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1 Introduction


Basic properties of wave propagation in a nonhomogeneous medium eventu-


ally boil down to the spectral properties of the relevant self-adjoint differential


operator. As far as the acoustic waves are concerned, they are governed by


the so called ”acoustic operator” [7]. It is a self adjoint operator on L2(Rd)


and formally defined by:


Aω = A(%ω) = −∇ 1


%ω


∇ = −
d∑


i=1


∂xi


1


%ω


∂xi
, (1.1)


where %ω is a positive and bounded function which represents the mass den-


sity or the elasticity contrast of the medium where the wave propagates.In


this work, by ”localization”, we mean a pure point spectrum associated


with exponential decaying eigenfunctions. In this case, we often say that we


have Anderson localization. Localization is said to be a strong dynamical


localization to an order p, on an interval I of the spectrum, when for PI ,the


spectral projector onto that interval, and compact set K ⊂ Rd, we have


E
{


sup
t>0


∥∥|x|p eitAωPI(Aω)χK


∥∥
}


< +∞.


Here E is the expectation with respect to ω. The last statement is interpreted


as the waves with energies in I do not spread on the space. See section 1.1


of [7].


Those two types of localization have been intensively studied during last


years for their important physical consequences. We quote localization of


classical (for instance, electromagnetic or acoustic) waves in a periodic me-


dia perturbed by random impurities. See [7, 8, 9, 10].


The fact that electronic localization in disordered media is of a wave nature
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has lead to the suggestion that classical waves could be localized in random


and inhomogeneous media. Indeed, physical arguments and numerical com-


putations [15, 16], as well as experiments [45] (See research carried out by


the group of Zhen Ye) indicate the possibility that this phenomenon occurs


in the acoustic case.


The work in searching for localization of classical waves such as acoustic and


electromagnetic waves is tremendous. It has drawn intensive attention from


both theorists [7, 9] and experimentalists [43, 44, 45].


By means of the transfer matrix method and Kotany theory [18, 29, 41] the


localization phenomenon in dimension one is usually characterized by a Lya-


punov exponent, the inverse of which is thought to be the characteristic decay


length of the amplitude of the waves within the medium and it is known as


the localization length. This picture implies that the energy distribution fol-


lows decays exponentially.


In spite of the clear similarities between localization of quantum mechanical


electron localization and localization of classical waves, there are some sig-


nificant differences, particularly, classical waves which are harder to localize


[17]. Indeed, a local change in a homogenous medium cannot create localized


eigenfunction for classical waves operators but it can certainly create local-


ized states for Schrödinger operators i.e quantum mechanical models to study


electron waves in disordered media. For random Schrödinger operators it is


proved [28] that in the two dimensional case band edge localization occurs.


It is natural to ask whether the same kind of phenomenon can appears for


classical waves such as acoustic waves. (The answer is the main object of this


work and it is positive).
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Historically, localization at the edge of the spectrum was conjectured for the


first time by the physicists at the end of the fifties [2] for Schrödinger oper-


ators. It is widely accepted that random models should exhibit localization


near fluctuation boundaries. The latter are those parts of the spectrum which


are determined by rather rare events. Such a phenomenon occurs in various


cases (large disorder, extreme energies, Lifshitz tails, etc.).


In this context the multiscale analysis is a powerful technique, initially de-


veloped for the purpose of proving Anderson localization [6, 7]. It was later


shown to also yield dynamical localization (non spreading of the wave pack-


ets) [14] and more recently strong dynamical localization (dynamical local-


ization not only with a probability one, but in expectation) up to some order


[5]. Strong dynamical localization up to any order and in the Hilbert-Schmidt


norm is proved in [13]. See also [3, 4, 5, 7, 22, 23, 40, 47]. In these references,


localization near the so called fluctuation boundaries is proved.


The purpose of this paper is to prove that, for d = 2, we have localization on


the internal spectral edges for acoustic waves, the result relies on the study


of the Lifshitz tails on theses edges. Indeed we prove that on this part of the


spectrum, the integrated density of states decays exponentially. This will be


done without any assumption on the behavior of the integrated density of


states of the background operator [32] and independently of the decay na-


ture of the single site potential. The main difference with [7, 40] is that our


approach to get localization near the band edges is based on the fact that


near those edges the integrated density of states of the divergence operator


exhibits Lifshitz tails. This enables us to use a weaker assumption on the


probability distribution. Such technique was used for the Schrödinger case in
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[28, 47]. Localization is deduced by the standard multiscale argument.


2 The model


Let us start this section by giving the expression of %ω. We assume that %ω


is a function which satisfies


(A.0)


%ω = %0


(
1 +


∑
γ∈Γ


ωγuγ


)
,


where


(i) %0 is measurable with real values and Zd-periodic function i.e.


%0(x) = %0(x + γ), ∀x ∈ Rd, γ ∈ Z2.


(ii) There exists constants %0,+ > %0,− > 0 such that for almost all x ∈ Rd,


we have


0 < %0,− ≤ %0(x) ≤ %0,+. (2.2)


(iii) For γ ∈ Zd, we set uγ(·) = u(· − γ). We suppose that u is a real-values


function such that there exists U+ > 0:such that for almost all x ∈ Rd


0 ≤ U(x) ≡
∑


γ∈Zd


uγ(x) ≤ U+ < ∞. (2.3)


(iv) (ωγ)γ∈Z2 is a family of non constant and positive, independent identically


distributed random variables whose common probability measure is noted by


Pω0 and has a bounded density g. We note the probability space by (Ω,F ,P).


We assume that Pω0 is supported in [0, ω+].
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Let A(%ω) the quadratic form defined as follow:for u ∈ H1(R2) = D(A(%ω))


A(%ω)[u, u] =


∫


R2


1


%ω(x)
∇u(x)∇u(x)dx.


A(%ω) is a symmetrical, closed and positive quadratic form. Aω given by (1.1)


is defined to be the self adjoint operator associated to A(%ω) [39].


Assumption (A.0) ensures that Aω is a measurable family of self adjoint


operators and ergodic [19, 37]. Indeed, if τγrefers to the translation by γ,


then (τγ)γ∈Z2 is a group of unitary operators on L2(R2) and for γ ∈ Z2 we


have


τγAωτ−γ = Aτγω.


According to [19, 37] we know that there exists Σ, Σpp, Σac and Σscclosed and


non random sets of R such that Σ is the spectrum of Aω with probability one


and such that if σpp(respectively σac and σsc) design the pure point spectrum


(respectively the absolutely continuous and singular continuous spectrum) of


Aω, then Σpp = σpp, Σac = σac and Σsc = σsc with probability one.


2.1 Reference operator


It is convenient to consider Aω as a perturbation of some periodic operator


Aω+ . More precisely, for %ω+ = %0


(
1+ω+


∑


γ∈Z2


uγ


)
, where ω+ = sup(suppPω0)


we write:


Aω = Aω+ + ∆Aω,


with


Aω+ = A(%ω+) and ∆Aω = Aω − Aω+ = −∇%ω+ − %ω


%ω+%ω


∇ ≥ 0.


We set Vω =
%ω+ − %ω


%ω+%ω


=
∑


γ∈Z2


(ω+ − ωγ)uγ


Dω


.
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2.1.1 Some Floquet theory


Now we review some standard facts from the Floquet theory for periodic


operators. Basic references for this material are [30, 39, 42].


As %ω+ is Z2-periodic, for any γ ∈ Z2, we have


τγAω+τ ∗γ = τγAω+τ−γ = Aω+ .


Let the torus T = R2/Z2 and the dual torus T∗ = R2/(2πZ2). We define H
by


H = {u(x, θ) ∈ L2
loc(R2)⊗L2(T∗);∀(x, θ, γ) ∈ R2×T∗×Z2; u(x+γ, θ) = eiγθu(x, θ)}.


Let


U : L2(R2) 7→ H


(Uu)(x, θ) =
∑


γ∈Z2


eiγ·θu(x− γ) (2.4)


and


(U∗v)(x) =
1


4π2


∫


T∗2
v(x, θ)dθ. (2.5)


Then U is a unitary isometry from L2(R2) to H such that Aω+ admits the


Floquet decomposition [30, 42]


UAω+U∗ =


∫ ⊕


T∗
Aω+(θ)dθ.


Here Aω+(θ) is the operator Aω+ acting on Hθ, defined by


Hθ = {u ∈ L2
loc(R2); ∀γ ∈ Z2, u(x + γ) = eiγθu(x)}.


As Aω+ is elliptic, we know that, Aω+(θ) has a compact resolvent; hence its


spectrum is discrete [39]. We denote its eigenvalues, called Floquet eigenval-


ues of Aω+ , by


E0(θ) ≤ E1(θ) ≤ · · · ≤ En(θ) ≤ · · ·.
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The corresponding eigenfunctions are denoted by (w(x, ·)j)j∈N. The functions


(θ → En(θ))n∈N are Lipshitz-continuous, and we have


En(θ) → +∞ as n → +∞ uniformly in θ. (2.6)


The spectrum σ(Aω+) of Aω+ is made of bands (i.e σ(Aω+) = ∪n∈NEn(T∗).)


2.1.2 Main assumptions


We assume that


(A.1)


There exists E+ and δ > 0 such that σ(Aω+) ∩ [E+, E+ + δ) = [E+, E+ + δ)


and σ(Aω+) ∩ (E+ − δ, E+] = ∅.
From (2.6) we see that there exists only finite number, say n0 ∈ N; of floquet


eigenvalues that riches E+ on some point θ ∈ T2.


To prove our result, we will need the following assumptions:


(A.2)


• lim sup
ε→0+


log | logPω0([ω+ − ε, ω+])|
| log ε| = 0.


As, ∆Aω ≥ 0 and ω+ is in the support of Pω0 , Σ contains an interval of the


form [E+, E+ + a](a > 0) (see [21]).


As we are interested on the study of the neighborhood of the internal spec-


trum edges we require that E+ remains always the edge of a gap for Σ, when


the perturbation is turned on. More precisely one requires that the following


assumption holds.


(A.3)


There exists δ′ > 0 such that Σ ∩ [E+ − δ′, E+) = ∅.
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Let us end this subsection by making some remarks about our assumptions.


Let us start with (A.1). Figotin and Kuchment in [11] studied the possibility


of existence of open spectral gaps in the spectrum of certain periodic acoustic


operators for d = 2 and 3. Indeed the phenomenon of the band-gap structure


arises due to the periodicity the underlying operator.


In assumption (A.1) we asked that E+ > 0 which excludes the spectral gap


(−∞, 0). Localization is likely to occur at the neighborhood of the fluctuat-


ing edges. See [37]. It should be noted that 0 is not a fluctuating edge of the


spectrum. It belongs to the spectrum of Aω independently of the choice of


%ω(x).


We end with (A.3). By adding a disorder parameter g in the equation which


define %ω i.e.


%ω = %0


(
1 + g


∑


γ∈Z2


ωγuγ


)
,


we can choose g small enough so that the spectral gap in σ(Aω+) will not be


closed after the perturbation [7].


2.1.3 The main result


The main result of this work is:


Theorem 2.1. Let θ ∈ R2 and E+ > 0 a band edge of the spectrum of Aω.


then for any α > 0, there exists integer p > 0 such that for k ∈ N sufficiently


large, one has


(P1) P
({


dist
(
σ(Aθ


ω,Λkα ), E+


) ≤ 1


k


}) ≤ 1


kp
.


Where Λk is the box centered in 0 of side length 2k + 1 and Aθ
ω,Λk


is the
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operator Aω restricted to this box with θ-quasiperiodic boundary condition i.e


with boundary condition ϕ(x + γ) = eiγ·θϕ(x) for any γ ∈ (2k + 1)Z2.


As when the single site decrease polynomially, i.e


u ' 1


(1 + |x|)m
, for some m ≥ 1; (2.7)


Aω satisfies a Wegner estimate [7, 35] i.e for some α > 0 and n > 0 for E ∈ R
for k ≥ 1 and ε > 0, there exists C(E) > 0 such that one has


(P2) P
({


dist(σ(Aθ
ω,Λkα ), E+) ≤ ε


}) ≤ C(E) · |Λk|α · εn. (2.8)


So for a band edge energy E+ using Theorem 2.1 for θ = 0 we obtain the


initial estimate to start multi-scale analysis. This proves that the spectrum


of Aω is exponentially localized in some interval around the energy E+ i.e


that in some neighborhood of E+ eigenfunction associated to energies in that


interval are exponentially localized. More precisely we have


Theorem 2.2. Let Aω defined by (1.1). We assume that (A.1), (A.2) and


(A.3) hold and the single site decrease polynomially. There exists ε0 > 0


such that


(i) Σ ∩ [E+, E+ + ε0] = Σpp ∩ [E+, E+ + ε].


(ii) an eigenfunction corresponding to an eigenvalue in [E+, E+ + ε0] decays


exponentially.


(iii) there exist p > 0 such that


E
{


sup
t>0


∣∣∣
∣∣∣
∣∣∣X


∣∣∣
p


eitAωP[E+,E++ε0](Aω)χK


∣∣∣
∣∣∣
}


< +∞.


Here PI(Aω) is the spectral projection on the interval I, χK is the character-


istic function of K, K is a compact of Rd and X is the position operator.


10







The result of Theorem 2.1 and so that of Theorem 2.2 can be related


to the behavior of the integrated density of states in the neighborhood of


the so-called fluctuation boundary E+[27, 28, 35, 36]. For this, we recall


that the integrated density of states is defined as follows:we note by Aω,Λ


the restriction of Aω to Λ with self adjoint boundary conditions. As Aω is


elliptic, the resolvent of Aω,Λ is compact and, consequently, the spectrum of


Aω,Λ is discrete and is made of isolated eigenvalues of finite multiplicity [39].


We define


NΛ(E) =
1


|Λ| ·#{eigenvalues of Aω,Λ ≤ E}. (2.9)


Here vol(Λ) is the volume of Λ in the Lebesgue sense and #E is the cardinal


of E.


It is shown that the limit of NΛ(E) when Λ tends to R2 exists almost surely


and is independent of the boundary conditions. It is called the integrated


density of states of Aω (IDS for the short form). See [19].


For what concern the IDS, we prove that an operator defined by (1.1) exhibits


Lifshitz tails in the neighborhood of E+, this was done for various families


of random operators (See [21, 25, 26, 32, 33, 34, 36]). For acoustic operators


this is proved in [33] under the assumption of non-degeneracy of the IDS of


the back-ground operator A0 which is relaxed here.


Theorem 2.3. Let Aω the operator defined by (1.1). We assume that (A.1),


(A.2) hold. Then


lim sup
ε→0,ε>0


log | log
(
N(E+ + ε)−N(E+)


)|
log ε


< 0. (2.10)


Theorem 2.3 says that the IDS decays at least exponentially fast at E+


without any information on the rate of decay. Notice that when the single
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site potential u is of long range type, then we have already a better result.


Indeed in this particular case we have the the estimation of the rate [34].


Theorem 2.4. Assume that the single site u is compactly supported. Then


there exists 0 < α ≤ +∞ such that


lim
ε→0,ε>0


log | log
(
N(E+ + ε)−N(E+)


)|
log ε


≤ −α (2.11)


From (2.11) we deduce that roughly speaking,


N(E+ + ε)−N(E+) . e−ε−α


as ε ↓ 0.


So the IDS is very thin near E+. Notice that the equality holds under other


assumptions on u. The exponent α is called the Lifshitz exponent. In [33] it


is proved that α = d
2


if and only if


lim
ε→0+


log
(
n(E+ + ε)− n(E+)


)


log ε
=


d


2
.


Where n(E) is the IDS of the back ground periodic operator Aω+ . In the


general case the computation of α is not obvious. We end this section by a


remark.


Remark 2.5. Theorems 2.1 ; 2.2; 2.3 and 2.4 are stated for upper bands


edges of spectral gap. Under adequate assumption their results are also true


for lower bands edges.


Notice that the exponent α in Theorem 2.4 can be determined independently


of the behavior of n(E) which refutes the conjuncture that N(E) behaves


roughly as e−
1


n(E) , if one takes the double logarithm of both terms. (see [36]).


12







2.2 Lifshitz tails


2.2.1 The proof of Theorem 2.4


The proof of Theorem 2.4 will be done on three steps. Notice in advance that


the first and the second steps are independents of the dimension in spite of


the third one.


First step:


First we do a cut-off in energy for the density of states. More precisely, this


means that we construct a bounded random operator A0
ω ( actually A0


ω =


Π0AωΠ0. Here Π0, is the spectral projection for the background operator Aω+


at the energy band starting at E+.) that also has E+ as spectral edge and


such that, up to some scaling factor in energy, the IDS of the new random


operator controls the behavior of N(E) − N(E+) near E+. So we have the


following result:


Theorem 2.6. Let Aω be defined by (1.1). We assume that (A.1) and (A.2)


hold. There exists E0 > E+ and C > 1such that, for E+ ≤ E ≤ E0 we have


N(E)−N(E+) ≤ NE0
(
C · (E − E+) + E+


)
. (2.12)


Where NE0 is the IDS of A0
ω = Π0AωΠ0.


The proof of the last statement is already given in [33] and it is based on


the use of the technique of the periodic approximations [25]. For k ∈ N∗, we


define a new periodic operator Aω,k by


Aω,k = −∇ 1


%ω,k


∇,
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where the function %ω,k is defined by


%ω,k = %0


(
1 +


∑


γ∈Λk∩Z2


ωγ


∑


β∈(2k+1)Z2


uγ+β


)
,


Λk is the cube


Ck = {x ∈ R2;∀1 ≤ j ≤ 2, −2k + 1


2
< xj ≤ 2k + 1


2
}.


Aω,k is (2k + 1)Z2-periodic and essentially self adjoint operator. We denote


by Nω,k the IDS of Aω,k.


First we approach the IDS of Aω by the IDS of periodic approximations,


then we show that for these periodic periodic approximation, we may localize


the IDS in energy; that is we control the behavior of the IDS near E+ by


the behavior of the IDS of some reduced operator (which is a bounded 2-


dimensional Jacobi matrix). We then compute the limit of the IDS of this


reduced operator to get the convergence to the IDS ; NE0 and thus to get the


announced control on the IDS of Aω.


As in [33] we shift the energy i.e instead of considering A0
ω we consider Ã0


ω =


A0
ω − E+ · In0 , where, In0 is the n0 × n0 identity matrix considered as a


multiplication operator on L2(T2) ⊗ Cn0 . The new operator Ã0
ω have 0 as a


bottom of his spectrum. In the following, we identify Ã0
ω to A0


ω.


Second step:


To study the behavior of NE0(E) we shed light on A0
ω. Indeed using the


Wannier basis for E0 = Π0(L
2(R)) we can construct an orthonormal system of


vectors that span E0 and which are analytic [25, 33]. A0
ω is unitary equivalent


to a random Jacobi matrix acting on L2(T2)⊗Cn0 which will be denoted by
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A0
ω(θ) and it is written A0


ω+(θ) + ∆A0
ω(θ), with


A0
ω+(θ) =






〈v1(·, θ), Aω+(θ)v1(·, θ)〉L2([0,1[2) ... 〈v1(·, θ), Aω+(θ)vn)(·, θ)〉L2([0,1[2)


:
. . . :


〈vj(θ0)(·, θ), Aω+(θ)v1(·, θ)〉L2([0,1[2) ... 〈vn(·, θ), Aω+(θ)vj(θ)(·, θ)〉L2([0,1[2)



 ;


and ∆A0
ω(θ) is the operator acting on L2(T2)⊗Cn0 defined for t ∈ L2(T∗)⊗


Cn0 by


〈∆A0
ωt, t〉 =


∑


γ∈Zd


ω+
γ 〈V 0


γ t, t〉.


where ω+
γ = ω+−ωγ and V 0


γ is an operator matrix whose coefficients
(
vi,j(γ, θ, θ′)


)
1≤i,j≤n0


are


operators with the following kernels


vi,j(γ, θ, θ′) =


∫


Rd


uγ(x)


Dω(x)
∇vj(x, θ)∇vj′(x, θ′)dx =


2∑
i=1


∫


Rd


uγ(x)


Dω(x)
∂xi


vj(x, θ)∂xi
vj′(x, θ′)dx.


For the unitary correspondence between Π0(L
2(R)) and L2(T2)⊗Cn0 it suffice


to consider W : Π0(L
2(R)) 7→ L2(T2)⊗ Cn0 defined by


W(u) =
(〈(Uu)(·, θ), vj(·, θ)〉L2([0,1[2)


)
1≤j≤n


and W∗(u) =


n0∑
j=1


U∗
(
uj(θ)vj(·, θ)


)
.


Where U and U∗ are given by (2.4) and (2.5).


We need also the following result:


Theorem 2.7. [28] There exists


1- f : T2 → R an analytique and positive function.


2- G : T2×T2 7→ Mn(C) a smooth function such that, for any θ ∈ T2, G(θ, θ)


is a positive and definite matrix, and some constant C > 1 such that:


1


C
· f · In ≤ A0


ω+ and
1


C
· (f · In0 + Gω) ≤ Aω. (2.13)
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Here Mn0(C) is the space of n0×n0 complex matrices and Gω is the operator


with the following kernel


Gω(θ, θ′) =
∑


γ∈Z2


ω+
γ G(θ, θ′)eiγ(θ−θ′). (2.14)


The proof of the last result is based on the study of the geometric proper-


ties of the set of points of T2 where we lose analyticity of A0
ω(θ). Roughly this


set is the meeting points of two or more Folquet eigenvalues. For 1 it suffice


to take f as the determinant of some analytic and positive matrix obtained


from A0
ω(θ) by unitary analytical transformations.


The positivity of Gω it is based on the unique continuation principe [31] and


the smoothness of G is a consequence of the fact that u is compactly sup-


ported. More details of the proof are given in [28].


By Theorem 2.7 it is sufficient to consider the new operator hω = f ·In0 +Gω


acting on L2(T2)⊗Cn0 . This represents several advantages. Indeed the main


gain here is that hωis a regular operator i.e. that has a smooth kernel when


considered acting on L2(T2)⊗Cn0 and so his composition with Fourier trans-


form which we denote by ĥω has off-diagonal coefficients that are rapidly


decaying when it is considered acting on l2(Z2)⊗ Cn0 .


Let L ∈ N and ΛL ⊂ Z2 be the cube centered at 0 of side length 2L. Define


ĥω,L = ΠΛL
ĥωΠΛL


. Let N̂(E) be the IDS of ĥω and Eω,ε be the events:


{ĥω,L admits an eigenvalue ≤ ε}.


It is known [36] that, with a good enough precision, we can estimate the IDS


of the reduced operator between 0 and ε by the probability that the reduced


operator restricted to some large cube has an eigenvalues in the interval [0, ε].


Precisely we have the following result
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Proposition 2.8. [28]


lim
ε→0+


log | log
(
N̂(ε)− N̂(0)


)|
log ε


= lim
ε→0+


log | log
(
P(Eω,ε)


)|
log ε


. (2.15)


Third step: From what it was said previously we deal only with the


computation of the right hand side of (2.15). This is essentially a question in


random Fourier series. It is the subject of the following paragraph.


Notice that as we are interested on the behavior of the IDS of ĥω near 0 and


both f and G are non negatives so both must be smaller than ε. For this we


have have to take into account the set of points where f vanish.


Let f be an analytic function on T2. Define S = {θ ∈ T2; f(θ) = 0}.
Let θ0 ∈ S and consider the Newton diagram of f at θ0; i.e.,


a) Express f as a Taylor series expansion at θ0,


f(θ1, θ2) =
∑
ij


aij(θ
1 − θ1


0)
i(θ2 − θ2


0)
j, θ = (θ1, θ2).


b) The Newton polygon of f at θ0 is defined to be the convex hull of the


union of all quadrants in R2
≥0 with corners at the points (i, j) with aij 6= 0.


c) The Boundary of the polygon is called the Newton diagram.


Extend each line segment of he Newton diagram to a complete line and


intersect it with the diagonal line θ1 = θ2. this gives a collection of points


(ak, ak), one for each boundary segment. Take the reciprocal of the largest


ak and call this number α̃(f, θ0).


Define α(f, θ0) = min{α̃(f ◦ T0, θ0) : T0(·) = θ0 + T (· − θ0), T ∈ SL(2,R)}.
Similarly, define α(f, θ) if θ is any other point in S, the zero set f . Then, one


defines the Newton decay rate α as


α = min
θ∈S


α(f, θ).
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Let G be a smooth function on T2×T2 taking values in the n0×n0 complex


matrices, and assume that G is positive on the diagonal and G(θ, θ) is positive


definite for each θ ∈ T2.


For u, v ∈ (L2(T),Cn0) we define B(u, v) : Zd −→ C by


B(u, v)(n) =


∫


T2×T2


〈G(θ, θ′)u(θ), v(θ′)〉ein·(θ−θ′)dθdθ′. (2.16)


Let ε > 0 and Mε < ∞ be parameters. Let P(Mε) be the set of C2valued


functions on T2 whose Fourier transforms are supported in the square QMε


centered at the origin with side length Mε, and


H(ω, u) =


∫


T2


f(θ)|u(θ)|2dθ +
∑


γ∈Z2


ω+
γ B(u, u)(γ).


h(Mε, ω) = inf
u∈P(Mε)
‖u‖2=1


H(ω, u)


P(Eω,ε) = P(h(Mε, ω) < ε). (2.17)


Let S be a random subset of the square [−Mε, Mε]× [−Mε,Mε]. As f is pos-


itive and Gω is definite positive, we can express P(Eω,ε) to be the probability


that there is a function u ∈ L2(T2)such that


∫


T2


f(θ)|u(θ)|2dθ ≤ ε‖u‖2
2 and supp(û) ⊂ S.


Thus the Fourier coefficient of u are to be supported on the random set, and


u is to be mostly supported near the zero set of f . So we have to study the


probability P(Eω,ε) as ε goes to zero and Mε goes to infinity. The behavior


of P(Eω,ε) is a question of analytical geometry and estimation of oscillatory


integrals [38, 46]. It turns out that P(Eω,ε) behaves roughly as e−ε−α
. See


section 3 of [28]. This is end the proof of Theorem 2.4.
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2.2.2 The proof of Theorem 2.3


When u is not compactly supported, first we bring ourselves to the case


when u is compactly supported. Precisely for R > 0 large and χR be the


characteristic function of the ball of center 0 and radius R we define the


operator


AR
ω = Aω+ + ∆AR


ω , where


∆AR
ω = −∇V R


ω ∇ and V R
ω =


∑


γ∈Z2


ω+
γ


uR
γ


Dω


,


with uR = u · χR. As AR
ω ≤ Aω one has


N(E) ≤ NR(E), ∀E ∈ R.


Here NR is the IDS of AR
ω .


Notice also that AR
ω converges to Aω in the resolvent sense uniformly in


(ωγ)γ∈Z2 . So for R large enough and E ∈ (E+ − δ, E+),


N(E) = NR(E+).


Hence, we get


N(E+ + ε)−N(E+) ≤ NR(E+ + ε)−NR(E+).


But for AR
ω Theorem 2.4 is true. This ends the proof of Theorem 2.3.


2.3 Localization for the acoustic waves:the proof of


Theorems 2.1 and 2.2


All the proofs of localization, except in the discrete case [1] for the multi-


dimensional case, use the method of the multiscale analysis. This method
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was used for the first time by Fröhlich and Spencer, at the beginning of the


eighties [12] and it knew many extensions and simplifications to lead to the


form described in the section below. This analysis makes possible to obtain


information on the operator in the hole space, starting from information on


the operator restricted to cubes of finished size [6]. We omit the detail, we


note that the Combes-Thomas estimate and the decomposition of resolvent


in the multiscale argument works for our case with essentially no modifica-


tion. We refer the reader to [6, 20, 23, 40] for detailed description of results


mentioned below.


2.4 Initial estimate:Theorem 2.1


We start by verifying (P1). This already has been done in [3, 4, 5, 22, 23]


for Schrödinger operators and in [40] for the model given by the form of (1.1)


under the assumption of a special mode of disorder. More precisely their


approach requires a sufficiently fast decay of the probability distribution Pω0


at the approach to the edges of the support. Indeed, they assumed that there


exists some τ > 0 (τ > 3d
2


in [3]; τ > d in [22] and τ > d
2


in [23]):such that


∀ε > 0,


Pω0([0, ε]) =


∫ ε


0


g(s)(s)ds ≤ ετ ,


or


Pω0([ω
+ − ε, ω+]) =


∫ 1


1−ε


g(s)ds ≤ ετ .


According to whether one considers the higher or lower edges of the gap.


Those conditions are relaxed here.


In what follows, to get (P1) one will adapt an other approach which uses
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the fact that at the internal band edges, the IDS of Aω exhibits Lifshitz tails.


See [24, 33, 47, 34].


To get (P1), in an interval of energy which contains E+ one will compare the


number of states of Aω to that of A0,k (here A0,k is Aω restricted to the cube


Λk). This will be done by a comparison between N(Aω, E) and N(A0,k, E).


At the bottom of the spectrum, such technique was used with the Čebǐseve


inequality by Klopp, in [24], and by Kirsch, Stollman and Stolz in [22]. For


the internal band edges one refers to the work of Veselić in [28, 47]. All results


quoted here are given in the Schrödinger case.


Notice that (2.10) is a limit when one approaches the band edge. We ask


for an estimate to hold on an interval. This is the purpose of the following


computation.


Lemma 2.9. For all n ∈ N and α ∈]0, 1[; there exists k2 ∈ N such that if


k ≥ k2 we have


E
(
Nω,k(E+ + k−α)−Nω,k(E+)


)
≤ k−n. (2.18)


Here we recall that Nω,k denotes the IDS of the periodic operator Aω,k.


Proof. Lemma 2.9 is a consequence of Theorem 2.3 and the fact that the


left side of (2.18) is exponentially approximated by the IDS (See Theorem


7.1 of [28] which is true in our case). ¤
We need also the two following lemmas. See [35] for the proof.


Lemma 2.10. [47] For all ε > 0, we have
∫


T∗k
P
(
{ω|σ(Aω,k(θ))∩[E+, E++ε] 6= ∅}


)
dθ ≤ (2π)2E


(
Nω,k(E++ε)−Nω,k(E+)


)
.


Where T∗k = R2/(2k + 1)πZ2
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Let us note the jth Floquet eigenvalue of Aω,k(θ) by Ej(Aω,k(θ)).


Lemma 2.11. For all θ, θ′ ∈ T∗k and j ∈ N there exists Mj,k > 0 such that


|Ej(Aω,k(θ)− Ej(Aω,k(θ
′)| ≤ Mj,k|θ − θ′|. (2.19)


Now using Lemma 2.10 and Lipshitz continuity in θ of the Floquet eigen-


values, we will be able to estimate the probability to find an eigenvalue of


A0,k(θ
0) in the interval [E+, E+ + ε]. Here A0,k(θ


0) = A0,k|θ0


Λk
is the operator


A0,k restricted to Λk with θ0-periodic conditions. More precisely we have


Lemma 2.12. Let θ0 ∈ T∗k. For all ε > 0 we have


P
(
{ω|σ(Aω,k(θ


0)) ∩ [E+, E+ + ε] 6= ∅}
)


≤ (2π)2


vol(T∗k)
E


(
Nω,k(E+ + ε + ck−1)−Nω,k(E+)


)
. (2.20)


Proof. From Lemma 2.11 we know that there exists Mj,k > 0 such that


for all j ∈ N we have


|Ej(A0,k(θ))− Ej(A0,k(θ
′))| ≤ Mj,k|θ − θ′|.


As we are interested only in the eigenvalues in [E+, E+ + ε], the Mj,k can be


chosen uniformly in j and k. So there exists M > 0 such that


M ≥ Mj,k, ∀j, k ∈ N.


Now we will use this to estimate


P({ω|σ(A0,k(θ
0)) ∩ [E+, E+ + ε] 6= ∅}).


For this it is enough to estimate


P({ω|∃ j ∈ N; Ej(A0,k(θ
0)) ∈ [E+, E+ + ε]}) =
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1


vol(T∗k)


∫


T∗k
P({ω|∃ j ∈ N; Ej(A0,k(θ


0)) ∈ [E+, E+ + ε]})dθ. (2.21)


Thus if Ej(A0,k(θ
0)) ∈ [E+, E+ + ε], the Lipshitz continuity implies that


Ej(A0,k(θ)) ∈ [E+, E+ + ε + Mdiam(T∗k)], ∀θ ∈ T∗k with diam(T∗k) ≤ ck−1.


So we get that


(2.21) ≤ 1


vol(T∗k)


∫


T∗k
P({ω|∃ j ∈ N; Ej(A0,k(θ)) ∈ [E+, E+ + ε + ck−1]})dθ


=
1


vol(T∗k)


∫


T∗k
P({ω|; σ(A0,k(θ)) ∩ [E+, E+ + ε + ck−1] 6= ∅})dθ


≤ (2π)d


vol(T∗k)
E


[
Nω,k(E+ + ε + ck−1)−Nω,k(E+)


]
.


This proves Lemma 2.12. ¤
For α < 1, (α is given in Lemma 2.9) and ε = k−α > 0 there exists k3 ∈ Nsuch


that if k > k3, we have k−α + ck−1 ≤ 2k−αwhere k3 depends on α and c.


Then we obtain that for k > k3;


E
(
Nω,k(E+ + 2k−α)−Nω,k(E+)


)
≤ ck−n.


So Lemma 2.12 gives:


P
(
{ω|σ(A0,k(θ


0)) ∩ [E+, E+ + k−α] 6= ∅}
)
≤ ck−n+2.


Let p > 2 and n given in Lemma 2.9 such that n > p+2. There exists k4 ∈ N
such that if k ≥ k4we have ck−n+2 ≤ k−p. This implies that for k > k4we


have


P
(
{ω|σ(A0,k(θ


0)) ∩ [E+, E+ + k−α] 6= ∅}
)
≤ k−p. (2.22)


This ends the proof of the Theorem 2.1 and from what it was said in the


beginning of section 2.3 Theorem 2.2 is proven. ¤
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