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Asymptotic of the integrated density of states
of acoustic operators with random long range


perturbations
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Abstract


In this paper we study the behavior of the integrated density of
states of random acoustic operators of the form Aω = −∇ 1


%ω
∇. When


%ω is considered as an Anderson type long range perturbations of some
periodic function, the behavior of the integrated density of states of
Aω in the vicinity of the internal spectral edges is given.


key words and phrases : spectral theory, random operators, integrated
density of states, Lifshitz tails.


1 Introduction:


We consider Aω, the self adjoint operator on L2(Rd) formally defined by:


Aω = A(%ω) = −∇ 1


%ω


∇ = −
d∑


i=1


∂xi


1


%ω


∂xi
, (1.1)


where %ω is a positive and bounded function.
Aω is called the acoustic operator, see [4] for the physicals interpretations.
Let us start by defining the main object of our study, the integrated density of
states. For this we consider Λ a cube of Rd. We note by Aω,Λ the restriction of
Aω to Λ with self adjoint boundary conditions. As Aω is elliptic, the resolvent
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of Aω,Λ is compact and, consequently, the spectrum of Aω,Λ is discrete and is
made of isolated eigenvalues of finite multiplicity [26]. We define


NΛ(E) =
1


vol(Λ)
·#{eigenvalues of Aω,Λ ≤ E}. (1.2)


Here vol(Λ) is the volume of Λ in the Lebesgue sense and #E is the cardinal
of E.
It is shown that the limit of NΛ(E) when Λ tends to Rd exists almost surely
and is independent of the boundary conditions. It is called the integrated
density of states of Aω (IDS for the short form). See [8].
The study of the integrated density of states and specially of its behavior
is of interest for its relationship with physical interpretations. See [7]. The
question we are interested in here deals with the behavior of N at the internal
spectral edges of Aω.


1.1 The IDS behavior


We give a brief history of the subject. In 1964, Lifshitz [19] argued that, for a
Schrödinger operator of the form Hω = −∆ + Vω, there exists c1, c2 > 0 such
that N(E) satisfies the asymptotic :


N(E) ' c1 exp(−c2(E − E0)
−α), E → E0. (1.3)


Here E0 is the bottom of the spectrum of Hω and α > 0. The behavior (1.3)
is known as Lifshitz tails (for more details see part IV.9.A of [25]). Lifshitz
predicted (1.3) also at fluctuating edges inside the spectrum.
The principal results known on Lifshitz tails are mainly shown for Schrödinger
operators (for continuous and discrete cases). (See [7, 9, 13, 24, 27] and
others). For an operator of type (1.1), see [20, 21].


1.2 The result


When %ω in (1.1) is obtained by a short range perturbation of Anderson type
of some periodic function, it is proved [21] that the IDS of Aω exhibits in-
ternal Lifshitz tails at the edges of the spectral gaps if and only if the IDS
of some periodic operator is non degenerate at the same edges. The essential
goal of this work is to give the asymptotic of the IDS of the operator de-
fined by (1.1) when %ω is given as a long range perturbation of some periodic
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function. Note that the main novelty of this paper compared to [21] is that
the asymptotic is given without any assumption on the behavior of the IDS
of the backgound operator. As we will see, in contrast to [21], in the present
situation the kinetic energy i.e the Floquet eigenvalues of the background
periodic operator does not play a rol or influence the IDS behavior. Indeed
in this case the Lifshitz exponent (the α in equation (1.3)) does not depend
on the certainly principal i.e on the kinetic energy. We refer to this situation
as the classical regime. Note that here as in [21] we consider the case where
the decreasing rate of the probability density at the edges of its support is
0. See (H.3).
The proof of the result is based on the use of the technique of periodic ap-
proximations [13, 21] and is composed of two main parts, the upper and the
lower bounds.
To present our result, let us consider the following plan :
In section 2, we define the model to be studied and specify various assump-
tions. We introduce a periodic reference operator Aω+ . We state the principal
theorem (Theorem 2.1) which gives the asymptotic of the IDS.
To prove Theorem 2.1, the technique of the periodic approximations [21, 13]
enable to approximate the IDS of Aω with that of well chosen periodic op-
erators. This will be done in sections 3. Section 4 is devoted to the proof of
Theorem 2.1.
Acknowledgements. The author would like to thank professor Alain GRIGIS
for his hospitality at the university of Paris 13 where a part of this work has
been done.


2 The model


Let us start this section by giving the expression of %ω. We assume that %ω


is a function which satisfies
(H.0)


%ω = %0


(
1 +


∑
γ∈Γ


ωγuγ


)
,


where
(i) %0 is measurable real and Zd-periodic function i.e.


%0(x) = %0(x + γ), ∀x ∈ Rd, γ ∈ Zd.
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(ii) There exists constants %0,+ > %0,− > 0 such that for almost all x ∈ Rd,
we have


0 < %0,− ≤ %0(x) ≤ %0,+. (2.4)


(iii) For γ ∈ Zd, we set uγ(·) = u(· − γ). We suppose that u is a real function
such that there exists U+ > 0 : such that for almost all x ∈ Rd


0 ≤ U(x) ≡
∑


γ∈Zd


uγ(x) ≤ U+ < ∞. (2.5)


(iv) (ωγ)γ∈Zd is a family of non constant and positive, independent identically
distributed random variables whose common probability measure is noted by
Pω0 . We note the probability space by (Ω,F ,P). We assume that Pω0 is com-
pactly supported.


Let A(%ω) the quadratic form defined as follow: for u ∈ H1(Rd) = D(A(%ω))


A(%ω)[u, u] =


∫


Rd


1


%ω(x)
∇u(x)∇u(x)dx.


A(%ω) is a symmetrical, closed and positive quadratic form. Aω given by (1.1)
is defined to be the self adjoint operator associated to A(%ω) [26].
Assumption (H.0) ensures that Aω is a measurable family of self adjoint
operators and ergodic [7, 25]. Indeed, if τγ refers to the translation by γ,
then (τγ)γ∈Zd is a group of unitary operators on L2(Rd) and for γ ∈ Zd we
have


τγAωτ−γ = Aτγω.


According to [7, 25] we know that there exists Σ, Σpp, Σac and Σsc closed and
non random sets of R such that Σ is the spectrum of Aω with probability one
and such that if σpp (respectively σac and σsc) design the pure point spectrum
(respectively the absolutely continuous and singular continuous spectrum) of
Aω, then Σpp = σpp, Σac = σac and Σsc = σsc with probability one.


2.1 Reference operator


It is convenient to consider Aω as a perturbation of some periodic operator


Aω+ . More precisely, for %ω+ = %0


(
1+ω+


∑


γ∈Zd


uγ


)
, where ω+ = sup(suppPω0)


we write :
Aω = Aω+ + ∆Aω,
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with


Aω+ = A(%ω+) and ∆Aω = Aω − Aω+ = −∇%ω+ − %ω


%ω+%ω


∇ ≥ 0.


2.1.1 Some Floquet theory


Now we review some standard facts from the Floquet theory for periodic
operators. Basic references for this material are [18, 26, 28].
As %ω+ is Zd-periodic, for any γ ∈ Zd, we have


τγAω+τ ∗γ = τγAω+τ−γ = Aω+ .


Let T∗ = Rd/(2πZd). We define H by


H = {u(x, θ) ∈ L2
loc(Rd)⊗L2(T∗);∀(x, θ, γ) ∈ Rd×T∗×Zd; u(x+γ, θ) = eiγθu(x, θ)}.


There exists U a unitary isometry from L2(Rd) to H such that Aω+ admits
the Floquet decomposition [18, 28]


UAω+U∗ =


∫ ⊕


T∗
Aω+(θ)dθ.


Here Aω+(θ) is the operator Aω+ acting on Hθ, defined by


Hθ = {u ∈ L2
loc(Rd); ∀γ ∈ Zd, u(x + γ) = eiγθu(x)}.


As Aω+ is elliptic, we know that, Aω+(θ) has a compact resolvent; hence its
spectrum is discrete [26]. We denote its eigenvalues, called Floquet eigenval-
ues of Aω+ , by


E0(θ) ≤ E1(θ) ≤ · · · ≤ En(θ) ≤ · · ·.
The corresponding eigenfunctions are denoted by (w(x, ·)j)j∈N. The functions
(θ → En(θ))n∈N are Lipshitz-continuous, and we have


En(θ) → +∞ as n → +∞ uniformly in θ.


The spectrum σ(Aω+) of Aω+ is made of bands (i.e σ(Aω+) = ∪n∈NEn(T∗).)
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2.1.2 Main assumptions


We assume that
(H.1)
There exists E+ and δ > 0 such that σ(Aω+) ∩ [E+, E+ + δ) = [E+, E+ + δ)
and σ(Aω+) ∩ (E+ − δ, E+] = ∅.
To prove our result, we will need the following assumptions :
(H.2)
• There exists ν ∈ (d, d + 2] and 0 ≤ g− ≤ g+ two non vanishing functions,
such that for any γ ∈ Zd and almost every x ∈ C0 = {x ∈ Rd;∀1 ≤ j ≤
d;−1


2
< xj ≤ 1


2
} one has


g−(x) ≤ u(x + γ) · (1 + |γ|)ν ≤ g+(x),


and for all 1 ≤ i ≤ d,


g−(x) ≤ |(∂xi
u)(x + γ)| · (1 + |γ|)ν ≤ g+(x).


(H.3)


• lim sup
ε→0+


log | logPω0([ω+ − ε, ω+])|
| log ε| = 0.


As, ∆Aω ≥ 0 and ω+ is in the support of Pω0 , Σ contains an interval of the
form [E+, E+ + a](a > 0) (see [10]).
As we are interested in the behavior of the IDS in the neighborhood of
E+, we require that E+ remains always the edge of a gap for Σ, when the
perturbation is turned on. More precisely, if for all t ∈ [0, 1], we define Aω,t =
Aω+ + t∆Aω and Σt is the almost sure spectrum of Aω,t, then one requires
that the following assumption hold.
(H.4)
There exists δ′ > 0 such that for all t ∈ [0, 1], Σt ∩ [E+ − δ′, E+) = ∅.


2.1.3 The main theorem


The main result of this work is:


Theorem 2.1 Let Aω the operator defined by (1.1). We assume that (H.1)
, (H.2) and (H.3) hold. Then E+ is continuity point for N and


lim
ε→0,ε>0


log | log
(
N(E+ + ε)−N(E+)


)|
log ε


= − d


ν − d
. (2.6)
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Let us notice.


Remark 2.2 -The result of Theorem 2.1 is stated for lower band edges.
Under adequate assumptions the corresponding result can be proved for upper
band edges.
-As it has already been mentioned in remark 11 of [4], one can use the re-
sult of Theorem 2.1 to show either Anderson localization [4] or dynamical
localization [2] under assumptions on the distribution of the random vari-
ables weaker than those required in these references. This was done in the
Schrödinger case in [29] and for the divergence operator in [22].


Outline of the proof: To show Theorem 2.1, we use periodic approxima-
tions. This technique allows us to approximate exponentially the initial IDS
by that of some periodic operators. Then we have just to control the behav-
ior of the IDS of those periodic operators and take the limit. To do this the
upper and lower bounds are proven separately.
Note that in [21] the upper bound is proved under the non degeneracy as-
sumption of the IDS of the background operator Aω+ which is relaxed here.
The upper bound is proved by the use of probabilistic arguments and Markov
inequalities [16].
The lower bound is proved by constructing a large enough number of or-
thogonal approximate eigenfunctions of Aω,Λ associated with approximate
eigenvalues in [E+− ε, E+ + ε]. This will enable us to lower bound the num-
ber of the eigenvalues of Aω,Λ in the interval [E+ − ε, E+ + ε].
We end this section by remarks about our assumptions. Let us start with
(H.1). Figotin and Kuchment in [5] studied the existence of open spectral
gaps in the spectrum of certain periodic acoustic operators for d = 2 and 3.
In assumption (H.1) we asked that E+ > 0 which excludes the spectral gap
(−∞, 0). Lifshitz tails is likely to occur at the neighborhood of the fluctuat-
ing edges. See [25]. It should be noted that 0 is not a fluctuating edge of the
spectrum. It belongs to the spectrum of Aω independently of the choice of
%ω(x).
If the support of Pω0 is connected, the assumption (H.4) can be replaced
by:
(H.4.bis) There exists δ′ > 0 such that Σ ∩ [E+ − δ′, E+) = ∅.
By adding a disorder parameter g in the equation which defines %ω i.e.


%ω = %0


(
1 + g


∑


γ∈Zd


ωγuγ


)
,
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we can choose g small enough so that the spectral gap in σ(Aω+) will not be
closed after the perturbation [4].


3 Approximation of the density of states


In this section we will approach the density of states of Aω by the density of
states of periodic approximations. In a neighborhood of E+, we will control
the behavior of the density of states of periodic approximations via the den-
sity of states of periodic approximations of the reference operators. We then
compute the limit for the density of states of the reference operators and we
obtain the sought for result.


3.1 The periodic approximations


Let k ∈ N∗. We define the following periodic operator


Aω,k = −∇ 1


%ω,k


∇,


where the function %ω,k is defined by


%ω,k = %0


(
1 +


∑


γ∈Ck∩Zd


ωγ


∑


β∈(2k+1)Zd


uγ+β


)
,


Ck is the cube


Ck = {x ∈ Rd;∀1 ≤ j ≤ d, −2k + 1


2
< xj ≤ 2k + 1


2
}.


Aω,k is (2k + 1)Zd-periodic and essentially self adjoint operator. Let T∗k =
(Rd)/ 2π


2k+1
Zd. We define Nω,k the IDS of Aω,k by


Nω,k(E) =
1


(2π)d


∑


n∈N


∫


{θ∈T∗k, Eω,k,n(θ)≤E}
dθ. (3.7)


Let dNω,k the derivative of Nω,k in the distribution sense. As Nω,k is increas-
ing, dNω,k is a positive measure; it is the density of states of Aω,k. We denote
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by dN the density of states of Aω. For all ϕ ∈ C∞
0 (R), dNω,k verifies (see


[13, 26])


〈ϕ, dNω,k〉 =
1


(2π)d


∫


θ∈T∗k
trHθ


(
ϕ(Aω,k,θ)


)
dθ,


=
1


vol(Ck)
tr


(
χCk


ϕ(Aω,k)χCk


)
, (3.8)


where for Λ ⊂ Rd, χΛ will design the characteristic function of Λ and tr(A)
is the trace of A (we index by Hθ if the trace is taken in Hθ). The proof of
(3.8) is given in [13].


Theorem 3.1 1) For any ϕ ∈ C∞
0 (R) and for almost all ω ∈ Ω we have


lim
k→∞


〈ϕ, dNω,k〉 = 〈ϕ, dN〉.


2) For any λ ∈ R a continuity point for N, we have lim
k→∞


E(Nω,k(λ)) = N(λ)


almost surely .


Remark 3.2 The result of Theorem 3.1 is close to that of Theorem 5.1 of
[13]. The proof is also similar and is based on functional analysis. The unique
difference in the proof comes from the control of the behavior of the resolvent.
In [13], the perturbation was a potential; in our case, it is a differential
operator of the same order as the background operator. The proof is given in
[21].


In what follow we prove that the IDS of Aω is exponentially well approxi-
mated by the expectation of the IDS of the periodic operators Aω,k when k
is polynomial in ε−1. More precisely we prove


Lemma 3.3 For any η0 > 1, there exists ν0 > 0 and ε0 > 0 such that, for
0 < ε < ε0 and k ≥ k1 = ε−ν0, we have


E[Nω,k(E + ε/2)−Nω,k(E − ε/2)]− eε−η0


≤ N(E + ε)−N(E)


≤ E[Nω,k(E + 2ε)−Nω,k(E − 2ε)] + e−ε−η0 . (3.9)
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Proof. The last result is well known for operators with compact single sit
potentials [14, 16, 17]. For this we need to define another operator. More
precisely let f a function on Rd , one define f ε(x) = f(x)χ{ε·|x|≤1}, f ε is
compactly supported. We define the following random operator :


Aε,ω = −∇ · 1


%ε,ω


· ∇,


where %ε,ω(·) is the function given by


%ε,ω(·) = %0


(
1 +


∑


γ∈Zd


ωγu
ε(· − γ)


)
.


The periodic approximations of Aε,ω it is defined analogously to Aω,k and
will be denoted by Aε,ω,k. Let Nε ( respectively Nε,ω,k ) be the IDS of Aε,ω


(respectively of Aε,ω,k). Notice that from the decaying assumption (H.2) and
the fact that the random variables are bounded uniformly in k and ω, we get
that there exits C > 0 such that for any Ψ = (−1−∆)−1ϕ, where ϕ ∈ L2(Rd)


0 ≤ 〈AωΨ, Ψ〉 − 〈Aε,ωΨ, Ψ〉 ≤ C · εν−d · ‖Ψ‖2 .


The same inequality holds for the periodic approximations. This yields that,
uniformly in k and ω and locally uniformly in the energy E we have


Nε(E − C · εν−d) ≤ N(E) ≤ Nε(E + C · εν−d), (3.10)


and


Nε,ω,k(E − C · εν−d) ≤ Nω,k(E) ≤ Nε,ω,k(E + C · εν−d). (3.11)


This tells us that the IDS of Aω is well approximated by that of Aε,ω. But for
the last operator the singles sites potentials are compactly supported and so
many techniques and results are available [16]. We need the following lemma


Lemma 3.4 [16] We assume that the single sit potential is supported in a
ball of radius Rε. Let I, a relatively compact open interval in R. For any
β ∈ (0, 1), there exists C > 1 and ρ > 0 such that , for any ϕ ∈ C∞


0 (I), for
n ∈ N∗ and k > Rε, we have


|E(〈ϕ, dNω,k〉)− 〈ϕ, dN〉| ≤
C · |k −Rε|−(1−β)k · nn · sup


x∈R,0≤j≤n+ρ


∣∣∣(|x|+ 1)ρ+nϕ(j)(x)
∣∣∣. (3.12)


10







Remark 3.5 This lemma is proven in [16] for the Schrödinger case. It is
still true for our case. The proof is based on the Helffer Sjöstrand formula
and the resolvent equation with the exponential decay of the resolvent kernels
(the Combes-Thomas argument).


Let ϕ be a Gevrey class function, of Gevrey exponent α > 1 (see [6]) such
that ϕ is supported in [−1, 2], 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on [0, 1]. For 0 < ε < 1,
we set


ϕE+,ε(·) = ϕ
( · − E+


ε


)
.


From Lemma 3.4 and properties of Gevrey class functions, we deduce that
there exists C > 1 such that for all k > Rε, n ≥ 1 and 0 < ε < 1 we have


∣∣∣E(〈ϕE+,ε, dNω,k〉)− 〈ϕE+,ε, dN〉
∣∣∣ ≤ ε−n−ρ(n + ρ)2α(n+ρ)(k −Rε)


−(1−β)n.


We pick n ≤ (k −Rε)
(1−β)/4α − ρ. For k −Rε large, we get that, there exists


C > 1 such that for k > Rε + 2, n > ρ and 0 < ε < 1, we have


∣∣∣E(〈ϕE+,ε, dNω,k〉)− 〈ϕE+,ε, dN〉
∣∣∣ ≤


(
ε−1(k −Rε)


(1−β)/4
)(k−Rε)(1−β)/4α


.


As Rε ∼ ε1/(d−ν), for η0 > 1 such that α · η0 > 1 and k = k1 = ε−ν0 >
ε−η04α/(1−β) + Rε, (it suffice to take ν0 > sup(η04α/(1− β), 1


d−ν
)) we get that


there exist ε0 > 0 such that, for 0 < ε < ε0, we have


∣∣∣E(〈ϕE+,ε, dNω,kε〉)− 〈ϕE+,ε, dN〉
∣∣∣ ≤ e−ε−η0 . (3.13)


As dNε and dNε,ω,k are positive measures and by the definition of ϕ, we have


E(Nε,ω,k(E+ε)−Nε,ω,k(E−ε)) ≤ E(〈ϕE,ε, dNε,ω,k〉) ≤ E(Nε,ω,k(E+2ε)−Nε,ω,k(E−2ε))


and


Nε(E + ε)−Nε(E − ε) ≤ 〈ϕE,ε, dN〉 ≤ Nε(E + 2ε)−Nε(E − 2ε).


This, gives (3.9), for Aε,ω. To get (3.9) for Aω, it suffices to pick ε = ε1/ν−d


and take into account (3.10), (3.11) and (3.13).¤
Now we have the necessary tools to prove the main theorem.
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4 The proof of Theorem 2.1


Notice that the first part of the theorem i.e the continuity of the IDS at E+


is a consequence of the continuity if the IDS of the periodic operator. See
[21].
As we mentioned in the introduction the proof of the main result is composed
of two classical parts, the upper and the lower bounds. We start by the proof
of the upper bound, then we turn to the lower bound.


4.1 The upper bound


From Lemma 3.3 and for η0 > 1/(ν − d) and k ∼ ε−δ such that δ > ν0 the
proof of the upper bound is reduced to prove that


lim sup
ε→0+


log | log(E(Nω,k(E+ + ε)−Nω,k(E+)))|
log ε


≤ − d


ν − d
. (4.14)


Lemma 4.1 Let k ∼ ε−ρ with ρ > 1/(ν − d). Define the event,


Eε,ω = {ω; ∆Aω,k ≥ −ε∆ = −ε


d∑
i=1


∂2
xi
}.


Then Eε,ω has a probability at least 1− Pε where Pε satisfies


lim sup
ε→0+


log | log(Pε)|
log ε


≤ − d


ν − d
. (4.15)


Proof. Using the assumption (H.2), we get that for any ϕ ∈ C∞
0 (Rd) we


have


〈∆Aω,kϕ, ϕ〉 =
∑


γ∈Zd;1≤i≤d ωeγ〈u(· − γ)∂xi
ϕ, ∂xi


ϕ〉 where γ̃ = γ mod (2k + 1)Zd


≥ g−
∑


γ,α∈Zd; ωeγ(1 + |α− γ|)−ν |∇ϕ|2
=


∑
α∈Zd


( ∑
γ∈Zd ωeγg−(x− γ − α)(1 + |α− γ|)−ν


)
|∇ϕ|2


=
∑


α∈Zd Aα(ω)g−(x− α)|∇ϕ|2.
Here Aα(ω) =


∑
γ∈Zd ωeγ(1 + |α− γ|)−ν .


Notice that ; ωeγ is (2k + 1)Zd periodic so is Aα(ω). We set Zd
2k+1 = {α ∈


Zd; |α| < k}. Then we have


P({∆Aω,k ≥ −ε∆}) ≥ P({∀α ∈ Zd
2k+1; Aα ≥ ε})


≥ 1−
∑


α∈Zd
2k+1


P({Aα(ω) ≤ ε}).
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As the random variables are i.i.d, we have


P({∆Aω,k ≥ −ε∆}) ≥ 1− (2k + 1)dP({A0(ω) ≤ ε}). (4.16)


To estimate P({A0(ω) ≤ ε}) it suffices to follow the same computation done
in [16] and based on the Markov’s inequality, and the Taylor expansion of
e−x to get that


P({A0(ω) ≤ ε}) ≤ e−
1
C


ε
− d


ν−d
. (4.17)


This complete the proof of Lemma 4.1. ¤


Lemma 4.2 There exists C > 0 and ε0 > 0 (uniform in k and ω) such that,
if 0 < ε < ε0 and ω satisfies ∆Aω,k ≥ −Cε∆, for k ∈ N, one has


Nω,k(E+) = Nω,k(E+ + ε).


Let us use this lemma to finish the proof of the upper bound. Lemma 4.2
says that if ∆Aω,k ≥ −Cε∆, then the spectrum of Aω,k does not intersect
(E+, E+ + ε) for ε small . This lemma will be proved in the end of this
section.
Now estimate (4.14) is an immediate consequence of Lemma 4.1 and 4.2.
Indeed, picking C as in Lemma 4.2; one computes


E
(
Nω,k(E+ + ε)−Nω,k(E+)


)
= E


(
[Nω,k(E+ + ε)−Nω,k(E+)]1{ω;∆Aω,k≥−Cε∆}


)


+ E
(
[Nω,k(E+ + ε)−Nω,k(E+)]1{ω;∆Aω,k<−Cε∆}


)


= E
(
[Nω,k(E+ + ε)−Nω,k(E+)]1{ω;∆Aω,k<−Cε∆}


)


≤ C0P({ω; ∆Aω,k < −Cε∆})
= C0(1− P(EC·ε,ω)) = C0PC·ε.


Here, we have used the fact that Nω,k is bounded locally uniformly in energy,
uniformly in ω, k by C0. Tanking (4.15) into account we end the proof of
(4.14) and consequently the proof of the upper bound. ¤
The proof of Lemma 4.2. Let us take ∆Aω,k > −Cε∆. Let ϕ ∈ C∞


0 (Rd)
such that 〈Aω,kϕ, ϕ〉 > E+, then


〈Aω,kϕ, ϕ〉 = 〈Aω+,kϕ, ϕ〉+ 〈∆Aω,kϕ, ϕ〉
≥ 〈Aω+,kϕ, ϕ〉+ Cε|∇ϕ|2
> 〈Aω+,kϕ, ϕ〉+ Cε%0,−E+. (4.18)
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But by assumption (H.1), below the energy E+ there is a gap in the spectrum
of Aω+ of length at least δ > 0; taking point (ii) of (H.0) into account, we
get that for ε < ε0 = δ


E+C%0,−
; Aω,k has no spectrum in (E+, E+ +CεE+%0,−).


So the proof of Lemma 4.2 is ended if we choose C = 1
E+%0,−


> 0. ¤


4.2 The lower bound


The lower bound is proven in the same way as in [21] and consists on proving
the following theorem.


Theorem 4.3 Let Aω, the operator defined by (1.1). We assume that (H.1),
and (H.2) hold. Then, we have


lim inf
ε→0+


log
∣∣∣ log


(
N(E+ + ε)−N(E+)


)∣∣∣
log ε


≥ − d


ν − d
. (4.19)


Proof. We will sketch the proof, for more details see [21]. As by assumption,
there is a spectral gap below E+ of length at least δ′ > 0. Thus, for ε < δ′


we have
N(E+ + ε)−N(E+) = N(E+ + ε)−N(E+ − ε).


To prove Theorem 4.3, we will lower bound N(E++ε)−N(E+−ε). So, for N
large, we will show that Aω,ΛN


(Aω,ΛN
is Aω restricted to ΛN with Dirichlet


boundary conditions) has a large number of eigenvalues in [E+ − ε, E+ + ε]
with large a probability. For this we will construct a family of approximate
eigenvectors associated to approximate eigenvalues of Aω,ΛN


in [E+−ε, E+ +
ε]. These functions will be constructed from an eigenvector of A0 associated to
E+. Locating this eigenvector in θ, one obtains an approximate eigenfunction
of Aω,ΛN


. Notice that the main difference point with the proof given in [21]
appears on the choice of the box where we locate this eigenvector in θ. Then
we Locate this eigenfunction in x in several disjointed places, we get several
eigenfunctions two by two orthogonal.
In order to simplify the notations, in what follows we assume that θ0 = 0
is a point where E1(θ) reaches E+. From [13, 21] there exists C > 1, V a
neighborhood of 0 and f : θ ∈ V → f(·, θ) a real analytic function such that,
||f(·, θ)||L2(C0) = 1 and


||(A0(θ)− E+)f(·, θ)||L2(C0) ≤ C|θ|2. (4.20)
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Let 0 < ξ < 1 be a small constant. Let χ ∈ C∞
0 (R) such that it is positif,


supported in [ ξ
2
, ξ] and


∫


[ ξ
2
,ξ]


χ(t)2dt = 2.


For ε > 0, we define


Wε(θ) = ε−d/4


d∏
j=1


χ(ε−
1
2 θj) ∈ L2(T∗)


and
Wf


ε (·, θ) = Wε(θ) · f(·, θ).
Now we estimate


||(A0 − E+)Wf
ε ||2H =


1


vol(T∗)


∫


T∗
||(Aω+(θ)− E+)f(·, θ)||2L2(C0)|Wε(θ)|2dθ


≤ C2


∫


T∗
|θ|4|Wε(θ)|2dθ


≤ C2ε2


∫


[ ξ
2
,ξ]d
|θ|4


d∏
j=1


χ2(θj)dθ


≤ ε2


8
, if ξ is small enough. (4.21)


For β ∈ Zd, we define


Wf
ε,β(·, θ) = e−iβ·θWf


ε (·, θ) and Wf
α,ε,β,ζ(·, θ) = e−iβ·θ(ΠΛα(ζ)Wf


ε )(·, θ),


where Λα(ζ) is the cube defined by


Λα(ζ) = {γ ∈ Zd; for 1 ≤ j ≤ d; |γj| ≤ ζ−( 1
ν−d


+α)},


and ΠΛα(ζ) is the orthogonal projection on Λα(ζ).
We set


Uf
ε,β(x) =


∫


T∗
Wf


ε,β(x, θ)dθ and Uf
α,ε,β,ζ(x) =


∫


T∗
Wf


α,ε,β,ζ(x, θ)dθ.


For N large and well chosen β and (ωγ)γ∈Zd , Uf
α,ε,β,ζ will be an approximate


eigenfunction of Aω,ΛN
associated with an approximate eigenvalue in the
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interval [E+ − ε, E+ + ε].
We show initially that ||Uf


α,ε,β,ζ ||L2(Rd) > C > 0. Note that


(vol(T∗))||Uf
ε,β||2L2(Rd) = ||Wf


ε,β||2H
=


∫


T∗
||f(·, θ)||2L2(C0)|Wε(θ)|2dθ ≥ 2d.


As in [13] using the non-stationary phase we see that Uf
α,ε,β,ζ and Uf


ε,β are


close to each others. More precisely, for any n ∈ N and β ∈ Zd, there exists
Cn > 0 such that


(vol(T∗)) · ||Uf
α,ε,β,ζ − Uf


ε,β||L2(R) = ||Wf
α,ε,β,ζ −Wf


ε,β||H ≤ Cnε−n/2ζn( 1
ν−d


+α).
(4.22)


So, for ζ = ε small enough, we get


||Uf
α,ε,β,ζ ||L2(Rd) ≥ 1.


Now we have to look to the conditions for which we have
∣∣∣
∣∣∣
(
Aω − E+


)
Uf


α,ε,β,ζ


∣∣∣
∣∣∣
2


≤ ε2.


Note that


∣∣∣
∣∣∣
(
Aω,ΛN


− E+


)
Uf


α,ε,β,ζ


∣∣∣
∣∣∣
2


≤
∣∣∣
∣∣∣
(
Aω − E+


)
Uf


α,ε,β,ζ


∣∣∣
∣∣∣
2


≤ 2
∣∣∣
∣∣∣
(
Aω+ − E+


)
Uf


α,ε,β,ζ


∣∣∣
∣∣∣
2


+ 2
∣∣∣
∣∣∣∆AωUf


α,ε,β,ζ


∣∣∣
∣∣∣
2


. (4.23)


Equations (4.21) and (4.22) give the bound on the first member of (4.23), it
just remains to us to control the second term. For ω+


γ = ω+ − ωγ, we have


∣∣∣
∣∣∣
(
∆Aω


)
Uf


α,ε,β,ζ


∣∣∣
∣∣∣
2


≤ 2
∣∣∣
∣∣∣


∑


γ∈Zd,1≤i≤d


ω+
γ (∂xi


u)(· − γ) ·
(
∂xi
Uf


α,ε,β,ζ


)∣∣∣
∣∣∣
2


+


2
∣∣∣
∣∣∣


∑


γ∈Zd,1≤i≤d


ω+
γ u(· − γ)∂2


xixi
Uf


α,ε,β,ζ


∣∣∣
∣∣∣
2


. (4.24)


To estimate (4.24), one needs the following lemmas, proven in [21].
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Lemma 4.4 There exists K > 0, such that for any 1 ≤ i, j ≤ d we have
∣∣∣
∣∣∣


∑


γ∈Zd,1≤i≤d


ω+
γ (∂xi


u)(·−γ)·
(
∂xi
Uf


α,ε,β,ζ


)∣∣∣
∣∣∣
2


≤ ε4+K
(
εsα(ν−d)·ε+ sup


γ∈β+2Λα(ε)


ω+
γ


)2


.


(4.25)


Lemma 4.5 There exists K > 0, such that we have
∣∣∣
∣∣∣


∑


γ∈Zd,1≤i≤d


ω+
γ u(· − γ)∂2


xi
Uf


α,ε,β,ζ


∣∣∣
∣∣∣
2


≤ ε4 + K
(
εsα(ν−d) · ε + sup


γ∈β+2Λα(ε)


ω+
γ


)2


.


(4.26)


Now, combining (4.25), (4.26) and taking (4.24) into account we get that
there exists K > 0 such that


∣∣∣
∣∣∣(∆Aω)Uf


α,ε,β,ε


∣∣∣
∣∣∣
2


≤ ε3 + K
(
εsα(ν−d) · ε + sup


γ∈β+2Λα(ε);1≤i≤d


ω+
γ


)2


. (4.27)


By (4.21),(4.22) and (4.27), it follows that :


∣∣∣
∣∣∣
(
Aω −E+


)
Uf


α,ε,β,ε


∣∣∣
∣∣∣
2


≤ ε2


2
+ K


(
εsα(ν−d) · ε + sup


γ∈β+2Λα(ε);1≤i≤d


ω+
γ


)2


. (4.28)


Now, for N large, we may divide ΛN into N(ε) disjoints cubes of size 2Λα(ε).
One has


N(ε) ' (2N)d


ε−d( 1
ν−d


+α)
; (4.29)


and


∪N(ε)
j=1 (βj + Λα(ε)) ⊂ ΛN and for j 6= j′(βj + 2Λα(ε)) ∩ (βj′ + 2Λα(ε)) = ∅.


This implies that for j 6= j′, Uf
α,ε,βj ,ε and Uf


α,ε,βj′ ,ε
are orthogonal.


We denote the counting function of the eigenvalues of Aω,ΛN
below E by


ΘΛN
(E), then


E
(
ΘΛN


(E+ε)−ΘΛN
(E−ε)


)
= E


(
#


{
eigenvalues of ΠNAωΠN in [E+−ε, E++ε]


})


≥ E
(
#


{
1 ≤ j ≤ N(ε); ||(Aω − E+)Uf


α,ε,βj ,ε||L2(Rd) ≤ ε
})


≥ E
( N(ε)∑


j=1


Bj(ω)
)
,


(4.30)
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where


Bj(ω) =







1 if K


(
εsα(ν−d) · ε + sup


γ∈β+2Λα(ε);


ω+
γ


)2


≤ ε2


2
.


0 if not.


The (Bj)1≤j≤N(ε) are independent, identically distributed, Bernoulli random
variables. So equations (4.29) and (4.30), imply that there exists C > 0, such
that one has


NΛN
(E + ε)−NΛN


(E − ε) =


1


((2N + 1))d
E


(
#


{
eigenvalues of ΠNAωΠN in [E+ − ε, E+ + ε]


})


≥ N(ε)


(2N + 1)d
P(B1 = 1) ≥ 1


C
εd(1/(ν−d)+αP(B1 = 1).


Hence, taking the limit N →∞, we get that, for ε > 0 small, we obtain


N(E+ + ε)−N(E+ − ε) ≥ 1


C
εdP(B1 = 1). (4.31)


It just remains to estimate P(B1 = 1). If for 1 ≤ j ≤ N(ε), and any γ ∈
βj + Λα(ε);, one has ωγ ≤ ε


2K
, then for ε rather small


K
(
εα(ν−d) · ε + sup


γ∈β+2Λα(ε);


ω+
γ


)2


≤ ε2 ·K
(
εα(ν−d) +


1


2K


)2


≤ ε2


2
.


As the random variables are independent identically distributed, one has the
estimate


P(Bj = 1) ≥
(
P(ω0 ≤ ε


2K
)
)d2#Λα(ε)


.


So, taking the double logarithm of (4.31), using assumption (H.3) and the


fact that #Λα(ε) = ε−d( 1
ν−d


+α), we get that


lim
ε→0+


log
∣∣∣ log


(
N(E+ + ε)−N(E+)


)∣∣∣
log ε


≥ − d


ν − d
− dα. (4.32)


The equation (4.32) is true for any α > 0, by taking α small we end the proof
of Theorem 4.3. ¤
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The proof of Lemmas 4.4 and 4.5. we start by the proof of Lemma 4.4.
It is similar to that given in [21]. we start by noticing that


∣∣∣
∣∣∣


∑


γ∈Zd,


(
ω+


γ ∂xi
u(· − γ) ·


(
∂xj
Uf


α,ε,β,ζ


)∣∣∣
∣∣∣
2


≤


ε5 +


∫


Rd


( ∑


γ∈Zd


ω+
γ ∂xi


u(· − γ)
)2∣∣∣U∂xj f


ε,β (x)
∣∣∣
2


dx. (4.33)


We used an estimate like (4.22) to replace U∂xif


α,ε,β,ε with U∂xif


ε,β .
We set


Sβ,ε =


∫


Rd


( ∑


γ∈Zd


ω+
γ ∂xi


u(· − γ)
)2∣∣∣U∂xj f


ε,β (x)
∣∣∣
2


dx.


By the use of (H.2), we get that


Sβ,ε ≤
∑


η∈Zd


( ∑


γ∈Zd


(1 + |η − γ|)−νω+
γ


)2


·
∫


C0


g2
+(x)


∣∣∣U∂xif


ε,η−β(x)
∣∣∣
2


dx. (4.34)


There exists B > 0 such that
∑


η/∈Λα(ε)


(1 + |η|)−ν ≤ B · εα(ν−d) · ε.


As the random variables (ωγ)γ∈Zd; are bounded, we get that there exists
B′ > 0 such that


Sβ,ε ≤
∑


η∈Zd


(
B′εα(ν−d)·ε+


∑


γ∈η+Λα(ε)


(1+|η−γ|)−νω+
γ


)2


·
∫


C0


g2
+(x)


∣∣∣U∂xif


ε,η−β(x)
∣∣∣
2


dx.


One splits the sum on η ∈ Zd in two parts according to whether η belongs
to β + Λα(ε) or not.
• For the sum on η /∈ β + Λα(ε), there exists C > 0 such that


∑


η/∈β+Λα(ε)


(
Cεα(ν−d)·ε+


∑


γ∈η+Λα(ε)


(1+|η−γ|)−νω+
γ


)2


·
( ∫


C0


g2
+(x)


∣∣∣U∂xif


ε,η−β(x)
∣∣∣
2


dx
)


≤ C
∑


η/∈Λα(ε)


∫


C0


g2
+(x)


∣∣∣U∂xif
ε,η (x)


∣∣∣
2


dx. (4.35)
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By the use of the non stationary phase and following the same computation
done in [13] one proves that, for n entire, there exists Cn > 0 such that


∑


η/∈Λα(ε)


( ∫


C0


g2
+(x)


∣∣∣U∂xif
ε,η (x)


∣∣∣
2


dx
)
≤ Cnε


αn. (4.36)


• For the sum on η in β + Λα(ε), one gets


∑


η∈β+Λα(ε)


(
Cεα(ν−d) · ε +


∑


γ∈Λα(ε)


(1 + |γ|)−νω+
γ+η


)2


·
∫


C0


g2
+(x)


∣∣∣U∂xif
ε,η (x)


∣∣∣
2


dx


≤
(
εα(ν−d) · ε +


[ ∑


γ∈Λα(ε)


(1 + |γ|)−ν
]


sup
γ∈β+2Λα(ε)


ω+
γ


)2


·
∑


η∈Λα(ε)


∫


C0


g2
+(x)


∣∣∣U∂xif
ε,η (x)


∣∣∣
2


dx. (4.37)


There exists K > 0 such that


∑


η∈Λα(ε)


∫


C0


g2
+(x)


∣∣∣U∂xif
ε,η (x)


∣∣∣
2


dx =


∑


η∈Λα(ε)


∫


C0


g2
+(x)


∣∣∣
∫


T∗
eiη·θWε(θ)(∂xi


f)(x, θ)dθ
∣∣∣
2


dx ≤ K. (4.38)


So we use (4.33), (4.34), (4.35), (4.36), (4.37) and (4.38) to end the proof of
Lemma 4.4. ¤
The proof of Lemma 4.5 is similar to that of Lemma 4.5. Following the same
computation done for the proof of (4.25), we prove (4.26). ¤
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