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Abstract


We study scalar quantum field theory on a compact manifold. The free theory
is defined in terms of functional integrals. For positive mass it is shown to have
the Markov property in the sense of Nelson. This property is used to establish
a reflection positivity result when the manifold has a reflection symmetry. In
dimension d=2 we use the Markov property to establish a sewing operation for
manifolds with boundary circles. Also in d=2 the Markov property is proved for
interacting fields.
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1 Introduction


We consider a Riemannian manifold (M, g) consisting of a oriented compact connected
manifold M of dimension d and a positive definite metric g. The natural inner product
on functions is


< u, v >=


∫
ūvdτ =


∫
ū(x)v(x)


√
det g(x)dx (1)


where dτ is the Riemannian volume element and the second expression refers to local
coordinates. The Laplacian ∆ can be defined by the quadratic form


< u, (−∆)u >=


∫
|du|2dτ =


∫
gµν(x)


∂ū


∂xµ
(x)


∂u


∂xν
(x)


√
det g(x)dx (2)


As is well-known −∆ defines a self adjoint operator in L2(M,dτ) with non-negative
discrete spectrum and an isolated simple eigenvalue at zero and with eigenspace the
constants.


We want to study the free scalar field of mass m ≥ 0 on (M, g). For m > 0 this is a
family of Gaussian random variables φ(f) =< φ, f > indexed by smooth real functions
f on M . The fields φ(f) are defined to have mean zero and covariance (−∆ + m2)−1.
If µ is the underlying measure we have the characteristic function


∫
eiφ(f)dµ = e−


1
2
<f,(−∆+m)−1f> (3)


from which one can generate the correlation functions.
For m = 0 the Laplacian is only invertible on the orthogonal complement of the


constants and we restrict the test functions f to lie in this subspace, i.e.
∫
f dτ = 0.


For m = 0 and d = 2, metrics which are equivalent by a local rescaling give rise to the
same fields 1, and we have a conformal field theory.


In this paper we show that for m > 0 the fields φ(f) satisfy a Markov property in
the sense of Nelson [9],[10],[11]. Nelson originally developed this concept for Euclidean
quantum fields in Rn, and we show that his treatment can also be carried out on
manifolds. We also work out some applications, generally for m > 0 and sometimes by
limits for m = 0. We show that functional integrals can be written as inner products
of states localized on d− 1 dimensional submanifolds. If the manifold has a reflection
symmetry this leads to a reflection positivity result and an enhanced Hilbert space
structure. In d = 2 another application is the establishment of a sewing property for
manifolds with boundary circles. Operations of this type are widely used in conformal
field theory and string theory. Finally we obtain the Markov property for interacting
fields in d = 2.


1For smooth λ > 0 we have ∆λg = λ−1∆g and hence < λ−1f,∆−1
λg λ


−1f >λg=< f,∆−1
g f >g. Thus


φλg(λ−1f) and φg(f) have the same characteristic function and are equivalent.
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2 Sobolev spaces


We begin with some preliminary definitions. (See for example [14]). Let H±1(M) be the
usual real Sobolev spaces consisting of those distributions on M which when expressed
in local coordinates are in the spaces H±1(Rd). These have no particular norm, but we
give an alternate definition which supplies a norm and an inner product. The spaces
H±1(M) can be identified as completion of C∞(M) in the norm


‖u‖2
±1 =< u, (−∆ + m2)±1u > (4)


for any m > 0. These are real Hilbert spaces and we have H1(M) ⊂ L2(M,dτ) ⊂
H−1(M). We have also | < u, v > | ≤ ‖u‖1‖v‖−1 so the inner product extends by limits
to a bilinear pairing of H1, H−1. These spaces are dual with respect to this pairing.
Also −∆ + m2 is unitary from H1 to H−1.


For any closed subset A ⊂M define a closed subspace


H−1
A (M) = {u ∈ H−1(M) : supp u ⊂ A} (5)


Also for Ω ⊂M open let H1
0 (Ω) be the closure of C∞0 (Ω) in H1(M)


Now let Ω be open set and consider the disjoint unions


M = Ωc ∪ Ω M = (extΩ) ∪ Ω̄ M = (extΩ) ∪ ∂Ω ∪ Ω (6)


For each of these we have an associated decomposition of H−1(M):


Lemma 1 For open Ω ⊂M


H−1(M) = H−1
Ωc (M) ⊕ (−∆ + m2)H1


0 (Ω) (7)


H−1(M) = (−∆ + m2)H1
0 (ext Ω) ⊕ H−1


Ω̄
(M) (8)


H−1(M) = (−∆ + m2)H1
0 (ext Ω) ⊕ H−1


∂Ω(M) ⊕ (−∆ + m2)H1
0 (Ω) (9)


Proof. It is straightforward to show that the orthogonal complement of H1
0 (Ω) in the


dual space H−1(M) is H−1
Ωc (M). The dual relation is that the orthogonal complement


of H−1
Ωc (M) in H1(M) is H1


0 (Ω). To find the orthogonal complement of H−1
Ωc (M) in


H−1(M) we apply the unitary operator −∆+m2 and get (−∆+m2)H1
0 (Ω). This gives


the first result.
For the second result replace Ω by extΩ.
For the third result replace Ω by (∂Ω)c and obtain


H−1(M) = H−1
∂Ω(M) ⊕ (−∆ + m2)H1


0 ((∂Ω)c) (10)


The result now follows from


H1
0 ((∂Ω)c) = H1


0 (Ω)⊕H1
0 (extΩ) (11)
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Remark. Applying the unitary (−∆ +m2)−1 to the decomposition (9) of H−1(M) we
get a decomposition of H1(M) which is


H1(M) = H1
0 (extΩ) ⊕ (−∆ + m2)−1H−1


∂Ω(M) ⊕H1
0 (Ω) (12)


This says that any element of H1(M) can be uniquely written as the sum of a function
which satisfies (−∆ +m2)u = 0 on (∂Ω)c = Ω∪ extΩ and a function which vanishes on
∂Ω.


By comparing the various decompositions in the lemma we also have corresponding
to Ω̄ = ∂Ω ∪ Ω and Ωc = (extΩ) ∪ ∂Ω the decompositions:


Corollary 1


H−1
Ω̄


(M) = H−1
∂Ω(M) ⊕ (−∆ + m2)H1


0 (Ω)


H−1
Ωc (M) =(−∆ + m2)H1


0 (ext Ω) ⊕H−1
∂Ω(M)


(13)


Now for A ⊂ M let eA be the orthogonal projection onto H−1
A (M). The following


pre-Markov property is basic to our treatment.


Lemma 2 For open Ω ⊂M


1. If u ∈ H−1
Ω̄


(M) then eΩcu = e
∂Ω


u


2. eΩceΩ̄
= e


∂Ω


Proof. The two statements are equivalent. With respect to the decomposition (9) we
have


eΩc =



 1 0 0


0 1 0
0 0 0



 e


Ω̄
=



 0 0 0


0 1 0
0 0 1



 e


∂Ω
=



 0 0 0


0 1 0
0 0 0



 (14)


and hence eΩceΩ̄
= e


∂Ω
.


Remark. If u ∈ H−1
Ωc (M) and v ∈ H−1


Ω̄
(M) then


(u, v)−1 = (eΩcu, eΩ̄
v)−1 = (u, e


∂Ω
v)−1 = (e


∂Ω
u, e


∂Ω
v)−1 (15)


which reduces the inner product to the boundary. We can use this to obtain a sufficient
condition for H−1


∂Ω(M) to be nontrivial. (The condition is not necessary.)
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Corollary 2 If Ω, ext Ω �= ∅ then H−1
∂Ω(M) �= {0}


Proof. The space H−1
∂Ω(M) has a meaning independent of any norm. It suffices to show


that it is non-trivial as a subspace of H−1(M) with the norm (4) and m2 small.
Let u ∈ C∞0 (ext Ω) and v ∈ C∞0 (Ω) be positive functions. We will show that e


∂Ω
u �= 0


and e
∂Ω


v �= 0. By (15) it suffices to show that (u, v)−1 �= 0. Let ψ0 = 1/
√


Vol(M) be
the lowest eigenfunction of −∆ on L2(M,dτ) . Then u0 =< u, ψ0 > and v0 =< v, ψ0 >
are nonzero. As m↘ 0 we have that


(u, v)−1 =< u, (−∆ + m2)−1v >= u0v0m
−2 +O(1) (16)


Thus (u, v)−1 �= 0 for m2 small.


3 Markov property


We use these results to establish the Markov property for our m > 0 field theory
following Nelson [11]. First extend the class of test functions from C∞(M) to H−1(M)
so that now φ(f) is a family of Gaussian random variables indexed by f ∈ H−1(M)
with covariance given by the H−1(M) inner product. The underlying measure space
(Q,O, µ) consists of a set Q, a σ-algebra of measurable subsets O generated by the
φ(f), and a measure µ. Polynomials in φ(f) are dense in L2(Q,O, dµ). We also need
Wick monomials : φ(f1) . . . φ(fn) :


(−∆+m2)−1 defined as the projection in L2(Q,O, dµ) of


φ(f1) . . . φ(fn) onto the orthogonal complement of polynomials of degree n− 1. These
are polynomials of degree n and for example


: φ(f)φ(g) :
(−∆+m2)−1 = φ(f)φ(g)− < f, (−∆ + m2)−1g > (17)


Let us recall the well-known connection between the Gaussian processes and Fock
space. Let F(H−1


C
) be the Fock space over the complexification H−1


C
(M), that is the


infinite direct sum of n-fold symmetric tensor products of the H−1
C


(M). Then there is
an unitary identification of (complex) L2(Q,O, dµ) with F(H−1


C
) determined by


: φ(f1) . . . φ(fn) :
(−∆+m2)−1 ↔


√
n! Sym(f1 ⊗ · · · ⊗ fn) (18)


Any contraction T on H−1
C


(M) (linear operator with ‖T‖ ≤ 1) induces a contraction
Γ(T ) on the Fock space by sending Sym(f1 ⊗ · · · ⊗ fn) to Sym(Tf1 ⊗ · · · ⊗ Tfn). This
determines a contraction on L2(Q,O, dµ) also denoted Γ(T ). We have Γ(T )Γ(S) =
Γ(TS).


Now for closed A ⊂ M let OA be the smallest subalgebra of O such that the
functions {φ(f) : supp f ⊂ A} are measurable. Also let EAF = E{F |OA} be the
conditional expectation of a function F with respect to OA. Then EA is an orthogonal
projection on L2(Q,O, dµ) with range L2(Q,OA, dµ), the OA measurable L2-functions.
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The conditional expectations are related to the projections in Sobolev space by


EA = Γ(eA) (19)


For the proof see Simon [13]. This leads to


Theorem 1 (the Markov property) For open Ω ⊂M


1. If F ∈ L2(Q,OΩ̄, dµ) then EΩcF = E∂ΩF


2. EΩcEΩ̄ = E∂Ω


Proof. The two statements are equivalent. The second follows from eΩceΩ̄
= e


∂Ω
and


(19) for we have


EΩcEΩ̄ = Γ(eΩc)Γ(e
Ω̄
) = Γ(eΩceΩ̄


) = Γ(e
∂Ω


) = E∂Ω (20)


Remark. Now suppose that F is OΩc measurable and G is OΩ̄ measurable. Then by
EΩcEΩ̄ = E∂Ω we have∫


F̄Gdµ =


∫
EΩcF (EΩ̄G)dµ =


∫
F̄ (E


∂Ω
G) =


∫
E
∂Ω


F (E
∂Ω


G)dµ (21)


This says that the conditional expectation E
∂Ω


maps OΩ̄ measurable functions and OΩc


measurable functions to O∂Ω measurable functions in such a way that the functional
integral is evaluated as the inner product in the boundary Hilbert space L2(Q,O∂Ω, dµ)
We exploit this identity in the next two sections.


4 Reflection positivity


As a first application we show that if the manifold has a reflection symmetry then the
functional integrals have a more elementary Hilbert space structure. We assume that
our d-dimensional manifold M has a d − 1 dimensional submanifold B which divides
the manifold in two identical parts. That is we have the disjoint union


M = Ω− ∪B ∪ Ω+ (22)


where Ω± are open and ∂Ω± = B. Further we assume there is an isometric involution
θ on M so that θΩ± = Ω∓ and θB = B. For d = 2 this is the structure of a Schottky
double. As an example in d dimensions we could take M to be the sphere {x ∈ Rd+1 :
x2


0 + · · ·+x2
d = 1}, take B = {x0 = 0} and Ω± = {±x0 > 0}, and let θ be the reflection


in x0 → −x0.
As a diffeomorphism θ defines a map θ∗ on C∞(M) by θ∗u = u ◦ θ−1 which extends


to a bounded operator on H±1(M) or L2(M). Since θ is an isometry θ∗ is unitary on
these spaces and preserves the H1, H−1 pairing. Since θ2 = 1 we have (θ∗)


2 = 1.
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Lemma 3 Let u ∈ H−1
B (M).


1. < u, f >= 0 for any smooth function vanishing on B.


2. θ∗u = u.


Proof. By choosing local coordinates we reduce (1.) to the following statement. Let
u ∈ H−1


B0
(Rd) where B0 = {x ∈ Rd : xd = 0} and let f ∈ C∞0 (Rd) vanish on B0. Then


< u, f >= 0. A distribution with support in B0 is a finite sum of derivatives of delta
functions: u =


∑
j hj ⊗ δ


(j)
B0


. The condition f ∈ H−1(Rd) rules out j ≥ 1 as can be seen
by looking at the Fourier transform. Thus u = h⊗ δB0 and the result follows.


For (2.) we must show that < θ∗u − u, f >= 0 for smooth f or equivalently that
< u, f − θ∗f >= 0. Since f − θ∗f vanishes on B this follows from part one. This
completes the proof.


Now let Θ = Γ(θ∗) be the induced reflection on L2(Q,O, dµ). This is unitary since
θ∗ is unitary and we also have


Θ( φ(f1) . . . φ(fn) ) = φ(θ∗f1) . . . φ(θ∗fn) (23)


Theorem 2 (Reflection Positivity, m > 0 ) For F ∈ L2(Q,OΩ̄+
, dµ)


∫
Θ(F )Fdµ ≥ 0 (24)


Remarks. The positivity is also known as Osterwalder-Schrader positivity. A similar
result was previously obtained by De Angelis, de Falco, Di Genova [1] by other methods.
The proof below follows Nelson [11].


Proof. For any closed set A we have θ∗H
−1
A = H−1


θA and hence θ∗eA = e
θA


θ∗. It follows
that


ΘEA = Γ(θ∗)Γ(eA) = Γ(e
θA


)Γ(θ∗) = EθAΘ (25)


In particular we have ΘEΩ̄+
= EΩc+


Θ and ΘEB = EBΘ.
The result now follows by the calculation∫


(ΘF )Fdµ =


∫
EB(ΘF ) EBF dµ =


∫
|EB(F )|2dµ ≥ 0 (26)


Here in the first step we have used ΘEΩ̄+
= EΩc+


Θ to conclude that ΘF is OΩc+
measur-


able and then (21) to reduce the calculation to B. For the second step we note that
the lemma says θ∗eB = eB and so ΘEB = EB. Hence EBΘ = EB to complete the proof.


Next we consider the case m = 0 as defined in the introduction. Let µ0 denote the
measure and again define Θ so that (24) holds. We take a smaller class of functions F
but otherwise have the same result.
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Corollary 3 (Reflection Positivity, m=0 ) Let F be a polynomial in the fields φ(f)
with f ∈ C∞0 (Ω+) and


∫
fdτ = 0. Then


∫
Θ(F )Fdµ0 ≥ 0 (27)


Proof. If f, g satisfy
∫
fdτ = 0 then < f, (−∆)−1g >= limm→0 < f, (−∆ + m2)−1g >.


Gaussian integrals of polynomials can be explicitly evaluated as sums of products of
these expressions. Hence if P is any polynomial with these test functions and µm the
massive measure then


∫
Pdµ0 = limm→0


∫
Pdµm. In particular


∫
Θ(F )Fdµ0 = lim


m→0


∫
Θ(F )Fdµm (28)


The result now follows from the previous theorem.


Remarks. Returning to the case m > 0 one can now define an inner product on OΩ̄+


measurable functions F,G by


< F,G >=


∫
Θ(F )Gdµ (29)


Then < F,F > ≥ 0 and if we divide out the null vectors N = {F :< F,F >= 0}
we get something positive definite and hence a pre-Hilbert space. We call the Hilbert
space completion K:


K = L2(Q,OΩ̄+ , dµ)/N (30)


A similar construction works for m = 0.
Now we are in a position to define operators on K from certain operators on the


L2 space. For details on such constructions and related positivity results in conformal
field theory see [3], [4], [7].


5 Sewing


Now restrict to d = 2 and suppose that we have a Riemann surface (M1, g1) with a
boundary circle C1. Further suppose that the metric is flat on a neighborhood of the
boundary. This means that there is a local coordinate z in which the circle is |z| = 1
the metric has the form |z|−2dzdz̄ for |z| > 1. If we allow ourselves local rescalings of
of the metric g → λg this is not a restrictive condition. These rescalings are permitted
if m = 0. Even if m > 0 the effect of such a transformation would be to change to a
variable mass, and this would not spoil our results.


We want to define a mapping from an algebra of fields on M1 to states on the
boundary C1. We have already noted that for a manifold without boundary the con-
ditional expectation serves this function, so we proceed by closing M1. That is we
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cap off the circle in some standard fashion to get a compact manifold (M̃1, g̃1) without
boundary, also flat in a neighborhood of C1. Then for m > 0 we have Gaussian fields
{φ1(f) : f ∈ H−1(M̃1)} on a measure space (Q1,O1, µ1). As the boundary Hilbert
space we take the L2 functions measurable with respect to O1,C1 :


HC1 ≡ L2(Q1,O1,C1 , dµ1) (31)


Then we define


AC1,M1 : L2(Q1,OM1 , dµ1) → HC1 (32)


as the restriction of the conditional expectation in M̃1


AC1,M1 = EM̃1
C1


(33)


We further restrict the domain to the algebra of polynomials in {φ1(f) : f ∈ H−1
M1


(M̃1)}.
Suppose also there is a second such Riemann surface (M2, g2) with boundary circle


C2 and a local coordinate in which the circle is |w| = 1 the metric has the form
|w|−2dwdw̄ for |w| > 1. We cap off M2 to form a manifold without boundary (M̃2, g̃2).
Then we have fields {φ2(f) : f ∈ H−1(M̃2)} on a measure space (Q2,O2, µ2), and a


operator AC2,M2 = EM̃2
C2


.
The two manifolds M1,M2 can be joined together by identifying points in a neigh-


borhood of C1 in M̃1 with points in a neighborhood of C2 in M̃2 when the coordinates
satisfy z = 1/w. Then C1 and C2 are identified by an orientation reversing map. On
the overlap we have two coordinates and two metrics, but the metrics agree since the
coordinate change z = 1/w takes |z|−2dzdz̄ to |w|−2dwdw̄. Thus we get a compact
Riemann surface (M, g) which is flat in a neighborhood of a circle C. (see figure 1, and
see [6] for more details on this construction). There is an isometric mapping j1 from a
neighborhood of M1 in M̃1 into M which takes C1 to C. The image of M1 in M will
also be called M1. Similarly we have an isometric mapping j2 from a neighborhood of
M2 in M̃2 to M which takes C2 to C.


On the new manifold M we have Gaussian fields {φ(f) : f ∈ H−1(M)} on a measure
space (Q,O, µ). We also have an identification between fields on M1 in M̃1 and fields
on M1 in M . To see this first note that the isometry j1 induces a map j1,∗ from
distributions on M̃1 with support in M1 to distributions on M with support in M1.
This map preserves Sobolev spaces and so


j1,∗ : H−1
M1


(M̃1) → H−1
M1


(M) (34)


However with our nonlocal norms (4) this is not unitary. There is an induced map on
Fock space subspaces:


J1 ≡ Γ(j1,∗) : F(H−1
M1


(M̃1)) → F(H−1
M1


(M)) (35)
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M1


M 2


M
M
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2M 2


M1
~


M 2M 2
~


M


C1


C


C2


Figure 1: M1,M2 are manifolds with boundary circles C1, C2. They are capped off to
form M̃1, M̃2. They are sewn together to form the manifold M without boundary
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Since j1,∗ is not a contraction J1 is unbounded. We take as the domain elements with
a finite number of entries. We can also regard J1 as a map of the corresponding L2


subspaces


J1 : L2(Q1,O1,M1 , dµ1) → L2(Q,OM1 , dµ) (36)


with domain the polynomials. We note also that J1 maps HC1 to HC ≡ L2(Q,OC , dµ).
There is a similar map J2.


Our goal is to sew together the operators AC1,M1 and AC2,M2 and obtain an man-
agable functional integral on the new manifold M . The recipe is as follows. Starting
with polynomials F,G on M1,M2 we propagate them to the circles C1, C2 by forming
AC1,M1F and AC2,M2G. Then we map to the circle C forming J1AC1,M1F and J2AC2,M2G
in HC . Finally we take the inner product in HC . Thus we define


(AC1,M1F, AC2,M2G) =


∫
(J1AC1,M1F )(J2AC2,M2G)dµ (37)


Theorem 3 (Sewing, m > 0) Let F be a polynomial in {φ1(f) : f ∈ H−1
M1


(M̃1)} and


let G be a polynomial in {φ2(f) : f ∈ H−1
M2


(M̃2)}. Then


(AC1,M1F, AC2,M2G) =


∫
(J1F )(J2G)dµ (38)


Remark. Thus sewing involves the identification operators J1, J2 from M1,M2 to M .
These can be understood as a change in Wick ordering. We have


J1


(
: φ1(f1) . . . φ1(fn) :(−∆M̃1


+m2)−1


)
=: φ(j1,∗f1) . . . φ(j1,∗fn) :(−∆M+m2)−1 (39)


Proof. We have that j1,∗ maps H−1
M1


(M̃1) to H−1
M1


(M). These spaces have the decom-
positions (13)


H−1
M1


(M̃1) =H−1
C1


(M̃1)⊕ (−∆M̃1
+ m2)H1


0 (int M1)


H−1
M1


(M) =H−1
C (M)⊕ (−∆M + m2)H1


0 (int M1)
(40)


and since j1 is an isometry j1,∗ preserves the decomposition. The operators eM̃1
C1


and


eMC are the projections onto the first factors and so we have the identity on H−1
M1


(M̃1)


j1,∗ e
M̃1
C1


= eMC j1,∗ (41)


It follows that


J1 EM̃1
C1


= Γ(j1,∗)Γ(eM̃1
C1


) = Γ(eMC )Γ(j1,∗) = EMC J1 (42)
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Then we have


(AC1,M1F, AC2,M2G) =


∫
(J1EM̃1


C1
F )(J2EM̃2


C2
G)dµ


=


∫
(EMC J1F )(EMC J2G)dµ


=


∫
(J1F )(J2G)dµ


(43)


In the last step we use that J1F is OM1 measurable, that J2G is OM2 measurable, and
the Markov property via the identity (21). This completes the proof.


Remarks.
(1.) We do not attempt a direct sewing result in the case m = 0. However one can
get something in this direction by restricting the class of test functions and taking the
limit m→ 0 as in Corollary 3.


(2.) Our treatment has featured manifolds with a single boundary circle. However one
could as well consider manifolds with many boundary circles {Ci}. In this case one
would consider operators between (algebraic) tensor products of Hilbert spaces HCi


based on the boundary circles. Again one can show a sewing property of the type we
have presented. This is essentially the structure discussed by Segal [12] in his axioms
for conformal field theory, except that we have not accommodated the possibility of
sewing together boundary circles on the same manifold. See also Gawedski [4], Huang
[6], and Langlands [8].


6 Interacting fields


We continue to restrict to d = 2 and now study interacting fields on a compact Riemann
surface (M, g). For this we may as well assume m > 0. We introduce a potential for
A ⊂M


VA(φ) =


∫
A


: P (φ(x)) :(−∆+m2)−1


√
det g(x)dx (44)


Here P is a lower semi-bounded polynomial. This not obviously well-defined since
it refers to products of distributions. However it turns out that the Wick ordering
provides sufficient regularization and we have


Lemma 4 VA, e
−VA are functions in Lp(Q,O, dµ) for all p <∞.


In the plane and with A compact this is a classic result of constructive field theory.
[11], [13], [5]. The proof has been extended to compact subsets of paracompact complete
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Riemannian manifolds by De Angelis, de Falco, Di Genova [1]. Hence it holds for
compact manifolds and an interacting field theory can be defined by the measure 2


dν =
e−VM dµ∫
e−VMdµ


(45)


As noted by Gawedski [4] there may be special choices of the polynomial P such that
this is a conformal field theory.


For each measure ν we have the conditional expectation EνAF = Eν{F |OA}. This
conditional expectation can be expressed in terms of the conditional expectation EA for
µ by


EνAF =
EA(Fe−VAc )


EA(e−VAc )
(46)


See [13] for this identity. Now the Markov property for ν follows directly from the
Markov property for µ. This is the following which generalizes the result of Nelson on
the plane [11]:


Theorem 4 For open Ω ⊂M , let F be OΩ̄ measurable. Then


EνΩcF = Eν∂ΩF (47)
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