use also


operations (4) with only one restriction: The initial state should be the \true quasiequi-


librium" that is, macroscopic variables related to all possible partitions into subsystems


should appear only after the sequence of operations has started with the solution to the


problem (3) for some initial M . This does not exclude a possibility of including oper-


ators (5) into the list of the basic macroscopic variables M . The standard example of


such an inclusion are few-body distribution functions treated as macroscopic variables in


derivations of kinetic equations from the Liouville equation.


Irreversibility is related to the choice of the initial conditions. The extended set of


macroscopically de�nable ensembles is thus given by three objects:


(i). The set of macroscopic variables M which are linear (and, in an appropriate


topology, continuous) mappings of the space of distributions onto the space of values of


the macroscopic variables;


(ii). Macroscopically admissible partitions of the system into sub-systems;


(iii). Equations of microscopic dynamics (the Liouville equation, for example).


The choice of the macroscopic variables and of the macroscopically admissible par-


titions is a distinguished topic. The main question is: what variables are under the


macroscopic control? Here the macroscopic variables are represented as formal elements


of the construction, and the arbitrariness is removed only at solving speci�c problems.
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Usual we can postulate some properties of macroscopic variables, for example, symmetry


with respect to any permutation of equal micro-particles.


We have discussed the prepared ensembles. But there is another statement of problem


too: Let us get an ensemble. The way how we get it may be di�erent and unknown, for


example, some demon or oracle1 can give it to us. How can we transform this ensemble by


macroscopic tools? First, it is possible just let them evolve, second, it can be controlled


by the macroscopic tools on the de�ned way (it is necessary just to keep values of some


macroscopic variables during some time).


The thesis about the macroscopically de�nable transformation of ensem-


bles. Macroscopically de�nable transformation of ensembles are obtained as the result of


two operations:


(i). Bringing the system into the quasiequilibrium state corresponding to either the


whole set of the macroscopic variables M , or to its subset.


(ii). Changing the ensemble according to the microscopic dynamics (due to the Liou-


ville equation, for example) during some time t.


These operations can be applied in the interchanging order any number of times, and


for arbitrary time segments t. The limit of macroscopically de�nable transformations


will also be termed the macroscopically de�nable. The main di�erence of this de�nition


(macroscopically de�nable transformation) from the de�nition of the macroscopically de-


�nable ensembles is the absence of restriction on the initial state, one can start from


arbitrary ensemble.


The class of macroscopically de�nable ensembles includes the more simple, but im-


portant class. Let us reduce the macroscopic control to preparation of quasiequilibrium


ensemble: we just prepare the ensemble by macroscopic tools and then let them evolve


due to natural dynamics (Liouville equation, for example). Let us call this class the prim-


itive macroscopically de�nable ensembles. These ensembles appear as results (for t > 0)


of motions which start from the quasiequilibrium state (at t = 0). The main technical


results of our work concern the computation of the manifold of primitive macroscopically


de�nable ensembles for a given system.


The importance of this class of ensembles is determined by the following hypothesis:


The hypothesis about the primitive macroscopically de�nable ensembles. Any


macroscopically de�nable ensemble can be approximated by primitive macroscopically


de�nable ensembles with appropriate accuracy. In some limits we can attempt to say:


\with any accuracy". Moreover, this hypothesis with \arbitrary small accuracy" can be


found as the basic but implicit foundation of all nonequilibrium kinetics theories which


pretend to demonstrate a way from microdymamics to macrokinetics, for example in


Zubarev nonequilibrium statistical operator theory [3], etc. This hypothesis allow to


describe nonequilibrium state as a result of evolution of quasiequilibrium state in time.


Now we have no other way to decribe the nonequilibrium state2


1In the theory of computation, if there is a device which could answer questions beyond those that a


Turing machine can answer, then it would be called oracle.
2There exists a series of papers with discussion of Hamiltonian systems in so-called force thermostat,
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The hypothesis about the primitive macroscopically de�nable ensembles is real hy-


pothesis, it can hold for di�erent systems with di�erent accuracy, it can be true or false.


In some limits the set of primitive macroscopically de�nable ensembles can be dense in


the set of all macroscopically de�nable ensembles, or can be not dense, etc. There is


the signi�cant di�erence between this hypothesis and the thesis about macroscopically


de�nable ensembles. The thesis can be accepted, or not, the reasons for acceptance can


be discussed, but nobody can prove or disprove the de�nition, even the de�nition of the


macroscopically de�nable ensembles.


1.4 Irreversibility and initial conditions


The choice of the initial state of the ensemble plays the crucial role in the thesis about the


macroscopically de�nable ensembles. The initial state is always taken as the quasiequi-


librium distribution which realizes the maximum of the entropy for given values of the


macroscopic variables. The choice of the initial state splits the time axis into two semi-


axes: moving forward in time, and moving backward in time, the observed non-order


increases (the simplest example is the mixing of the particles of di�erent colors).


In some works, in order to achieve the \true nonequilibrium", that is, the irreversible


motion along the whole time axis, the quasiequilibrium initial condition is shifted into


�1 in time. This trick, however, casts some doubts, the major being this: Most of


the known equations of macroscopic dynamics which describe irreversible processes have


solutions which can be extended backwards in time only for �nite times (or cannot be


extended at all). Such equations as the Boltzmann kinetic equation, di�usion equation,


equations of chemical kinetics and like do not allow for almost all their solutions to be


extended backward in time for inde�nitely long. All motions have a \beginning" beyond


which some physical properties of a solution will be lost (often, positivity of distributions),


although formally solutions may even exist, as in the case of chemical kinetics.


1.5 Weak and strong tendency to equilibrium, shaking and short


memory


One aspect of irreversibility is the special choice of initial conditions. Roughly speaking,


the arrow of time is de�ned by the fact that the quasiequilibrium initial condition was in


the past.


This remarkably simple observation does not, however, exhaust the problem of transi-


tion from the reversible equations to irreversible macroscopic equations. One more aspect


or, in particular, isokinetic thermostat (see, for example, the review of D. Ruelle [24]). These thermostats


were invented in computational molecular dynamics for acceleration of computations, as a technical trick.


From physical point of view this is a theory about a friction of particles on the space, the \ether friction"


(the \ether" is a theoretical substrate in the ancient physics). Of course, this theory is mathematically


consistent and perhaps it may be useful as the theory of special computations methods, but a bridge


between this theory and physics is desirable.
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deserves a serious consideration. Indeed, distribution functions tend to the equilibrium


state according to macroscopic equations in a strong sense: deviations from the equilib-


rium tends to zero in the sense of most relevant norms (in the L1 sense, for example,


or even uniformly). On the contrast, for the Liouville equation, tendency to equilibrium


ocures (if at all) only in the weak sense: mean values of suÆciently \regular" functions


on the phase space do tend to their equilibrium values but the distribution function itself


does not tend to the equilibrium with respect to any norm, not even point-wise. This


is especially easy to appreciate if the initial state has been taken as the equipartition


over some small bounded subset of the phase space (the \phase drop" with small, but


non-zero volume). This phase drop can mix over the phase space, but for all the times


it will remain \the drop of oil in the water", the density will always be taking only two


values, 0 and p > 0, and the volume of the set where the density is larger than zero


will not be changing in time, of course. So, how to arrive from the weak convergence


(in the sense of the convergence of the mean values), to the strong convergence (to the


L1 or to the uniform convergence, for example)? In order to do this, there are two basic


constructions: The coarse-graining (shaking) in the sense of Ehrenfests', and the short


memory approximation.


The idea of coarse-graining dates back to P. and T. Ehrenfests, and it has been most


clearly expressed in their famous paper of 1911 [25]. Ehrenfests considered a partition of


the phase space into small cells, and they have suggested to alter the motions of the phase


space ensemble due to the Liouville equation with \shaking" - averaging of the density


of the ensemble over the phase cells. In the result of this process, the convergence to the


equilibrium becomes strong out of the weak. It is not diÆcult to recognize that ensembles


with constant densities over the phase cells are quasiequilibria; corresponding macroscopic


variables are integrals of the density over the phase cells (\occupation numbers" of the


cells). This generalizes to the following: alternations of the motion of the phase ensemble


due to microscopic equations with returns to the quasiequilibrium manifold, preserving


the values of the macroscopic variables. It is precisely this construction which serves for


the point of departure for many of the constructions below.


Another construction is the short memory approximation. The essence of it is the


following: If one excludes microscopic variables and assumes quasiequilibrium initial con-


ditions, then it is possible to derive integro-di�erential equations with retardation for


the macroscopic variables (the way to do this is not unique). The form of the resulting


equations is approximately this:


M(t) =


Z
t


0


K(t; t0)[M(t0)]dt0;


where K(t; t0) is an operator (generally speaking, nonlinear) acting on M(t0). Once this


equation is obtained, one assumes that the kernels of these integro-di�erential equations


decay at a suÆciently high rate into the past (for example, exponentially, as kK(t; t0)[M(t0)]k �


expf�(t� t0)=�gkM(t0)k). This can be interpreted in the spirit of Ehrenfests': Every mo-


tion which has begun suÆciently recently (the \memory time" � before now) can be
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regarded as being started from the quasiequilibrium. Thus, after each time � has elapsed,


the system can be shaken in the sense of Ehrenfests - the result should not di�er much.


1.6 The essence of irreversibility in two words


(i) The direction of the arrow of time is de�ned by the fact that only \macroscopically


de�nable ensembles" can be taken as initial conditions, that is, only quasiequilibrium


ensembles and what can be obtained from them when they are exposed to the true mi-


croscopic dynamics, or when partial quasiequilibria are taken in positive time. We are


created in such a way that we prepare and control (in part) the present, and observe what


happens in the future. (In a sense, this is a de�nition of the subjective time).


(ii) Microscopic dynamics can give only the weak convergence to the equilibrium, conver-


gence of mean values. Macroscopic variables tend to the equilibrium in the strong sense.


The passage from micro to macro occurs here with the help of Ehrenfests' coarse-graining


procedure or its analogs.


One might feel uneasy about the second of these points because the procedure of


coarse-graining is not the result of the equations of motion, and therefore it is somehow


voluntary. The only hope to lift this arbitrariness is that it may well happen that, in the


limit of a very large number of particles, the perturbation caused by the coarse-graining


can be made arbitrary small, for example, by increasing the time interval between coarse-


graining.


1.7 Equivalence between trajectories and ensembles in the ther-


modynamic limit


In the preceding sections we were speaking about the dynamics of ensembles. This ap-


parently contradicts the fact that the dynamics of a classical system goes along a single


trajectory. Two arguments make it possible to proceed from the trajectories to ensembles:


(i) High sensitivity of trajectories to external perturbations when the number of par-


ticles is large. Arbitrary weak noise results in the stochastization of the motion.


(ii) In the thermodynamic limit, it is possible to partition the system into an arbitrary


large number of small but still macroscopic sub-systems. Initial conditions in the sub-


systems are independent from one sub-system to another, and they cannot be assigned


completely voluntary but are taken from some distribution with a �xed sum of mean values


(an analog of the macroscopic de�nability of ensembles). For spatially inhomogeneous


systems, such small but still macroscopic subsystems are de�ned in small and \almost


homogeneous" volumes.


1.8 Subjective time and irreversibility


In our discussion, the source of the arrow of time is, after all, the asymmetry of the


subjective time of the experimentalist. We prepare initial conditions, and after that we
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watch what will happen in the future but not what happened in the past. Thus, we


obtain kinetic equations for speci�cally prepared systems. How is this related to the


dynamics of the real world? These equations are applicable to real systems to the extent


that the reality can be modeled with systems with speci�cally prepared quasiequilibrium


initial conditions. This is anyway less demanding than the condition of quasi-staticity


of processes in classical thermodynamics. For this reason, versions of nonequilibrium


thermodynamics and kinetics based on this understanding of irreversibility allowed to


include such a variety of situations, and besides that, they include all classical equations


of nonequilibrium thermodynamics and kinetics.


2 Geometrization of irreversibility


2.1 Quasiequilibrium manifold


Let E be a linear space, and U � E be a convex subset, with a nonempty interior intU .


Let a twice di�erentiable concave functional S be de�ned in intU , and let S is continuous


on U . According to the familiar interpretation, S is the entropy, E is an appropriate space


of distributions, U is the cone of nonnegative distributions from E. Space E is chosen in


such a way that the entropy is well de�ned on U .


Let L be a closed linear subspace of space E, and m : E ! E=L be the natural


projection on the factor-space. The factor-space E=L will further play the role of the


space of macroscopic variables (in examples, the space of moments of the distribution).


For each M 2 intU=L we de�ne the quasiequilibrium, f �
M
2 intU , as the solution to


the problem,


S(f)! max; m(f) =M: (6)


We assume that, for each M 2 intU=L, there exists the (unique) solution to the problem


(6). This solution, f �
M
, is called the quasiequilibrium, corresponding to the value M


of the macroscopic variables. The set of quasiequilibria f �
M


forms a manifold in intU ,


parameterized by the values of the macroscopic variables M 2 intU=L (Fig. 2).


Let us specify some notations: ET is the adjoint to the E space. Adjoint spaces


and operators will be indicated by T , whereas notation � is earmarked for equilibria and


quasiequilibria.


Furthermore, [l; x] is the result of application of the functional l 2 ET to the vector


x 2 E. We recall that, for an operator A : E1 ! E2, the adjoint operator, A
T : ET


1 ! ET


2


is de�ned by the following relation: For any l 2 ET


2 and x 2 E1,


[l; Ax] = [AT l; x]:


Next, DfS(f) 2 ET is the di�erential of the functional S(f), D2S(f) is the second


di�erential of the functional S(f). Corresponding quadratic functional D2S(f)(x; x) on


E is de�ned by the Taylor formula,
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Figure 2: Relations between a microscopic state f , the corresponding macroscopic state


M = m(f), and quasiequilibria f �
M
.
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S(f + x) = S(f) + [DfS(f); x] +
1


2
D2
f
S(f)(x; x) + o(kxk2): (7)


We keep the same notation for the corresponding symmetric bilinear form, D2
f
S(f)(x; y),


and also for the linear operator, D2
f
S(f) : E ! ET , de�ned by the formula,


[D2
f
S(f)x; y] = D2


f
S(f)(x; y):


Here, on the left hand side there is the operator, on the right hand side there is the


bilinear form. Operator D2
f
S(f) is symmetric on E, D2


f
S(f)T = D2


f
S(f).


Concavity of S means that for any x 2 E the inequality holds, D2
f
S(f)(x; x) � 0;


in the restriction onto the aÆne subspace parallel to L we assume the strict concavity,


D2
f
S(f)(x; x) < 0 if x 2 L, and x 6= 0.


A comment on the degree of rigor is in order: the statements which will be made below


become theorems or plausible hypotheses in speci�c situations. Moreover, specialization


is always done with an account for these statements in such a way as to simplify the


proofs.


Let us compute the derivative DMf
�
M
. For this purpose, let us apply the method of


Lagrange multipliers: There exists such a linear functional �(M) 2 (E=L)T , that


DfS(f)jf�
M
= �(M) �m; m(f �


M
) =M; (8)


or


DfS(f)jf�
M
= mT


� �(M); m(f �
M
) =M: (9)


From equation (9) we get,


m(DMf
�
M
) = 1(E=L); (10)


where we have indicated the space in which the unit operator is acting. Next, using the


latter expression, we transform the di�erential of the equation (8),


DM� = (m(D2
f
S)�1


f�
M
mT )�1; (11)


and, consequently,


DMf
�
M
= (D2


f
S)�1


f�
M
mT (m(D2


f
S)�1


f�
M
mT )�1: (12)


Notice that, elsewhere in equation (12), operator (D2
f
S)�1 acts on the linear functionals


from immT . These functionals are precisely those which become zero on L (that is, on


kerm), or, which is the same, those which can be represented as functionals of macroscopic


variables.


The tangent space to the quasiequilibrium manifold in the point f �
M


is the image of


the operator DMf
�
M
:
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im (DMf
�
M
) = (D2


f
S)�1


f�
M
immT = (D2


f
S)�1


f�
M
AnnL (13)


where AnnL (the annulator of L) is the set of linear functionals which become zero on L.


Another way to write equation (13) is the following:


x 2 im (DMf
�
M
), (D2


f
S)f�


M
(x; y) = 0; y 2 L (14)


This means that im (DMf
�
M
) is the orthogonal completement of L in E with respect to


the scalar product,


hxjyif�
M
= �(D2


f
S)f�


M
(x; y): (15)


The entropic scalar product (15) appears often in the constructions below. (Usually,


this becomes the scalar product indeed after the conservation laws are excluded). Let us


denote as Tf�
M


= im(DMf
�
M
) the tangent space to the quasiequilibrium manifold in the


point f �
M
. An important role in the construction of quasiequilibrium dynamics and its


generalizations is played by the quasiequilibrium projector, an operator which projects E


on Tf�
M
parallel to L. This is the orthogonal projector with respect to the entropic scalar


product, �f�
M
: E ! Tf�


M
:


�f�
M
= (DMf


�
M
)
M
m =


�
D2
f
S
��1
f�
M


mT


�
m
�
D2
f
S
��1
f�
M


mT


��1
m: (16)


It is straightforward to check the equality �2
f�
M
= �f�


M
, and the self-adjointness of �f�


M
with


respect to entropic scalar product (15). Thus, we have introduced the basic constructions:


quasiequilibrium manifold, entropic scalar product, and quasiequilibrium projector (Fig.


3.


2.2 Thermodynamic projector


The construction of the quasiequilibrium allows for the following generalization: Almost


every manifold can be represented as a set of minimizers of the entropy under linear


constraints. However, in general, these linear constraints will depend on the point on the


manifold.


So, let the manifold 
 = fM � U be given. This is a parametric set of distribution


function, however, now macroscopic variables M are not functionals on R or U but just


parameters de�ning the point on the manifold. The problem is how to extend de�nitions


of M onto a neighborhood of fM in such a way that fM will appear as the solution to the


variational problem:


S(f)! max; m(f) =M: (17)


For each point fM , we identify TM 2 E, the tangent space to the manifold 
 in fM ,


and subspace LM � E, which depends smoothly on M , and which has the property,


LM
L


TM = E. Let us de�ne m(f) in the neighborhood of fM in such a way, that
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Figure 3: Quasiequilibrium manifold 
, tangent space Tf�
M

, quasiequilibrium projector


�f�
M
, and defect of invariance, � = �f�


M
= J � �f�


M
(J).
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m(f) =M; if f � fM 2 LM : (18)


The point fM will be the solution of the quasiequilibrium problem (17) if and only if


DfS(f)jfM 2 Ann LM : (19)


That is, if and only if LM � kerDfS(f)jfM . It is always possible to construct subspaces


LM with the properties just speci�ed, at least locally, if the functional DfS(f)jfM is not


identically equal to zero on TM .


The construction just described allows to consider practically any manifold as a


quasiequilibrium. This construction is required when one seeks the induced dynamics


on a given manifold. Then the vector �elds are projected on TM parallel to LM , and this


preserves intact the basic properties of the quasiequilibrium approximations.


It was proven [26, 22] the theorem of uniqueness of the the thermodynamic


projector: There exists the unique operator which transforms the arbitrary vector �eld


equipped with the given Lyapunov function into a vector �eld with the same Lyapunov


function (and also this happens on any manifold which is not tangent to the level of the


Lyapunov function).


Thermodynamic projector is constructed in the following way: Assume that the man-


ifold 
 � U is given, f 2 
 and T is the tangent space to the manifold 
 in the point


f . Let us describe the construction of the thermodynamic projector onto tangent space


T in the point f .


Let us consider T0 that is a subspace of T and which is annulled by the di�erential S


in the point f :


T0 = fa 2 T j(DfS)(a) = 0g (20)


If T0 = T , then the thermodynamic projector is the orthogonal projector on T with


respect to the entropic scalar product hjif (15). Suppose that T0 6= T . Let eg 2 T , eg ? T0


with respect to the entropic scalar product hjif , and (DfS)(eg) = 1. These conditions


de�ne vector eg uniquely.


The projector onto T is de�ned by the formula


P (J) = P0(J) + eg(DfS)(J) (21)


where P0 is the orthogonal projector with respect to the entropic scalar product hjif . For


example, if T a �nite-dimensional space, then the projector (21) is constructed in the


following way. Let e1; ::; en be a basis in T , and for de�niteness, (DfS)(e1) 6= 0.


1) Let us construct a system of vectors


bi = ei+1 � �ie1; (i = 1; ::; n� 1); (22)


where �i = (DfS)(ei+1)=(DfS)(e1), and hence (DfS)(bi) = 0. Thus, fbig
n�1
1 is a basis in


T0.
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2) Let us orthogonalize fbig
n�1
1 with respect to the entropic scalar product hjif (15). We


have got an orthonormal with respect to hjif basis fgig
n�1
1 in T0.


3) We �nd eg 2 T from the conditions:


heg j giif = 0; (i = 1; ::; n� 1); (DfS)(eg) = 1: (23)


and, �nally we get


P (J) =


n�1X
i=1


gihgi j Jif + eg(DfS)(J) (24)


If (DfS)(T ) = 0, then the projector P is simply the orthogonal projector with respect


to the entropic scalar product. This is possible, for example, if f is the global maximum


of entropy point (equilibrium). Then


P (J) =


nX
i=1


gihgijJif ; hgijgji = Æij: (25)


If (DfS)(T ) = 0 and f is not equilibrium (
 is tangent to the to the level of the en-


tropy), then the dynamic _f = J(f) can be projected on 
 with preservation of dissipation


only if (DfS)(J(f)) = 0 in this point.


2.3 Quasiequilibrium approximation


Let a kinetic equation be de�ned in U :


df


dt
= J(f): (26)


(This can be the Liouville equation, the Boltzmann equation, and so on, dependent on


which level of precision is taken for the microscopic description.) One seeks the dynamics


of the macroscopic variables M . If we adopt the thesis that the solutions of the equation


(26) of interest for us begin on the quasiequilibrium manifold, and stay close to it for


all the later times, then, as the �rst approximation, we can take the quasiequilibrium


approximation. It is constructed this way: We regard f as the quasiequilibrium, and


write,
dM


dt
= m (J (f �


M
)) : (27)


With this, the corresponding to M point on the quasiequilibrium manifold moves accord-


ing to the following equation:


df �
M(t)


dt
= (DMf


�
M
)m(J(f �


M
)) = �f�


M
J(f �


M
); (28)


where �f�
M
is the quasiequilibrium projector (16). It is instructive to represent solutions


to equations of the quasiequilibrium approximation (28) in the following way: Let T� (f)


be the shift operator along the phase ow of equation (26) (that is, T� (f) is solution to
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equation (26) at the time t = � with the initial condition f at t = 0). Let us take the initial


point f0 = f �
M0
, and set, f1=2 = T� (f0), M1 = m(f1=2), f1 = f �


M1
, : : :, fn+1=2 = T� (fn),


Mn+1 = m(fn+1=2), : : :. The sequence fn will be termed the Ehrenfest's chain. We set,


f� (n�) = fn. Then, f� (t) ! f(t), where f(t) is the solution to the quasiequilibrium


approximation (28), as � ! 0, n!1, n� = t.


Let us notice that the way the entropy evolves in time according to the Ehrenfests'


chain is de�ned in the limit � ! 0 solely by the way it evolves along trajectories of the


kinetic equation (26). Indeed, f �
M
is the point of maximum of the entropy on the subspace


de�ned by equation, m(f) =M . Therefore, for


S(fn+1=2)� S(fn+1) = o(kfn+1=2 � fn+1k) = o(�);


it holds X
n


jS(fn+1=2)� S(fn+1)j = o(n�)! 0;


for � ! 0, n ! 1, n� = const. This simple observation has a rather important im-


plication: Let us denote as dS(f)=dt the entropy production due to the original kinetic


equation (26), and as (dS(f �
M
)=dt)1 its derivative due to the quasiequilibrium system (28).


Then,


(dS(f �
M
)=dt)1 = dS(f)=dtj


f=f�
M
: (29)


Let us give a di�erent formulation of the latter identity. Let us term function S(M) =


S(f �
M
) the quasiequilibrium entropy. Let us denote as dS(M)=dt the derivative of the


quasiequilibrium entropy due to the quasiequilibrium approximation (27). Then,


dS(M)


dt
=
dS(f)


dt


���
f=f�


M


: (30)


From the identity (29), it follows the theorem about preservation of the type of


dynamics:


(i) If, for the original kinetic equation (26), dS(f)=dt = 0 at f = f �
M
, then the entropy


is conserved due to the quasiequilibrium system (28).


(ii) If, for the original kinetic equation (26), dS(f)=dt � 0 at f = f �
M
, then, at the


same points, f �
M
, dS(M)=dt � 0 due to the quasiequilibrium system (27).


The theorem about the preservation of the type of dynamics3 demonstrates that, if


there was no dissipation in the original system (26) (if the entropy was conserved) then


there is also no dissipation in the quasiequilibrium approximation. The passage to the


quasiequilibrium does not introduce irreversibility (the reverse may happen, for example,


there is no dissipation in the quasiequilibrium approximation for hydrodynamic variables


as obtained from the Boltzmann kinetic equation; though dissipation is present in the


Boltzmann equation, it occurs in di�erent points but on the quasiequilibrium manifold of


3This is a rather old theorem, one of us had published this theorem in 1984 already as textbook


material ([27], chapter 3 \Quasiequilibrium and entropy maximum", p. 37, see also the paper [28]), but


from time to time di�erent particular cases of this theorem are continued to be published as new results.
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Figure 4: Ehrenfest's chain over the quasiequilibrium manifold, and trajectory of the


macroscopic dynamics, _M = F (M).
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local Maxwellians the entropy production is equal to zero). The same statement also hold


for the thermodynamic projectors described in Section 2.2. On the other hand, the entropy


production in the quasiequilibrium state is the same, as for the quasiequilibrium system in


the corresponding point, hence, if the initial system is dissipative, then quasiequilibrium


entropy production is nonnegative.


Usually, the original dynamics (26) does not leave the quasiequilibrium manifold in-


variant, that is, vector �eld J(f) is not tangent to the quasiequilibrium manifold in all


its points f �
M
. In other words, the condition of invariance,


(1� �f�
M
)J(f �


M
) = 0; (31)


is not satis�ed. The left hand side of the invariance condition (31) is of such an outstand-


ing importance that it deserves a separate name. We call it the defect of invariance, and


denote it as �f�
M
. It is possible to consider the invariance condition as an equation, and


to compute corrections to the quasiequilibrium approximation f �
M


in such a way as to


make it \more invariant". In those cases where the original equation (26) is already dissi-


pative, this route of corrections, supplemented by the construction of the thermodynamic


projector as in Section 2.2, leads to an appropriate macroscopic kinetics [21].


However, here, we are mainly interested in the route \from the very beginning", from


conservative systems to dissipative. And here solving of the invariance equation does not


help since it will lead us to, while \more invariant", but still conservative dynamics. In all


the approaches to this problem (passage from the conservative to the dissipative systems),


dissipation is introduced in a more or less explicit fashion by various assumptions about


the \short memory". The originating point of our constructions will be the absolutely


transparent and explicit approach of Ehrenfests.


3 Natural projector and models of nonequilibrium


dynamics


3.1 Natural projector


So, let the original system (26) be conservative, and thus, dS(f)=dt = 0. The idea of


Ehrenfests is to supplement the dynamics (26) by \shakings". Shakings are external


perturbations which are applied periodically with a �xed time interval � , and which lead


to a \forgetting" of the small scale (nonequilibrium) details of the dynamics. For us


here the shaking is the replacement of f with the quasiequilibrium distribution f �
m(f).


In the particular case which was originally considered in by Ehrenfests, the macroscopic


variables m(f) were the averages of f over cells in the phase space, while f �
m(f) was the


cell-homogeneous distribution with with the constant density within each cell equal to the


corresponding cell-average of f . As we have already mentioned it, in the limit � ! 0, one


gets back the quasiequilibrium approximation - and the type of the dynamics is preserved.


In this limit we obtain just the usual projection of the vector �eld J(f) (26) on the tangent
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bundle to the quasiequilibrium manifold. So, the natural question appears: What will


happen, if we will not just send � to zero but will consider �nite, and even large, �? In


such an approach, not just the vector �elds are projected but segments of trajectories. We


shall term this way of projecting the natural. Let us now pose the problem of the natural


projector formally. Let Tt(f) be the phase ow of the system (26). We must derive a


phase ow of the macroscopic system, �t(M) (that is, the phase ow of the macroscopic


system, dM=dt = F (M), which we are looking for), such that, for any M ,


m(T� (f
�
M
)) = �� (M): (32)


That is, when moving along the macroscopic trajectory, after the time � we must obtain


the same values of the macroscopic variables as if we were moving along the true micro-


scopic trajectory for the same time � , starting with the quasiequilibrium initial condition


(Fig. 5).


It is instructive to remark that, at �nite � , the entropy growth follows immediately


from equation (32) because S(f) < S(f �
m(f)). The di�erence of the values of the entropy is


of the order kf�f �
m(f)k


2, for the time � , thus, the �rst non-vanishing order in the entropy


production will be of the order of � . Let us �nd it.


We shall seek F in terms of a series in � . Let us expand F and both the sides of the


equation (32) in powers of � to second order, and �nd the expansion coeÆcients of F


[30]4:


T� (f
�
0 ) = f0 + df=dtj


f0
� + d2f=dt2j


f0
(� 2=2) + o(� 2);


�� (M0) =M0 + dM=dtj
M0
� + d2M=dt2j


M0
(� 2=2) + o(� 2);


df=dtj
f0
= J(f0); d


2f=dt2j
f0
= DfJ(f)jf0J(f0);


dM=dtj
M0


= F (M0); d
2M=dt2j


M0
= DMF (M)j


M0
F (M0);


F (M) = F0(M) + �F1(M) + o(�):


Using these expansions in the condition for natural projector (32), we get,


f0 = f �
M0
;


m(f0) + �m(J(f0)) + (� 2=2)DfJ(f)jf0J(f0) + o(� 2)


=M0 + �F0(M0) + � 2F1(M0) + (� 2=2)DMF (M)j
M0
F (M0) + o(� 2);


whereupon,


F0(M) = m(J(f �
M
));


F1(M) = (1=2)
n
m(DfJ(f)jf�


M
J(f �


M
))�DMF0(M)j


M
F0(M)


o
:


4In this well known work [30] Lewis expanded only the right hand side of equation (32), and did not


do the same also with the left hand side. There were some hidden reason for this \inconsistency": it


was impossible to obtain the Boltzmann equation without such a deformation of expansion. We stress


that our approach of matched expansion for exploring the coarse-graining condition is, in fact, the exact


(formal) statement that the unknown macroscopic dynamics which causes the shift of M on the left


hand side of equation (32) can be reconstructed order-by-order to any degree of accuracy, whereas the


low-order truncations may be useful for certain physical situations. A thorough study of the cases beyond


the lower-order truncations is of great importance which is left for future work.
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Figure 5: Projection of segments of trajectories: The microscopic motion above the man-


ifold 
 and the macroscopic motion on this manifold. If these motions began in the same


point on 
, then, after time � , projection of the microscopic state onto 
 should coin-


cide with the result of the macroscopic motion on 
. For quasiequilibrium 
 projector


� : E ! 
 acts as �(f) = f �
m(f).
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Thus, the approximation F0 is the quasiequilibrium, and using this fact in the expression


for F1, after some transformation, we derive,


F1 = (1=2)
n
m(DfJ(f)jf�


M
J(f �


M
))�DM(m(J(f �


M
)))m(J(f �


M
))
o


= (1=2)
n
m(DfJ(f)jf�


M
J(f �


M
))�m(DfJ(f)jf�


M
DMf


�
M
)m(J(f �


M
))
o


= (1=2)m
�
DfJ(f)jf�


M
[J(f �


M
)�DMf


�
M
m(J(f �


M
))]
�


= (1=2)m
�
DfJ(f)jf�


M
[1� �f�


M
]J(f �


M
)
�


= (1=2)m
�
DfJ(f)jf�


M
�f�


M


�
:


Thus, the �nal form of the equation for the macroscopic variables M may be written:


dM


dt
= F (M) = m(J(f �


M
)) + (�=2)m(DfJ(f)jf�


M
�f�


M
) + o(� 2): (33)


It is remarkable the appearance of the defect of invariance in the second term (propor-


tional to �): If the quasiequilibrium manifold is invariant with respect to the microscopic


dynamics, then F (M) is quasiequilibrium.


Let us compute the production of the quasiequilibrium entropy S(M) = S(f �
M
) due


to macroscopic equations (33), neglecting the higher-order term o(� 2).


dS(f �
M
)=dt = (�=2)DfS(f)jf�


M
�f�


M
DfJ(f)jf�


M
�f�


M
:


We notice that,


DfS(f)jf�
M
�f�


M
= DfS(f)jf�


M
;


because �f�
M
is a projector, and also because the thermodynamic condition


ker �f�
M
� ker DfS(f)jf�


M


which follows from the de�nition of quasiequilibrium (6). Next, by our assumption, the


system (26) conserves the entropy,


dS(f)=dt = DfS(f)jfJ(f) = 0:


Let us di�erentiate the latter identity:


D2
f
S(f)j


f
J(f) +DfS(f)jfDfJ(f)jf = 0: (34)


Thus, due to the right hand side of equation (33),


dS(f �
M
)


dt
= (�=2)DfS(f)jf�


M
DfJ(f)jf�


M
�f�


M


= �(�=2)
�
D2
f
S(f)j


f�
M
J(f �


M
)
�
�f�


M


= (�=2)hJ(f �
M
)j�f�


M
if�


M
;
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where we have used notation for entropic scalar product (15). Finally,


�f�
M
= (1� �f�


M
)J(f �


M
) = (1� �f�


M
)2J(f �


M
);


whereas projector �f�
M
is self-adjoint in the entropic scalar product (15). Thus, hJ(f �


M
)j�f�


M
if�


M
=


h�f�
M
j�f�


M
if�


M
, and


dS(f �
M
)


dt
= (�=2)h�f�


M
j�f�


M
if�


M
: (35)


Thus, the quasiequilibrium entropy increases due to equation of macroscopic dynamics


(33) in those points of the quasiequilibrium manifold where the defect of invariance is not


equal to zero. This way we see how the problem of the natural projector (projected are


not vector �elds but segments of trajectories) results in the dissipative equations. For


speci�c examples see [29] where the second term in equation (33) results in viscous terms


in the Navier-Stokes equations, di�usion and other dissipative contributions. However,


it remains the undetermined coeÆcient � . Formula (35) gives the entropy production


just proportional to the time interval between subsequent coarse-graining. Of course,


this could be true only for small enough � , whereas we are mostly interested in the limit


� !1. It is only in this limit where one can get rid of the arbitrariness in the choice of


� present in equations (33) and (35). In order to do this, we need to study more carefully


the structure of the trajectories which begin on the quasiequilibrium manifold.


3.2 One-dimensional model of nonequilibrium states


In the background of many derivations of nonequilibrium kinetic equations there is present


the following picture: Above each point of the quasiequilibrium manifold there is located


a huge subspace of nonequilibrium distributions with the same values of the macroscopic


variables, as in the quasiequilibrium point. It is as if the motion decomposes into two


projections, above the point on the quasiequilibrium manifold, and in the projection on


this manifold. The motion in each layer above the quasiequilibrium points is extremely


complicated, but fast, and everything quickly settles in this fast motion.


However, upon a more careful looking into the motions which begin in the quasiequi-


librium points, we will observe that, above each point of the quasiequilibrium manifold


it is located just a single curve, and all the nonequilibrium (not-quasiequilibrium) states


which come into the game form just a one-dimensional manifold. It is namely this curve


the construction of which we shall be dealing with in this section.


This is the curve of the primitive macroscopically de�nable ensembles. These ensembles


appear as the result (for t > 0) of motions which start from the quasiequilibrium state


(at t = 0).


For each value of the macroscopic variablesM , and for each time � , we de�ne M�� by


the following equality:


m(T� (f
�
M��


)) =M: (36)
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In other words,M�� are those values of macroscopic variables which satisfy �� (M�� ) =M


for the natural projector (32). Of course, it may well happen that such M�� exists not


for every pair (M; �) but we shall assume here that for every M there exists such �M > 0


that there exists M�� for 0 < � < �M .


A set of distributions, qM;� = T� (f
�
M��


), forms precisely the desired curve of nonequi-


librium states with given values of M . Notice that, for each � , it holds, m(qM;� ) = M .


The set fqM;�g for all possible M and � is positive invariant: If the motion of the system


starts on it at some time t0, it stays on it also at t > t0. If the dependence qM;� is known,


equations of motion in the coordinate system (M; �) have a simple form:


d�


dt
= 1; (37)


dM


dt
= m(J(qM;� )):


The simplest way to study qM;� is through a consideration of a sequence of its deriva-


tives with respect to � at �xed M . The �rst derivative is readily written as,


dqM;�


d�


���
�=0


= J(f �
M
)� �f�


M
J(f �


M
) = �f�


M
: (38)


By the construction of the quasiequilibrium manifold (we remind that L = ker m), for


any x 2 L,


S(f �
M
+ �x) = S(f �


M
)� (� 2=2)hxjxif�


M
+ o(� 2):


Therefore,


S(qM;� ) = S(f �
M
)� (� 2=2)h�f�


M
j�f�


M
if�


M
+ o(� 2):


Thus, to �rst order in � , we have, as expected.


qM;� = f �
M
+ ��f�


M
+ o(�):


Let us �nd qM;� to the accuracy of the order o(� 2). To this end, we expand all the


functions in equation (36) to the order of o(� 2). With


M�� =M � �m(J(f �
M
)) + � 2B(M) + o(� 2);


where function B is yet unknown, we write:


f �
M��


= f �
M
� �DMf


�
M
m(J(f �


M
)) + � 2DMf


�
M
B(M) + (� 2=2)A2(M) + o(� 2);


where


A2(M) =
d2f �


M+tm(J(f�
M
))


dt2


���
t=0
; (39)


and
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T� (x+ ��) = x + �� + �J(x) + � 2DxJ(x)jx�


+(� 2=2)DxJ(x)jxJ(x) + o(� 2);


T� (f
�
M��


) = f �
M
� �DMf


�
M
m(J(f �


M
)) + � 2DMf


�
M
B(M) + (� 2=2)A2(M)


+�J(f �
M
)� � 2DfJ(f)jf�


M
DMf


�
M
m(J(f �


M
))


+(� 2=2)DfJ(f)jf�
M
J(f �


M
) + o(� 2)


= f �
M
+ ��f�


M
+ (� 2=2)A2(M) + (� 2=2)DfJ(f)jf�


M
(1� 2�f�


M
)J(f �


M
)


+� 2DMf
�
M
B(M) + o(� 2):


The latter somewhat lengthy expression simpli�es signi�cantly under the action of m.


Indeed,


m(A2(M)) = d2[M + tm(J(f �
M
))]=dt2 = 0;


m(1� �f�
M
) = 0;


m(DMf
�
M
) = 1:


Thus,


m(T� (f
�
M��


)) =M + (� 2=2)m(DfJ(f)jf�
M
(1� 2�f�


M
)J(f �


M
)) + � 2B(M) + o(� 2);


B(M) = (1=2)m(DfJ(f)jf�
M
(2�f�


M
� 1)J(f �


M
)):


Accordingly, to second order in � ,


qM;� = T� (f
�
M��


) (40)


= f �
M
+ ��f�


M
+ (� 2=2)A2(M)


+(� 2=2)(1� �f�
M
)DfJ(f)jf�


M
(1� 2�f�


M
)J(f �


M
) + o(� 2):


Notice that, besides the dynamic contribution of the order of � 2 (the last term), there


appears also the term A2 (39) which is related to the curvature of the quasiequilibrium


manifold along the quasiequilibrium trajectory.


Let us address the behavior of the entropy production in the neighborhood of f �
M
.


Let x 2 L (that is, m(x) = 0). The production of the quasiequilibrium entropy, ��
M
(x),


equals, by de�nition,


��
M
(x) = DMS(f


�
M
) �m(J(f �


M
+ x)): (41)


Equation (41) gives the rate of entropy change under the motion of the projection of the


state onto the quasiequilibrium manifold if the true trajectory goes through the point


f �
M
+ x. In order to compute the right hand side of equation (41), we use essentially the


same argument, as in the proof of the entropy production formula (35). Namely, in the


point f �
M
, we have L � kerDfS(f)jf�


M
, and thus DfS(f)jf�


M
�f�


M
= DfS(f)jf�


M
. Using this,
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and the fact that entropy production in the quasiequilibrium approximation is equal to


zero, equation (41) may be written,


��
M
(x) = DfS(f)jf�


M
(J(f �


M
+ x)� J(f �


M
)): (42)


To the linear order in x, the latter expression reads:


��
M
(x) = DfS(f)jf�


M
DfJ(f)jf�


M
x: (43)


Using the identity (34), we obtain in equation (43),


��
M
(x) = �D2


f
S(f)j


f�
M
(J(f �


M
); x) = hJ(f �


M
)jxif�


M
: (44)


Because x 2 L, we have (1� �f�
M
)x = x, and


hJ(f �
M
)jxif�


M
= hJ(f �


M
)j(1� �f�


M
)xif�


M


= h(1� �f�
M
)J(f �


M
)jxif�


M
= h�f�


M
jxif�


M
:


Thus, �nally, the entropy production in the formalism developed here, to the linear order


reads,


��
M
(x) = h�f�


M
jxif�


M
: (45)


3.3 Stability of quasiequilibrium manifolds


The notion of stability does not cause essential diÆculties when it goes about an invariant


manifold, it is stable if, for any � > 0, there exist such Æ > 0 that a motion which has


started at t = 0 at the distance (in some appropriate sense) less than Æ from the manifold


will not go away further than � at any t > 0.


However, this is not so for a non-invariant manifold, and, probably, it is not possible to


give a useful for all the cases formalization of the notion of stability of the quasiequilibrium


manifold, in the spirit of motions going not far away when started suÆciently close to


the manifold (indeed, what is here \suÆciently close" and \not far"?). In spite of that,


expression (40) gives important opportunity to measure the stability. Indeed, let us


consider how the entropy production depends on � , that is, let us study the function,


�M(�) = h�f�
M
jqM;� if�


M
: (46)


It is natural to expect that �M(�) initially increases, and then it saturates to some limiting


value. The question is, however, how function �M(�) behaves at t = 0, is it concave or


is it convex in this point? If function �M (�) is concave, d2�M (�)=d� 2j
�=0 < 0, then the


speed with which it grows reduces immediately, and one can even estimate the limiting


value,


��
M
= lim


�!1
�M(�);
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using the �rst Pad�e approximate:


�M (�) = a�=(1 + b�) = a� � ab� 2 + : : : (47)


��
M
= a=b = �


2(d�M(�)=d� j�=0)
2


d2�M(�)=d� 2j�=0
:


Concavity of �M (�) at � = 0 (d2�M(�)=d�
2
j
�=0 < 0) is analogous to a soft instability:


The motion does not run too far away, and it is possible to estimate where it will stop,


see equation (47). However, if d2�M(�)=d�
2
j
�=0 > 0, then this is analogous to a hard


instability, and none of the estimates like (47) work. Thus, everything is de�ned by the


sign of the scalar product,


d2�M(�)


d� 2


���
�=0


= h�f�
M
jA2(M) +DfJ(f)jf�


M
(1� 2�f�


M
)J(f �


M
)if�


M
: (48)


If this expression is negative, then the Pad�e estimate (47) gives:


��
M
= �


2h�f�
M
j�f�


M
i
2
f�
M


h�f�
M
jA2(M) +DfJ(f)jf�


M
(1� 2�f�


M
)J(f �


M
)if�


M


: (49)


In the opposite case, if the sign of the expression (48) is positive, we call the quasiequi-


librium manifold unstable.


Equation (49) allows us to estimate the parameter � in the equations of the method


of natural projector. To this end, we make use of equation (35):


(�=2)h�f�
M
j�f�


M
if�


M
= ��


M
;


whereupon,


� � �
4h�f�


M
j�f�


M
if�


M


h�f�
M
jA2(M) +DfJ(f)jf�


M
(1� 2�f�


M
)J(f �


M
)if�


M


; (50)


if the denominator assumes negative values. In this case, there are no free parameters left


in equation (33).


Above, the parameter � , or the time of \leaving the initial quasiequilibrium condition",


has been appearing explicitly in the equations. Except for the case of linear quasiequi-


librium manifolds where the formal limit � ! 1 can be addressed to derive generalized


uctuation-dissipation relations [31], this may be not the best way to do in the general,


nonlinear case.


3.4 Curvature and entropy production: Entropic circle and �rst


kinetic equations


In a consequent geometric approach to the problem of constructing the one-dimensional


model of nonequilibrium states it is suÆcient to consider the entropic parameter, ÆS =


S�(M)�S. Within this parameterization of the one-dimensional curve of the nonequilib-


rium states, one has to address functions �M(�S), rather than �M (�) (46), whereas their


Pad�e approximates can be constructed, in turn, from expansions in � .
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In order to give an example here, we notice that the simplest geometric estimate


amounts to approximating the trajectory qM;� with a second order curve. Given _qM;� and


�qM;� (40), we construct a tangent circle (in the entropic metrics, hjif�
M
, since the entropy


is the integral of motion of the original equations). For the radius of this circle we get,


R =
h _qM;0j _qM;0if�


Mq
h�q? M;0j�q? M;0if�


M


; (51)


where


_qM;0 = �f�
M
;


�q? M;0 = �qM;0 �
h�qM;0j�f�


M
if�


M
�f�


M


h�f�
M
j�f�


M
if�


M


;


�qM;0 = (1� �f�
M
)DfJ(f)jf�


M
(1� 2�f�


M
)J(f �


M
) +
�
DM�f�


M


�
m(J(f �


M
)):


Let us represent the microscopic motion as a circular motion along this entropic circle


with constant velocity _qM;0 = �f�
M
. When the microscopic motion passed the quarter of


the circle, the entropy production started to decrease and it became zero after the halve


of the circle. Hence, after passing the quarter of the circle, this model should be changed.


The time of the motion along the quarter of the model entropic circle is:


� �
�


2


s
h�f�


M
j�f�


M
if�


M


h�q? M;0j�q? M;0if�
M


: (52)


After averaging on the 1=4 of this circle circular motion we obtain the macroscopic


equations5


dM


dt
= m


�
J


�
f �
M
+


2


�
R


�f�
M


k�f�
M
k
+


�
1�


2


�


�
R


�q? M;0


k�q? M;0k


��
= m(J(f �


M
)) + (53)


+
2


�


R


k�f�
M
k
m
�
DfJ(f)jf�


M
(�f�


M
)
�
+


�
1�


2


�


�
R


k�q? M;0k
m
�
DfJ(f)jf�


M
(�q? M;0)


�
+ o(R):


where kyk =
q
hyjyif�


M
.


Equations (53) contain no undetermined parameters. This is the simplest example


of the general macroscopic equations obtained by the natural projector. The coeÆcients


(2=�, etc.) can be corrected, but the form is more universal. The entropy production


for equations (53) is proportional both to the defect of invariance and to the radius of


curvature:


�M =
2


�
Rk�f�


M
k: (54)


This equation demonstrates the thermodynamical sense of curvature of the curve of


nonequilibrium states. The combination defect of invariance
curvature is the dissipation. (It should


be remained that all the scalar products and norms are entropic).


5This averaging makes sense for conservative microdynamics, and for dissipative microdynamics the


model of uniform circular motion along the entropic circle should be improved by taking into account the


acceleration along the circle.
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4 The �lm of non-equilibrium states


4.1 Equations for the �lm


The set qM;� in a space E generates a surface parameterized by \two variables": A scalar,


� � 0; and value of macroscopic variables, M; with condition


M = m(qM;� ): (55)


We call this surface the �lm of non-equilibrium states or simply the �lm. It consists of the


primitive macroscopically de�nable ensembles, the results (for t > 0) of motions which


start from the quasiequilibrium state (at t = 0).


For each � � 0 the section of the �lm is de�ned: the set, qM;� ; for given �: It is


parameterized by the value of M: For � = 0 the section of the �lm coincides with the


quasiequilibrium manifold. The �lm itself can be considered as a trajectory of motion


of the section under variation of � 2 [0; +1) (Fig. 6). It is not diÆcult to write down


equations of this motion using de�nition of qM;� :


qM;� = T�f
�
M��


; (56)


where T� is shift in time in accordance with the original dynamical system, M�� is de�ned


with equation (36).


For small ��


qM;�+�� = qM��M;� + J(qM;� )�� + o(��); (57)


where �M = mJ(qM;� )��: Hence,


dqM;�


dt
= (1�DMqM;�m)J(qM;� ): (58)


Initial condition for equation (58) is the quasiequilibrium


qM;0 = f �
M
: (59)


Equation (58) under initial condition (59) de�nes the �lm of non-equilibrium states


in the space E: This �lm is a minimal positive invariant set (i.e invariant with respect


to shift T� by positive times � > 0), including the quasiequilibrium manifold, f �
M
: The


kinetics we are interested in occurs only on this �lm.


Investigation of non-equilibrium kinetics can be separated into two problems:


i) Construction of the �lm of non-equilibrium states: solution of equation (58) under


initial conditions (59).


ii) Investigation of the motion of the system on the �lm.


Naturally, it should be assumed that the �lm will be constructed only approximately.


Therefore, the second problem should be separated in two again:


ii1) Construction of projection of initial vector �eld, J; on the approximately found �lm,


and construction of equations for M and �:
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Figure 6: The �lm of nonequilibrium states as the trajectory of motion of the quasiequi-


librium manifold due to microscopic dynamics.
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ii2) Investigation and solution of equations for M and �:


It should be especially emphasized that existence of the �lm is not signi�cantly ques-


tionable (though, of course, the deriving of the theorems of existence and uniqueness for


(58), (59) can turn into a complicated mathematical problem). In contrast, existence


of kinetic coeÆcients (viscosity etc.), and generally, the fast convergence of dM=dt to a


certain dependence dM=dt(M) is essentially a hypothesis which is not always true.


Below we will be solving, mainly, the problem of construction of equations: problems


ii1) and ii2). And we will begin with the problem ii2). Thus, let the �lm be approximately


constructed.


4.2 Thermodynamic projector on the �lm


We need the projector in order to project the vector �eld on the tangent space. The


idea of thermodynamic projector [20] consists of a description of every manifold (sub-


ject to certain requirements of transversality) as the quasiequilibrium one. For this, one


constructs a projection of a neighborhood of the manifold on it, and later, the required


projector is obtained by linearization.


The projection of the neighborhood on the manifold should satisfy essentially only


one condition: a point of manifold must be the point of maximum of the entropy on its


preimage. If the preimage of point f � is a domain in the aÆne subspace, Lf� � E; then


required condition is:


DfS
�(Lf� � f �) � 0: (60)


where Lf� � f � is already the linear subspace in E.


For such projections, a dissipative vector �eld is projected into a dissipative one, and


a conservative vector �eld (with the entropy conservation) is projected into a conservative


one, i.e. the entropy balance is exact. Thus, let the �lm, qM;� ; be de�ned. Let us construct


for it a thermodynamic projector.


Under small variation of variables M and �


�qM;� = DMqM;��M +D�qM;��� + o(�M;��);


�S = DfS
��
qM;�


�qM;� + o(�M;��): (61)


After simple transformations we obtain:


�� =
1


DfSjqM;�
D�qM;�


+ o(�M;�S);


�qM;� =


�
1�


D�qM;�DfSjqM;�


DfSjqM;�
D�qM;�


�
DMqM;��M


+
1


DfSjqM;�
D�qM;�


D�qM;��S + o(�M;�S): (62)


From this formulae we obtain thermodynamic projector for J , �td:


�tdjqM;�
J =


�
1�


D�qM;�DfSjqM;�


DfSjqM;�
D�qM;�


�
DMqM;�mJ +


D�qM;�DfSjqM;�


DfSjqM;�
D�qM;�


J: (63)
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For conservative systems the second term in (63) vanishes and we obtain:


�tdjqM;�
J =


�
1�


D�qM;�DfSjqM;�


DfSjqM;�
D�qM;�


�
DMqM;�mJ: (64)


The equation for M corresponding to (64) has the form:


_M = m�tdjqM;�
J(qM;� ) = m


�
1�


D�qM;�DfSjqM;�


DfSjqM;�
D�qM;�


�
DMqM;�mJ = mJ(qM;� ): (65)


It should be supplemented with the equation for S:


dS


dt
= 0; (66)


or for �; in accordance with (62),


d�


dt
=


_S �DfSjqM;�
DMqM;�


_M


DfSjqM;�
D�qM;�


= �
DfSjqM;�


DMqM;�
_M


DfSjqM;�
D�qM;�


; (67)


where _M is de�ned in accordance with (65). The numerator in (67) has a simple meaning:


it is the rate of the entropy production by dynamic equations (65) when � is constant (for


frozen �). Expression (67) can be obtained from the condition of the constant entropy for


the motion on the �lm in accordance with (65,67). Equations (65,67) describe dynamics


on the �lm (Fig. 7).


Let us further assume that condition (38) is satis�ed:


qM;� = f �
M
+ ��f�


M
+ o(�):


In expressions (62,65,67) the denominator, DfSjqM;�
D� qM;� , is present. For � ! 0 this


expression vanishes:


D�qM;� j�=0 = �f�
M
;


DfSjf=f�
M
x = 0; for x 2 kerm; (68)


m(�f�
M
) = 0; therefore DfSjqM;�


D�qM;� ! 0 for � ! 0: For � ! 0 indeterminate forms


0=0 appear in expressions (62-64,66,67). Let us resolve the indeterminate forms and


calculate the corresponding limits.


Two indeterminate forms are present:


N1 =
(D�qM;� )(DfSjqM;�


)DMqM;�mJ


DfSjqM;�
D�qM;�


(69)


and right hand side of equation (67). Let us evaluate the indeterminate form (69) with


the L'Hôpital rule. We obtain:


N1(�)!�!0


�f�
M
DfSjf�


M
�f�


M
DfJ(f)jf�


M


h�f�
M
j�f�


M
if�


M


(70)
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Figure 7: Dynamics on the �lm: _M = mJ(qM;� ); _� = �
DfSjqM;�


DMqM;�
_M


DfSjqM;�
D� qM;�


.
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using identity (34), similar to (35), we obtain:


N1(�)!�!0 �
�f�


M
h�f�


M
j�f�


M
if�


M


h�f�
M
j�f�


M
if�


M


= ��f�
M
:


In such a way, for � ! 0


�tdjqM;�
J(qM;� )! DMf


�
M
mJ(f �


M
) + �f�


M
= �f�


M
J(f �


M
) + (1� �f�


M
)J(f �


M
) = J(f �


M
): (71)


Similarly, after simple calculations we obtain that:


d�


dt
! 1; for � ! 0: (72)


The fact that for � ! 0 the action of the thermodynamic projector on J becomes


trivial, �tdJ = J; can be obtained (without calculations) from the construction of qM;�


in vicinity of zero. We have chosen this dependence in such a way that J(qM;� ) becomes


transverse to the �lm for � ! 0: This follows from the condition (38). Let us emphasise,


however, that derivation of the formulas (64-67) themselves was not based on (38), and


they are applicable to any ansatz, qM;� ; not necessarily with the right behavior near the


quasiequilibrium (if one needs such ansatzes for anything).


4.3 Fixed points and \right asymptotics" for the �lm equation


What is the dynamics of the �lm in accordance with equation (58)? A naive expectation


that qM;� tends to the stable point of equation (58) leads to strange consequences. Stable


point (58) is the invariant manifold qM . On this manifold


J(qM) = DMqMmJ(qM ); (73)


i.e. the projection of the vector �eld, J; onto qM coincides with J: Were the condition


qM;� ! qM satis�ed for � !1; the dynamics would become more and more conservative.


On the limit manifold qM ; the entropy should be conserved. This could lead to unusual


consequences. The �rst of them is limited extendability backwards \in the entropy".


Let us consider the set of points M�� for given M: Because of the existence of the


limit, T�M�� ! qM ; for � ! 0; the di�erence, S(M)�S(M�� ) = �S� ; is bounded on the


half-axis, � 2 [0; +1) : �S� < �S1(M): this means that it is impossible to get into the


values of macroscopic variables, M; from the quasiequilibrium initial conditions, M1; for


that S(M)�S(M1) > �S1(M): Assuming additionally a smoothness of qM andM�� ; we


see that it is impossible to get into "�neighborhood of the quasiequilibrium state, M�;


(over macro-variables) from the outside, from the quasiequilibrium initial conditions M0;


if S(M0) < S"; where S" is " dependent threshold of the entropy. Thus, possible stable


points of the equation (58), regardless of their obvious interest, likely demonstrate exotic


possibilities. The following \right asymptotics" correspond to our qualitative expectations


for large �: Namely, it is expected that for the quite large �; _M becomes, within a good


precision, a function of M; and later does not depend on � :


m(J(qM;� ))! _M(M); (74)
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with the entropy production:


�(qM;�) = DMS(M)mJ(qM;� )! �(M) > 0; (75)


and, correspondingly, S(qM;�)! �1; � !1:


Already simple examples (linear in J) demonstrate that it is not so simple to construct


such an asymptotic. Moreover, for reasonably built systems it probably does not exist.


Indeed, let J(q) = Lq, we search for \the right asymptotic" in the form qM;� = a(M) +


�b(M) + o(1): We obtain:


mb = mLb = 0;


ma(M) = M;


Lb(M) �DMb(M)mL(a(M)) = 0;


La(M)�DMa(M)mL(a(M)) = b(M): (76)


Acting with the operator mL on the �rst equation, we obtain mL2b(M) = 0; further,


acting with the operator mL2; we obtain mL3b(M) = 0; and so on.


Thus,


b(M) �


1\
k=0


kermLk = H: (77)


Space H is L�invariant, therefore, it is possible to pass from the initial dynamics, _f = Lf;


to the dynamics in the factor-space. This does not change the dynamics of macroscopic


variables because of the de�nition of H (77).


In such a way, instead of the right asymptotic equations, (76) leads us again to the


equation of the invariant manifold (b = 0; a(M) determines the invariant manifolds.)


4.4 Coarse-graining projector


A construction of an exact projection of the microscopic dynamics on the macroscopic


is meaningless, it has meaning only as an intermediate result. Really, generically, such a


projection (�nite segment of the trajectory M(t)) contains practically all the information


about the Liouville equation. This is a bit too much.


Moreover, there are no invariant manifolds with the dissipative dynamics for the �nite-


dimensional conservative systems. The conclusion is: every time explicitly, or sometimes


implicitly, coarse-graining, or replacing of the system with something di�erent, takes


place.


For example, there is no invariant manifold for the Liouville equation parameterized


with the one-particle distribution function with dissipative dynamics on this manifold.


The derivation of the Boltzmann equation requires some limit transitions.


A few ways of coarse-graining are known, but essentially only two exist. The �rst one


is related to distinguishing a manifold, M; and a projector, �; on it; the manifold, M;
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with the projector, �; separate the \microscopic" (ker �) from the macroscopic, M: In


particular,m(f) = m(�f): Then, a \new microscopic dynamic" is parameterized: instead


of _M = m(J(f)) the equality


_M = m(J(�f)) (78)


is used.


Equation (78) determines, for example, quite di�erent system of relations in the chain


of derivatives M; _M; �M (original system can contain no such relations). For construction


of \right asymptotics" relation (76) is much more appropriate then the correct initial


relation: for example, instead of mLk in (77) one can get m(L�)k, and the kernel (L�)k


always contains the kernel �:


If the coarse-graining projector, �; and manifold,M; are postulated, then the hypoth-


esis of existence of the thermodynamic limit consists of existence of the limit:


�qM;� ! f
#
M


for � !1: (79)


Nevertheless, one should not expect a precise ful�llment of equality (79), this is still


the case of exact projection (on M). For � ! 1 one can expect realistically only the


smallness of the remainder:


Æ(�;M;N) = �qM;� � f
#
M
; (80)


and its elimination for N !1; where N is number of particles.


For a more precise formalization of this condition one should estimate Æ under � !1;


for example, such as:


"(M;N) =


s
lim
�!1


1


�


Z
�


0


kÆ(�;M;N)k2d� (81)


and, further, investigate the thermodynamic limit N !1.


So far, however, the number of particles was not taken into consideration, and we dealt


with only one �xed system. In this case we can't help but to assume that the value of


"(M) (81) is \suÆciently small". We notice that the problem of determining the dynamic


for the thermodynamic limit of in�nite systems is a very diÆcult problem. For in�nite


system even determining the energy, entropy, and other characteristics is not clear. We


are talking not about the limit does not exist (the number of particles is always �nite),


but about the asymptotics for large N , therefore, strictly speaking, one needs not only to


know the limits, but to estimate the reminding terms too.


The second coarse-graining method consists of a decomposition of the system into


small subsystems, and introduction of two incomparable time scales: micro and macro.


The main assumption is that during an arbitrarily small macroscopic time period a small


part of the system passes the micro-evolution within an in�nitely long time. This leads to


a quasi-chemical description: within each period a number of elementary atomic processes


(events) takes place. For example, the derivation of the Boltzmann equation in frames of


all formalisms is, in fact, reduced to this. We will return to considering this approach,


but for now we'll concern ourselves with the coarse-graining projector for the �lm.
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4.5 Choice of the coarse-graining projector, and layer-by-layer


linearization


The simplest choice of the coarse-graining projector is


�(f) = (M(f); _M(f)) = (mf;mJ(f)): (82)


For many problems, for example, to investigate the invariance defect (78) it is not


necessary to place the manifold M in the initial space E, it is suÆcient to investigate
_M
#
M
:


In the cases when one needs, after all, to have corresponding elements of E, a good


choice could be the quasiequilibrium manifold corresponding to �. The quasiequilibrium


manifolds have an evident but important property. Let


f
m1
!M1


m2
!M2; f


m1m2
�! M2; (83)


be a sequence of linear mappings, where m1; m2 are mappings \on", their images are


whole corresponding spaces.


Let, furthermore, M1 � E be a quasiequilibrium manifold in E; corresponding to m1;


M2 be a quasiequilibrium manifold of macro-variables,M2; corresponding to m2;M21 be


a quasiequilibrium manifold in E corresponding to m2m1. Then


m1(M21) = m2; or M21 = m�1
1 (M21): (84)


For the transition to the quasiequilibrium approximation this property reads simpler:


U2U1 = U21; (85)


where Ui the corresponding to mi procedure of the taking of the quasiequilibrium approx-


imation.


For eachM2 both the point of the quasiequilibrium,M�
1 (M2), and the linear manifold,


m�1
2 (M2), containing this point are de�ned. For each M1 the quasiequilibrium, f �1 (M1),


and the linear manifold, m�1
1 (M1) containing this point are de�ned. As well f


�
2 (M2); and


containing them (m2m1)
�1(M2) are de�ned.


Relations:


f �2 (M2) = f �1 (M
�
1 (M2));


m�1
1 (m�1


2 (M2)) = (m2m1)
�1(M2): (86)


are ful�lled.


The quasiequilibriummanifold, f �2 (M2) � E parameterized byM2 lies on the quasiequi-


librium manifold, f �1 (M1) � E parameterized by M1: For each M2 the set


ff �1 (M1)jf
�
1 (M1) � (m2m1)


�1(M2)g (87)


forms the quasiequilibrium manifold in (m2m1)
�1(M2) with the set of macroscopic vari-


ables, m�1
2 (M2); and the same entropy. For the projector, �(f) = (M(f); _M(f)); it means
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that for each M in the linear manifold, on that m(f) =M; the quasiequilibrium manifold


corresponding to the macroscopic variables _M(f) = mJ(f) (if J(f) is a linear mapping


on this manifold) is de�ned.


The last remark leads us to an important construction named by us \layer-by-layer


linearization". The �led J(f) could be presented in the form:


JL(f) = J(f �
m(f)) +DfJ(f)jf�


m(f)
(f � f �


m(f)): (88)


The \layer-by-layer quadratic entropy" has special importance for the theory of non-


linear equations (88) :


SL(f) = S(f �
m(f))� (1=2)hf � f �


m(f)jf � f �
m(f)if�m(f)


: (89)


Let us remind that the bilinear form, hjif�
m(f)


; is generated by the negative second di�er-


ential of the entropy at the point f:


The layer-by-layer linearized equations allowed us to add more moment equations and


construct the quasiequilibrium approximations using the entropy (89). This is especially


important for the moments which are time derivatives _M; �M and so on.


Application of the layer-by-layer linearized equations (85) together with the layer-


by-layer quadratic entropy (89) allowed us to construct a thermodynamically consistent


theory of the moment equations for the Boltzmann equation [32, 33].


It is convenient to supplement the quasiequilibrium, f �
M
; with the quasiequilibrium for


additional macro-variables _M ,


_M(f) = m(DfJ(f)jf�
m(f)


f); (90)


in two stages: i) supplementing by the entropy production, ii) and later by the conserving


part of the entropy.


i) We supplement M by the entropy production. In the layer-by-layer linear approxi-


mation


�(f) = h�f�
m(f)


jf � f �
m(f)if�m(f)


(91)


(as was already determined, see (45)). The quasiequilibrium manifold corresponding to �


in the layer over f �
M


has the form:


f �
M;�


= f �
M
+


�(f)�f�
M


h�f�
M
j�f�


M
i
f�
M


: (92)


Quasiequilibrium projector in the layer is:


�� =
j�f�


M
ih�f�


M
j


h�f�
M
j�f�


M
i
f�
M


ii) We distinguish in L = DJ(f)jf�
M


the conservative (conserving the entropy) part


over f �
M
:


LC
M
' = LM('� ��'):
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This corresponds to the situation when we have �xed �(f) = h�f�
M
j'i; and we consider


the motion in the layer for �xed �: For this:


LM' = LC
M
'+


LM�f�
M
h�f�


M
j'i


h�f�
M
j�f�


M
if�


M


= LC
M
'+


�(')


h�f�
M
j�f�


M
if�


M


: (93)


The quasiequilibrium manifold corresponding to LC
M


in the layer over f �
M


could be


constructed in the following way: we search for the kernel of LC
M
; in L (the set of all


solutions to equations LC
M
' = 0; m' = 0). We de�ne it asK: The orthogonal complement,


K?; to K in the scalar product, hjif�
M
; is the corresponding manifold. For each point from


the image, LM ; on L,  2 L
C


M
(L); there exists unique ' 2 K?


f�
M
such that LM' =  : We


de�ne it as ' = (LC
M
)�1( ): As a result, for every  2 LC


M
(L)


f �
M;�; 


= f �
M
+


��f�
M


h�f�
M
j�f�


M
if�


M


+ (LC
M
)�1 : (94)


The second and third terms in (94) are reciprocally orthogonal in the scalar product


hjif�
M
.


4.6 The failure of the simplest Galerkin approximations for con-


servative systems


The simplest approach to the problem is connected to the Galerkin approaches: one con-


siders a projection of the vector �eld, J(f); onto the manifold in question and investigates


the obtained motion equations. It is not diÆcult to make sure that for conservative sys-


tems such an approach is unfruitful. If the orthogonal projection, hjif�
M
; is taken, then


in the linear within the layer approximation only quasiequilibrium approximations with


increased number of moments could be obtained. For the dissipative systems, in con-


trast, such a way leads to quite satisfactory results. Thus, if for the Boltzmann equation


and the hydrodynamic moments the invariant manifold is to be searched in the form


f
#
M
= f �


M
+ a(M)�f�


M
, then we obtain the Navier-Stokes equations with the viscosity cal-


culated within the �rst Sonine polynomials approximation. Using another scalar product


simply leads to unphysical results.


In order to specify appearing problems, let us give an example with a linear �eld,


J(f) = Af; and quadratic entropy, S(f) = (1=2)hf jfi: The conservativity of J means


that for each f


hf jAfi = 0 (95)


is ful�lled.


The quasiequilibrium subspace corresponding to the moments M = mf is the orthog-


onal complement, kerM: The quasiequilibrium projector, �; is an orthogonal projector


on this subspace, and does not depend on the point. For the defect of invariance �f�
M
we


obtain:


�f�
M
= (A� �A)f �


M
: (96)
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Under Galerkin approximation we write


qM;� = f �
M
+ a(M; �)�f�


M
: (97)


Projector of the vector �eld on �f�
M
is


j�f�
M
ih�f�


M
j


h�f�
M
j�f�


M
i
: (98)


Thus, we pass from the equation of motion of the �lm (58) to the Galerkin approxi-


mation for a(M; �):


_a = 1 + (99)


a
h�f�


M
jA�f�


M
i


h�f�
M
j�f�


M
i
� a


h�f�
M
jA�A�f�


M
i


h�f�
M
j�f�


M
i


� a2
h�f�


M
jA�A�f�


M
i


h�f�
M
j�f�


M
i


� (DMa)m
Af �


M
+ aA�f�


M


h�f�
M
j�f�


M
i
:


One can try to �nd the �xed points (solving _a = 0). This is the projected invariance


equation. Due to the properties of the operator A; and the self-adjoint projector, �, we


obtain for conservative systems


h�f�
M
jA�f�


M
i = 0; (100)


h�f�
M
jA�A�f�


M
i = �h�A�f�


M
j(�A2


� (�A)2)�f�
M
i: (101)


On the other hand, for the dissipative systems the form (100) is negatively de�nite,


and it is this form that determines the Navier-Stokes equations (in the �rst Sonine's poly-


nomials approximation) for derivation of these equations from the Boltzmann equation.


For the conservative equations this main part vanishes, and the second term in equation


(100), generally speaking, is sign-inde�nite.


The failure of the Galerkin approximations is even more obvious in the equations of


motions on the �lm. Here everything is very simple:


_a = 1 + a
h�f�


M
jA�f�


M
i


h�f�
M
j�f�


M
i
: (102)


For the dissipative systems under frozen M; a relaxes to the stable point


a = �
h�f�


M
j�f�


M
i


h�f�
M
jA�f�


M
i
: (103)


This �xed point is \the leading order term" in the solution of the invariance equation,


_a = 0 (100).


For the conservative systems _a = 1: This result was evident beforehand from the


entropy production formula (35), and


�S(f) = (1=2)hf jfi = (1=2)h�f j�fi+ (1=2)h(1� �)f j(1� �)fi:
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4.7 Possible ways beyond the simplest Galerkin approximations


The �rst way is an application of the projection operators methods [4]. The �lm equation


(56) is considered for two sets of \variables": slow \macro-variables", �q; and rapid


\micro-variables", (1� �)q (where � is a coarse-graining projector, see subsection 4.4).


Next the rapid variables are eliminated, and the equation with retardation for the slow


variables is written. This formally exact equation becomes tractable only after a sequence


of additional approximations (\short memory", \Markovian models" etc.). The method


is applicable to linear (linear within the layer) vector �elds, J(q) = LMq. The main


problem is the computation of the coeÆcients including averaging along the trajectories


of the rapid motion.


The second way is an introduction of the dissipative part (using the thermodynamic


limit) into the vector �eld, J(qM;� ): One adds into (58) either a \relaxation" operator


�(qM;� � f �
M
); (104)


or operator P; simulating a random process. For example, if f is a function on a space


X; then the typical form of P with the \detailed equilibrium" is f �
M


P (f) =


Z
Q(x; x0)


�
f(x0)


f �
M
(x0)


�
f(x)


f �
M
(x)


�
dx0 (105)


with non-negative kernel Q(x; x0) � 0;
R
Q(x; x0)dx0 � 0:


As a result, the system becomes dissipative, and one can construct for it invariant


manifolds that are stationary solutions for the �lm equation. They could be found either as


a sequence [34, 35] or, more e�ectively, based on the Newton method with the incomplete


linearization [21, 28]. It becomes possible to use the Galerkin approximations, and so on.


After this one makes the transition to the thermodynamic limit. It is suggested that


the thermodynamic limit exists for the found invariant manifold, q
#
M
(), and, if later 


tends to zero, that a �nite limit, �q
#
M
() exists. This limit is suggested for the de�nition


of the macroscopic variables M:


In some problems of dissipative kinetics (namely, in the problem of initial layer for


the Boltzmann equation) it was found to be e�ective to approximate the trajectories by


segments (with further smoothing and corrections, or without them). These segments


were constructed in the following way: the initial direction of motion was taken, and f


evolved along this direction for as long as it was possible to conserve the smooth evolution


of the entropy. Further, the procedure was repeated from the obtained point (for details


see [15, 16]).


Unfortunately, in the problem of the initial layer for the conservative systems there are


no stop points during the motion along the straight line (more precisely, the start of the


motion itself can be considered as a stop point because under the linear approximation


the relation (100) is valid). In the initial layer for the dissipative systems the motion of


the system along the straight line x = �� in any case increases the entropy. For the


conservative systems one needs to \rotate the phase", and the models of motion are to be


47







arcs of ellipses (in linear space), or the constant entropy lines, instead of the straight lines.


In the �lm problem, as even the simplest examples show, the simplest good model is a


general conic section. A simple example: J(f) = Af; A is generator of rotation around


the axis with direction ~r = ~ex + �~ey; M = x; the �lm is the lateral surface of the cone,


obtained by rotation of the quasiequilibrium manifold, the axis fx~exg; around the axis


f'~rg: For � < 1 the curve qM;� is an ellipse, for � > 1 it is a hyperbole, for � = 1 it is a


parable.


4.8 The �lm: Second order Kepler models


The curve qM;� is a section of two manifolds: one of them is the result of motion of


the quasiequilibrium manifold along the vector �eld J(f), and another one is the linear


manifold f �
M
+ kerm:


Already in the �nite-dimensional space, and under linear approximation (J is linear, S


is quadratic) we have an interesting geometrical picture: quasiequilibrium manifold is an


orthogonal complement to kerm; A is the rotation generator. (kerm)? is rotated under


action of eA� ; unknown curve is the section:


(f �
M
+ kerm)


\
eAR+(kerm)?; (106)


where R+ = [0;1); f �
M
2 (kerm)?:


The simplest model motion is a second order curve. However, it is not suÆcient to


know the �rst and the second derivatives. We need information about the third derivative.


If we consider the curve qM;� as a trajectory in the Kepler problem, then the location, r;


of the center of attraction (repulsion) is (Fig. 8):


r = q0 � �q
h _q?j _q?i


h
:::


q j _q?i
; (107)


where r0 is the initial point where all the derivatives are taken. The force is:


F = �
r � q


hr � qjr � qi3=2
;


�2 = h�qj�qihr � qjr � qi2 = h�qj�qi3
h�q?j�q?i


4


h
:::


q j _q?i4
; (108)


� > 0 (attraction) if h
:::


q j _q?i < 0;


� < 0 (repulsion) if h
:::


q j _q?i > 0:
(109)


It is necessary to speci�cally note that the Kepler problem de�nes an approximation


of the trajectory qM;� , but not the dependence on �:


An important question is the �niteness of the �lm. Is the modeling motion �nite?


The answer is simple in terms of the Kepler problem [36]:


k _qk2


2
<


�


kr � q0k
;
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Second order models


1. The circle
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2. Kepler models
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��−=
⊥⊥


⊥⊥


q|q
q|qqr
����


��
��


Figure 8: The de�nition of the second-order models.
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or


k _qk2jh _q?j
:::


qij


2k _q?k2k�qk2
< 1: (110)


Here k k = (hjif�
M
)1=2 is the norm in the entropic scalar product, as it is usual.


4.9 Minimal second order models: entropic parable, and en-


tropic circle


In accordance with the �lm equation (58), the following derivatives


_qM;� = @qM;�=@� ;


�qM;� = @2qM;�=@�
2;


:::


q
M;� = @3qM;�=@�


3;


contribute to the construction of the second order Kepler models.


There is a rougher construction leading to the two distinguished simplest second order


models that uses only two derivatives. One of them is �nite (the entropic circle), another


one is in�nite (the entropic parable). Both could be constructed for every point of the


�lm (if �q? 6= 0; otherwise, all second order models turn into straight lines). The circle


was already used by us in subsection 3.3 in order to estimate stabilizating value of �: Let


us remind that:


R =
h _qj _qip
h�q?j�q?i


(111)


where _q = @qM;�=@� , �q = @2qM;�=@�
2


�q? = �q �
_qh _qj�qi


h _qj _qi


hji is the entropic scalar product corresponding to the extension of the entropy at the


point qM;�0
; or, for the linear (as well as linear within the layer) systems, at the point f �


M
:


The concentric motion could be presented as:


qM;� � qM;�0
= _q


R


k _qk
sin


�
k _qk


R
(� � �0)


�
+ �q?


R


k�q?k


�
1� cos


�
k _qk


R
(� � �0)


��


= _q


s
h _qj _qi


h�q?j�q?i
sin


"s
h�q?j�q?i


h _qj _qi
(� � �0)


#


+ �q?
h _qj _qi


h�q?j�q?i


 
1� cos


"s
h�q?j�q?i


h _qj _qi
(� � �0)


#!
(112)


The parable could be constructed simpler:


qM;� � qM;�0
= _q(� � �0) + (1=2)�q?(� � �0)


2; (113)
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or even as:


qM;� � qM;�0
= _q(� � �0) + (1=2)�q(� � �0)


2; (114)


The di�erence between (113) and (114) is this: in the formula (113) the angle between


@qM;�=@� j"=�0 and @qM;�=@� tends to �=2 for � !1; in the model (114) this occurs too


if h _qj�qi 6= 0:


Note. In expressions (112-114) � coincides with the true � of the motion on the �lm


only in the zeroth and the �rst orders. For the further calculations it could be necessary


to recalculate � using true values of _q in the projection on the trajectory. This is discussed


below.


4.10 The �nite models: termination at the horizon points


In order to construct a step-by-step approximation it is necessary to be able to solve two


problems: the choice of the direction of the next step, and the choice of the value of this


step.


If the motion qM;� is along the straight line (dissipative systems), the direction of the


next step is _qM;�0
(let us remind that _qM;�0


is the defect of the invariance of the manifold


qM = qM;�0
under �xed � = �0), and the value of the step should be taken in the direction


to the stable point: to the point where direction of _qM;� becomes orthogonal to initial


one, _qM;�0
(Fig. 9). Naturally, the current direction of _qM;� is calculated with (58), but


approximately, with the frozen projector (DMqM;�0
instead of DmqM;�m).


For the conservative systems we have chosen the second order models instead of the


linear ones. For �niteness of the models we need to de�ne the moments of stop. It is


suggested to operate in a manner similar to the case of the dissipative systems: to stop


at the moment when the direction of motion is orthogonal to the initial one. In this case


we will take the direction of motion along the model.


Thus, if qM;�0
is a starting point of motion, and ~qM;�0+� is a motion on the �nite second


order model, then condition for the transition to the next model is


h _qM;�0
j
d~qM;�0+�


d�
i = 0 (115)


(in the entropic scalar product).


Let us call the horizon points such points, qM;�0+�0 ; where the scalar product (115) for


the �rst time becomes zero (for 0 � � < �0 this scalar product is positive). This notion is


motivated by the fact that for � > �0 the motion on the second order model \disappears


behind the horizon", and its orthogonal projection on the line parallel to _qM;�0
starts to


move back passing the same points for the second time.


The convention about the change of the model in the horizon points seemed quite


natural. The following sequence of calculations suggests itself (Fig. 10):


1) we pose that qM;0 = f �
M
;


2) we calculate _qM;0; �qM;0; : : : in accordance with equation (50);
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Figure 9: The stepwise construction of the �lm for dissipative system. First-order models:


The motion along the defect of invariance.
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3) we construct the (�nite) second order models, qM;�;


4) we �nd the horizon points, qM;�0(M);


5) then we take the manifold of the horizon points as a new initial manifold, and so


on.


At the �rst glance, this sequence contradicts the original statement of the �lm problem.


The manifold qM;�0(M) does not have the form of qM;� for a �xed � and is not a shift of


the quasiequilibrium manifold by the given time along the true microscopic equations of


motion.


The second diÆculty was already mentioned: the time of motion along the modeling


curve does not coincide with the true time, �: More precisely, it coincides only within the


second order. However, global, not local approximation are consructed. Therefore, global


corrections to the time, or ways to circumvent these corrections, are required.


The following two sections are devoted to the elimination of these diÆculties.


4.11 The transversal restart lemma


Let qM;� (� 2 [0; +1)) be the solution to (58) under initial condition (59) (the �lm). We


call the transverse section of the �lm, qM;� ; the manifold, qM;�(M); where �(M) is a smooth


function 0 � �(M) � t <1:


Let the transverse condition be ful�lled. Namely, for every �nite patch, M , that does


not exclude equilibrium exists, " > 0 such that in this patch


kJ(qM;�(M))�DMqM;�(M)mJ(qM;�(M))k


kJ(qM;�(M))k
> " (116)


in an appropriate (for example, entropic) norm. Let ~qM;� be the solution to (58) under


the initial condition ~qM;0 = qM;�(M): Then the following transverse restart lemma is valid:


qM;[0;+1) = qM;[0;�(M)]


[
~qM;[0;+1): (117)


here qM;[a;b] = fqM;� j� 2 [a; b]g.


In order to prove6 this lemma, we notice that it is equivalent to the following statement.


For every M the segment of the trajectory, T�f
�
M
(� 2 [0; t]); crosses the manifold qM;�(M);


and only once.


In order to demonstrate the unicity of the section, we consider the �lm in another


coordinates, for each point q we set M and �;: q = T�f
�
M
:


In these coordinates the transverse condition excludes pleats on qM;�(M):


In order to demonstrate the existence of the segment T�f
�
M


(� 2 [0; t]) for the cross


point, q�; with qM;�(M), we de�ne in the neighborhood of the point f �
M


on the quasiequi-


librium manifold the mapping into the neighborhood of this section point. Image of the


point f �
M


is section of the trajectory T�f
�
M


(� 2 [0; t]) with the manifold qM;�(M) in the


6Let us remind that in the degree of generality being used there are no proofs to the theorems of


existence and uniqueness
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Figure 10: The stepwise construction of the �lm for dissipative system. Finite second-


order models: The motion starts in the direction of the defect of invariance, and stops


when the direction of motion becomes orthogonal to the defect of invariance.
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neighborhood of q�: Due to the transverse condition, it performs an isomorphism of the


neighborhoods. Therefore, the set of M for which the section of the trajectory with


qM;�(M) exists is open. Furthermore, it is closed, because the limit of section points is a


section point (and segment [0; t] is compact). Obviously, it is not empty. Consequently,


it is the set of all possible M:


4.12 The time replacement, and the invariance of the thermo-


dynamic projector


Let the �lm be constructed as ~qM;�; where relation between � and � is unknown; � =


�(M; �); � = �(M; �); in order to determine this functions one needs to solve the equation


obtaining from (58) with substitution qM;� = ~qM;�(M;�) (and projection, therefore, ~q is only


an approximation). The calculation itself does not contain principal diÆculties. However,


a question arises: is it possible to escape the reverse replacing of time for the derivation of


the kinetic equations? Another words, could we use the constructed geometrical object,


the �lm, without an exact reconstruction of the time, �; on it?


For positive answer to this question it is suÆcient to demonstrate that the equations


of motion, constructed with the thermodynamic projector (65-67), describes the same


motion on the �lm after the time replacement.


This property of the thermodynamic projector is evident: deriving equations (65-67),


we did not use that � is the \true time" from the equation (58), and made the local


replacement of variables, passing from �M; �� to �M; �S:


In such a way, the thermodynamic projector is invariant with respect to the time


replacement, and, constructing equations of motion, it is not necessary to restore the


\true time".


Results of this, and previous sections allow to apply the sequence of operations sug-


gested in subsection 4.10.


4.13 Correction to the in�nite models


Let an in�nite model qM;�; (� 2 [0; +1)); qM;0 = f �
M
be constructed for the �lm. Actually,


it means that an approximation is constructed for the whole �lm qM;� (but not for its


initial fragment, as it was for the �nite models). Naturally, there arises a problem of


correction to this initial approximation, and, in general, construction of a step-by-step


computational procedure.


The thermodynamic projector on the �lm is de�ned (64). Correspondingly, the invari-


ance defect of the �lm is determined too


�qM;� = (1� �tdjqM;�
)J(qM;�) =


�
1�


�
1�


D�qM;�DfSjqM;�


DfSjqM;�
D�qM;�


�
DMqM;�m


�
J(qM;�) (118)


It is easy to verify, that if qM;� is a solution to (58), then �qM;� � 0:
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Subsequently we calculate the corrections to qM;� using an iterative method for the


manifold with edge (see Appendix).


Generally speaking, one could (and should) calculate these corrections for the �nite


models. However, the in�nite models are distinguished, because they require such correc-


tions.


4.14 The �lm, and the macroscopic equations


Let a �lm be constructed. What next? There are two routes.


i) Investigation of the conservative dynamics of \N + 1" variables, where \N" is


moments, M; and \ + 1" is � on the �lm;


ii) Derivation of the macroscopic equations for M:


Actually, the second route is more desirable, it leads to the usual classes of equa-


tions. The �rst one, however, is always available, because the �lm exists always (at least


formally) but the existence of equations for M is not guaranteed.


The route of obtaining equations forM is is the same one, suggested by us [28],[29]-[12]


following Ehrenfest [25], and Zubarev [3].


i) One chooses a time T .


ii) For arbitrary M0 one solves the problem of the motion on the �lm (65), (67) under


initial conditions M(0) = M0, �(0) = �0 on the segment t 2 [0;T ]: The solution is


M(t;M0):


iii) For the mapping M0 ! M(T ) the system dM=dt = F (M) is constructed. It has


the property that for its phase ow, �t(M); the identity


�T (M0) � M(T;M0) (119)


is satis�ed, for de�ned T and all M0: This is a natural projector again (see (32), and


whole section ).


In this sequence of actions there are two nontrivial problems: solution to the equations


on the �lm, and reconstruction of the vector �eld by transformation of the phase ow,


�T ; under �xed T:


The natural method for solving the �rst problem is the averaging method. The equa-


tions of motion on the �lm read


_M = "P (M; �); _� = Q(M; �) (120)


where " is (formally) small parameter.


Assuming that the motion ofM is slow, one can write down the series of the Bogoliubov-


Krylov averaging method [37]. The �rst term of this series is a simple averaging over the


period T : �1(T;M) is solution to the equation _� = Q(M; �) under �xed M;


M1(t;M0) =M0 + "t


�
1


T


Z
T


0


P (M0; �1(�;M0))d�


�
(121)
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for t 2 [0;T ], and


M1(T;M0) =M0 + "


Z
T


0


P (M0; �(�;M0))d�; (122)


correspondingly.


The �rst correction to reconstruction of the vector �eld, F (M); by the transformation


of the phase ow, �T (M); is very simple too:


F1(M) =
1


T
(�T (M)�M): (123)


Hence, we obtain the �rst correction to the macroscopic equations:


_M = F1(M) =
1


T


Z
T


0


m(J(qM;�(t;M)))dt; (124)


where �(t;M) is a solution to the equation (67) under �xedM (actually, mJ(qM;� ) should


be substituted into (67) instead of _M).


The second and higher approximations are much more cumbersome, but their con-


struction is not a signi�cant problem.


Let us demonstrate an explicit expression for _M (124) for the modeling motion on the


entropic circle (51), (112) for the linear in layer system (88).


The original system is


_f = J(f �
m(f)) + Lm(f)(f � f �


m(f));


where LM = (DfJ(f))jf�
M
:


The macroscopic equations are (see also equations (53)):


_M = m(J(f �
M
)) + (1=!)m(LM( _q))


2!


�


Z
�=2!


0


sin(!t)dt


+ (1=!2)m(LM (�q?))
2!


�


Z
�=2!


0


(1� cos(!t))dt


= m(J(f �
M
)) +


2!


�
m(LM( _q)) + (1=!2)(1� 2=�)m(LM(�q?)); (125)


where _q = �f�
M
= J(f �


M
)� �f�


M
J(f �


M
); and �f�


M
is the quasiequilibrium projector (16),


�q = (1� �F �
M
)LM ((1� 2�f�


M
)J(f �


M
)) +DM�f�


M
m(J(f �


M
));


�q? = �q �
h�qj _qif�


M


h _qj _qif�
M


_q:


hjif�
M
is the entropic scalar product related with quadratic approximation to the entropy


f �
M
:


S(f) = S(f �
M
) +DSjf�


M
(f � f �


M
)� (1=2)hf � f �


M
jf � f �


M
if�


M
+ o(kf � f �


M
k
2);


! =
h�q?j�q?if�


M


h _qj _qif�
M


:
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Note. In (125), in accordance with (67), the model of motion on the circle (112) is taken


without recalculating the time. Such a recalculation changes the values of the coeÆcients


without a change in the structure of the equation: instead of 2=� and (1 � 2=�), other


numbers appear.


The entropy production for equations (125) has the form constdefect of invariancecurvature
(54).


In general, equations such as (125) are determined accurately to the values of the


coeÆcients simply by the sequence of the horizon points of the second order �nite Kepler


models, and corresponding _qi; �qi


_M = m(J(f �
M
)) +


X
i


(�im(LM ( _qi)) + �im(LM(�qi))); (126)


with �i; �i > 0:


The last comment on the positivity of the \kinetic constants" �i and �i is important,


and cannot be easily veri�ed every time. However, in the case under consideration it


follows from the next theorem.


The theorem about the positivity of kinetic constants. The motion on the


Kepler ellipse from start to the horizon point always satis�es the property


q � q0 = � _q + ��q; �; � > 0; (127)


where q0 is a starting point, _q; and �q are velocity, and acceleration correspondingly.


This theorem follows from elementary theorems about analytical geometry of second-


order curves.


For the modeling motion on the circle, strictly speaking, this is not so every time.


Positivity of the coeÆcients is guaranteed only for m(L( _q)); and m(L(�q?)):


Two phenomena can be related to the increase of the number of terms in (126): i)


alteration of the kinetic constants (terms are not orthogonal to each other, therefore, new


terms contribute to the previous processes), ii) appearance of new processes.


Motion on an in�nite �lm can lead to the stabilization of kinetic constants as functions


of M , but it can also lead to their permanent transformation. In the second case one has


to introduce into macroscopic equations an additional variable, the coordinate, �; on the


�lm.


From the applications point of view, another form of equations of motion on the


�lm could be more natural. In these equations kinetic coeÆcients are used as dynamic


variables. Essentially, this is just another representation of equations (65), (67). For every


kinetic coeÆcient, k; expression dk=dt =  k(�;M) = 'k(k;M) is calculated in accordance


with (65), (67). Substitution of variables (�;M)! (k;M) in this equation is possible (at


least locally) if value k does not stabilize during the motion on the �lm. Finally, we have


the system in the form:


_M = m(J(f �
M
)) +


X
j


kjFj(M); _kj = 'j(kj;M): (128)


For the motion starting from the quasiequilibrium state the initial conditions are kj = 0:
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4.15 New in the separation of the relaxation times


The classical Bogoliubov's concept about separation of the relaxation times does not agree


well with the thesis of the quasiequilibrium initial conditions.


Originally, there are no dissipative possesses in the quasiequilibrium state (the theorem


of preservation of the type of dynamics for the quasiequilibrium approximation).


The �rst thing that occurs during the motion out of the quasiequilibrium initial con-


ditions is appearance of the dissipation. It can be described (in the �rst non-vanishing


approximation) by equation (33). It is of special importance here that there is still no


separation into processes with various kinetic coeÆcients. This occurs at further relax-


ation stages: Various processes appear, their kinetic coeÆcients are determined (see, for


example, (126)) (or, in some cases, the dynamics of the kinetic coeÆcients is determined).


And just after this the \hydrodynamic" relaxation occurs, which is the motion of the


macroscopic variables to their equilibrium values.


Generalizing, we can distinguish three stages:


i) appearance of dissipation;


ii) branching of dissipation: appearance of various processes;


iii) macroscopic relaxation.


It is important to notice in this schema that the determination of the kinetic coeÆ-


cients can occur at both stages: at the second stage when macroscopic (hydrodynamic)


relaxation can be described in the usual form with kinetic coeÆcient as functions of the


macroscopic parameters, as well as in the third phase (motion on the �lm), when the


hydrodynamic description includes dynamics of the kinetic coeÆcients also.


5 Conclusion


To solve the problem of irreversibility we have introduced the notion of the macroscopically


de�nable ensembles. They are result of evolution of ensembles from the quasiequilibrium


initial conditions under macroscopic control. The quasiequilibria (ensembles of conditional


maximum of the entropy under �xed macro-variables) are intensively used in statistical


mechanics after Jaynes [44]. Papers of Rosonoer and Kogan [45]-[47] signi�cantly a�ected


our initial investigation. The primitive macroscopically de�nable ensembles appear as


results (for t > 0) of motions which start from the quasiequilibrium state (at t = 0).


The hypothesis of the primitive macroscopically de�nable ensembles is very important


from constructive point of view: Any macroscopically de�nable ensemble can be approx-


imated by primitive macroscopically de�nable ensembles with appropriate accuracy. In


accordance to this hypothesis it is possible to study the one curve for every value of


macroscopic variables. These curves form the �lm of nonequilibrium states.


The hypothesis about the primitive macroscopically de�nable ensembles is real hypoth-


esis, it can be true or false. There is the signi�cant di�erence between this hypothesis and


the thesis about macroscopically de�nable ensembles. The thesis can be accepted, or not,
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but nobody can prove the de�nition, even the de�nition of the macroscopically de�nable


ensembles.


Technically, the solution to the problem of irreversibility looks as follows: we can


operate only with the macroscopically de�nable ensembles; the class of these ensembles


is not invariant with respect to the time inversion. The notion of the macroscopically


de�nable ensembles moves the problem of irreversibility into a new setting. It could be


called a control theory point of view. The key question is: Which parameters can we


control? It is those parameters that are �xed until \all the rest" come to an equilibrium.


The quasiequilibrium states are obtained in such a way.


The further development of this direction must lead to an investigation of the macro-


dynamics under controlled macro-parameters. This will be a supplement of the postulated


quasiequilibrium initial conditions with an investigation of a general case of an evolution


of the controlled ensembles: The initial condition is quasiequilibrium, after which one


carries out on the system by available control inuences.


The method of the natural projector allows us to construct an approximate dynamics


of macro-variables. Under tendency of the time of projection, �; to in�nity, these equa-


tions should tend to the actual equations of macro-dynamics, if the latter exist. This a


hypothesis about their existence for the thermodynamic limit (�rst, the number of par-


ticles N ! 1; and then, the time of projection � ! 1) is the basis of the Zubarev


statistical operator [3]. Here, however, we need to make a note. Frequently, physicists use


objects whose existence and unicity are not proven: solution to the hydro- gaso-dynamics,


kinetic equations etc. Often, the failure to prove the theorems of existence and unicity is


treated as an absence of an adequate mathematical statement of the problem (de�nition


of spaces etc.). For all this, it is assumed, that substantial obstacles either are absent, or


can be distinguished separately, independently on the theorem proof in physically trivial


situations. Existence (or non-existence) of the macroscopic dynamics is a problem of an


absolutely di�erent kind. This question is substantial: the cases of non-existence can be


found as frequently as the usual existence.


The notion of the invariant �lm of non-equilibrium states, and the method of its ap-


proximate construction allow us to solve the problem of macro-kinetic even in cases when


there are no autonomous equations of macro-kinetic. The existence of the �lm appears


to be one of the physically trivial problems of existence and uniqueness of solutions.


Using the Taylor's expansions of the natural projector, the �rst applications already


have been constructed [29, 42, 43]. Particularly, the post-Navier-Stokes hydrodynamic,


replacing the Burnett equations, have been found. It is free from unphysical singularities


[29, 41].


The formula for entropy production


� = const
defect of invariance


curvature


makes the geometrical sense of dissipation clear.


Nevertheless, at least one important problem remains unsolved. This is a problem of


undivisible events: For macroscopically small time small microscopic subsystems can go
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through \the whole life", from the beginning to the limit state (or, more accurate, to


the limit behaviour which may be not only a state, but a type of motion, etc.). The


microscopic evolution of the system in a small interval of macroscopic time can not be


written in the form


�f = _f�t;


if it is really the system with microscopic structure, and consists of a large number of


microscopic subsystems. The evolution of microscopic subsystems in a macroscopically


small time �t should be described as a \ensemble of undivisible events". An excellent hint


gives us the Boltzmann equation with undivisible collisions, another good hint gives the


chemical kinetics with undivisible events of elementary reactions. The useful formalism for


description such ensembles of undivisible events is developed. It is the \quasi-chemical"


representation (see elsewhere, for example, the review [22]). But the way from a general


systems to such ensembles remains unclear. It is a challenge to the following works.


6 Appendix


6.1 The method of invariant manifolds


The aim of this appendix is to give a short presentation of the method of invariant


manifold, including positive-invariant manifolds with the �xed edge.


6.2 Construction of the invariant sections


Let E be a vector space, in the patch U � E the vector �eld (microscopic system)


_f = J(f); (f 2 U): (129)


is de�ned.


J is assumed to be smoothly continued to the closure of U positively invariantly with


respect to (129). It means that every solution to (129), f(t), starting under t = 0 in U ,


is to be found within U for every t 2 [0; +1):


Let B be a vector �eld (of macroscopic variables), and a surjective mappingm : E ! B


is de�ned.


It is required to construct such a mapping


M 7! f
#
M


(M 2 m(U); f
#
M
2 U); (130)


that m(f
#
M
) �M; and f


#
M


is a positive invariant manifold of the system (129) (since U is


positive-invariant, it is suÆcient to verify a local condition: the �eld J(f
#
M
) is tangent to


the manifold f
#
M


for each M 2 m(U)).


Actually, we continue to keep such a level of strictness (unstrictness) of reasoning when


such details as topology in E and B etc. are not discussed. If necessary, it could be made


for particular realizations.
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We call the mapping (130) a section, and the problem of construction of positive


invariant manifold, f
#
M
; an invariant section problem.


It could be solved with many methods. Here are some of them:


i) the Taylor expansion over the degrees of an appropriate parameter in a neighborhood


of the initial approximation (for example the Chapman-Enskog method [38]);


ii) the Newton method (as in the KAM-theory [39], [40] but with a incomplete lin-


earization, as in the original formulation of the method of invariant manifolds for dissi-


pative systems [21]).


iii) the implementation of Galerkin approximations for each iteration.


Omitting the well known expansions of the perturbation theory, we consider the direct


methods.


In order to make one step of the Newton method with incomplete linearization, we


need:


i) an approximate manifold, f
#
M
; which we call 
;


ii) projector P mapping a neighborhood of 
 on 
:


For each f
#
M


the projector, �
f
#
M
; mapping E on the tangent space, T


f
#
M

; is �


f
#
M


=


DfP
jf#
M
(� is di�erential of P
).


Usually, the projector P
 is de�ned in such a way that the layers (prototypes of points


f
#
M


under projection) could be patches on aÆne subspaces of E:


For each f
#
M


we de�ne the invariance defect


�
f
#
M
= J(f


#
M
)� �


f
#
M
J(f


#
M
): (131)


The invariance equation


�
f
#
M
= 0 (132)


is solved with the Newton method with incomplete linearization: for every M we search


for Æ
f
#
M
; such as:


(
P
(f


#
M
+ Æf


#
M
) = f


#
M
;


(1� �
f
#
M
)DJ(f)j


f
#
M
Æf


#
M
= ��


f
#
M
:


(133)


If the layers of P
 are patches on the aÆne manifolds, then (133) is a system of linear


equations. Another form of this system is(
�
f
#
M
Æf


#
M
= 0;


(1� �
f
#
M
)DJ(f)j


f
#
M
Æf


#
M
= ��


f
#
M
:


(134)


It should be stressed that in equation (133) incomplete (in contrast to the Newton


method) linearization has been used. We did not di�erentiate �
f
#
M
in �


f
#
M
in (131).


The discussion is given in (8). We note only that for the simplest stable self-adjoin lin-


ear systems with incomplete linearization equations (133) lead generically to an invariant
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subspace with the largest (i.e. closest to zero) eigenvalues. In contrast, procedures with


whole lonearization lead in this case to the subspace closest to the initial approximation.


As soon as Æf
#
M
is found from equations (133), we substitute f


#
M
for f


#
M
+Æf


#
M
; construct


new projectors and repeat the procedure.


Solution to the invariance equation (132) by the Newton method with incomplete


linearisation can turn into a diÆcult problem. In spite of their linearity, equations (133)


cannot be solved easily every time. One can try to simplify the problem passing from


the invariance equations to the Galerkin approximations. The simplest example is one-


dimensional approximations when Æf
#
M
= ÆM�f


#
M
; and equation is solved in the projection


on � :


h�
f
#
M
j(1� �


f
#
M
)J(f


#
M
+ ÆM�f


#
M
)i
f
#
M
= 0: (135)


The entropic scalar product hji
f
#
M
= �D2S(f)j


f
#
M
is used.


Solving (135) with the Newton method, we obtain at the �rst iteration:


ÆM = �


h�
f
#
M
j�


f
#
M
i
f
#
M


h�
f
#
M
jDJ(f)


f
#
M
�
f
#
M
i
f
#
M


: (136)


More often for the dissipative systems the denominator is negative, and this allows us


to move on. For the conservative systems the one-dimensional Galerkin approximations


lead to an unsatisfactory result, at least, in the combination with the Newton method


(with the incomplete linearization).


6.3 The entropic thermodynamic projectors


The simplest choice of P
 is obvious:


P
(f) = f
#
M
; (137)


for each value of f the values of macroscopic variables, m(f); can be calculated. Based


on these values, the corresponding point with the same value of m(f) on the manifold


can be obtained.


However, projector (137) does not satisfy the physical constrains every time.


On the set U a concave function, the entropy, S, is de�ned. Two kinds of systems


are under consideration: i)(129) dissipative, for which dS=dt � 0, in accordance with the


system, ii) conservative, for which dS=dt = 0: The quasiequilibrium manifolds, f �
M
; are


physically distinguished. They are the solution to the variational problem


S(f)! max;


m(f) =M: (138)


Application of the simplest projector (137) leads to the fact that the vector �eld, �f�
M
J(f �


M
);


preserves the type of dynamics of the system on the quasiequilibrium manifold. For the
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conservative J it is conservative, and for the dissipative systems it is dissipative too (with


the same entropy). Such a preservation of the type of dynamics by the projector is


guaranteed only for the quasiequilibrium manifolds.


However, practically for every manifold 
 = ff
#
M
g it is possible to construct such a


projector, P
; that every f
#
M


is a solution to the problem


S(f)! max;


P
(f) = f
#
M


(139)


in a neighborhood of 
: For this it would be suÆcient that for every M the functional


DS(f)j
f
#
M
eliminate ker �


f
#
M
:


DS(f)j
f
#
M
(ker �


f
#
M
) = 0: (140)


Thus, in order to control the physical sense of obtained approximations, one needs to


consider the projector depending on the manifold [21].


6.4 Method of invariant manifold for the positively invariant


manifolds with �xed edge


In the problem of construction of invariant sections the position of points f
#
M


was not


�xed. Only ful�llment of condition m(f
#
M
) � M was important. There is another kind


of problems where one needs to �nd a positive invariant manifold with a �xed edge.


Practically, this is a problem of construction of a trajectory of the edge in accordance


with (129) for t 2 [0; +1):


These problems include the problem of initial layer [15], [16], as well as the problem


of construction of the �lm of non-equilibrium states discussed in this paper.


The iterative methods described above cannot be implemented here, because they


destroy the boundary conditions on the edge of the manifold. If the invariance conditions


are ful�lled on the edge of the initial approximation, f
#
M
, accurate to the k�th derivative


in time, then the Newton method leads to the fact that after the (k+1)�th iteration the


edges of the manifold will be changed (the �lm tears o� the edge).


In the previous paper devoted to the problem of initial layer [15] we have technically


overcame this diÆculty. To do this, we simulated the trajectory as an elastic beam with a


rigidly �xed end. In the mechanical equilibrium this beam had the form of an approximate


trajectory. Later, it was elastically attracted to the result of the Newton iterations. Even


though that this technique allows to avoid the separation of contact between the edge and


the �lm, its technical arti�ciality forces us to continue to search for new methods.


The application of the Picard iterative procedure allows to conserve initial conditions.


For the �lm equation we write: let q0
M;�


be an approximation for the �lm, then the Picard


iteration gives:


q1
M;�


= qM;0 +


Z
�


0


@qM;�


@�


����
q0
M;�


d�: (141)
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Here @qM;�=@�q0
M;�


is the right hand side of (58) taken at the point q0
M;�


:


Let us de�ne, as usual, �M;� = @qM;�=@�jq0
M;�
�@q0


M;�
=@� as the di�erence of the vector


�eld and its projection on the approximate manifold, then the Picard iteration obtains


the form:


q1
M;�


= q0
M;�


+


Z
�


0


�M;�d�: (142)


The Picard iteration gives a good result for small � but can be too radical for large


one. It is possible to use the Picard iterations together with the weight which ensures


essential dependence of the correction, q1
M;�


; not from all �M;�, 0 � � � �; but from those


within a segment � 2 [� � h; � ]: For example,


q1
M;�


= q0
M;�


+


Z
�


0


e(���)=h�M;�d�: (143)


Another choice of the weight function is possible. For large � and suÆciently small h


and � 6= 0, the formula (143) gives:


q1
M;�


= q0
M;�


+ h�M;� + o(h): (144)


For small � we obtain:


q1
M;�


= q0
M;�


+
�


k + 1
�M;� + o(��): (145)


where k is order of zero of �M;� at the point � = 0:


Joining (144) and (145), we obtain:


q1
M;�


� q0
M;�


+
h�


(k + 1)h+ �
�M;� : (146)


In all cases the question of how to choose the step arises. The simplest solution exists


for (146): it is possible to take the step, h, depending on the point:


q1
M;�


� q0
M;�


+ �M;��M;� : (147)


where �M;� = minf�=(k+1); ÆM;�g, and ÆM;� is to be found from the condition of stopping


in the direction of � (135).


Various combinations of the Picard and Newton iterations can generate a separate


subject for investigation. Their simplest hybridisation consists of the following. Let for


each (M; �) the step, ÆM;� ; is found according to the Newton method (133).


De�ne


q1
M;�


= q0
M;�


+ 1=h


Z
�


0


e(���)=hÆqM;�d�: (148)


In order to have the step value on the direction ÆqM;� close to 1 for large �; the


multiplier 1=h has been used. An analog to (146) is


q1
M;�


= q0
M;�


+
�


(k + 1)h+ �
ÆqM;�: (149)


65







The typical time scale, which separates in (137) and (138) the Picard (small times,


� � h), and Newton (large time, � � h) iterations, can be estimated by the curvature


radius (52) (in general, from the relations k _qk=k�qk or k _qk=k�q?k ).


Further development of the methods will be determined by particular applications.
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