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Preface


This book is addressed to readers who want to have a look at the laws of micro and macro world
from a single viewpoint. This is the English translation of our Theory of Non-Geodesic Motion of
Particles, originally published in Russian in 1999, with some recent amendements.
The background behind the book is as follows. In 1991 we initiated a study to find out what kinds


of particles may theoretically inhabit four-dimensional space-time. As the instrument, we equipped
ourselves with mathematical apparatus of physical observable values (chronometric invariants) devel-
oped by A. L. Zelmanov, a prominent cosmologist.
The study was completed by 1997 to reveal that aside for mass-bearing and massless (light-like)


particles, those of third kind may exist. Their trajectories lay beyond regular space-time of General
Relativity. For a regular observer the trajectories are of zero four-dimensional length and zero three-
dimensional observable length. Besides, along these trajectories interval of observable time is also zero.
Mathematically, that means such particles inhabit fully degenerated space-time with non-Riemannian
geometry. We called such space “zero-space” and such particles — “zero-particles”.
For a regular observer their motion in zero-space is instant, i. e. zero-particles are carriers of


long-range action. Through possible interaction with our world’s mass-bearing or massless particles
zero-particles may instantly transmit signals to any point in our three-dimensional space.
Considering zero-particles in the frames of the wave-particle concept we obtained that for a reg-


ular observer they are standing waves and the whole zero-space is a system of standing light-like
waves (zero-particles), i. e. a standing-light hologram. This result links with “stop-light experiment”
(Cambridge, Massachusetts, January 2001).
Using methods of physical observable values we also showed that in basic four-dimensional space-


time a mirror world may exist, where coordinate time has reverse flow in respect to the viewpoint of
regular observer’s time.
We presented the results in 1997 in two pre-prints1.
B.M. Levin, an expert in orthopositronium problem came across these publications. He contacted


us immediately and told us about critical situation around anomalies in annihilation of orthopositro-
nium, which had been awaiting theoretical explanation for over a decade.
Rate of annihilation of orthopositronium (the value reciprocal to its life span) is among the refer-


ences set to verify the basic laws of Quantum Electrodynamics. Hence any anomalies contradict with
these reliably proven laws. In 1987 Michigan group of researchers (Ann Arbor, Michigan, USA) using
advanced precision equipment revealed that the measured rate of annihilation of orthopositronium
was substantially higher compared to its theoretical value.
That implies that some atoms of orthopositronium annihilate not into three photons as required


by laws of conservation, but into lesser number of photons, which breaks those laws. In the same 1987
Levin discovered what he called “isotope anomaly” in anomalous annihilation of orthopositronium
(Gatchina–St.Petersburg, Russia). Any attempts to explain the anomalies by means of Quantum
Electrodynamics over 10 years would fail. This made S.G.Karshenboim, a prominent expert in the
field, to resume that all capacities of standard Quantum Electrodynamics to explain the anomalies
were exhausted.
In our 1997 publications Levin saw a means of theoretical explanation of orthopositronium anoma-


lies by methods of General Relativity and suggested a joint research effort in this area.


1Borissova L.B. and Rabounski D.D. Movement of particles in four-dimensional space-time. Lomonossov Workshop,
Moscow, 1997 (in Russian); Rabounski D.D. Three forms of existence of matter in four-dimensional space-time.
Lomonossov Workshop, Moscow, 1997 (in Russian).
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PREFACE 4


Solving the problem we obtained that our world and the mirror Universe are separated with a
space-time membrane, which is a degenerated space-time (zero-space). We also arrived to physical
conditions under which exchanges may occur between our world and the mirror Universe. Thanks to
this approach and using methods of General Relativity we developed a geometric concept of virtual
interactions: it was mathematically proven that virtual particles are zero-particles that travel in zero-
space and carry long-range action. Application of the results to annihilation of orthopositronium
showed that two modes of decay are theoretically possible: (a) all three photons are emitted into our
Universe; (b) one photon is emitted into our world, while two others go to the mirror Universe and
become unavailable for observation.
All the above results stemmed exclusively from application of Zelmanov’s mathematical apparatus


of physical observable values.
When tackling the problem we had to amend the existing theory with some new techniques. In their


famous The Classical Theory of Fields, which has already become a de-facto standard for a university
reference book on General Relativity, L.D. Landau and E.M. Lifshitz give an excellent account of
theory of motion of particle in gravitational and electromagnetic fields. But the monograph does not
cover motion of spin-particles, which leaves no room for explanations of orthopositronium experiments
(as its para and ortho states differ by mutual orientation of electron and positron spins). Besides,
Landau and Lifshitz employed general covariant methods. The technique of physical observable values
(chronometric invariants) has not been yet developed by that time by Zelmanov, which should be also
taken into account.
Therefore we faced the necessity to introduce methods of chronometric invariants into the existing


theory of motion of particles in gravitational and electromagnetic fields. Separate consideration was
given to motion of particles with inner mechanical momentum (spin). We also added a chapter with
account of tensor algebra and analysis. This made our book a contemporary supplement to The
Classical Theory of Fields to be used as a reference book in university curricula.
In conclusion we would like to express our sincere gratitude to Dr. Abram Zelmanov (1913–1987)


and Prof. Kyril Stanyukovich (1916–1989). Many years of acquaintance and hours of friendly conver-
sations with them have planted seeds of fundamental ideas which by now grew up in our minds to be
reflected on these pages.
We are grateful to Dr. Kyril Dombrovski whose works greatly influenced our outlooks.
We highly appreciate contribution from our colleague Dr. Boris Levin. With enthusiasm peculiar


to him he stimulated our writing of this book.
Special thanks go to our family for permanent support and among them to Gershin Kaganovski for


discussion of the manuscript. Many thanks go to Grigory Semyonov, a friend of ours, for preparing the
manuscript in English. We also are grateful to our publisher Domingo Maŕın Ricoy for his interest to
our works. Specially we are thankful to Dr. Basil K. Malyshev who powered us by his BAKOMA-TEX
system2.


L.B.Borissova and D.D.Rabounski


2http://www.tex.ac.uk/tex-archive/systems/win32/bakoma/







Chapter 1


Introduction


1.1 Geodesic motion of particles


Numerous experiments aimed at proving the conclusions of the General Theory of Relativity have also
proven that its basic space-time (four-dimensional pseudo-Riemannian space) is the basis of our real
world geometry. This also implies that even by progress of experimental physics and astronomy, which
will discover new effects in time and space, four-dimensional pseudo-Riemannian space will remain
the cornerstone for further widening of the basic geometry of General Relativity and will become one
of its specific cases. Therefore, when building mathematical theory of motion of particles, we are
considering their motion specifically in the four-dimensional pseudo-Riemannian space.
A terminology note should be taken at this point. Generally, the basic space-time in General Rela-


tivity is a Riemannian space1 with four dimensions with sign-alternating Minkowski’s label (+ −−−)
or (−+++). The latter implies 3+1 split of coordinate axis in Riemannian space into three spatial
coordinate axis and the time axis. For convenience of calculations a Riemannian space with (+ −−−)
signature is considered, where time is real while space is imaginary. Some theories, largely General
Relativity, also employs (−+++) label with imaginary time and real space. But Riemannian spaces
may as well have non-alternating signature, e. g. (+ + ++). Therefore a Riemannian space with alter-
nating label is commonly referred to as pseudo-Riemannian space, to emphasize the split of coordinate
axis into two types. But even in this case all its geometric properties are still properties of Rieman-
nian geometry and the “pseudo” notation is not absolutely proper from mathematical viewpoint.
Nevertheless we are going to use this notation as a long-established and traditionally understood one.
We consider motion of a particle in four-dimensional pseudo-Riemannian space. A particle affected


by gravitation only falls freely and moves along the shortest (geodesic) line. Such motion is referred
to as free or geodesic motion. If the particle is also affected by some additional non-gravitational
forces, the latter divert the particle from its geodesic trajectory and the motion becomes non-geodesic
motion.
From geometric viewpoint motion of a particle in four-dimensional pseudo-Riemannian space is


parallel transfer of some four-dimensional vector Qα which describes motion of the particle and is
therefore tangential to the trajectory at any of its points. Consequently, equations of motion of particle
actually define parallel transfer of vector Qα along its four-dimensional trajectory and are equations
of absolute derivative of the vector by certain parameter ρ, which exists along all the trajectory of
particle’s motion and is not zero along the way,


DQα


dρ
=
dQα


dρ
+ ΓαμνQ


μ dx
ν


dρ
, α, μ, ν = 0, 1, 2, 3. (1.1)


Here DQα=dQα+ΓαμνQ
μdxν is the absolute differential (the absolute increment of vector Qα),


which is different from a regular differential dQα by presence of Christoffel symbols of 2nd kind


1A metric space which geometry is defined by metric ds2=gαβdx
αdxβ called to as Riemann’s metric. Bernhard Rie-


mann (1826–1866), a German mathematician, the founder of Riemannian geometry (1854).


5







CHAPTER 1. INTRODUCTION 6


Γαμν (coherence coefficients of Riemannian space), which are calculated through Christoffel symbols
(coherence coefficients) of 1st kind Γμν,ρ and are functions of first derivatives of fundamental metric
tensor gαβ


2


Γαμν = g
αρΓμν,ρ , Γμν,ρ =


1


2


(
∂gμρ


∂xν
+
∂gνρ


∂xμ
−
∂gμν


∂xρ


)


. (1.2)


When moving along a geodesic trajectory (free motion) parallel transfer occurs in the meaning of
Levi-Civita3. Here the absolute derivative of four-dimensional vector of particle Qα equals to zero


dQα


dρ
+ ΓαμνQ


μ dx
ν


dρ
= 0 , (1.3)


and the square of the vector being transferred is conserved along all trajectory QαQ
α=const. Such


equations are referred to as equations of motion of free particles.
Kinematic motion of particle is characterized by four-dimensional vector of acceleration (also re-


ferred to as kinematic vector)


Qα =
dxα


dρ
, (1.4)


in parallel transfer by Levi-Civita equations of four-dimensional trajectories of free particle are ob-
tained (equations of geodesic lines)


d2xα


dρ2
+ Γαμν


dxμ


dρ


dxν


dρ
= 0 . (1.5)


Necessary condition ρ 6=0 along the trajectory of motion implies that derivation parameters ρ are not
the same along trajectories of different kind. In pseudo-Riemannian space three kinds of trajectories
are principally possible, each kind corresponds to its type of particles:


• non-isotropic real trajectories, that lay “within” the light hyper-cone. Along such trajectories
the square of space-time interval ds2>0, while the interval ds is real. These are trajectories of
regular sub-light-speed particles with non-zero rest-mass and real relativistic mass;


• non-isotropic imaginary trajectories, which lay “outside” the light hyper-cone. Along such tra-
jectories the square of space-time interval ds2<0, while the interval ds is imaginary. These are
trajectories of super-light-speed tachyon particles with imaginary relativistic mass [18, 19];


• isotropic trajectories, which lay on the surface of light hyper-cone and are trajectories of particles
with zero rest-mass (massless light-like particles), which travel at the light speed. Along the
isotropic trajectories the space-time interval is zero ds2=0, but the three-dimensional interval is
not zero.


As a derivation parameter to non-isotropic trajectories space-like interval ds is commonly used.
But it can not be used in such capacity to trajectories of massless particles ds=0. Therefore as early
as in 1941–1944 A. L. Zelmanov in his doctorate thesis proposed another variable that does not turn
into zero along isotropic trajectories, to be used as derivation parameter to isotropic trajectories [6],


dσ2 =


(


−gik +
g0ig0k


g00


)


dxidxk, (1.6)


which is a three-dimensional physical observable interval [6]. L.D. Landau and E.M. Lifshitz also ar-
rived to the same conclusion independently (see Section 84 in their The Classical Theory of Fields [1]).
Substituting respective differentiation parameters into generalized equations of geodesic lines (1.5),


we arrive to equations of non-isotropic geodesic lines (trajectories of mass-bearing particles)


d2xα


ds2
+ Γαμν


dxμ


ds


dxν


ds
= 0 , (1.7)


2Coherence coefficients of Riemannian space (Christoffel symbols) are named after German mathematician Elvin
Bruno Christoffel (1829–1900), who obtained them in 1869. In the Special Relativity space-time (Minkowski space) one
can always set an inertial system of reference, where the matrix of fundamental metric tensor is a unit diagonal tensor
and all Christoffel symbols become zeroes.
3Tullio Levi-Civita (1873–1941), an Italian mathematician, who was the first to study such parallel transfer [3].
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and to equations of isotropic geodesic lines (light propagation equations)


d2xα


dσ2
+ Γαμν


dxμ


dσ


dxν


dσ
= 0 . (1.8)


But in order to get the whole picture of motion of particle, we have to build dynamic equations of
motion, which contain physical properties of particle (mass, frequency, energy, etc.).
From geometric viewpoint dynamic equations of motion are equations of parallel transfer of four-


dimensional dynamic vector of particle along its trajectory (absolute derivative of dynamic vector by
parameter, not equal to zero along the trajectory, is zero).
Motion of free mass-bearing particles (non-isotropic geodesic trajectories) is characterized by four-


dimensional impulse vector


Pα = m0
dxα


ds
, (1.9)


where m0 is rest-mass of particle. Parallel transfer in the meaning of Levi-Civita of four-dimensional
impulse vector Pα gives dynamic equations of motion of free mass-bearing particles


dPα


ds
+ ΓαμνP


μ dx
ν


ds
= 0 , PαP


α = m20 = const. (1.10)


Motion of massless light-like particles (isotropic geodesic lines) is characterized by four-dimensional
wave vector


Kα =
ω


c


dxα


dσ
, (1.11)


where ω is specific cyclic frequency of massless particle. Respectively, parallel transfer in the meaning
of Levi-Civita of vector Kα gives dynamic equations of motion of free massless particles


dKα


dσ
+ ΓαμνK


μ dx
ν


dσ
= 0 , KαK


α = 0 . (1.12)


Therefore we have got dynamic equations of motion for free massless particles. These are presented
in four-dimensional general covariant form. This form has got its own advantage as well as a substantial
drawback. The advantage is invariance in all transitions from one frame of reference to another. The
drawback is that in covariant form the terms of the equations do not contain actual three-dimensional
values, which can be measured in experiments or observations (physical observable values). This
implies that in general covariant form equations of motion of particle are merely an intermediate
theoretical result, not applicable to practice. Therefore, in order to make results of any physical
mathematical theory usable in practice, we need to formulate its equations with physical observable
values. Namely, to calculate trajectories of certain particles we have to formulate general covariant
dynamic equations of motion with physical observable properties of these particles as well as through
observable properties of an actual physical frame of reference of the observer.
But defining physical observable values is not a trivial problem. For instance, if for a four-


dimensional vector Qα (as few as four components) we may heuristically assume that its three spatial
components form a three-dimensional observable vector, while the temporal component is observable
potential of the vector field (which generally does not prove they can be actually observed, though),
a contravariant 2nd rank tensor Qαβ (as many as 16 components) makes the problem much more
indefinite. For tensors of higher rank the problem of heuristic definition of observable components is
far more complicated. Besides there is an obstacle related to definition of observable components of
covariant tensors (in which indices are the lower ones) and of mixed type tensors, which have both
lower and upper indices.
Therefore the most reasonable way out of the labyrinth of heuristic guesses is creating a strict


mathematical theory to enable calculation of observable components for any tensor values. Such
theory was created in 1941–1944 by Zelmanov and set forth in his dissertation thesis [6]. It should
be noted, though, that many researchers were working on theory of observable values in 1940’s. For
example, Landau and Lifshitz in later editions of their well-known The Classical Theory of Fields [1]
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introduced observable time and observable three-dimensional interval, similar to those introduced by
Zelmanov. But the authors limited themselves only to this part of theory and did not arrive to general
mathematical methods to define physical observable values in pseudo-Riemannian space.
Over the next decades Zelmanov would improve his mathematical apparatus of physical observable


values (the methods of chronometric invariants), setting forth the results in some later papers [7, 8,
9, 10]. Similar results were obtained by C.Cattaneo, an Italian mathematician, independently from
Zelmanov. However Cattaneo published his first study on the theme in 1958 [11, 12, 13, 14].
A systematic description of Zelmanov’s mathematical methods of chronometric invariants is given


in our two pre-prints [15, 16]. Therefore in the next Section of this Chapter we will give just a brief
overview of the methods of theory of physical observable values, which is necessary for understanding
them and using in practice.
In Section 1.3 we will present the results of studying geodesic motion of particles using the tech-


nique of chronometric invariants [15, 16]. In Section 1.4 will focus on setting problem of building
dynamic equations of particles along non-geodesic trajectories, i. e. under action of non-gravitational
external forces.


1.2 Physical observable values


This Section introduces Zelmanov’s mathematical apparatus of chronometric invariants.
To define mathematically which components of any four-dimensional values are physical observable


values, we consider a real frame of reference of some observer, which includes coordinate nets, spanned
over some physical body (body of reference), at each point of which real clock is installed. The body
of reference being a real physical body possesses a certain gravitational potential, may rotate and
deform, making the space of reference non-uniform and anisotropic. Actually, the body of reference
and attributed to it space of reference may be considered as a set of real physical references, to which
observer compares all results of his measurements. Therefore, physical observable values should be
obtained as a result of projecting four-dimensional values on time and space of observer’s real body
of reference.
From geometric viewpoint three-dimensional space is spatial section x0=ct=const. At any point


of the space-time a local spatial section (orthogonal space) can be done orthogonal to the line of time.
If exists space-time enveloping curve to local spaces it is a spatial section everywhere orthogonal to
lines of time. Such space is known as holonomic space. If no enveloping curve exists to such local
spaces, i. e. there only exist spatial sections locally orthogonal to lines of time, such space is known as
non-holonomic.
We assume that the observer rests in respect to his physical references (body of reference). Frame


of reference of such observer in any displacements accompanies the body of reference and is called
accompanying frame of reference. Any coordinate nets that rest in respect to the same body of
reference are related through transformation


x̃0 = x̃0
(
x0, x1, x2, x3


)
, x̃i = x̃i


(
x1, x2, x3


)
,


∂x̃i


∂x0
= 0 , (1.13)


where the latter equation implies independence of spatial coordinates in tilde-marked net from time
of non-marked net, which is equivalent to setting coordinate net of concrete and fixed lines of time
xi=const in any point of coordinate net. Transformation of coordinates is nothing but transition
from one coordinate net to another within the same spatial section. Transformation of time implies
changing the whole set of clocks, i. e. transition from to another spatial section (space of reference).
In practice that means replacement of one body of reference along with all of its physical references
with another body of references that has got its own physical references. But when using different
references observer will obtain quite different results (observable values). Therefore physical observable
values must be invariant in respect to transformations of time, i. e. should be chronometrically invar-
iant values.
Because transformations (1.13) define a set of fixed lines of time, then chronometric invariants


(physical observable values) are all values, invariant in respect to these transformations.
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In practice, to obtain physical observable values in accompanying frame of reference we have to
calculate chronometrically invariant projections of four-dimensional values on time and space of a real
physical body of reference and formulate them with chronometrically invariant (physically observable)
properties of the space of reference.
We project four-dimensional values using operators that characterize properties of real space of


reference. Operator of projection on time bα is a unit vector of four-dimensional velocity of observer’s
frame of reference (four-dimensional velocity of body of reference)


bα =
dxα


ds
, (1.14)


which is tangential to four-dimensional observer’s trajectory in its every point. Because any frame of
reference is described by its own tangential unit vector bα, Zelmanov called the vector a monad. The
operator of projection on space is defined as four-dimensional symmetric tensor


hαβ = −gαβ + bαbβ , hαβ = −gαβ + bαbβ , (1.15)


which mixed components are
hβα = −g


β
α + bαb


β . (1.16)


Previous studies show that these values possess necessary properties of projection operators
[6, 10, 16]. Projection of tensor value on time is a result of its contraction with monad vector.
Projection on space is contraction with tensor of projection on space.
In accompanying frame of reference three-dimensional observer’s velocity in respect to the body


of reference is zero bi=0. Other components of the monad are


b0 =
1
√
g00


, b0 = g0αb
α =
√
g00 , bi = giαb


α =
gi0
√
g00


. (1.17)


Respectively, in accompanying frame of reference (bi=0) components of tensor of projection on
space are


h00 = 0 , h00 = −g00 +
1


g00
, h00 = 0 ,


h0i = 0 , h0i = −g0i, hi0 = δ
i
0 = 0 ,


hi0 = 0 , hi0 = −gi0, h0i =
gi0


g00
,


hik = −gik +
g0ig0k


g00
, hik = −gik, hik = −g


i
k = δ


i
k .


(1.18)


Tensor hαβ in three-dimensional space of an accompanying frame of reference shows properties of
fundamental metric tensor


hiαh
α
k = δ


i
k − bkb


i = δik , δik =






1 0 0
0 1 0
0 0 1





 , (1.19)


where δik is a unit three-dimensional tensor
4. Therefore, in accompanying frame of reference three-


dimensional tensor hik may lift or lower indices in chronometrically invariant values.
Projections on time T and space Lα of a certain vector Qα (1st rank tensor) in accompanying


frame of reference (bi=0) are


T = bαQα = b
0Q0 =


Q0
√
g00


, (1.20)


L0 = h0βQ
β = −


g0k


g00
Qk, Li = hiβQ


β = δikQ
k = Qk. (1.21)


4Tensor δi
k
is the three-dimensional part of four-dimensional unit tensor δα


β
, which can be used to replace indices in


four-dimensional values.
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Below are some projections of 2nd rank tensor Qαβ in accompanying frame of reference


T = bαbβQαβ = b
0b0Q00 =


Q00


g00
, (1.22)


L00 = h0αh
0
βQ
αβ = −


g0ig0k


g200
Qik, Lik = hiαh


k
βQ
αβ = Qik. (1.23)


Experimental check of invariance of the obtained physical values in respect to transformations
(1.13) says that physical observable values are projection of four-dimensional value on time and spatial
components of projection on space.
Hence, projecting four-dimensional coordinates xα on time and space we obtain physical observ-


able time
τ =
√
g00 t+


g0i


c
√
g00


xi, (1.24)


and physical observable coordinates, which coincide with spatial coordinates xi. Similarly, projec-
tion of elementary interval of four-dimensional coordinates dxα gives elementary interval of physical
observable time


dτ =
√
g00 dt+


g0i


c
√
g00


dxi, (1.25)


and elementary interval of physical observable coordinates dxi. Respectively, physical observable
velocity of particle for an observer is three-dimensional chronometrically invariant vector


vi =
dxi


dτ
, (1.26)


which is different from the value ui=dx
i


dt
, which is the vector of its three-dimensional coordinate


velocity.
Projecting fundamental metric tensor on space we obtain that in accompanying frame of reference


physical observable spatial metric tensor consists of spatial components of tensor of projection on space


hiαh
k
βg
αβ = gik = −hik, hαi h


β
kgαβ = gik − bibk = −hik . (1.27)


Therefore the square of physical observable interval dσ is


dσ2 = hikdx
idxk. (1.28)


Four-dimensional space-time interval formulated with physical observable values can be obtained
by substituting gαβ from (1.15)


ds2 = c2dτ2 − dσ2. (1.29)


But aside for projections on space and time four-dimensional values of 2nd rank and above also
have mixed components which have both upper and lower indices at the same time. How do we find
physical observable values among them, if any? The best approach is to develop a generalized method
to calculate physical observable values based solely on their property of chronometric invariance and
allowing to find all observable values at the same time in any tensor. Such method was developed by
Zelmanov and set forth as a theorem.


Zelmanov theorem


“We assume that Qik...p00...0 are components of four-dimensional tensor Q
μν...ρ
00...0 of r-th rank, in which all


upper indices are not zero, while all m lower indices are zeroes. Then tensor values


T ik...p = (g00)
−m2 Qik...p00...0 (1.30)


make up chronometrically invariant three-dimensional contravariant tensor of (r−m)-th rank. Hence
tensor T ik...p is a result of m-fold projection on time by indices α, β . . . σ and projection on space by
r−m indices μ, ν . . . ρ of the initial tensor Qμν...ραβ...σ”.
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An immediate result of the theorem is that for vector Qα two values are physical observable, which
were obtained earlier by projecting


bαQα =
Q0
√
g00


, hiαQ
α = Qi. (1.31)


For a symmetric 2nd rank tensor Qαβ the three values are physical observable ones, namely


bαbβQαβ =
Q00


g00
, hiαbβQαβ =


Qi0√
g00


, hiαh
k
βQ
αβ = Qik. (1.32)


The calculated physical observable values (chronometric invariants) have to be compared to the
references (the standards of measure) — observed properties of the space of reference which are specific
for any particular body of reference. Therefore we will now consider the basic properties of the space
of reference with which the final equations of our theory are to be formulated.
Physical observable properties of the space of reference are obtained with the help of chronomet-


rically invariant operators of differentiation by time and spatial coordinates


∗∂


∂t
=


1
√
g00


∂


∂t
,


∗∂


∂xi
=


∂


∂xi
−
g0i


g00


∂


∂x0
, (1.33)


which are not commutative, i. e. difference between 2nd derivatives with respect to time and space
coordinates becomes not zero


∗∂2


∂xi∂t
−


∗∂2


∂t∂xi
=
1


c2
Fi
∗∂


∂t
, (1.34)


∗∂2


∂xi∂xk
−


∗∂2


∂xk∂xi
=
2


c2
Aik


∗∂


∂t
. (1.35)


Here Aik is a three-dimensional antisymmetric chronometrically invariant tensor of angular veloc-
ities of rotation of the reference’s space


Aik =
1


2


(
∂vk


∂xi
−
∂vi


∂xk


)


+
1


2c2
(Fivk − Fkvi) , (1.36)


where vi stands for rotation velocity of space


vi = −c
g0i
√
g00


. (1.37)


Tensor Aik being equal to zero is the necessary and sufficient condition of holonomity of space
[6, 10]. In this case g0i=0 and vi=0. In non-holonomic space Aik 6=0 is always not zero. Therefore,
tensor Aik is also a tensor of the space’s non-holonomity


5.
The value Fi is a three-dimensional chronometrically invariant vector of gravitational inertial force


Fi =
c2


c2 − w


(
∂w


∂xi
−
∂vi


∂t


)


, w = c2 (1−
√
g00 ) , (1.38)


where w stands for gravitational potential of the body of reference’s space6. In quasi-Newtonian
approximation, i. e. in a weak gravitational field at speeds much lower than the speed of light and in
absence of rotation of space Fi becomes a non-relativistic force


Fi =
∂w


∂xi
. (1.39)


5Special Relativity space-time (Minkowski space) in Galilean frame of reference and some cases in General Relativity
are examples of holonomic spaces Aik=0.
6Values w and vi do not possess property of chronometric invariance of their own. Vector of gravitation inertial force


and tensor of angular velocity of space’s rotation, built using them, are chronometric invariants.
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Because the observer’s body of reference is a real physical body, coordinate nets it bears are
deformed. Consequently the space of a real body of reference is deformed too. Therefore comparison
of observable values with physical references of the body of reference has to take into account the
field of deformation of the space of reference, i. e. that the field of tensor hik is not stationary. In
practice stationary deformation of space is rather rare: field of deformation varies all the time which
should be as well taken into account in measurements. This can be done by defining in equations a
three-dimensional symmetric chronometrically invariant tensor of deformation velocities


Dik =
1


2


∗∂hik


∂t
, Dik = −


1


2


∗∂hik


∂t
, D = Dkk =


∗∂ ln
√
h


∂t
, h = det ‖hik‖ . (1.40)


Given these definitions we can generally formulate any geometric object in Riemannian space with
observable parameters of the space of reference. For instance, Christoffel symbols that appear in
equations of motion are not tensors [2]. Nevertheless, they can be as well formulated with physical
observable values [6, 15, 16]


Γ000 = −
1


c3







1


1−
w


c2


∂w


∂t
+
(
1−


w


c2


)
vkF


k






 , (1.41)


Γk00 = −
1


c2


(
1−


w


c2


)2
F k, (1.42)


Γ00i =
1


c2






−


1


1−
w


c2


∂w


∂xi
+ vk


(


Dki +A
∙k
i∙ +


1


c2
viF


k


)




 , (1.43)


Γk0i =
1


c


(
1−


w


c2


)(


Dki +A
∙k
i∙ +


1


c2
viF


k


)


, (1.44)


Γ0ij = −
1


c


1


1−
w


c2


{


−Dij +
1


c2
vn


[


vj (D
n
i +A


∙n
i∙ ) + vi


(
Dnj +A


∙n
j∙


)
+
1


c2
vivjF


n


]


+


+
1


2


(
∂vi


∂xj
+
∂vj


∂xi


)


−
1


2c2
(Fivj + Fjvi)−4


n
ijvn


}


,


(1.45)


Γkij = 4
k
ij −


1


c2


[


vi
(
Dkj +A


∙k
j∙


)
+ vj


(
Dki +A


∙k
i∙


)
+
1


c2
vivjF


k


]


, (1.46)


where 4kij are chronometrically invariant Christoffel symbols which are defined similarly to regular
Christoffel symbols (1.2) but through physical observable metric tensor hik and chronometrically
invariant differentiation operators


4ijk = h
im4jk,m =


1


2
him


(∗∂hjm
∂xk


+
∗∂hkm


∂xj
−
∗∂hjk


∂xm


)


. (1.47)


We have discussed the basics of mathematical apparatus of chronometric invariants. Now hav-
ing any equations obtained using general covariant methods we can calculate their chronometrically
invariant projections on time and on space of any particular body of reference and formulate them
with its real physical observable properties. From here we arrive to equations containing only values
measurable in practice.
Naturally, the first possible application of this mathematical apparatus that comes to our mind is


calculation of chronometrically invariant dynamic equations of motion of free particles and studying
the results. Partial solution of this problem was obtained by Zelmanov [6, 10]. We presented the
general one in our previous works [15, 16]. The next Section will focus on the results of our study.
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1.3 Dynamic equations of motion of free particles


Absolute derivative of vector of motion of particle to scalar parameter is actually a four-dimensional
vector


Nα =
dQα


dρ
+ ΓαμνQ


μ dx
ν


dρ
. (1.48)


Therefore chronometrically invariant (physical observable) components of equation of motion are
defined similarly to those of any four-dimensional vector (1.31)


N0
√
g00
=
g0αN


α


√
g00


=
1
√
g00


(
g00N


0 + g0iN
i
)
, (1.49)


N i = hiβN
β = hi0N


0 + hikN
k. (1.50)


From geometric viewpoint this is a projection of vector Nα on time and spatial components of
its projection on space in accompanying frame of reference. In a similar way we can project general
covariant dynamic equations of motion of free mass-bearing particles (1.10) and of free massless
particles (1.12). The technique to calculate these projections is given in details in our previous
publications [15, 16]. As a result we arrive to chronometrically invariant dynamic equations of motion
of free mass-bearing particles


dm


dτ
−
m


c2
Fiv


i +
m


c2
Dikv


ivk = 0 , (1.51)


d
(
mvi


)


dτ
+ 2m


(
Dik +A


∙i
k∙


)
vk −mF i +m4inkv


nvk = 0 , (1.52)


and of free massless particles
dk


dτ
−
k


c2
Fic


i +
k


c2
Dikc


ick = 0 , (1.53)


d
(
kci
)


dτ
+ 2k


(
Dik +A


∙i
k∙


)
ck − kF i + k4inkc


nck = 0 , (1.54)


where m stands for relativistic mass of mass-bearing particle, k=ωc is wave number that character-
izes massless particle and ci is three-dimensional chronometrically invariant vector of light velocity.
As seen, contrary to general covariant dynamic equations of motion (1.10, 1.12), chronometrically
invariant equations have a single derivation parameter for both mass-bearing particles and massless
particles (which is physical observable time τ).
These equations were first obtained by Zelmanov [6]. But later it was found that function of time


dt
dτ
they include is strictly positive [15, 16]. Physical time has direct flow dτ>0. Flow of coordinate


time dt shows change of time coordinate of particle x0=ct in respect to observer’s clock. Hence the
sign of the function shows where the particle travels to in time in respect to observer.


Function of time dt
dτ
[15, 16] is obtained from the condition that the square of four-dimensional


velocity of particle is constant along its four-dimensional trajectory uαu
α=gαβu


αuβ=const. Equations


in respect to dt
dτ
are the same for sub-light-speed mass-bearing particles, for massless particles and


for super-light-speed mass-bearing particles and have two solutions, which are


(
dt


dτ


)


1,2


=
viv
i ± c2


c2
(


1−
w


c2


) . (1.55)


As shown in [15, 16] time has direct flow if viv
i±c2>0, time has reverse flow if vivi±c2<0, and


flow of time stops if viv
i±c2=0. Therefore there exists a whole range of solutions for various types of


particles and directions they travel in time in respect to observer. For instance, relativistic mass of


particle, which is projection of its four-dimensional vector on time P0√
g00
=±m is positive if particle
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travels into future and negative if it travels into past. Wave number of massless particle K0√
g00
=±k is


also positive for movement into future and is negative for movement into past.
In the studies [15, 16] we also showed that chronometrically invariant dynamic equations of motion


of free mass-bearing particles with reverse flow of time dt
dτ
<0 that travel from future into past are


−
dm


dτ
−
m


c2
Fiv


i +
m


c2
Dikv


ivk = 0 , (1.56)


d
(
mvi


)


dτ
+mF i +m4inkv


nvk = 0 . (1.57)


For free massless particles that travel into past we arrive to


−
dk


dτ
−
k


c2
Fic


i +
k


c2
Dikc


ick = 0 , (1.58)


d
(
kci
)


dτ
+ kF i + k4inkc


nck = 0 . (1.59)


For super-light-speed mass-bearing particles equations of motion are similar to those for sub-light
speeds, save that relativistic mass m is multiplied by imaginary unit i.
Equations of motion of particles into future and into past are not symmetric due to different


physical conditions in case of direct and reverse time flows, and some terms in equations will be missing.
Besides, in our previous studies [15, 16] we considered motion of mass-bearing and massless par-


ticles within the wave-particle concept, assuming that motion of any particles can be represented as
propagation of waves in approximation of geometric optics. In this case the dynamic vector of massless
particles will be [1]


Kα =
∂ψ


∂xα
, (1.60)


where ψ is wave phase (eikonal). In a similar way we consider dynamic vector of mass-bearing particles


Pα =
h̄


c


∂ψ


∂xα
, (1.61)


where h̄ is Plank constant. Wave phase equation (eikonal equation) in approximation of geometric
optics is the condition KαK


α=0. Hence chronometrically invariant eikonal equation for massless
particles will be


1


c2


(∗∂ψ
∂t


)2
+ hik


∗∂ψ


∂xi


∗∂ψ


∂xk
= 0 , (1.62)


and for mass-bearing particles


1


c2


(∗∂ψ
∂t


)2
+ hik


∗∂ψ


∂xi


∗∂ψ


∂xk
=
m20c


2


h̄2
. (1.63)


Substituting wave form of dynamic vector into general covariant dynamic equations of motion
(1.10, 1.12) and their projection on time and space we obtain wave form of chronometrically invariant
equations of motion. For mass-bearing particles the equations are


±
d


dτ


(∗∂ψ
∂t


)


+ F i
∗∂ψ


∂xi
−Dikv


k
∗∂ψ


∂xi
= 0 , (1.64)


d


dτ


(


hik
∗∂ψ


∂xk


)


−
(
Dik +A


∙i
k∙


)
(


±
1


c2


∗∂ψ


∂t
vk − hkm


∗∂ψ


∂xm


)


±


±
1


c2


∗∂ψ


∂t
F i + hmn4imkv


k
∗∂ψ


∂xn
= 0 ,


(1.65)


where “plus” in alternating terms stands for motion of particles from past into future (direct flow
of time), while “minus” stands for motion into past (reverse flow of time). Noteworthy, contrary to
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corpuscular form of equations of motion (1.51, 1.52) and (1.56, 1.57) these equations are symmetric in
respect to direction of motion in time. For massless particles wave form of chronometrically invariant
equations of motion shows the only difference: instead of three-dimensional observable velocity of
particle vi it includes three-dimensional chronometrically invariant vector of velocity of light ci.
The fact that corpuscular equations of motion into past and into future are not symmetric leads


to evident conclusion that in four-dimensional non-uniform space-time there exists a fundamental
asymmetry of directions in time. To understand physical sense of this fundamental asymmetry in
previous study we introduced the mirror principle or observable effect of the mirror Universe [16].
Imagine a mirror in four-dimensional space-time which coincides with spatial section and therefore


separates past from future. Then particles and waves traveling from past into future (with positive
relativistic mass and frequency) hit the mirror and bounce back in time, i. e. into past. And their
properties take negative values. And vice versa, particles and waves traveling into past (with negative
relativistic mass and frequency) bounce from the mirror to give positive values to their properties and


to begin traveling into future. When bouncing from the mirror the value
∗∂ψ
dt
changes its sign and


equations of wave propagation into future become equations of wave propagation into past (and vice
versa). Noteworthy, when reflecting from the mirror equations of wave propagation transform into
each other completely without contracting or adding new terms. In other words, wave form of matter
undergoes full reflection from our mirror. To the contrary, corpuscular equations of motion do not
transform completely in reflection from our mirror. Spatial components of equations for mass-bearing
and massless particles, traveling from past into future, have an additional term


2m
(
Dik +A


∙i
k∙


)
vk, 2k


(
Dik +A


∙i
k∙


)
ck, (1.66)


not found in equations of motion from future into past. Equations of motion of particle into past
gain an additional term when reflecting from the mirror. And vice versa, equations of motion into
future lose a term when particle hits the mirror. That implies that either in case of motion of particles
(corpuscular equations) as well as in case of propagation of waves (wave equations) we come across
not a simple “bouncing” from the mirror, but rather passing through the mirror itself into another
world, i. e. into a mirror world.
In this mirror world all particles bear negative masses and frequencies and travel (from viewpoint


of our world’s observer) from future into past. Wave form of matter in our world does not affect events
in the mirror world, while wave form of matter in the mirror world does not affect events in our world.
To the contrary, corpuscular form of matter (particles) in our world may produce significant effect on
events in the mirror world, while particles in the mirror world may affect events in our world. Our
world is fully isolated from the mirror world (no mutual effect between particles from two worlds)
under an evident condition Dikv


k=−A∙ik∙v
k, at which the additional term in corpuscular equations is


zero. This becomes true, in particular, when Dik=0 and A
∙i
k∙=0, i. e. when dynamic deformation and


rotation of the body of reference’s space is totally absent.
So far we have only considered motion of particles along non-isotropic trajectories, where


ds2=c2dt2−dσ2>0, and that along isotropic (light-like) trajectories, where ds2=0 and c2dt2=dσ2 6=0.
Besides, in our previous studies [15, 16] we considered trajectories of third kind, which, aside for
ds2=0, meet even more strict conditions c2dt2=dσ2=0


dτ =


[


1−
1


c2
(
w + viu


i
)
]


dt = 0 , (1.67)


dσ2 = hikdx
idxk = 0 . (1.68)


We will refer to such trajectories as degenerated or zero trajectories, because from viewpoint of a
regular sub-light-speed observer interval of observable time and observable three-dimensional interval
are zero along them. We can as well show that along zero-trajectories the determinant of fundamental
metric tensor of Riemannian space is also zero g=0. In Riemannian space by definition g<0, i. e. the
metric in strictly non-degenerated. We will refer to a space with fully degenerated metric as zero-space,
while particles that move along trajectories in such space will be referred to as zero-particles.
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Physical conditions of degeneration are obtained from (1.67, 1.68)


w + viu
i = c2, (1.69)


giku
iuk = c2


(
1−


w


c2


)2
. (1.70)


Respectively, mass of zero-particles M , which include physical conditions of degeneration, is dif-
ferent from relativistic mass m of regular particles in non-degenerated space-time and is


M =
m


1−
1


c2
(
w + viu


i
) , (1.71)


i. e. is a ratio between two values, each one equals to zero in case of degenerated metric, but the ratio
is not zero7.
Corpuscular and wave forms of dynamic vector of zero-particles are


Pα =
M


c


dxα


dt
, Pα =


h̄


c


∂ψ


∂xα
. (1.72)


Then corpuscular form of chronometrically invariant dynamic equations of motion in zero-space is


MDiku
iuk = 0 , (1.73)


d


dt


(
Mui


)
+M4inku


nuk = 0 . (1.74)


Wave form of the same equations is


Dmk u
k
∗∂ψ


∂xm
= 0 , (1.75)


d


dt


(


hik
∗∂ψ


∂xk


)


+ hmn4imku
k
∗∂ψ


∂xn
= 0 . (1.76)


Equation of eikonal for zero-particles is


hik
∗∂ψ


∂xi


∗∂ψ


∂xk
= 0 , (1.77)


and is a standing wave equation (information ring). Therefore, from viewpoint of a regular sub-light-
speed observer all zero-space is filled with a system of standing light-like waves (zero-particles), i. e.
with a standing-light hologram. Besides, in zero-space observable time has the same value for any
two events (1.67). This implies that from viewpoint of a regular observer velocity of zero-particles is
infinite, i. e. zero-particles can instantly transfer information from one point of our regular world to
another, thus performing long-range action [15, 16].


1.4 Introducing concept of nongeodesic motion of particles. Problem
statement


We obtained that free motion of particle (along geodesic lines) leaves absolute derivative of dynamic
vector of particle (four-dimensional impulse vector) zero and its square is conserved along the trajec-
tory of motion. In other words, parallel transfer is effected in the meaning of Levi-Civita.
In case of non-free (non-geodesic) motion of particle absolute derivative of its four-dimensional


impulse is not zero. But equal to zero is absolute derivative of sum of four-dimensional impulse of
particle Pα and impulse vector Lα, which particle gains from interaction with external fields which


7This is similar to the case of massless particles, because given v2= c2 values m0=0 and
√
1−v2/c2=0 are zero,


but their ratio is m= m0√
1−v2/c2


6=0.
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deviates its motion from geodesic line. Superposition of any number of vectors can be subjected to
parallel transfer [2]. Hence, building dynamic equations of non-geodesic motion of particles first of all
requires definition of non-gravitational perturbation fields.
Naturally, external field will only interact with particle and deviate it from geodesic line if the


particle bears physical property of the same kind as the external field does. As of today, we know of
three fundamental physical properties of particles, not related to any others. These are mass of particle,
electric charge and spin. If fundamental character of the former two was under no doubt, spin of
electron over a few years after experiments by O. Stern and W.Gerlach (1921) and their interpretation
by S.Gaudsmith and G.Ulenbek (1925), was considered as its specific moment of impulse caused by
rotation around its own axis. But experiments done over the next decades, in particular, discovery
of spin in other elementary particles, proved that views of spin particles as rotating gyroscopes were
wrong. Spin proved to be a fundamental property of particles just like mass and charge, though it has
dimension of moment of impulse and in interactions reveals as specific rotation moment of particle.
Gravitational field by now has received geometric interpretation. In theory of chronometric invari-


ants gravitational force and gravitational potential (1.38) are obtained as functions of only geometric
properties of the space itself. Therefore considering motion of particle in pseudo-Riemannian space
we actually consider its motion in gravitational field.
But we still do not know whether electromagnetic force and potential can be expressed through


geometric properties of space. Therefore electromagnetic field at the moment has no geometric in-
terpretation and is introduced into space-time as a separate tensor field (Maxwell tensor field). By
now the basic equations of electromagnetic theory have been obtained in general covariant form8. In
this theory charged particle gains four-dimensional impulse e


c2
Aα from electromagnetic field, where


Aα is four-dimensional potential of electromagnetic field and e is particle’s charge [1, 4]. Adding this
extra impulse to specific vector of impulse of particle and actuating parallel transfer we obtain general
covariant dynamic equations of motion of charged particles.
The case of spin particles is far more complicated. To calculate impulse that particle gains due


to its spin, we have to define the external field that interacts with spin as a fundamental property
of particle. Initially this problem was approached using methods of quantum mechanics only (Dirac
equations, 1928). Methods of General Relativity were first used by A.Papapetrou and E.Corinaldesi
[20, 21] to study the problem. Their approach relied upon general view of particles as mechanical
monopoles and dipoles. From this viewpoint a regular mass-bearing particle is a mechanical monopole.
A particle that can be represented as two masses co-rotating around a common center of gravity is a
mechanical dipole. Therefore, proceeding from representation of spin particle as a rotating gyroscope
we can (to a certain extent) consider it as a mechanical dipole, which center of gravity lays over the
particle’s surface. Then Papapetrou and Corinaldesi considered motion of mechanic dipole in pseudo-
Riemannian space with Schwarzschild metric, i. e. in every specific case when rotation of space is zero
and its metric is stationary (tensor of deformation velocities is zero).
No doubt the method proposed by Papapetrou is worth attention, but it has a significant drawback.


Being developed in 1940’s it fully relied upon view of a spin-particle as a swiftly rotating gyroscope,
which does not match experimental data of the recent decades9.
There is another way to tackle the problem of motion of spin particles. In Riemannian space


fundamental metric tensor is symmetric gαβ=gβα. Nevertheless we can build a space in which metric
tensor will have arbitrary form gαβ 6=gβα (such space will have non-Riemannian geometry). Then a
non-zero antisymmetric part can be found in metric tensor10. Appropriate additions will also appear


8Despite this, due to complicated calculations of energy-impulse tensor of electromagnetic field in pseudo-Riemannian
space, specific problems are commonly solved either for certain particular cases of General Relativity or in Galilean
frame of reference in a flat Minkowski space (space-time of Special Relativity).
9As a matter of fact, considering electron as a ball with radius of re=2.8∙10−13 cm implies that linear speed of its


rotation on the surface is u= h̄
2m0re


=2∙1011 cm/s which is about 70 times as high as the light speed. But experiments


show there are no such speeds in electron.
10Generally, in any tensor of 2nd rank and above symmetric and antisymmetric parts can be distinguished. For


instance, in 2nd rank fundamental metric tensor gαβ=
1
2


(
gαβ+gβα


)
+ 1
2


(
gαβ−gβα


)
=Sαβ+Nαβ , where Sαβ is sym-


metric part and Nαβ is antisymmetric part of tensor gαβ . Because metric tensor of Riemannian space is symmetric
gαβ=gβα, its antisymmetric part is zero.
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in Christoffel symbols Γαμν (1.2) and in Riemann-Christoffel curvature tensor Rαβμν . These additions
will cause a vector transferred along a closed contour not to return into the initial point, i. e. trajectory
of transfer becomes twisted like a spiral. Such space is referred to as twisted space. In such space spin
rotation of particle can be considered as transfer of rotation vector along its surface contour, which
generates local field of space twist.
But this method has got significant drawbacks as well. First, with gαβ 6=gβα functions of compo-


nents with different order of indices may be varied. The functions have to be fixed somehow in to order
to set a concrete field of twist, which dramatically narrows the range of possible solutions, enabling
only building equations for a range of specific cases. Second, the method fully relies upon assumption
of spin’s physical nature as a local field of twist produced by transfer of vector of particle’s rotation
along a contour. This, in its turn, again implies the view of spin particle as a rotating gyroscope with
a limited radius (like in Papapetrou’s method), which does not match experimental data.
Nevertheless, there is little doubt in that additional impulse, which a spin-particle gains, can


be represented with methods of General Relativity. Adding it to the specific dynamic vector of a
particle (effect of gravitation) and accomplishing parallel transfer, we obtain general covariant dynamic
equations of motion of a spin-particle.
Once we have general covariant dynamic equations of motion of spin and electric charged particles


obtained, we should project them on space and time of accompanying frame of reference and express
through physical observable properties of the space of reference. As a result we arrive to chronomet-
rically invariant (physical observable) dynamic equations of nongeodesic motion of particles.
Therefore, the problem we are going to tackle in this book falls apart into a few stages. First, we


should build chronometrically invariant theory of electromagnetic field in pseudo-Riemannian space
and arrive to chronometrically invariant dynamic equations of motion of charged particle. This prob-
lem will be solved in Chapter 3.
Then, we have to create a theory of motion of a spin-particle. We will approach the problem in


its most general form, assuming spin a fundamental property of matter (like mass or electric charge).
In Chapter 4 detailed study will show that field of non-holonomity of space interacts with spin giving
particle additional impulse.
In Chapter 5 we are going to discuss observable projections of Einstein equations. Proceeding from


them we will study properties of physical vacuum and how they are dealt in cosmology.
In Chapter 6 we prove that fully degenerated space-time (zero-space) is an area inhabited by


virtual particles, and build geometric concept of annihilation of particles using methods of General
Relativity. Within the concept, we explain anomalous rate of annihilation of othopositronium.
But before turning to these studies we would like to have a look into four-dimensional tensor


analysis in terms of physical observable values (chronometric invariants). Original publications by
Zelmanov gave a very fragmented account of the subject, which prevented a reader not familiar with
this mathematical apparatus from learning it on their own. Therefore we recommend our Chapter 2
to readers who are going to use mathematical apparatus of chronometric invariants in their theoretic
studies. For general understanding of our book, though, reading this Chapter may be not necessary.







Chapter 2


Tensor algebra and the analysis


2.1 Tensors and tensor algebra


We assume a space (not necessarily a metric one) with an arbitrary frame of reference xα. In some
part of the space, there exists an object G defined by n functions fn of coordinates x


α. We know the
transformation rule to calculate these n functions in any other frame of reference x̃α in this space.
Given all this G is a geometric object, which in the frame of reference xα has axial components fn (x


α),
while in any other frame of reference x̃α it has components f̃n (x̃


α).
We assume a tensor object (tensor) of zero rank is any geometric object ϕ, transformable according


to the rule


ϕ̃ = ϕ
∂xα


∂x̃α
, (2.1)


where the index takes in turn numbers of all coordinate axis (such notation is referred to as by-
component notation or tensor notation). Zero rank tensor has got a single component and is also
known as scalar. Scalar in space is a point to which a certain number is attributed.
Consequently, scalar field11 is a set of points in space, which have some common property. For


instance, mass of a material point is a scalar, while distribution of mass in gas makes up a scalar field.
Contravariant tensor of 1st rank is a geometric object Aα with components transformable according


to the rule


Ãα = Aμ
∂x̃α


∂xμ
. (2.2)


From geometric viewpoint it is a n-dimensional vector. For instance, vector of displacement dxα


is a contravariant tensor of 1st rank.
Contravariant tensor of 2nd rank Aαβ is a geometric object with components transformable ac-


cording to the rule


Ãαβ = Aμν
∂x̃α


∂xμ
∂x̃β


∂xν
. (2.3)


From geometric viewpoint this is an area (parallelogram) constrained by two vectors. Therefore
2nd rank contravariant tensor is sometimes referred to as bivector.
Similarly, contravariant tensors of higher ranks are


Ãα...σ = Aμ...τ
∂x̃α


∂xμ
∙ ∙ ∙


∂x̃σ


∂xτ
. (2.4)


Vector field or field of tensors of higher rank is also space distribution of these values. For instance,
because mechanical stress characterizes both magnitude and direction, its distribution in a physical
body can be presented as a vector field.
Covariant tensor of 1st rank Aα is a geometric object, transformable according to the rule


Ãα = Aμ
∂xμ


∂x̃α
. (2.5)


11Algebraic notations of a tensor and of a tensor field are the same: field of a tensor is represented as a tensor at a
point in space, but its presence at other points in this part of the space is assumed.
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In particular, gradient of scalar field of any invariant ϕ, i. e. the value Aα=
∂ϕ
∂xα
, is a covariant tensor


of 1st rank. That is, because for a regular invariant we have ϕ̃=ϕ, then


∂ϕ̃


∂x̃α
=


∂ϕ̃


∂xμ
∂xμ


∂x̃α
=


∂ϕ


∂xμ
∂xμ


∂x̃α
. (2.6)


Covariant tensor of 2nd rank Aαβ is a geometric object the transformation rule for which is


Ãαβ = Aμν
∂xμ


∂x̃α
∂xν


∂x̃β
. (2.7)


Similarly, covariant tensors of higher ranks are


Ãα...σ = Aμ...τ
∂xμ


∂x̃α
∙ ∙ ∙


∂xτ


∂x̃σ
. (2.8)


Mixed tensors are tensors of 2nd rank and above with both upper and lower indices. For instance,
mixed symmetric tensor Aαβ is a geometric object transformable according to the rule


Ãαβ = A
μ
ν


∂x̃α


∂xμ
∂xν


∂x̃β
. (2.9)


Tensor objects exist both in metric and non-metric spaces, where distance between any two points
can not be measured.
A tensor has an components, where a is dimension of the tensor and n is the rank. For instance,


four-dimensional tensor of zero rank has 1 component, 1st rank tensor has 4 components, 2nd rank
tensor has 16 components and so on. But indices, i. e. axial components, are found not in tensors
only, but in other geometric objects as well. Therefore, if we come across a value in by-component
notation, this is not necessarily a tensor value.
In practice, to know whether a given object is a tensor or not, we have to know the equation for


this object in a certain frame of reference and to transform it to any other frame of reference. For
instance: are coefficients of coherence of space, i. e. Christoffel symbols, tensors?
To know this, we have to calculate the values in another (tilde-marked) frame of reference


Γ̃αμν = g̃
ασΓ̃μν,σ , Γ̃μν,σ =


1


2


(
∂g̃μσ


∂x̃ν
+
∂g̃νσ


∂x̃μ
−
∂g̃μν


∂x̃σ


)


(2.10)


proceeding from values in non-marked frame of reference.
Now we are going to calculate the terms in brackets (1.10). Fundamental metric tensor, just like


any other covariant 2nd rank tensor, is transformable to tilde-marked frame of reference according
to the rule


g̃μσ = gετ
∂xε


∂x̃μ
∂xτ


∂x̃σ
. (2.11)


Because gετ depends upon non-tilde-marked coordinates, its derivative by tilde-marked coordinates
(which are also functions of non-tilde-marked ones) is calculated according to the rule


∂gετ


∂x̃ν
=
∂gετ


∂xρ
∂xρ


∂x̃ν
. (2.12)


Then the first term in brackets (2.10) taking into account the rule of transformation of fundamental
metric tensor, is


∂g̃μσ


∂x̃ν
=
∂gετ


∂xρ
∂xρ


∂x̃ν
∂xε


∂x̃μ
∂xτ


∂x̃σ
+ gετ


(
∂xτ


∂x̃σ
∂2xε


∂x̃ν∂x̃μ
+
∂xε


∂x̃μ
∂2xτ


∂x̃ν∂x̃σ


)


. (2.13)


Similarly, calculating the rest of the terms of tilde-marked Christoffel symbols (2.10), after trans-
position of free indices we arrive to


Γ̃μν,σ = Γερ,τ
∂xε


∂x̃μ
∂xρ


∂x̃ν
∂xτ


∂x̃σ
+ gετ


∂xτ


∂x̃σ
∂2xε


∂x̃μ∂x̃ν
, (2.14)
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Γ̃αμν = Γ
γ
ερ


∂x̃α


∂xγ
∂xε


∂x̃μ
∂xρ


∂x̃ν
+
∂x̃α


∂xγ
∂2xγ


∂x̃μ∂x̃ν
. (2.15)


We see that coefficients of space coherence (Christoffel symbols) are transformed not in the way
tensors are, hence they are not tensors.
Tensors can be represented as matrices. But in practice, such form may be illustrative for ten-


sors of 1st and 2nd rank (single-row and flat matrices, respectively). For instance, elementary four-
dimensional displacement tensor is


dxα =
(
dx0, dx1, dx2, dx3


)
, (2.16)


and four-dimensional fundamental metric tensor is


gαβ =










g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33







 . (2.17)


Tensor of 3rd rank is a three-dimensional matrix. Representing tensors of higher ranks as matrices
is even more problematic.
We now turn to tensor algebra — a part of tensor calculus that focuses on algebraic operations


over tensors.
Only same-type tensors of the same rank with indices in the same position can be added or


subtracted. Adding up two same-type n-rank tensors gives a new tensor of the same type and rank
with components being sums of respective components of the tensors added up. For instance, sum of
two vectors and sum of two mixed 2nd rank tensors are


Aα +Bα = Dα, Aαβ +B
α
β = D


α
β . (2.18)


Multiplication is permitted not only for same-type, but for any tensors of any ranks. External
multiplication of n-rank and m-rank tensors gives an (n+m)-rank tensor


AαβBγ = Dαβγ , AαB
βγ = Dβγα . (2.19)


Contraction is multiplication of same-rank tensors when indices are the same. Contraction of
tensors by all indices gives a scalar value


AαB
α = C , AγαβB


αβ
γ = D . (2.20)


Often multiplication of tensors implies contraction by not all indices. Such multiplication is referred
to as internal multiplication which implies contraction of some indices inside the multiplication


AασB
σ = Dα , AγασB


βσ
γ = D


β
α . (2.21)


Using internal multiplication of geometric objects we can find whether they are tensors or not.
There is a so-called theorem of fractions.


Theorem of fractions


“If Bσβ is a tensor and its internal multiplication with a geometric object A (α, σ) is tensor D (α, β)


A (α, σ)Bσβ = D (α, β) , (2.22)


then this object A (α, σ) is also a tensor” [10].
According to it, if internal multiplication of an object Aασ with tensor B


σβ gives tensor Dβα


AασB
σβ = Dβα , (2.23)


then object Aασ is a tensor. Or, if internal multiplication of some object A
α
σ and tensor B


σβ gives
tensor Dαβ


Aα∙∙σB
σβ = Dαβ , (2.24)
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then object Aα∙∙σ is a tensor.
Geometric properties of metric space are defined by its fundamental metric tensor gαβ , which may


lower or lift indices in objects of metric space12. For example,


gαβA
β = Aα , gμνgσρAμνσ = A


ρ. (2.25)


In Riemannian space mixed fundamental metric tensor gβα equals to unit tensor g
β
α=gασg


σβ=δβα.
Diagonal components of four-dimensional unit tensor are ones, while the rest are zeroes. Using the
unit tensor we can replace indices


δβαAβ = Aα , δνμδ
σ
ρA
μρ = Aνσ. (2.26)


Contraction of 2nd rank tensor with fundamental metric tensor gives a scalar value known as spur
of tensor or trace of tensor


gαβAαβ = A
σ
σ . (2.27)


For example, spur of fundamental metric tensor in four-dimensional Riemannian space equals to
the number of coordinate axis


gαβg
αβ = gσσ = g


0
0 + g


1
1 + g


2
2 + g


3
3 = 4. (2.28)


Physical observable metric tensor hik (1.27) in three-dimensional space has properties of fundamen-
tal metric tensor. Therefore it can lower, lift or replace indices in chronometrically invariant values.
Namely, we can calculate squares of four-dimensional objects. Respectively, spur of three-dimensional
tensor is obtained by means of its contraction with observable metric tensor.
For instance, spur of tensor of velocities of space deformation Dik (1.40) is a scalar


hikDik = D
m
m , (2.29)


that stands for absolute value of the speed of relative expansion of elementary volume of space.
Of course our brief account can not fully cover such a vast field like tensor algebra. Moreover, there


is even no need in doing that here. Detailed accounts of tensor algebra can be found in numerous
mathematical books not related to General Relativity. Besides, many specific techniques of this
science, which occupy substantial part of mathematical textbooks, are not used in theoretical physics.
Therefore our goal was to give only a basic introduction into tensors and tensor algebra, necessary for
understanding this book. For the same reasons we have not covered issues like weight of tensors or
many others not used in calculations given in the below.


2.2 Scalar product of vectors


Scalar product of two vectors Aα and Bα in four-dimensional pseudo-Riemannian space is value


gαβA
αBβ = AαB


α = A0B
0 +AiB


i. (2.30)


Scalar product is contraction because multiplication of vectors at the same time contracts all
indices. Therefore scalar product of two vectors (1st rank tensors) is always a scalar value (zero
rank tensor).
If both vectors are the same, their scalar product


gαβA
αAβ = AαA


α = A0A
0 +AiA


i (2.31)


is the square of vector Aα. Consequently length of a vector Aα is a scalar


A = |Aα| =
√
gαβAαAβ . (2.32)


12In Riemannian space metric has quadratic form ds2=gαβdx
αdxβ , and respectively fundamental metric tensor is a


2nd rank tensor gαβ .
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Because four-dimensional pseudo-Riemannian space by its definition has indefinite metric (i. e.
sign-alternating signature), then length of four-dimensional vector may be real, imaginary or zero.
According to this, vectors with non-zero (real or imaginary) length are referred to as non-isotropic
vectors. Vectors with zero length are referred to as isotropic vectors. Isotropic vectors are tangential
to trajectories of propagation of light-like particles (isotropic trajectories).
In three-dimensional Euclidean space scalar product of two vectors is a scalar value with module


equal to product of lengths of the two vectors multiplied by cosine of the angle between them


AiB
i =


∣
∣Ai
∣
∣
∣
∣Bi
∣
∣ = cos


(
Âi;Bi


)
. (2.33)


Theoretically at every point of Riemannian space a tangential flat space can be set, which basic
vectors will be tangential to basic vectors of Riemannian space at the tangential points. Then metric
of tangential flat space will be metric of Riemannian space at this point. Therefore this statement is
also true in Riemannian space if we consider the angle between coordinate lines and replace Roman
(three-dimensional) indices with Greek ones.
From here we can see that scalar product of two multiplicated vectors is zero if the vectors are


orthogonal. In other words, scalar product from geometric viewpoint is projection of one vector
onto another. If multiplicated vectors are the same, vector is projected onto itself and the result of
projection is its length’s square.
We will denote chronometrically invariant (physical observable) components of arbitrary vectors


Aα and Bα as


a =
A0
√
g00


, ai = Ai, (2.34)


b =
B0
√
g00


, bi = Bi. (2.35)


Then the other components are


A0 =
a+ 1c via


i


1− w
c2


, Ai = −ai −
a


c
vi , (2.36)


B0 =
b+ 1c vib


i


1− w
c2


, Bi = −bi −
b


c
vi . (2.37)


Substituting values of observable components into formulas for AαB
α and AαA


α we arrive to


AαB
α = ab− aib


i = ab− hika
ibk, (2.38)


AαA
α = a2 − aia


i = a2 − hika
iak. (2.39)


From here we see that the square of vector’s length is difference between squares of lengths of
its projections onto time and space. If both projections are equal, the vector’s length is zero and it
is isotropic. Hence isotropic vector equally belongs to time and space. Equality of time and space
projections also implies that the vector is orthogonal to itself. If temporal projection is “longer”, it
becomes real. If spatial projection is “longer” the vector becomes imaginary.
Scalar product of four-dimensional vector with itself can be instanced by square of length of space-


time interval


ds2 = gαβdx
αdxβ = dxαdx


α = dx0dx
0 + dxidx


i. (2.40)


In terms of physical observable values it can be represented as


ds2 = c2dτ2 − dxidx
i = c2dτ2 − hikdx


idxk = c2dτ2 − dσ2. (2.41)


Length of interval ds=
√
gαβdxαdxβ may be real, imaginary or zero depending upon whether


ds is time-like c2dτ2>dσ2 (sub-light real trajectories), space-like c2dτ2<dσ2 (imaginary super-light
trajectoties) or isotropic c2dτ2=dσ2 (light-like trajectories).
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2.3 Vector product of vectors. Antisymmetric tensors and pseudotensors


Vector product of two vectors Aα and Bα is a 2nd rank tensor V αβ obtained from their external
multiplication according to the rule


V αβ =
[
Aα;Bβ


]
=
1


2


(
AαBβ −AβBα


)
=
1


2


∣
∣
∣
∣
Aα Aβ


Bα Bβ


∣
∣
∣
∣ . (2.42)


As seen, here the order in which vectors are multiplied does matter, i. e. the order in which we write
down tensor indices. Therefore tensors obtained as vector products are antisymmetric tensors. In an
antisymmetric tensor V αβ=−V βα indices being moved “reserve” their places as dots gασV σβ=V


∙β
α∙ ,


thus showing from where an index was moved. In symmetric tensors there is no need of “reserving”
places for moved indices, because the order in which they appear does not matter. In particular,
fundamental metric tensor is symmetric tensor gαβ=gβα, while tensor of space curvature R


α∙∙∙
∙βγδ is


symmetric in respect to transposition by pair of indices and is antisymmetric inside each pair of
indices. Evidently, only tensor of 2nd rank or above may be symmetric or antisymmetric.
All diagonal components of any antisymmetric tensor by its definition are zeroes. For examlpe, in


antisymmetric 2nd rank tensor we have


V αα = [Aα;Bα] =
1


2
(AαBα −AαBα) = 0. (2.43)


In three-dimensional Euclidean space absolute value of vector product of two vectors is defined as
the area of the parallelogram they make and equals to product of modules of the two vectors multiplied
by sine of the angle between them


∣
∣V ik


∣
∣ =


∣
∣Ai
∣
∣
∣
∣Bk


∣
∣ = sin


(
̂Ai;Bk


)
. (2.44)


This implies that vector product of two vectors (antisymmetric 2nd rank tensor) is a pad oriented
in space according to directions of the forming vectors.
Contraction of an antisymmetric tensor Vαβ with any symmetric tensor A


αβ=AαAβ is zero due to
its properties Vαα=0 and Vαβ=−Vβα


VαβA
αAβ = V00A


0A0 + V0iA
0Ai + Vi0A


iA0 + VikA
iAk = 0 . (2.45)


According to theory of chronometric invariants physical observable components of antisymmetric
2nd rank tensor V αβ are values


V ∙i0∙√
g00
= −


V i∙∙0√
g00
=
1


2


(
abi − bai


)
, (2.46)


V ik =
1


2


(
aibk − akbi


)
, (2.47)


expressed through observable components of its forming vectors Aα and Bα. Because in an anti-


symmetric tensor all diagonal components are zeroes, the third observable component V00g00 (1.32) is


also zero.
Physical observable components V ik (projections of V αβ upon spatial section of four-dimensional


space-time) are the analog of vector product in three-dimensional space, while the value
V ∙i0∙√
g00
, which


is space-time (mixed) projection of tensor V αβ , has no analogs among components of a regular three-
dimensional vector product.
Square of antisymmetric 2nd rank tensor, formulated with observable components of forming


vectors, is


VαβV
αβ =


1


2


(
aia
ibkb


k − aib
iakb


k
)
+ abaib


i −
1


2


(
a2bib


i − b2aia
i
)
. (2.48)


The latter two terms in the formula contain values a (2.34) and b (2.35), which are projections of
multiplied vectors Aα and Bα onto time and therefore have no analogs in vector product in three-
dimensional Euclidean space.







CHAPTER 2. TENSOR ALGEBRA AND THE ANALYSIS 25


Antisymmetry of tensor field is defined by reference antisymmetric tensor. In Galilean frame of
reference13 such references are Levi-Civita tensors: for four-dimensional values this is four-dimensional
completely antisymmetric unit tensor eαβμν and for three-dimensional values this is three-dimensional
completely antisymmetric unit tensor eikm. Components of these tensors, which have all indices
different, are either +1 or −1 depending upon the number of transpositions of indices. All other
components, i. e. those having at least two coinciding indices, are zeroes. Moreover, for the signature
we are using (+−−−) all non-zero components bear the sign opposite to their respective covariant
components14. For example, in Minkowski space


gασgβρgμτgνγe
σρτγ = g00g11g22g33e


0123 = −e0123,


giαgkβgmγe
αβγ = g11g22g33e


123 = −e123
(2.49)


due to signature conditions g00=1 and g11=g22=g33=−1. Therefore, components of tensor eαβμν are


e0123 = +1, e1023 = −1, e1203 = +1, e1230 = −1,


e0123 = −1, e1023 = +1, e1203 = −1, e1230 = +1,
(2.50)


and components of tensor eikm are


e123 = +1, e213 = −1, e231 = +1, e123 = −1, e213 = +1, e231 = −1. (2.51)


Because the sign of the first component is arbitrary, we can assume e0123=−1 and e123=−1.
Subsequently, other components will change too. In general, four-dimensional tensor eαβμν is related
to three-dimensional tensor eikm as e0ikm=eikm.
Multiplying four-dimensional antisymmetric unit tensor eαβμν by itself we obtain a regular 8th


rank tensor with non-zero components, which are presented in the matrix


eαβμνeστργ = −










δασ δατ δαρ δαγ
δβσ δβτ δβρ δβγ
δμσ δμτ δμρ δμγ
δνσ δντ δνρ δνγ







 . (2.52)


Other properties of tensor eαβμν are obtained from the previous one by means of contraction of
indices


eαβμνeστρν = −






δασ δατ δαρ
δβσ δβτ δβρ
δμσ δμτ δμρ





 , (2.53)


eαβμνeστμν = −2


(
δασ δατ
δβσ δβτ


)


= −2
(
δασ δ


β
τ − δ


β
σδ
α
τ


)
, (2.54)


eαβμνeσβμν = −6δ
α
σ , eαβμνeαβμν = −6δ


α
α = −24. (2.55)


Multiplying three-dimensional antisymmetric unit tensor eikm by itself we obtain a regular 6th
rank tensor


eikmerst =






δir δis δit
δkr δks δkt
δmr δms δmt





 . (2.56)


Other properties of tensor eikm can be expressed as


eikmersm = −


(
δir δis
δkr δks


)


= δisδ
k
r − δ


i
rδ
k
s , (2.57)


13Galilean frame of reference is the one that does not rotate, is not subject to deformation and falls freely in a flat
space-time (Minkowski space). Here lines of time are linear and so are three-dimensional coordinate axis.
14In case of signature (−+++) this is only true for four-dimensional tensor eαβμν . Components of three-dimensional
tensor eikm will have same signs as the respective components of eikm.
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eikmerkm = 2δ
i
r , eikmeikm = 2δ


i
i = 6. (2.58)


Completely antisymmetric unit tensor defines for a tensor object its respective pseudotensormarked
with asteriks.
For instance, four-dimensional scalar, vector and tensors of 2nd, 3rd, and 4th ranks have respective


four-dimensional pseudotensors of the following ranks


V ∗αβμν = eαβμνV, V ∗αβμ = eαβμνVν , V ∗αβ =
1


2
eαβμνVμν ,


V ∗α =
1


6
eαβμνVβμν , V ∗ =


1


24
eαβμνVαβμν ,


(2.59)


where 1st rank pseudotensor V ∗α is sometimes called pseudovector, while zero-rank pseudotensor
V ∗ is called pseudoscalar. Tensor and its respective pseudotensor are referred to as dual to each
other to emphasize their common genesis. Similarly, three-dimensional tensors have respective three-
dimensional pseudotensors


V ∗ikm = eikmV, V ∗ik = eikmVm ,


V ∗i =
1


2
eikmVkm , V ∗ =


1


6
eikmVikm .


(2.60)


Pseudotensors are called such because contrary to regular tensors, they do not change being re-
flected in respect to one of the axis. For instance, being reflected in respect to abscises axis x1=−x̃1,
x2=x̃2, x3=x̃3. Reflected component of antisymmetric tensor Vik, orthogonal to x


1 axis, is Ṽ23=−V23,
while its dual component of pseudovector V ∗i is


V ∗1 =
1


2
e1kmVkm =


1


2


(
e123V23 + e


132V32
)
= V23 ,


Ṽ ∗1 =
1


2
e1kmṼkm =


1


2
ek1mṼkm =


1


2


(
e213Ṽ23 + e


312Ṽ32


)
= V23 .


(2.61)


Because four-dimensional antisymmetric tensor of 2nd rank and its dual pseudotensor are of the
same rank, their contraction is pseudoscalar


VαβV
∗αβ = Vαβe


αβμνVμν = e
αβμνBαβμν = B


∗. (2.62)


Square of pseudotensor V ∗αβ and square of pseudovector V ∗i, expressed through their dual anti-
symmetric tensors of 2nd rank are


V∗αβV
∗αβ = eαβμνV


μνeαβρσVρσ = −24VμνV
μν , (2.63)


V∗iV
∗i = eikmV


kmeipqVpq = 6VkmV
km. (2.64)


In non-uniform and anisotropic pseudo-Riemannian space we can not set a Galilean frame of refer-
ence and the reference of antisymmetry of tensor field will depend upon non-uniformity and anisotropy
of the space itself, which are defined by fundamental metric tensor. Here reference antisymmetric ten-
sor is a four-dimensional completely antisymmetric discriminant tensor


Eαβμν =
eαβμν
√
−g


, Eαβμν = eαβμν
√
−g . (2.65)


Here is the proof. Transformation of a unit completely antisymmetric tensor from Galilean (non-
tilde-marked) frame of reference into an arbitrary (tilde-marked) frame of reference is


ẽαβμν =
∂xσ


∂x̃α
∂xγ


∂x̃β
∂xε


∂x̃μ
∂xτ


∂x̃ν
eσγετ = Jeαβμν , (2.66)


where J =det
∥
∥
∥∂x


α


∂x̃σ


∥
∥
∥ is called the Jacobian of transformation (the determinant of Jacobi matrix)
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J = det


∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥


∂x0


∂x̃0
∂x0


∂x̃1
∂x0


∂x̃2
∂x0


∂x̃3


∂x1


∂x̃0
∂x1


∂x̃1
∂x1


∂x̃2
∂x1


∂x̃3


∂x2


∂x̃0
∂x2


∂x̃1
∂x2


∂x̃2
∂x2


∂x̃3


∂x3


∂x̃0
∂x3


∂x̃1
∂x3


∂x̃2
∂x3


∂x̃3


∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥


. (2.67)


Because metric tensor gαβ is transformable according to the rule


g̃αβ =
∂xμ


∂x̃α
∂xν


∂x̃β
gμν , (2.68)


then its determinant in tilde-marked frame of reference is


g̃ = det


∥
∥
∥
∥
∂xμ


∂x̃α
∂xν


∂x̃β
gμν


∥
∥
∥
∥ = J


2g . (2.69)


Because in Galilean (non-tilde-marked) frame of reference


g = det ‖gαβ‖ = det


∥
∥
∥
∥
∥
∥
∥
∥


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


∥
∥
∥
∥
∥
∥
∥
∥


= −1, (2.70)


then J2=−g̃2. Expressing ẽαβμν in an arbitrary frame of reference as Eαβμν and writing down metric
tensor in a regular non-tilde-marked form, we obtain Eαβμν=eαβμν


√
−g (2.65). In a similar way we


obtain transformation rules for components Eαβμν , because for them g=g̃J̃2, where J̃ = det
∥
∥
∥∂x̃


α


∂xσ


∥
∥
∥.


But discriminant tensor Eαβμν is not a physical observable value. Physical observable reference of
antisymmetry of tensor fields is three-dimensional chronometrically invariant discriminant tensor


εαβγ = hαμh
β
νh
γ
ρbσE


σμνρ = bσE
σαβγ , (2.71)


εαβγ = h
μ
αh
ν
βh
ρ
γb
σEσμνρ = b


σEσαβγ , (2.72)


which in an accompanying frame of reference (bi=0), taking into account that
√
−g=


√
h
√
g00, will


take the form


εikm = b0E
0ikm =


√
g00E


0ikm =
eikm
√
h
, (2.73)


εikm = b
0E0ikm =


E0ikm
√
g00
= eikm


√
h . (2.74)


With its help we can transform chronometrically invariant (physical observable) pseudotensors.
For instance, from chronometrically invariant antisymmetric tensor of space’s rotation Aik (1.36) we
obtain observable pseudovector of angular velocity of rotation of space Ω∗i= 12ε


ikmAkm.


2.4 Introducing absolute differential and derivative to the direction


In geometry a differential of a function is its variation between infinitely close points with coor-
dinates xα and xα+dxα. Respectively, absolute differential in n-dimensional space is variation of
n-dimensional values between infinitely close points of n-dimensional coordinates in this space. For
continuous functions, we commonly deal with in practice, variations between infinitely close points
are infinitesimal. But in order to define infinitesimal variation of a tensor value we can not use simple
“difference” between its values in points xα and xα+dxα, because tensor algebra does not define the
ratio between values of tensors at different points in space. This ratio can be defined only using rules
of transformation of tensors from one frame of reference into another. As a consequence, differential
operators and the results of their application to tensors must be tensors themselves.
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For instance, absolute differential of a tensor value is a tensor of the same rank as the value itself.
For a scalar ϕ it is a scalar


Dϕ =
∂ϕ


∂xα
dxα. (2.75)


In accompanying frame of reference (bi=0) it is


Dϕ =
∗∂ϕ


∂t
dτ +


∗∂ϕ


∂xi
dxi. (2.76)


We can see that aside for three-dimensional observable differential there is an additional term that
takes into account dependence of absolute displacement Dϕ from flow of physical observable time dτ .
Absolute differential of contravariant vector Aα, formulated with operator of absolute derivation


∇ (nabla) is


DAα = ∇σA
αdxσ =


∂Aα


∂xσ
dxσ + ΓαμσA


μdxσ = dAα + ΓαμσA
μdxσ, (2.77)


where ∇σAα is absolute derivative Aα by coordinate xσ and d stands for regular differential


∇σA
α =


∂Aα


∂xσ
+ ΓαμσA


μ, (2.78)


d =
∂


∂xα
dxα. (2.79)


Notation of absolute differential with physical observable values is equivalent to calculation of
projection of its general covariant form onto time and space in accompanying frame of reference


T = bαDA
α =


g0αDA
α


√
g00


, Bi = hiαDA
α. (2.80)


Denoting observable components of vector Aα as


ϕ =
A0
√
g00


, qi = Ai, (2.81)


we arrive to its other components


A0 = ϕ
(
1−


w


c2


)
, A0 =


ϕ+ 1c viq
i


1− w
c2


, Ai = −qi −
ϕ


c
vi . (2.82)


Taking into account that regular differential in chronometrically invariant form is


d = dτ
∗∂


∂t
+ dxi


∗∂


∂xi
, (2.83)


and substituting Christoffel symbols in accompanying frame of reference (1.41–1.46) into values T
and Bi (2.80), we arrive to chronometrically invariant (observable) projections onto time and space
of absolute differential of vector Aα


T = bαDA
α = dϕ+


1


c


(
−Fiq


idτ +Dikq
idxk


)
, (2.84)


Bi = hiσDA
σ = dqi +


(ϕ
c
dxk + qkdτ


) (
Dik +A


∙i
k∙


)
−
ϕ


c
F idτ +4imkq


mdxk. (2.85)


To build equations of motion we will also need chronometrically invariant equations of absolute
derivative of a vector to a direction, tangential to trajectory of motion. From geometric viewpoint a
derivative to direction of a certain function is its change in respect to elementary displacement along
a given direction. Absolute derivative to direction in n-dimensional space is change of n-dimensional
value in respect to elementary n-dimensional interval along a given direction. For instance, absolute
derivative of a scalar function ϕ to direction, defined by a curve xα=xα (ρ), where ρ is a parameter
along this curve, shows the “rate” of change of this function
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Dϕ


dρ
=
dϕ


dρ
. (2.86)


In accompanying frame of reference it is


Dϕ


dρ
=
∗∂ϕ


∂t


dτ


dρ
+
∗∂ϕ


∂xi
dxi


dρ
. (2.87)


Absolute derivative of vector Aα to direction of curve xα=xα (ρ) is


DAα


dρ
= ∇σA


α dx
σ


dρ
=
dAα


dρ
+ ΓαμσA


μ dx
σ


dρ
. (2.88)


Its physical observable projections onto time and space in accompanying frame of reference are


bα
DAα


dρ
=
dϕ


dρ
+
1


c


(


−Fiq
i dτ


dρ
+Dikq


i dx
k


dρ


)


, (2.89)


hiσ
DAσ


dρ
=
dqi


dρ
+


(
ϕ


c


dxk


dρ
+ qk


dτ


dρ


)
(
Dik +A


∙i
k∙


)
−
ϕ


c
F i
dτ


dρ
+4imkq


m dx
k


dρ
. (2.90)


Actually, these projections are “generic” chronometrically invariant equations of motion. But once
we define a particular vector of motion of particle, calculate its observable components and substitute
them into given equations, we immediately arrive to particle’s equations of motion formulated with
physical observable values.


2.5 Divergence and rotor


Divergence of a tensor field is its “change” along coordinate axis. Respectively, absolute divergence of
n-dimensional tensor field is its divergence in n-dimensional space. Divergence is a result of contraction
of field tensor with operator of absolute derivation ∇. Divergence of vector field is a scalar value


∇σA
σ =


∂Aσ


∂xσ
+ ΓσσμA


μ. (2.91)


Divergence of field of 2nd rank tensor is a vector


∇σF
σα =


∂F σα


∂xσ
+ ΓσσμF


αμ + ΓασμF
σμ, (2.92)


while it can be proven that Γσσμ is


Γσσμ =
∂ ln
√
−g


∂xμ
. (2.93)


To do this we will use the definition of Christoffel symbols and write down Γσσμ in detailed form


Γσσμ = g
σρΓμσ,ρ =


1


2
gσρ


(
∂gμρ


∂xσ
+
∂gσρ


∂xμ
−
∂gμσ


∂xρ


)


. (2.94)


Because σ and ρ here are free indices, they can change places. As a result, after contraction with
tensor gρσ the first and the last terms cancel each other and Γσσμ takes the form


Γσσμ =
1


2
gρσ


∂gρσ


∂xμ
. (2.95)


Values gρσ are components of a tensor reciprocal to tensor gρσ. Therefore each component of
matrix gρσ is


gρσ =
aρσ


g
, g = det ‖gρσ‖ , (2.96)
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where aρσ is algebraic cofactor of a matrix’ element with indices ρσ, equal to (−1)ρ+σ, multiplied
by determinant of matrix obtained by crossing the row and the column with numbers σ and ρ out
of matrix gρσ. As a result we obtain a


ρσ=ggρσ. Because determinant of fundamental metric tensor
g=det ‖gρσ‖ by definition is


g =
∑


α0...α3


(−1)N(α0...α3) g0(α0)g1(α1)g2(α2)g3(α3) , (2.97)


then the value dg will be dg=aρσdgρσ=gg
ρσdgρσ, or


dg


g
= gρσdgρσ . (2.98)


Integration of the left part gives ln (−g), because g is negative while logarithm is only defined for


a positive function. Then d ln (−g)=dgg . Taking into account that (−g)
1/2
= 12 ln (−g), we arrive to


d ln
√
−g =


1


2
gρσdgρσ , (2.99)


and Γσσμ (2.95) takes form


Γσσμ =
1


2
gρσ


∂gρσ


∂xμ
=
∂ ln
√
−g


∂xμ
, (2.100)


which had to be proven (2.93).
Now we are going to calculate physical observable components of divergence of vector field (2.91)


and field of 2nd rank tensor (2.92). The formula for divergence of vector field Aα is a scalar, hence
∇σAσ can not be projected onto time and space, while it is enough to express is through chronomet-
rically invariant components of Aα and through observable properties of frame of reference. Besides,
regular operators of derivation should be replaced with chronometrically invariant ones.
Assuming notations ϕ and qi for observable components of vector Aα (2.81) we express other


components of the vector through them (2.82). Then substituting regular operators of derivations,
expressed through chronometrically invariant operators


1
√
g00


∂


∂t
=
∗∂


∂t
,
√
g00 = 1−


w


c2
, (2.101)


∗∂


∂xi
=


∂


∂xi
+
1


c2
vi
∗∂


∂t
, (2.102)


into (2.91), and taking into account that
√
−g=


√
h
√
g00 after some calculations we arrive to


∇σA
σ =
1


c


(∗∂ϕ
∂t
+ ϕD


)


+
∗∂qi


∂xi
+ qi


∗∂ ln
√
h


∂xi
−
1


c2
Fiq


i. (2.103)


In the third term the value
∗∂ ln


√
h


∂xi
= 4jji (2.104)


stands for chronometrically invariant Christoffel symbols 4kji (1.47) contracted by two symbols. Hence
similarly to definition of absolute divergence of vector field (2.91), the value


∗∂qi


∂xi
+ qi


∗∂ ln
√
h


∂xi
=
∗∂qi


∂xi
+ qi4jji =


∗∇iq
i (2.105)


stands for chronometrically invariant divergence of vector qi. Consequently we will call physical
divergence of vector qi the chronometrically invariant value


∗∇̃iq
i = ∗∇iq


i −
1


c2
Fiq


i, (2.106)
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in which the additional term takes into account that the pace of time is different on opposite walls of
an elementary volume [10]. As a matter of fact, in calculation of divergence we consider an elementary
volume of space and calculate the difference between the amounts of “substance” which flows in and
out of the volume over an elementary time interval. But presence of gravitational inertial force F i


(1.38) results in different pace of time at different points in space. Therefore, if we measure durations
of time intervals at opposite walls of the volume, the beginnings and the ends of the interval will
not coincide making them invalid for comparison. Synchronization of clocks at opposite walls of the
volume will give the true picture, i. e. the measured durations of the intervals will be different.
The final equation for ∇σAσ will be


∇σA
σ =
1


c


(∗∂ϕ
∂t
+ ϕD


)


+ ∗∇̃iq
i. (2.107)


The second term in the formula is physical observable analog of a regular divergence in three-


dimensional space. The first term has no analogs and falls apart into two parts:
∗∂ϕ
∂t
is variation


in time of temporal projection ϕ of four-dimensional vector Aα; Dϕ is variation in time of volume
of three-dimensional vector field qi, because spur of tensor of deformation velocities D=Dii is rate of
relative expansion of elementary volume in space of reference.
Equation ∇σAσ=0 applied to four-dimensional vector potential Aα of electromagnetic field is


Lorentz condition. In chronometrically invariant form Lorentz condition is


∗∇̃iq
i = −


1


c


(∗∂ϕ
∂t
+ ϕD


)


. (2.108)


Now we are going to calculate physical observable components of divergence of an arbitrary anti-
symmetric tensor Fαβ=−F βα (later we will need them to obtain chronometrically invariant Maxwell
equations)


∇σF
σα =


∂F σα


∂xσ
+ ΓσσμF


αμ + ΓασμF
σμ =


∂F σα


∂xσ
+
∂ ln
√
−g


∂xμ
Fαμ, (2.109)


where the third term ΓασμF
σμ is zero because of contraction of Christoffel symbols Γασμ, symmetric by


lower indices σμ, and antisymmetric tensor Fσμ is zero (as a symmetric and an antisymmetric tensors).
The term ∇σF σα is four-dimensional vector, so its chronometrically invariant projections are


T = bα∇σF
σα, Bi = hiα∇σF


σα = ∇σF
iα. (2.110)


We denote chronometrically invariant (physical observable) components of tensor Fαβ as


Ei =
F ∙i0∙√
g00


, Hik = F ik. (2.111)


Then the rest non-zero components of the tensor, being formulated with physical observable com-
ponents (2.111) are


F ∙00∙ =
1


c
vkE


k, (2.112)


F ∙0k∙ =
1
√
g00


(


Ei −
1


c
vnH


∙n
k∙ −


1


c2
vkvnE


n


)


, (2.113)


F 0i =
Ei − 1c vkH


ik


√
g00


, F0i = −
√
g00Ei , (2.114)


F ∙ki∙ = −H
∙k
i∙ −


1


c
viE


k, Fik = Hik +
1


c
(viEk − vkEi) , (2.115)


and the square of tensor Fαβ is


FαβF
αβ = HikH


ik − 2EiE
i. (2.116)
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Substituting the components into (2.110) and replacing regular operators of derivation with chrono-
metrically invariant operators after some algebra we arrive to


T =
∇σF ∙σ0∙√
g00


=
∗∂Ei


∂xi
+ Ei


∗∂ ln
√
h


∂xi
−
1


c
HikAik , (2.117)


Bi = ∇σF
σi =


∗∂Hik


∂xk
+Hik


∗∂ ln
√
h


∂xk
−
1


c2
FkH


ik −
1


c


(∗∂Ei


∂t
+DEi


)


, (2.118)


where Aik is antisymmetric chronometrically invariant tensor of non-holonomity of space. Taking into
account that


∗∂Ei


∂xi
+ Ei


∗∂ ln
√
h


∂xi
= ∗∇iE


i (2.119)


is chronometrically invariant divergence of vector Ei and that


∗∇kH
ik −


1


c2
FkH


ik = ∗∇̃kH
ik (2.120)


is physical chronometrically invariant divergence of tensor Hik we arrive to final equations for physical
observable projections of divergence of an arbitrary antisymmetric tensor Fαβ


T = ∗∇iE
i −
1


c
HikAik , (2.121)


Bi = ∗∇̃kH
ik −


1


c


(∗∂Ei


∂t
+DEi


)


. (2.122)


We now calculate physical observable components of divergence of pseudotensor F ∗αβ , dual to the
given antisymmetric tensor Fαβ


F ∗αβ =
1


2
EαβμνFμν , F∗αβ =


1


2
EαβμνF


μν . (2.123)


We denote observable components of pseudotensor F ∗αβ as


H∗i =
F ∗∙i0∙√
g00


, E∗ik = F ∗ik, (2.124)


because there are evident relations H∗i∼Hik and E∗ik∼Ei between these values and observable com-
ponents of antisymmetric tensor Fαβ (2.111) because of duality of the given tensors Fαβ and F ∗αβ .
Therefore, given that


F ∗∙i0∙√
g00
=
1


2
εipqHpq , F ∗ik = −εikpEp , (2.125)


the other components of pseudotensor F ∗αβ formulated with observable components of the dual tensor
Fαβ (2.111) are


F ∗∙00∙ =
1


2c
vkε


kpq


[


Hpq +
1


c
(vpEq − vqEp)


]


, (2.126)


F ∗∙0i∙ =
1


2
√
g00


[


ε∙pqi∙ Hpq +
1


c
ε∙pqi∙ (vpEq − vqEp)−


−
1


c2
εkpqvivkHpq −


1


c3
εkpqvivk (vpEq − vqEp)


]


,


(2.127)


F ∗0i =
1


2
√
g00


εipq
[


Hpq +
1


c
(vpEq − vqEp)


]


, (2.128)
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F∗0i =
1


2


√
g00εipqH


pq, (2.129)


F ∗∙ki∙ = ε
∙kp
i∙ Ep −


1


2c
viε
kpqHpq −


1


c2
vivmε


mkpEp , (2.130)


F∗ik = εikp


(


Ep −
1


c
vqH


pq


)


, (2.131)


while its square is


F∗αβF
∗αβ = εipq (EpHiq − EiHpq) , (2.132)


where εipq is three-dimensional chronometrically invariant discriminant tensor (2.73, 2.74). Then
observable components of divergence of pseudotensor F ∗αβ are


∇σF ∗∙σ0∙√
g00


=
∗∂H∗i


∂xi
+H∗i


∗∂ ln
√
h


∂xi
−
1


c
E∗ikAik , (2.133)


∇σF
∗σi =


∗∂E∗ik


∂xi
+ E∗ik


∗∂ ln
√
h


∂xk
−
1


c2
FkE


∗ik −
1


c


(∗∂H∗i


∂t
+DH∗i


)


, (2.134)


or, outlining chronometrically invariant divergence ∗∇iH∗i and chronometrically invariant physical
divergence ∗∇̃kE∗ik, similarly to (2.119, 2.120) we obtain


∇σF ∗∙σ0∙√
g00


= ∗∇iH
∗i −


1


c
E∗ikAik , (2.135)


∇σF
∗σi = ∗∇̃kE


∗ik −
1


c


(∗∂H∗i


∂t
+DH∗i


)


. (2.136)


Aside for vector divergence, antisymmetric tensor and 2nd rank pseudotensor we as well need to
know observable projections of divergence of 2nd rank symmetric tensor (we will need them later to
obtain chronometrically invariant laws of conservation). Because these formulas have been already
obtained by Zelmanov, we will take them from his lectures [10].
Denoting observable components of symmetric tensor Tαβ as


T00


g00
= ρ ,


T i0√
g00
= Ki, T ik = N ik, (2.137)


according to [10] we obtain


∇σT σ0√
g00
=
∗∂ρ


∂t
+ ρD +DikN


ik + c ∗∇iK
i −
2


c
FiK


i, (2.138)


∇σT
σi = c


∗∂Ki


∂t
+ cDKi + 2c


(
Dik +A


∙i
k∙


)
Kk + c2 ∗∇kN


ik − FkN
ik − ρF i. (2.139)


Along with internal (scalar) product of tensor with operator of absolute derivation ∇, which is
divergence of this tensor field, we can consider difference of covariant derivatives of tensor field. This
value is referred to as rotor and from geometrical viewpoint is “rotation” (vortex) of tensor field.
Absolute rotor is a rotor of n-dimensional tensor field in n-dimensional space (though this notation
is rather uncommon compared to absolute divergence). Rotor of four-dimensional vector field Aα is
covariant antisymmetric 2nd rank tensor defined as15


Fμν = ∇μAν −∇νAμ =
∂Aν


∂xμ
−
∂Aμ


∂xν
, (2.140)


15For example, see Section 98 in well-known P.K.Raschewski’s book [2]. Actually, rotor is not a tensor (2.140), but
its dual pseudotensor (2.142), because invariance with respect to reflection is necessary for rotation.
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where ∇μAν is absolute derivative of Aα by coordinate xμ


∇μAν =
∂Aν


∂xμ
− ΓσνμAσ . (2.141)


Rotor contracted with four-dimensional absolutely antisymmetric discriminant tensor Eαβμν (2.65)
is a pseudotensor


F ∗αβ = Eαβμν (∇μAν −∇νAμ) = E
αβμν


(
∂Aν


∂xμ
−
∂Aμ


∂xν


)


. (2.142)


In electrodynamics Fμν (2.140) is the tensor of electromagnetic field (Maxwell tensor) which is a
rotor of four-dimensional potential Aα of electromagnetic field. Therefore later we will need formulas
for observable components of four-dimensional rotor Fμν and its dual pseudotensor F


∗αβ , expressed
through observable components of four-dimensional field vector Aα (2.81) that form them.
Let us calculate components of rotor Fμν (taking into account that F00=F


00=0 just like for any
other antisymmetric tensor). As the result after some algebra we obtain


F0i =
(
1−


w


c2


)( ϕ
c2
Fi −


∗∂ϕ


∂xi
−
1


c


∗∂qi


∂t


)


, (2.143)


Fik =
∗∂qi


∂xk
−
∗∂qk


∂xi
+
ϕ


c


(∗∂vi
∂xk


−
∗∂vk


∂xi


)


+


+
1


c


(


vi


∗∂ϕ


∂xk
− vk


∗∂ϕ


∂xi


)


+
1


c2


(


vi


∗∂qk


∂t
− vk


∗∂qi


∂t


)


,


(2.144)


F ∙00∙ = −
ϕ


c3
vkF


k +
1


c
vk
(∗∂ϕ
∂xk


+
1


c


∗∂qk


∂t


)


, (2.145)


F ∙0k∙ = −
1


1−
w


c2


[
ϕ


c2
Fk −


∗∂ϕ


∂xk
−
1


c


∗∂qk


∂t
+
2ϕ


c2
vmAmk +


1


c2
vkv


m


( ∗∂ϕ
∂xm


+
1


c


∗∂qm


∂t


)


−


−
1


c
vm
(∗∂qm
∂xk


−
∗∂qk


∂xm


)


−
ϕ


c4
vkvmF


m


]


,


(2.146)


F ∙ik∙ = h
im


(∗∂qm
∂xk


−
∗∂qk


∂xm


)


−
1


c
himvk


∗∂ϕ


∂xm
−
1


c2
himvk


∗∂qm


∂t
+
ϕ


c3
vkF


i +
2ϕ


c
A∙ik∙ , (2.147)


F 0k =
1


1−
w


c2


[


hkm
( ∗∂ϕ
∂xm


+
1


c


∗∂qm


∂t


)


−
ϕ


c2
F k+


+
1


c
vnhmk


(∗∂qn
∂xm


−
∗∂qm


∂xn


)


−
2ϕ


c2
vmA


mk


]


,


(2.148)


F ∙i0∙√
g00
=
giαF0α
√
g00


= hik
(∗∂ϕ
∂xk


+
1


c


∗∂qk


∂t


)


−
ϕ


c2
F i, (2.149)


F ik = giαgkβFαβ = h
imhkn


(∗∂qm
∂xn


−
∗∂qn


∂xm


)


−
2ϕ


c
Aik, (2.150)


where (2.149, 2.150) are physical observable projections of rotor Fμν . Respectively, observable pro-
jections of its dual pseudotensor F ∗αβ are


F ∗∙i0∙√
g00
=
g0αF


∗αi


√
g00


= εikm
[
1


2


(∗∂qk
∂xm


−
∗∂qm


∂xk


)


−
ϕ


c
Akm


]


, (2.151)


F ∗ik = εikm
(
ϕ


c2
Fm −


∗∂ϕ


∂xm
−
1


c


∗∂qm


∂t


)


, (2.152)


where F ∗∙i0∙ =g0αF
∗αi=g0αE


∗αiμνFμν can be calculated using components of rotor Fμν (2.143–2.148).
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2.6 Laplace and d’Alembert operators


Laplace operator is three-dimensional operator of derivation


4 = ∇∇ = ∇2 = gik∇i∇k . (2.153)


Its generalization in four-dimensional pseudo-Riemannian space is general covariant d’Alembert
operator


2 = gαβ∇α∇β . (2.154)


In Minkowski space these operators take the form


4 =
∂2


∂x1∂x1
+


∂2


∂x2∂x2
+


∂2


∂x3∂x3
, (2.155)


2 =
1


c2
∂2


∂t2
−


∂2


∂x1∂x1
−


∂2


∂x2∂x2
−


∂2


∂x3∂x3
=
1


c2
∂2


∂t2
−4 . (2.156)


Our goal is to apply d’Alembert operator to scalar and vector fields in pseudo-Riemannian space
and to present the results in chronometrically invariant form. First, we will apply d’Alembert operator
to four-dimensional field of scalar ϕ, because in this case the calculations will be much simpler (absolute
derivative of scalar field ∇α ϕ does not contain Christoffel symbols and leads to a regular derivative)


2ϕ = gαβ∇α∇β ϕ = g
αβ ∂ϕ


∂xα


(
∂ϕ


∂xβ


)


= gαβ
∂2ϕ


∂xα∂xβ
. (2.157)


Components of fundamental metric tensor will be formulated with values of theory of chronomet-
rically invariants. For components gik from (1.18) we obtain gik=−hik. The values goi are obtained
from formulas for vector of linear velocity of space rotation vi=−cg0i


√
g00


g0i = −
1


c


vi
√
g00


. (2.158)


Component g00 can be obtained from the property of fundamental metric tensor gασg
βσ=gβα.


Expanding this equation for α=0, β=0


g0σg
0σ = g00g


00 + g0ig
0i = δ00 = 1, (2.159)


and taking into account that


g00 =
(
1−


w


c2


)2
, g0i = −


1


c
vi


(
1−


w


c2


)
, (2.160)


we obtain the expression for g00 value


g00 =
1− 1


c2
viv
i


(
1− w


c2


)2 , viv
i = hikv


ivk = v2. (2.161)


Substituting the obtained formulas for components of fundamental metric tensor into 2ϕ (2.157)
and replacing regular operators of derivation with chronometrically invariant ones we arrive to d’Alem-
bertian for scalar field in chronometrically invariant form


2ϕ =
1


c2


∗∂2ϕ


∂t2
− hik


∗∂2ϕ


∂xi∂xk
= ∗2ϕ , (2.162)


where ∗2 is chronometrically invariant d’Alembert operator and ∗4 is chronometrically invariant
Laplace operator


∗2 =
1


c2


∗∂2


∂t2
− hik


∗∂2


∂xi∂xk
, (2.163)
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∗4 = gik ∗∇i
∗∇k = h


ik
∗∂2


∂xi∂xk
. (2.164)


Now we apply d’Alembert operator to an arbitrary four-dimensional vector field Aα in pseudo-
Riemannian space


2Aα = gμν∇μ∇νA
α. (2.165)


Because 2Aα is four-dimensional vector, its chronometrically invariant (physical observable) pro-
jections onto time and space are


T = bσ2A
σ = bσg


μν∇μ∇νA
σ, (2.166)


Bi = hiσ2A
σ = hiσg


μν∇μ∇νA
σ. (2.167)


In general, obtaining chronometrically invariant d’Alembertian for vector field in pseudo-
Riemannian space is not a trivial task, as Christoffel symbols are not zeroes and formulas for projec-
tions of second derivatives take dozens of pages16. The main criterion of correct calculations is Zel-
manov’s rule of chronometrically invariance: “Correct calculations make all terms in final equations
chronometric invariants. That is they consist of chronometrically invariant derivatives of observable
components of vector field and chronometrically invariant properties of the frame of reference. If any
single mistake was made during calculations, the terms of final equations will not be chronometric
invariants”.
Hence, after some algebra we obtain that chronometrically invariant projections of d’Alembertian


for vector field in pseudo-Riemannian space (2.166, 2.167) are
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(2.168)
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(2.169)


where ∗2ϕ and ∗2qi result from application of chronometrically invariant d’Alembert operator (2.163)
to values ϕ=A0/


√
g00 and q


i=Ai (physical observable components of vector Aα)


∗2ϕ =
1


c2


∗∂2ϕ


∂t2
− hik


∗∂2ϕ


∂xi∂xk
, ∗2qi =


1


c2


∗∂2qi


∂t2
− hkm


∗∂2qi


∂xk∂xm
. (2.170)


D’Alembert operator from tensor field, which equals to zero or not zero gives d’Alembert equations
for the same field. From physical viewpoint these are equations of propagation of waves of the field. If


16This is one of the reasons why practical applications of theory of electromagnetic field and moving charge are mainly
calculated in Galilean frame of reference in Minkowski space (space-time of Special Relativity), where Christoffel symbols
are zeroes. As a matter of fact, general covariant notation hardly permits unambigous interpretation of calculation
results, unless they are formulated with physical observable values (chronometrically invariants) or demoted to a simple
specific case, like one in Minkowski space, for instance.
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d’Alembertian is not zero, these are equations of propagation of waves triggered by some “external”
source or by their distribution in space (d’Alembert equations with “source”). For instance, the sources
in electromagnetic field are charges and currents. If d’Alembert operator for the field is zero, then these
are equations of propagation of waves of the given field not related to any “sources” introduced into
the space. Therefore, equality to zero of all terms not under chronometrically invariant d’Alembert
operator ∗2 sets physical conditions of propagation of observable waves of the studied field in four-
dimensional space-time, where gravitational force F i is zero and neither rotation Aik and deformation
Dik, same as any additional media. In this case chronometrically invariant equations of propagation of
waves of field Aα are obtained from (2.170) made equal to zero in a very simple form. If gravitational
potential of space is not zero while the space itself rotates or is subject to deformation (presence of
any of these geometric properties will suffice), then, as seen from (2.168, 2.169), equations of wave
propagation become pretty more complicated to take account of every of the above geometric factors.
If the area of space-time under consideration aside for the tensor field in question is filled with another
medium, the d’Alembert equations will gain an additional term in their right parts to characterize the
media, which can be obtained from the equations that define it.


2.7 Conclusions


We are now ready to outline the results of this Chapter. Aside for general knowledge of tensor and
tensor algebra we obtained some convenient tools to facilitate our calculations in the next Chapters.
Equality to zero of absolute derivative of dynamic vector of particle to a direction sets dynamic
equations of motion of this particle. Equality to zero of divergence of vector field sets Lorentz condition
and equation of continuity. Equality to zero of divergence of 2nd rank symmetric tensor sets laws
of conservation, while equality to zero of antisymmetric tensor (and of pseudotensor) of 2nd rank
set Maxwell equations. Rotor of vector field is tensor of electromagnetic field (Maxwell tensor).
D’Alembert equations are equations of propagation of waves in generalized form, i. e. not only in
approximation of geometric optics. This was a brief list of applications of mathematical techniques
of which we came into possession. For instance, if we now come across an antisymmetric tensor or
a differential operator, we do not have to undertake special calculations of their physical observable
components, but may rather use already obtained general formulas from this Chapter.







Chapter 3


Charged particle in pseudo-Riemannian space


3.1 Problem statement


In this Chapter we will set forth the theory of electromagnetic field and moving of charged particles
in four-dimensional pseudo-Riemannian space, where all properties of field will be in chronometrically
invariant forms (i. e. expressed through physical observable values).
Electromagnetic field is commonly studied as vector field of four-dimensional potential Aα in four-


dimensional space-time (pseudo-Riemannian space). Its temporal component is scalar potential of
electromagnetic field ϕ, while the three-dimensional components make up so-called vector-potential
Ai. Four-dimensional potential of electromagnetic field Aα in CGSE and Gaussian systems of units
has the dimension


Aα [g1/2 cm1/2 s−1]. (3.1)


Its components ϕ and Ai have the same dimensions. Therefore, studying electromagnetic field is
substantially different from studying gravitational field: according to the theory of chronometrically
invariants gravitational inertial force F i and gravitational potential w (1.38) are functions of geometric
properties of space only, while electromagnetic field (i. e. the field of Aα potential) has not been
“geometrically interpreted” yet and we have to study it just as an external vector field introduced
into space-time.
Equations of classical electrodynamics, — Maxwell equations that define the relationship between


strengths of electric and magnetic fields, — were obtained long before theoretical physics accepted
the terms of distorted pseudo- Riemannian space and even flat Minkowski space. Later, when electro-
dynamics was set forth in Minkowski space under the name of relativistic electrodynamics, Maxwell
equations were obtained in four-dimensional form. Then general covariant form of Maxwell equa-
tions in pseudo-Riemannian space was obtained. But having accepted general covariant form Maxwell
equations became less illustrative, which used to be an advantage of classical electrodynamics. On the
other hand, four-dimensional equations in Minkowski space can be simply presented as scalar (tem-
poral) and vector (spatial) components, because in Galilean frame of reference they are observable
values by definition. But when we turn to distorted, non-uniform and anisotropic pseudo-Riemannian
space, the problem of comparing vector and scalar components in general covariant equations with
equations of classical and relativistic electrodynamics becomes non-trivial. In other words, a question
arises which values can be assumed physical observable ones.
Thus the equations of relativistic electrodynamics in pseudo-Riemannian space should be formu-


lated in respect to physical observable components of electromagnetic field and observable properties
of observer’s frame of reference. We are going to tackle the problem using mathematical apparatus of
chronometric invariants, i. e. projecting general covariant values onto time and space of a real body
of reference, which physical and geometric properties are reference one in our measurements. The
results we are going to obtain this way will help us to arrive to observable generalization of the basic
values and laws of classical and relativistic electrodynamics in such a form that takes into account
effect of physical and geometric properties of the frame of reference (the body of reference) on results
of measurements.


38
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3.2 Observable components of electromagnetic field tensor. Invariants of
the field


By definition, tensor of electromagnetic field is rotor of four-dimensional electromagnetic potential Aα


and is also referred to as Maxwell tensor


Fμν = ∇μAν −∇νAμ =
∂Aν


∂xμ
−
∂Aμ


∂xν
. (3.2)


As seen, the formula is a general covariant generalization of three-dimensional values in classical
electrodynamics


−→
E = −


−→
∇ϕ−


1


c


∂
−→
A


∂t
,


−→
H = rot


−→
A , (3.3)


where
−→
E is vector of strength of electric component of the field. Value ϕ is a scalar potential,


−→
A is a


three-dimensional vector-potential of electromagnetic field, and


−→
∇ =


−→
i
∂


∂x
+
−→
j
∂


∂y
+
−→
k
∂


∂z
(3.4)


is gradient operator of a scalar function in regular three-dimensional Euclidean space.
In this Section we are going to discuss which components of general covariant tensor of electro-


magnetic field Fαβ are physical observable values and to define relationship between these values and


three-dimensional vector strengths of electric field
−→
E and magnetic field


−→
H in classical electrodynam-


ics. The latter vectors will be also obtained in pseudo-Riemannian space, which generally is distorted,
non-uniform and anisotropic.
An important note should be taken. Because in a flat four-dimensional space-time (Minkowski


space) in an inertial frame of reference (i. e. the one that moves linearly and with constant velocity)
the metric is


ds2 = c2dt2 − dx2 − dy2 − dz2, (3.5)


and components of fundamental metric tensor are


g00 = 1, g0i = 0, g11 = g22 = g33 = −1, (3.6)


no difference exists between covariant and contravariant components of four-dimensional potential Aα


(partially, this is why all calculations in Minkowski space are simpler)


ϕ = A0 = A
0, Ai = −A


i. (3.7)


In pseudo-Riemannian space (and in Riemannian space in general) there is a difference, because
metric has more general form. Therefore scalar potential and vector-potential of electromagnetic field
should be defined as physical observable (chronometrically invariant) components of four-dimensional
potential Aα


ϕ = bαAα =
A0
√
g00


, qi = hiσA
σ = Ai. (3.8)


Other components of Aα, being not chronometrically invariant, are formulated with ϕ and qi as


A0 =
ϕ+ 1c viq


i


1− w
c2


, Ai = −qi −
ϕ


c
vi . (3.9)


Note that according to the theory of chronometric invariants, covariant chronometrically invariant
vector qi is obtained from contravariant vector q


i as a result of lowering the index using chronomet-
rically invariant (observable) tensor hik, i. e. qi=hikq


k. To the contrary, a regular covariant vector
Ai, which is not a chronometric invariant, is obtained as a result of lowering the index using four-
dimensional fundamental metric tensor Ai=giαA


α.
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According to the general formula for the square of a vector (2.39), the square of four-dimensional
vector of electromagnetic potential Aα in accompanying frame of reference is


AαA
α = gαβA


αAβ = ϕ2 − hikq
iqk = ϕ2 − q2, (3.10)


and is: real value, if ϕ2>q2; imaginary value, if ϕ2<q2; zero (isotropic) value, if ϕ2=q2.
Now using components of four-dimensional potential Aα (3.8, 3.9) in definition of electromag-


netic field tensor Fαβ (3.2), formulating regular derivatives with chronometrically invariant derivatives
(1.33), and using formulas for components of rotor of an arbitrary vector field (2.143–2.150) we obtain
physical observable (chronometrically invariant) components of the tensor Fαβ


F ∙i0∙√
g00
=
giαF0α
√
g00


= hik
(∗∂ϕ
∂xk


+
1


c


∗∂qk


∂t


)


−
ϕ


c2
F i, (3.11)


F ik = giαgkβFαβ = h
imhkn


(∗∂qm
∂xn


−
∗∂qn


∂xm


)


−
2ϕ


c
Aik. (3.12)


We denote chronometrically inveriant (physical observable) components of electromagnetic field
tensor as


Ei =
F ∙i0∙√
g00


, Hik = F ik, (3.13)


and covariant chronometrically invariant values formed with their help


Ei = hikE
k =


∗∂ϕ


∂xi
+
1


c


∗∂qi


∂t
−
ϕ


c2
Fi , (3.14)


Hik = himhknH
mn =


∗∂qi


∂xk
−
∗∂qk


∂xi
−
2ϕ


c
Aik , (3.15)


while mixed components H ∙mk∙ =−H
m∙
∙k are obtained from component H


ik using three-dimensional
chronometrically invariant metric tensor hik, i. e. H


∙m
k∙ =hkiH


im. In this case deformation of space of


reference Dik=
1
2


∗∂hik
∂t


(1.40) is also present in these formulas, but in an implicit way and appears
when we substitute components qk=hkmq


m into formulas for time derivatives.
Besides, we may as well formulate other components of electromagnetic field tensor Fαβ with its


observable components Ei and Hik (3.11) using formulas for components of arbitrary antisymmetric
tensor (2.112–2.115). This is possible because generalized formulas (2.112–2.115) contain variables
Ei and Hik in “implicit” form, irrespective of whether they are components of a rotor or of an
antisymmetric tensor of any other kind.
In Minkowski space, when acceleration F i, rotation Aik and deformation Dik of the space of


reference are zeroes, the formula for the component Ei becomes


Ei =
∂ϕ


∂xi
+
1


c


∂Ai


∂t
, (3.16)


or in three-dimensional vector form


−→
E =


−→
∇ϕ+


1


c


∂
−→
A


∂t
, (3.17)


which, up within the sign, matches the formula for
−→
E in classical electrodynamics.


Now to formulate strength of magnetic field in three-dimensional vector form we use components
of pseudotensor F ∗αβ , which is pseudo-Riemannian space is dual to Maxwell tensor of electromag-
netic field F ∗αβ= 12E


αβμνFμν (2.123). According to (2.124) physical observable components of this
pseudotensor are values


H∗i =
F ∗∙i0∙√
g00


, E∗ik = F ∗ik. (3.18)
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Using formulas for components of pseudotensor F ∗αβ , obtained in Chapter 2 (2.125–2.131) and
formulas for Ei and Hik (3.14, 3.15) we arrive to expanded formulas for H


∗i and E∗ik


H∗i =
1


2
εimn


(∗∂qm
∂xn


−
∗∂qn


∂xm
−
2ϕ


c
Amn


)


=
1


2
εimnHmn , (3.19)


E∗ik = εikn
(
ϕ


c2
Fn −


∗∂ϕ


∂xn
−
1


c


∗∂qn


∂t


)


= −εiknEk . (3.20)


We can see that the following pairs of tensors are dual conjugate: H∗i and Hmn, E
∗ik and Em.


Chronometrically invariant (physical observable) value H∗i (3.19) includes the term


1


2
εimn


(∗∂qm
∂xn


−
∗∂qn


∂xm


)


=
1


2
εimn (∗∇nqm −


∗∇mqn) , (3.21)


which is chronometrically invariant rotor of three-dimensional vector field qm, and the term


1


2
εimn


2ϕ


c
Amn =


2ϕ


c
Ω∗i, (3.22)


where Ω∗i= 12ε
imnAmn is chronometrically invariant pseudovector of angular rotational velocity of


space of reference. In Galilean frame of reference in Minkowski space, i. e. in absence of acceleration,
rotation and deformation, the formula we obtained for chronometrically invariant pseudovector of
strength of magnetic field H∗i (3.19) takes the form


H∗i =
1


2
εimn


(
∂qm


∂xn
−
∂qn


∂xm


)


, (3.23)


or in three-dimensional vector form, is
−→
H = rot


−→
A . (3.24)


Therefore, the structure of pseudo-Riemannian space affects electromagnetic field due to the
fact that observable (chronometrically invariant) vectors of electric strength Ei (3.14) and magnetic
strength H∗i (3.19) depend upon gravitational potential and rotation of the space of reference itself.
The same will be true as well in flat Minkowski space, if a non-inertial frame of reference that rotates


and moves with acceleration is assumed as the observer’s frame of reference. But in Minkowski space
we can always find a Galilean frame of reference (which is not true in pseudo-Riemannian space),
because Minkowski space itself does not accelerate the frame of reference and neither rotates nor
deforms it. Therefore such effects in Minkowski space are purely relative.
In relativistic electrodynamics we introduce invariants of electromagnetic field (or simply field


invariants)
J1 = FμνF


μν = 2F0iF
0i + FikF


ik, (3.25)


J2 = FμνF
∗μν = 2F0iF


∗0i + FikF
∗ik. (3.26)


The former is a scalar, while the latter is a pseudoscalar. Formulating them with components of
Maxwell tensor we obtain


J1 = HikH
ik − 2EiE


i, J2 = ε
imn (EmHin − EiHnm) , (3.27)


and using formulas for components of dual pseudotensor F ∗μν obtained in Chapter 2 we can present
the field invariants as


J1 = −2
(
EiE


i −H∗iH
∗i
)
, J2 = −4EiH


∗i. (3.28)


Because J1 and J2 are invariants we can maintain that:


• if in any frame of reference squares of lengths of vectors of strengths of electric and magnetic
fields are equal E2=H∗2, the equality will preserve in any other frame of reference;
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• if in any frame of reference vectors of strength of electric and magnetic fields are orthogonal
EiH


∗i=0, the orthogonality will preserve in any frame of reference.


Electromagnetic field that satisfies conditions E2=H∗2 and EiH
∗i=0, i. e. the one in which both


field invariants (3.28) are zeroes is referred to in electrodynamics as isotropic. Here the term “isotropic”
stands not for location of field in light-like area of space-time (as is assumed in space-time theory),
but rather for the field’s property of equal emissions in any direction in three-dimensional space.
Invariants of electromagnetic field can be also formulated with chronometrically invariant deriva-


tives of observable scalar potential ϕ and vector-potential qi (3.8) of the field
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(3.29)


J2 =
1
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[


εimn
(∗∂qm
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−
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](∗∂ϕ


∂xi
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−
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Fi
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. (3.30)


Physical conditions for isotropic electromagnetic field are obtained by equaling the latter formulas
(3.29, 3.30) to zero. Doing this we can see that the conditions of equality of three-dimensional lengths
of vectors of strengths E2=H∗2 and their orthogonality EiH


∗i=0 in pseudo-Riemannian space at
the same time depend upon not only properties of the field itself (i. e. scalar potential ϕ and vector-
potential qi) but also upon acceleration F i, rotation Aik and deformation Dik of the space of the body
of reference. In particular, vectors Ei and H


∗i are orthogonal when the space is holonomic Ω∗i=0,


while three-dimensional field of vector-potential qi is rotation-free εimn
(∗∂qm
∂xn


−
∗∂qn
∂xm


)
=0.


3.3 Chronometrically invariant Maxwell equations. Law of conservation
of electric charge. Lorentz condition


In classical electrodynamics the dependencies between strengths of electric field
−→
E [g1/2 cm−1/2 s−1]


and magnetic field
−→
H [g1/2 cm−1/2 s−1] are set forth in Maxwell equations, which result from general-


ization of experimental data. In the middle 19th century J.C.Maxwell showed that if electromagnetic
field is induced in vacuum by given charges and currents, the resulting field is defined by two groups
of equations [4]


Group I


rot
−→
H −


1


c


∂
−→
E


∂t
=
4π


c


−→
j ,


div
−→
E = 4πρ ,


Group II


rot
−→
E +


1


c


∂
−→
H


∂t
= 0,


div
−→
H = 0,


(3.31)


where ρ [g1/2 cm−3/2 s−1] stands for distributed electric charge density (the amount e [g1/2 cm3/2 s−1]


of charge within 1 cm3) and
−→
j [g1/2 cm−1/2 s−2] is the vector of current density. Equations that


contain field-inducing sources ρ and
−→
j are known as the first group of Maxwell equations, while


equations that do not contain field sources are referred to as the second group of Maxwell equations.
The first equation in Group I is Biot-Savart law, the second is Gauss theorem, both in differential


notation. The first and the second equations in Group II are differential notation of Faraday law of
electromagnetic induction and the condition of absence of magnetic charges, respectively. Totally, we


have 8 equations (two vector ones and two scalar ones) in 10 unknowns: three components of
−→
E ,


three components of
−→
H , three components of


−→
j , and one component of ρ.


The dependence between the field sources ρ and
−→
j is set by equation


∂ρ


∂t
+ div


−→
j = 0 (3.32)
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called the law of conservation of electric charge, which is a mathematical notation of an experimen-
tal fact that electric charge can not be destroyed, but is merely re-distributed between contacting
charged bodies.
Now we have a system of 9 equations in 10 unknowns, i. e. the system that define the field and


its sources is still indefinite. The 10th equation which makes the system of equations definite (the
number of equations should be the same as that of unknowns) is the Lorentz condition, which constrains
potentials of electromagnetic field and is


1


c


∂ϕ


∂t
+ div


−→
A = 0 . (3.33)


The Lorentz condition stems from the fact that scalar potential ϕ and vector-potential
−→
A of


electromagnetic field related to strength values
−→
E and


−→
H with (3.3) are defined ambiguously from


them:
−→
E and


−→
H in (3.3) do not change if we replace


−→
A =


−→
A′ +


−→
∇Ψ , ϕ = ϕ′ −


1


c


∂Ψ


∂t
, (3.34)


where ψ is an arbitrary scalar. Evidently, ambiguous definition of ϕ and
−→
A permits other dependencies


between the values aside for Lorentz condition. Nevertheless, it is Lorentz condition that enables
transformation of Maxwell equations into wave equations.


Here is how it happens. The equation div
−→
H=0 (3.31) is satisfied completely if we assume


−→
H=rot


−→
A .


In this case the first equation in Group II of Maxwell equations (3.31) takes the form


rot





−→E +
1


c


∂
−→
A


∂t





 = 0 , (3.35)


which has the solution
−→
E = −


−→
∇ϕ−


1


c


∂
−→
A


∂t
. (3.36)


Substituting
−→
H=rot


−→
A and


−→
E (3.36) into Group I of Maxwell equations we arrive at


4
−→
A −


1


c2
∂2
−→
A


∂t2
−
−→
∇


(


div
−→
A +


1


c


∂ϕ


∂t


)


= −
4π


c


−→
j , (3.37)


4ϕ+
1


c


∂


∂t


(


div
−→
A


)


= −4πρ , (3.38)


where 4= ∂2


∂x2
+ ∂2


∂y2
+ ∂2


∂z2
is regular Laplace operator.


Constraining potentials ϕ and
−→
A with Lorentz condition (3.33) we bring equations in Group I to


the form
2ϕ = −4πρ , (3.39)


2
−→
A = −


4π


c


−→
j , (3.40)


where 2= 1
c2
∂2


∂t2
−4 is regular d’Alembert operator.


The result of applying d’Alembert operator to a field are equations of propagation of waves of
the field (see Section 2.6). Therefore the obtained result implies that if Lorentz condition is true
Group I equations (3.31) are a system of equations of propagation of waves of scalar and vector
potentials of electromagnetic field with sources (charges and currents). The equations will be obtained
in the next Sections. So far we are going to consider general covariant Maxwell equations in pseudo-
Riemannian space to obtain them in chronometrically invariant form, i. e. formulated with physical
observable values.
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In four-dimensional pseudo-Riemannian space Lorentz condition has general covariant form


∇σA
σ =


∂Aσ


∂xσ
+ ΓσσμA


μ = 0 , (3.41)


i. e. is a condition of conservation of four-dimensional potential of field Aα. Law of conservation of
electric charge (continuity equation) is


∇σj
σ = 0 , (3.42)


where jα is four-dimensional current vector (also referred to as shift current), observable components
in which are electric charge density


ρ =
1


c


j0
√
g00


, (3.43)


and three-dimensional vector of current density ji. Using the formula for divergence of vector field
in chronometrically invariant form, which we obtained in Chapter 2 (2.107), we arrive to Lorentz
condition (3.41) also in chronometrically invariant form


1


c


∗∂ϕ


∂t
+
ϕ


c
D + ∗∇iq


i −
1


c2
Fiq


i = 0 , (3.44)


and to continuity equation in chronometrically invariant notation as well


∗∂ρ


∂t
+ ρD + ∗∇i j


i −
1


c2
Fi j


i = 0 . (3.45)


Here D=Dii=
∗∂ ln


√
h


∂t
stands for spur of tensor of deformation velocities of space (1.40) — the


rate of relative expansion of elementary volume, while ∗∇i is operator of chronometrically invariant
divergence (2.105).


Because Fi (1.38) contains derivative of gravitational potential w=c
2(1−


√
g00), the term


1
c2
Fiq


i


in the obtained formulas (3.44, 3.45) takes into account the difference in time pace at opposite walls
of the elementary volume. The formula for gravitational inertial force Fi (1.38) also accounts for
non-stationary state of rotation velocity of space vi. Besides, gravitational potential and velocity of
space rotation appear in chronometrically invariant derivation operators (1.33)


∗∂


∂t
=


1


1− w
c2


∗∂


∂t
,


∗∂


∂xi
=


∂


∂xi
−
1


c2
vi
∗∂


∂t
. (3.46)


Therefore, the condition of conservation of vector field streams Aα (3.44) and jα (3.45) directly
depend upon gravitational potential and velocity of space rotation.


Chronometrically invariant values
∗∂ϕ
∂t
and


∗∂ρ
∂t
are changes in time of physical observable values


ϕ and ρ. Chronometrically invariant values ϕD and ρD are observable changes in time of three-
dimensional volumes, filled with values ϕ and ρ.
In absence of gravitational inertial force, rotation and deformation of space, the obtained chrono-


metrically invariant formulas for Lorentz condition (3.44) and electric charge conservation law (3.45)
become


1


c


∂ϕ


∂t
+
∂qi


∂xi
−
∂ ln
√
h


∂xi
qi = 0 , (3.47)


∂ρ


∂t
+
∂ji


∂xi
−
∂ ln
√
h


∂xi
ji = 0 , (3.48)


which in Galilean frame of reference in Minkowski space are


1


c


∂ϕ


∂t
+
∂qi


∂xi
= 0 ,


∂ρ


∂t
+
∂ji


∂xi
= 0 , (3.49)
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or, in a regular vector notation


1


c


∂ϕ


∂t
+ div


−→
A = 0 ,


∂ρ


∂t
+ div


−→
j = 0 , (3.50)


which fully matches notations of Lorentz condition (3.33) and electric charge conservation law (3.32)
in classical electrodynamics.
Let us now turn to Maxwell equations. In pseudo-Riemannian space each pair of equations merge


into a single general covariant equation


∇σF
μσ =


4π


c
jμ, ∇σF


∗μσ = 0 , (3.51)


where Fμσ is contravariant form of electromagnetic field tensor, and F ∗μσ is dual pseudotensor. Using
chronometrically invariant formulas for divergence of antisymmetric 2nd rank tensor (2.121, 2.122)
and for its dual pseudotensor (2.135, 2.136), obtained in Chapter 2, we write down Maxwell equations
in chronometrically invariant form


∗∇iEi−
1


c
HikAik=4πρ


∗∇kHik−
1


c2
FkH


ik−
1


c


(∗∂Ei


∂t
+DEi


)


=
4π


c
ji







Group I, (3.52)


∗∇iH∗i−
1


c
E∗ikAik=0


∗∇kE∗ik−
1


c2
FkE


∗ik−
1


c


(∗∂H∗i


∂t
+DH∗i


)


=0







Group II. (3.53)


Chronometrically invariant Maxwell equations in this notation were first obtained by J. del Prado
[22] and N.V.Pavlov [23] independently. Now we transform chronometrically invariant Maxwell equa-
tions in a way that they include Ei and H∗i as unknowns. Obtaining these values from definitions
(2.125, 2.124, and 2.111)


H∗i =
1


2
εimnH


mn, (3.54)


E∗ik = εikm
(
ϕ


c2
Fm −


∗∂ϕ


∂xm
−
1


c


∗∂qm


∂t


)


= −εikmEm , (3.55)


and multiplying the first equation by εipq we arrive to


εipqH∗i =
1


2
εipqεimnH


mn =
1


2
(δpmδ


q
n − δ


q
mδ
p
n)H


mn = Hpq. (3.56)


Substituting the result as Hik=εmikH∗m into the first equation in Group I (3.52) we bring it to
the form


∗∇iE
i −
2


c
Ω∗mH


∗m = 4πρ , (3.57)


where Ω∗i= 12ε
imnAmn is chronometrically invariant pseudovector of angular velocity of rotation of


the space of reference. Substituting the second formula E∗ik=−εikmEm (3.55) into the first equation
of Group II (3.53), we obtain


∗∇iH
∗i +


2


c
Ω∗mE


m = 0 . (3.58)


Then substituting Hik=εmikH∗m into the second equation in Group I (3.52) we obtain


∗∇k
(
εmikH∗m


)
−
1


c2
Fkε


mikH∗m −
1


c


(
∗∂Ei


∂t
+
∗∂ ln


√
h


∂t
Ei


)


=
4π


c
ji, (3.59)
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and after multiplying both parts of it by
√
h and taking into account that ∗∇kεmik=0 we bring this


formula (3.59) to the form


εikm ∗∇k
(
H∗m


√
h
)
−
1


c2
εikmFkH∗m


√
h−
1


c


∗∂


∂t


(
Ei
√
h
)
=
4π


c
ji
√
h , (3.60)


or, in another notation


εikm ∗∇̃k
(
H∗m


√
h
)
−
1


c


∗∂


∂t


(
Ei
√
h
)
=
4π


c
ji
√
h , (3.61)


where ji
√
h is volume density of current and ∗∇̃k= ∗∇k− 1


c2
Fk is chronometrically invariant physical


divergence (2.106) that accounts for different time pace at opposite walls of elementary volume.
The obtained equation (3.60) is chronometrically invariant notation of Biot-Savart law in pseudo-


Riemannian space.
Substituting E∗ik=−εikmEm (3.55) into the second equation in Group II (3.53) after similar trans-


formations we obtain it in the form


εikm ∗∇̃k
(
Em
√
h
)
+
1


c


∗∂


∂t


(
H∗i
√
h
)
= 0 , (3.62)


which is chronometrically invariant notation of Faraday law of electromagnetic induction in pseudo-
Riemannian space.
The final system of 10 chronometrically invariant equations in 10 unknowns (two groups of Maxwell


equations, Lorentz condition and continuity equation) that define electromagnetic field and its sources
in pseudo-Riemannian space becomes


∗∇iEi −
2


c
Ω∗mH


∗m = 4πρ


εikm ∗∇̃k
(
H∗m
√
h
)
−
1


c


∗∂


∂t


(
Ei
√
h
)
=
4π


c
ji
√
h







Group I, (3.63)


∗∇iH∗i +
2


c
Ω∗mE


m = 0


εikm ∗∇̃k
(
Em
√
h
)
+
1


c


∗∂


∂t


(
H∗i
√
h
)
= 0







Group II, (3.64)


1


c


∗∂ϕ


∂t
+
ϕ


c
D + ∗∇̃iq


i = 0 Lorentz condition, (3.65)


∗∂ρ


∂t
+ ρD + ∗∇̃i j


i = 0 equation of continuity. (3.66)


In Galilean frame of reference in Minkowski space the determinant of physical observable metric
tensor


√
h=1, it is not subject to deformation Dik=0, rotation Ω∗m=0 or acceleration Fi=0. Then


chronometrically invariant Maxwell equations, obtained in pseudo-Riemannian space (3.63, 3.64),
bring us directly to Maxwell equations in classical electrodynamics in by-component (tensor) form


∂Ei


∂xi
= 4πρ


eikm
(
∂H∗m


∂xk
−
∂H∗k


∂xm


)


−
1


c


∂Ei


∂t
=
4π


c
ji







Group I, (3.67)


∂H∗i


∂xi
= 0


eikm
(
∂Em


∂xk
−
∂Ek


∂xm


)


−
1


c


∂H∗i


∂t
= 0







Group II. (3.68)
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The same equations put into vector notation will be similar to classical Maxwell equations in
three-dimensional Euclidean space (3.31). Besides, the obtained chronometrically invariant Maxwell
equations in four-dimensional pseudo-Riemannian space (3.64) show that in absence of rotation of
space chronometrically invariant mathematical divergence of magnetic field is zero ∗∇iH∗i=0. In
other words, magnetic field conserves in holonomic space. But divergence of electric field in this case
is not zero ∗∇iEi=4πρ (3.63), i. e. electric field is linked directly to density of electric charges ρ.
Hence a conclusion that “magnetic charge”, if it actually exists, should be linked directly to the field
of rotation of the space itself.


3.4 Four-dimensional d’Alembert equations for electromagnetic potential
and their observable components


As we have already mentioned, d’Alembert operator being applied to field gives equations of propa-
gation of waves of that field. Therefore d’Alembert equations for scalar electromagnetic potential ϕ
are equations of propagation of waves of scalar field ϕ, while for three-dimensional vector-potential
−→
A these are equations of propagation of waves of three-dimensional vector field


−→
A .


General covariant form of these equations for four-dimensional potential of electromagnetic field
was obtained by K.P. Stanyukovich in his book [24]. Using Group I of general covariant Maxwell


equations ∇σFμσ=4πc j
μ (3.51) and Lorentz condition ∇σAσ=0 (3.41) he arrived to general covariant


equation in respect to four-dimensional potential Aα of electromagnetic field


2Aα −RαβA
β = −


4π


c
jα, (3.69)


where Rαβ=g
αμRσ∙μβσ is Ricci tensor and R


α
∙μβσ is four-dimensional Riemann-Christoffel tensor of cur-


vature. The term RαβA
β is absent in the left part if Ricci tensor is zero, i. e. metric of space satisfies


Einstein equations away from masses (in vacuum). Also that term can be neglected in case space cur-
vature is not significant. But even in flat Minkowski space the problem can be considered in presence
of acceleration and rotation. Even this approximation may reveal, for instance, effect of acceleration
and rotation of body of reference on observable velocity of propagation of electromagnetic waves.
The reason for the above discussion here is that obtaining chronometrically invariant projections


of d’Alembert equations in full is a very labor intensive task. The resulting equations will be too bulky
to make any unambiguous conclusions. Therefore we will limit the scope of our work to obtaining
chronometrically invariant d’Alembert equations for electromagnetic field in non-inertial frame of
reference in Minkowski space. But that does not affect other Sections in this Chapter. Calculating
chronometrically invariant projections of general covariant four-dimensional d’Alembert equations


2Aα = −
4π


c
jα (3.70)


using general formulas (2.168, 2.169) and taking into account that ρ= 1
c
√
g00


g0αj
α is observable charge


density, in the space without dynamic deformation and in the linear approximation (without high
multiplicity members — weak fields of gravitation and space’s rotation) we obtain
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(
Fkq


k
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∗∂
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(3.71)
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+4ikn


∗∂qn


∂xm
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}


=
4π


c
ji.


(3.72)
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We see that physical properties of space of reference F i, Aik, Dik and curvilinearity of three-
dimensional trajectories (characterized by 4ikm) make some additional “sources” that along with
electromagnetic sources ϕ and ji form the waves that run through electromagnetic field.
Let us now analyze the results. First we consider the equations we obtained (3.71, 3.72) in Galilean


frame of reference in a flat Minkowski space. Here metric takes the form as in (3.5) and therefore
chronometrically invariant d’Alembert operator ∗2 (2.163) transforms into regular d’Alembert oper-


ator ∗2= 1
c2
∗∂2


∂t2
−hik


∗∂2


∂xi∂xk
= 1
c2
∂2


∂t2
−4=2. Then the obtained equations (3.71, 3.72) will be


2ϕ = 4πρ , 2qi = −
4π


c
ji, (3.73)


which fully matches equations of classical electrodynamics (3.39, 3.40).
Now we return to the obtained chronometrically invariant d’Alembert equations (3.39, 3.40). To


make their analysis easier we denote all terms in left parts, which stand after chronometrically invariant
d’Alembert equations ∗2, as T in the scalar equation (3.39) and as Bi in the vector equation (3.40).
Transpositioning the variables into the right parts of equations and expanding the formulas for ∗2
operator (2.173) we obtain


1


c2


∗∂2ϕ


∂t2
− hik ∗∇i


∗∇k ϕ = T + 4πρ , (3.74)


1


c2


∗∂2qi


∂t2
− hmk ∗∇m


∗∇k q
i = Bi +


4π


c
ji, (3.75)


where hik ∗∇i ∗∇k= ∗4 is chronometrically invariant Laplace operator. The structure of their parts
say that if potentials ϕ and qi are stationary (i. e. do not depend on time), d’Alembert wave equations
become Laplace equations that characterize statical states of field


∗4ϕ = T + 4πρ , (3.76)


∗4qi = Bi +
4π


c
ji. (3.77)


Field is uniform along a certain direction, if its regular derivative to this direction is zero. In
Riemannian space field is uniform if its regular (general covariant) derivative is zero. In accompanying
frame of reference projection onto time and space non-uniformity of tensor field characterizes the
difference from chronometrically invariant operator ∗∇i [8, 10]. In other words, if for a certain (e. g.
scalar) value A the condition ∗∇iA=0 is true, the field is observed as uniform.
Therefore, chronometrically invariant d’Alembert operator ∗2 is the difference of 2nd derivatives


of operator 1
c


∗∂
∂t
, which characterizes observed non-stationary state of the field, and of operator ∗∇i,


which characterizes its observable non-uniformity. If a field is stationary and uniform at the same
time, left parts in d’Alembert equations (3.74, 3.75) are zeroes, and only field sources in the right
parts are left. That means the field does not generate waves, i. e. it is not a wave field.


In non-uniform stationary field (∗∇i 6=0 , 1c
∗∂
∂t
=0), d’Alembert equations (3.74, 3.75) characterize


a standing wave
−hik ∗∇i


∗∇k ϕ = T + 4πρ , (3.78)


−hmk ∗∇m
∗∇k q


i = Bi +
4π


c
ji. (3.79)


In uniform non-stationary field (∗∇i=0 , 1c
∗∂
∂t
6=0) d’Alembert equations describe changes of the


field in time depending from the state of the sources of the field (charges and currents)


1


c2


∗∂2ϕ


∂t2
= T + 4πρ , (3.80)


1


c2


∗∂2qi


∂t2
= Bi +


4π


c
ji. (3.81)
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In inertial frame of reference (Christoffel symbols are zeroes) general covariant derivative equals


to the regular one ∗∇iϕ=
∗∂ϕ
∂t
and chronometrically invariant scalar d’Alembert equation (3.74) is


1


c2


∗∂2ϕ


∂t2
− hik


∗∂2ϕ


∂xi∂xk
= T + 4πρ . (3.82)


Here the left part takes the most simple form, which facilitates more detailed study of d’Alembert
equation for scalar field. As known from theory of oscillations in mathematical physics, in regular
(not chronometrically invariant) d’Alembert equations


2ϕ =
1


a2
∂2ϕ


∂t2
− gik


∂2ϕ


∂xi∂xk
(3.83)


the term a is absolute value of three-dimensional velocity of elastic oscillations that spread across
the field ϕ.
Expanding chronometrically invariant derivatives by spatial coordinates (3.46) we bring scalar


d’Alembert equation (3.82) to the form
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+
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∂ϕ


∂t
= T + 4πρ ,


(3.84)


where v2=hikv
ivk and the second chronometrically invariant derivative to time formulates with regular


derivatives as
∗∂2ϕ


∂t2
=


1
(
1− w


c2


)2
∂2ϕ


∂t2
+


1


c2
(
1− w


c2


)3
∂w


∂t


∂ϕ


∂t
. (3.85)


We can now see that the larger is the square of space rotation velocity v2, the lesser is effect of


physical observable non-stationary state of field (
∗∂ϕ
∂t
value) on propagation of waves. In the ultimate


case, when v→c, d’Alembert operator becomes Laplace operator, i. e. wave d’Alembert equation
becomes stationary Laplace equation. At lower velocities of space rotation v�c one can assume that
observable waves of field of scalar potential propagate at the light speed.
In general case absolute value of observed velocity of waves of scalar electromagnetic potential


v(ϕ) becomes


v(ϕ) =
1


1− v2


c2


c2. (3.86)


From the formula for chronometrically invariant value (3.85), which is observable acceleration of
increment of scalar potential ϕ in time, we see that it is the more different from “coordinate” value
the higher is gravitational potential and the higher is the rate of its change in time


∂2ϕ


∂t2
=
(
1−


w


c2


)2 ∗∂2ϕ
∂t2


+
1


c2 − w
∂w


∂t


∂ϕ


∂t
. (3.87)


In the ultimate case, when w→c2 (approaching gravitational collapse), observable acceleration of
increment of scalar potential becomes infinitesimal, while coordinate rate of growth of the potential
∂ϕ
∂t
, to the contrary, becomes infinitely large. But under regular conditions gravitational potential w


contributes only smaller corrections into acceleration and velocity of growth of potential ϕ.


All said in the above in respect to physical observable scalar value
∗∂2ϕ
∂t2


is also true for vector ob-


servable value
∗∂2qi


∂t2
, because chronometrically invariant d’Alembert operator ∗2= 1


c2
∗∂2


∂t2
−hik


∗∂2


∂xi∂xk
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shows difference from scalar and vector functions only in the second term— Laplace operator, in which
chronometrically invariant derivatives of scalar and vector values are different from each other


∗∇iϕ =
∗∂ϕ


∂xi
, ∗∇iq


k =
∗∂qk


∂xi
+4kimq


m. (3.88)


If space rotation and gravitational potential are infinitesimal, chronometrically invariant d’Alem-
bert operator for scalar potential becomes


∗2ϕ =
1


c2
∂2ϕ


∂t2
− hik


∂2ϕ


∂xi∂xk
, (3.89)


and electromagnetic waves, produced by scalar potential ϕ propagate at the speed of light.


3.5 Chronometrically invariant Lorentz force. Energy-impulse tensor of
electromagnetic field


In this Section we are going to formulate physical observable components of four-dimensional force
with which electromagnetic field affects electric charge in pseudo-Riemannian space. The problem
will be solved for two cases: (a) for a point charge; (b) for a charge distributed in space. Also, we are
going to calculate physical observable components of energy-impulse tensor of electromagnetic field.
In three-dimensional Euclidean space of classical electrodynamics motion charged particle is char-


acterized by vector equation


d−→p
dt
= e
−→
E +


e


c
[−→u ;
−→
H ], (3.90)


where −→p =m−→u is three-dimensional vector of particle’s impulse and m is its relativistic mass. The
formula in the right part of this equation is referred to as Lorentz force.
The equation that characterizes the change of kinetic (relativistic) energy of a charged particle


E = mc2 =
m0c


2


√


1− u2


c2


(3.91)


due to work accomplished by electric field to displace it within a unit time takes a vector form as
follows


dE


dt
= e
−→
E−→u , (3.92)


and is also known as live forces theorem.
In four-dimensional form, thanks to unification of energy and impulse, in Galilean frame of reference


in Minkowski space both equations (3.90, 3.92) takes the form


m0c
dUα


ds
=
e


c
Fα∙∙σ U


σ, Uα =
dxα


ds
, (3.93)


and are referred to as Minkowski equations (Fα∙∙σ is the electromagnetic field tensor). Because the
metric here is diagonal (3.5), hence


ds = cdt


√


1−
u2


c2
, u2 =


(
dx


dt


)2
+


(
dy


dt


)2
+


(
dz


dt


)2
, (3.94)


and the components of four-dimensional velocity of particle Uα are


U0 =
1


√


1− u2


c2


, U i =
1


c


ui
√


1− u2


c2


, (3.95)
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where ui=dx
i


dt
is three-dimensional velocity of particle. Once components ecF


α∙
∙σ U


σ in Galilean frame
of reference are


e


c
F 0∙∙σU


σ = −
e


c2
Eiu


i


√


1− u2


c2


, (3.96)


e


c
F i∙∙σU


σ = −
1


c


√


1− u2


c2


(
eEi +


e


c
eikmukH∗m


)
, (3.97)


then temporal (scalar) and spatial (vector) components of Minkowski equations (3.93) are (in Galilean
frame of reference as well)


dE


dt
= −eEiu


i, (3.98)


dpi


dt
= −


(
eEi +


e


c
eikmukH∗m


)
, pi = mui. (3.99)


The above relativistic equations, save for the sign in the right parts, match the live forces theorem
and equations of motion of charged particle in classical electrodynamics (3.90, 3.91). Note that
difference in signs in the right parts is conditioned only by choice of signatures: we use space-time
signature (+−−−), but if we accept signature (−+++), the sign in the right parts of the equations
will change.
We now turn to chronometrically invariant representation in pseudo-Riemannian space of four-


dimensional impulse vector Φα=ecF
α∙
∙σ U


σ, which particle gains from interaction of its charge e with
electromagnetic field. Its physical observable projections are


T =
e


c


F0σU
σ


√
g00


, (3.100)


Bi =
e


c
F i∙∙σU


σ =
e


c


(
F i∙∙0U


0 + F i∙∙kU
k
)
. (3.101)


Given that in pseudo-Riemannian space components of Uα are


U0 =


1
c2
viv
i ± 1


√


1− v
2


c2


(
1− w


c2


) , U i =
1


c


vi
√


1− v
2


c2


, (3.102)


then, taking into account formulas for rotor components (2.143–2.159) we obtained in Chapter 2, we
arrive to


T = −
e


c2
√


1− v
2


c2


(∗∂ϕ
∂xi
+
1


c


∗∂qi


∂t
−
ϕ


c2
Fi


)


vi, (3.103)


Bi = −
e


c2


√


1−
v2


c2


{


±


(∗∂ϕ


∂xk
+
1


c


∗∂qk


∂t
−
ϕ


c2
Fk


)


hik+


+


[


himhkn
(∗∂qm
∂xn


−
∗∂qn


∂xm


)


−
2ϕ


c
Aik
]


vk


}


.


(3.104)


Scalar value T , to within multiplier − 1
c2
, is a field’s work to displace charge e in pseudo-Riemannian


space. Vector value Bi, to within multiplier 1c , in non-relativistic case is a regular force that acts on
charged particle from electromagnetic field in pseudo-Riemannian space


Φi = cBi = −e


(


Ei +
1


c
εikmH∗mvk


)


, (3.105)
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and is observable Lorentz force. Note that alternating signs stem from the fact that in pseudo-


Riemannian space quadratic equation in respect to dt
dτ
has two roots (1.55). Respectively, the “plus”


sign in the Lorentz force stands for particle’s motion into future (in respect to the observer), while
the “minus” sign denotes motion into past. In Galilean frame of reference in Minkowski space there
is no difference between physical observable time τ and coordinate time t. Hence Lorentz force (3.99)
obtained from Minkowski equations will have no alternating signs.
If charge is not a point one but is distributed in space, Lorentz force Φα=ecF


α∙
∙σ U


σ in Minkowski
equations (3.93) will be replaced by four-dimensional vector of Lorentz force density


fα = −
1


c
Fα∙∙σ j


σ, (3.106)


where four-dimensional vector of current density jσ=
{
cρ; ji


}
is defined from Group I of general


covariant Maxwell equations (3.51)


jσ =
c


4π
∇μF


σμ. (3.107)


Physical observable components of Lorentz force density fα are


f0
√
g00
=
1


c
Eij


i, (3.108)


f i = ρEi +
1


c
Hi∙∙kj


k =
1


c
ρEi +


1


c
εikmH∗mjk . (3.109)


In Galilean frame of reference in Minkowski space temporal and spatial projections of vector of
current density (3.109) are


f0
√
g00
=
q


c
=
1


c


−→
E
−→
j , (3.110)


−→
f = ρ


−→
E +


1


c
[
−→
j ;
−→
H ] , (3.111)


where
−→
f is density of Lorentz force that acts on spread charges, while q is density of heat power


released into current conductor.
Now we transform density of Lorentz force (3.106) using Maxwell equations. Substituting jσ


(3.107) we arrive to


fν =
1


c
Fνσj


σ =
1


4π
Fνσ∇μF


μσ =
1


4π
[∇μ (FνσF


μσ)− Fμσ∇μFνσ] . (3.112)


Transpositioning indices μ and σ (also known as mute or free indices), by which we add-up, and
taking into account antisymmetry of Maxwell tensor Fαβ we the second summand to the form


Fμσ∇μFνσ =
1


2
Fμσ (∇μFνσ +∇σFμν) = −


1


2
Fμσ∇νFσμ =


1


2
Fμσ∇νFμσ . (3.113)


As a result, for fν (3.112) and its contravariant form we obtain


fν = −
1


4π
∇μ


(


FμσFνσ +
1


4
δμνF


αβFαβ


)


, (3.114)


fν = ∇μ


[


−
1


4π


(


FμσF ν∙∙σ +
1


4
gμνFαβFαβ


)]


. (3.115)


Denoting the term
1


4π


(


−FμσF ∙νσ∙ +
1


4
gμνFαβFαβ


)


= Tμν , (3.116)


we obtain the expression
fν = ∇μT


μν , (3.117)
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i. e. four-dimensional vector of density of Lorentz force fν equals to absolute (general covariant)
divergence of value Tμν , referred to as tensor of energy-impulse of electromagnetic field. Its structure
shows that it is symmetric Tμν=T νμ while its trace (given that trace of fundamental metric tensor
gμνg


μν=δνν=4) is zero


T νν = gμνT
μν =


1


4π


(


−FμσFμσ +
1


4
gμνg


μνFαβFαβ


)


=
1


4π


(
−FμσFμσ + F


αβFαβ
)
= 0 . (3.118)


Physical observable components of energy-impulse tensor are values


q =
T00


g00
, J i =


cT i0√
g00


, U ik = c2T ik, (3.119)


where q is observable density of field, J i is vector of observable density of impulse, and U ik is tensor of
observable density of impulse flow. Calculating the values for energy-impulse tensor of electromagnetic
field (3.116) we obtain the expressions


q =
E2 +H∗2


8π
, (3.120)


J i =
c


4π
εikmEkH∗m , (3.121)


U ik = qc2hik −
c2


4π


(
EiEk +H∗iH∗k


)
, (3.122)


where E2=hikE
iEk and H∗2=hikH


∗iH∗k. Comparing the formula for q (3.120) with that for density
of energy of electromagnetic field from classical electrodynamics


W =
E2 +H2


8π
, (3.123)


where E2=(
−→
E ;
−→
E ) and H2=(


−→
H ;
−→
H ), we can see that chronometrically invariant value q we have


calculated is observable density of energy of electromagnetic field in pseudo-Riemannian space. Com-
paring the formula for chronometrically invariant vector J i (3.121) with that for Poynting vector in
classical electrodynamics


−→
S =


c


4π
(
−→
E ;
−→
H ) , (3.124)


we can see that J i is observable Poynting vector in pseudo-Riemannian space. Correspondence of the
third observable component U ik (3.122) to values in classical electrodynamics can be established using
similarities with mechanics of continuous media, where three-dimensional tensor of similar structure
is tensor of tensions for elementary field volume. Therefore, U ik is chronometrically invariant tensor
of strengths of electromagnetic field in pseudo-Riemannian space.
Now we can obtain identities for chronometrically invariant components of vector of density of


Lorentz force, which right parts are already formulated with charge density ρ and current density ji


(3.108, 3.109), i. e. with sources of electromagnetic field. Using equation fν=∇μTμν we will formulate
the left parts with observable components of tensor of energy-impulse of electromagnetic field (3.120–
3.122). Using ready formulas for observable components of absolute divergence of symmetric 2nd rank
tensor (2.138, 2.139), we obtain


∗∂q


∂t
+ qD +


1


c2
DijU


ij + ∗∇̃iJ
i −
1


c2
FiJ


i =
1


c
Eij


i, (3.125)


∗∂Jk


∂t
+DJk + 2


(
Dki +A


k∙
∙i


)
J i + ∗∇̃iU


ik − qF k = ρEk +
1


c
εkimH∗ijm . (3.126)


The first chronometrically invariant identity (3.125) shows that if observable vector of current
density ji is orthogonal to vector of strength of electric field Ei, the right part turns to zero. In general
case, i. e. in case of arbitrary orientation of vectors ji and Ei, observable change of electromagnetic


field density in time (
∗∂q
∂t
value) depends upon the following factors:
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1. rate of change of physically observable reference volume of space, filled with electromagnetic
field (qD term);


2. change of observable strength of field under action of surface forces of volume deformation


( 1
c2
DijU


ij term);


3. effect of gravitational inertial force that decrease or increase observable density of field impulse


( 1
c2
FiJ


i term);


4. observable “spatial variation” (physical divergence) of field impulse density (∗∇̃iJ i term);
5. magnitudes and mutual orientation of current density vector ji and electric strength vector Ei


(the right part of the equation).


The second chronometrically invariant identity (3.126) shows that observable change in time of


vector of density of electromagnetic field impulse (
∗∂Jk


∂t
value) depends upon the following factors:


1. rate of change of observable reference volume of space, filled with electromagnetic field
(DJk term);


2. change of deformation forces and Coriolis forces of the space itself, which is accounted by the
term 2


(
Dki +A


k∙
∙i


)
J i;


3. effect of gravitational inertial force on observable density of electromagnetic field (qF k term);


4. observable “spatial variation” of field strength ∗∇̃iU ik;


5. observable density of Lorentz force (the right part defined by value fk=ρEk+1c ε
kimH∗ijm.


In conclusion we consider a specific case of isotropic electromagnetic field. Formal definition of
isotropic field with the help of Maxwell tensor [4] is a set of two conditions


FμνF
μν = 0 , FμνF


∗μν = 0 , (3.127)


which implies that both field invariants J1=FμνF
μν , J2=FμνF


∗μν (3.25, 3.26) are zeroes. In chrono-
metrically invariant notation, taking into account (3.28), the conditions take the form


E2 = H∗2, EiH
∗i = 0 . (3.128)


We see that electromagnetic field in pseudo-Riemannian space is observed as isotropic one given
that in observer’s frame of reference three-dimensional lengths of vectors of strengths of electric and
magnetic fields are equal, while Poynting vector J i (3.121) is zero


J i =
c


4π
εikmEkH∗m =


c


4π
εikmhmkEkH


∗k = 0 . (3.129)


In terms of observable components of energy-impulse tensor (3.120, 3.121) the obtained conditions
(3.128) also imply that


J = cq , (3.130)


where J=
√
J2 and J2=hikJ


iJk. In other words, length J of observable vector of density of impulse
of isotropic electromagnetic field depends only upon density of field q itself.


3.6 Equations of motion of charged particle obtained using parallel transfer
method


In this Section we will obtain chronometrically invariant equations of motion of test charged mass-
bearing particle in four-dimensional pseudo-Riemannian space with presence of electromagnetic field.
Generally, using the method described herein we can also obtain equations of motion for a particle,


which is not a test one17.


17A test particle is one with charge and mass so small that they do not affect electromagnetic and gravitational
fields in which it moves. Mass-bearing particles (rest-mass is non-zero) are particles which move along non-isotropic
trajectories.
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The equations in question are chronometrically invariant projections onto time and space of general
covariant equations of parallel transfer of four-dimensional summary vector


Qα = Pα +
e


c2
Aα, (3.131)


where Pα=m0
dxα


ds
is four-dimensional dynamic vector of particle that moves (in this case) along a


non-geodesic trajectory, and e
c2
Aα is four-dimensional impulse that the particle gains from interaction


of its charge e with electromagnetic field Aα, which diverts its trajectory from a geodesic line. Given
this problem statement, parallel transfer of superposition on non-geodesic eigenvector of particle and
the diverting vector is also a geodesic one


d


ds


(
Pα +


e


c2
Aα
)
+ Γαμν


(
Pμ +


e


c2
Aμ
) dxν


ds
= 0 . (3.132)


By definition geodesic line is a line of constant direction. This means that the one for which any
vector tangential to it at a given point will remain tangential along the entire line being subjected to
parallel transfer [10].
Equations of motion of particle may be obtained in another way, by considering motion along line


of the least (extremum) length using least action principle. Hence, extremum length lines are also
lines of constant direction. But, for instance, in space with non-metric geometry length is not defined
as category. Therefore lines of extremum length are neither defined and we can not use the least
action method to obtain the equations. Nevertheless, even in non-metric geometry we can define lines
of constant direction and derivation parameter to them. Hence one can assume that in metric spaces,
to which Riemannian space belongs, lines of extremum length are merely a specific case of constant
direction lines.
Hence, general formulas for chronometrically invariant projections of equations of parallel transfer,


obtained in Chapter 2, take the form


dϕ̃


ds
+
1


c


(


−Fiq̃
i dτ


ds
+Dik q̃


i dx
k


ds


)


= 0 , (3.133)


dq̃i


ds
+


(
ϕ̃


c


dxk


ds
+q̃k


dτ


ds


)
(
Dik+A


∙i
k∙


)
−
ϕ̃


c
F i
dτ


ds
+4imk q̃


m dx
k


ds
= 0 , (3.134)


where s (space-time interval) is parameter of derivation to the trajectory, ϕ̃ and q̃i are observable
projections of the summary vector of charged particle Qα (3.131) onto time and space


ϕ̃ = bαQ
α =


Q0
√
g00
=


1
√
g00


(
P0 +


e


c2
A0


)
, (3.135)


q̃i = hiαQ
α = Qi = P i +


e


c2
Ai. (3.136)


Physical observable projections of dynamic vector of a real mass-bearing particle are


P0
√
g00
= ±m, P i =


1


c
mvi =


1


c
pi, (3.137)


where “plus” sign stands for particle’s motion into future (in respect to observer), while “minus”


appears if particle moves into past, and pi=mdxi


dτ
is chronometrically invariant three-dimensional


impulse of particle. Observable projections of four-dimensional impulse e
c2
Aα are


e


c2
A0
√
g00
=


e


c2
ϕ ,


e


c2
Ai =


e


c2
qi, (3.138)


where ϕ is scalar potential and qi is vector-potential of electromagnetic field — chronometrically
invariant components of four-dimensional field potential Aα (3.8). Then values ϕ̃ and q̃i, i. e. physical
observable projections of summary vector Qα (3.135, 3.136) take the form
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ϕ̃ = ±m+
e


c2
ϕ , (3.139)


q̃i =
1


c


(
pi +


e


c2
qi
)
. (3.140)


We now substitute the values ϕ̃ and q̃i into general formulas for chronometrically invariant equa-
tions of motion (3.133, 3.134). Moving the terms that characterize electromagnetic interaction into
the right parts we arrive to chronometrically invariant equations of motion for mass-bearing charged
particle in our world that moves into future in respect to a regular observer (direct flow of time)


dm


dτ
−
m


c2
Fiv


i+
m


c2
Dikv


ivk = −
e


c2
dϕ


dτ
+
e


c3
(
Fiq


i−Dikq
ivk
)
, (3.141)


d
(
mvi


)


dτ
−mF i+2m


(
Dik+A


∙i
k∙


)
vk+m4inkv


nvk=


= −
e


c


dqi


dτ
−
e


c


(ϕ
c
vk+qk


) (
Dik+A


∙i
k∙


)
+
eϕ


c2
F i−


e


c
4inkq


nvk,


(3.142)


as well as to ones for mirror-world particle, that moves into past in respect to the observer (reverse
flow of time)


−
dm


dτ
−
m


c2
Fiv


i+
m


c2
Dikv


ivk = −
e


c2
dϕ


dτ
+
e


c3
(
Fiq


i−Dikq
ivk
)
, (3.143)


d
(
mvi


)


dτ
+mF i+m4inkv


nvk=


= −
e


c


dqi


dτ
−
e


c


(ϕ
c
vk+qk


) (
Dik+A


∙i
k∙


)
+
eϕ


c2
F i−


e


c
4inkq


nvk.


(3.144)


The left parts of the obtained equations fully match those of equations of motion of free mass-
bearing particles. The only difference is that these equations include observable characteristics of
non-free particle that characterize its non-geodesic motion (therefore the right parts here are not
zeroes). These right parts account for the effect that electromagnetic field makes on particle, as well
as the effect from physical and geometric properties of space (gravitational inertial force F i, rotation
Aik, and deformationDik of space and curvilinearity of coordinates4ink). Evidently, for a non-charged
particle (e=0) the right parts turn to zero and the resulting equations fully match chronometrically
invariant equations of motion of free mass-bearing particle in our world (1.51, 1.52) and in the mirror
world (1.56, 1.57).
We are now considering the right parts of the obtained equations of motion in details. These are


absolutely symmetric ones for particles that move either into future or past and change their sign
once the sign of the charge changes. We denote the right parts of temporal projections of equations
of motion (3.141, 3.143) as T . Given that


dϕ


dτ
=
∗∂ϕ


∂t
+ vi


∗∂ϕ


∂xi
, (3.145)


then using the formula for chronometrically invariant strength of electric field in covariant form Ei
(3.14), we can represent T as


T = −
e


c2
Eiv


i −
e


c2


∗∂ϕ


∂t
+


e


c3


(∗∂qi
∂t
−Dikq


k


)


vi +
e


c3


(
qi −


ϕ


c
vi
)
Fi . (3.146)


Substituting the formula into temporal projections of equations of motion (3.141, 3.143) and
multiplying them by c2, we obtain equation for relativistic energy E=±mc2 of particles that move
into future and into past, respectively


dE


dτ
−mFiv


i +mDikv
ivk = −eEiv


i − e
∗∂ϕ


∂t
+


+
e


c


(∗∂qi
∂t
−Dikq


k


)


vi +
e


c


(
qi −


ϕ


c
vi
)
Fi ,


(3.147)
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−
dE


dτ
−mFivi +mDikvivk = −eEivi − e


∗∂ϕ


∂t
+


+
e


c


(∗∂qi
∂t
−Dikq


k


)


vi +
e


c


(
qi −


ϕ


c
vi
)
Fi ,


(3.148)


where eEiv
i is work done by electric component of the field to displace the particle in unit of time.


The obtained temporal observable projections of equations of motion of charged particle (3.147,
3.148) make theorem of live forces in pseudo-Riemannian space, presented in chronometrically invariant
notation, i. e. formulated with physical observable values. As can be easily seen, in Galilean frame of
reference our equation (3.147), obtained for particles with direct flow of time, take the form of temporal
component of Minkowski equation (3.98). In three-dimensional Euclidean space the obtained equation


(3.147) transforms into the theorem of live forces from classical electrodynamics dE
dt
=e
−→
E−→u (3.92).


We now turn to the right parts of spatial projections of equations of motion (3.142, 3.144). We
denote them as M i, because these are the same for particles that move either into future or into past
and change their sign once the sign of particle’s charge changes. Because


dqi


dτ
=
∗∂qi


∂t
+ vk


∗∂qi


∂xk
, (3.149)


and in it, taking into account, that
∗∂hik


∂t
= − 2Dik (1.40)


∗∂qi


∂t
=
∗∂


∂t


(
hikqk


)
= −2Dikq


k + hik
∗∂qk


∂t
, (3.150)


then M i takes the form


M i = −
e


c
hik


∗∂qk


∂t
+
eϕ


c2
(
F i +Aikvk


)
+
e


c
Aikqk+


+
e


c


(
qk −


ϕ


c
vk
)
Dik −


e


c
vk
∗∂qi


∂xk
−
e


c
4inkq


nvk.


(3.151)


Using formulas for chronometrically invariant components Ei (3.11) and Hik (3.12) of Maxwell
tensor Fαβ , we write down the first two terms from the formula for the value M


i (3.151) and the third
term as


−
e


c
hik


∗∂qk


∂t
+
eϕ


c2
F i = −eEi + ehik


∗∂ϕ


∂xk
, (3.152)


eϕ


c2
Aikvk =


e


2c
himvn


(∗∂qm
∂xn


−
∗∂qn


∂xm


)


−
e


2c
Hikvk . (3.153)


We write down value Hik as Hik=εmikH∗m (3.56). Then we have


eϕ


c2
Aikvk =


e


2c
himvn


(∗∂qm
∂xn


−
∗∂qn


∂xm


)


−
e


2c
εikmH∗mvk , (3.154)


M i = −e


(


Ei +
1


2c
εikmvkH∗m


)


+
e


c


(
qk −


ϕ


c
vk
)
Dik + eh


ik
∗∂ϕ


∂xk
+


+
e


c
Aikqk +


e


2c
himvk


(∗∂qm
∂xk


−
∗∂qk


∂xm


)


−
e


c
vk
∗∂qi


∂xk
−
e


c
4inkq


nvk,


(3.155)


and the sum of the latter three terms in M i equals


e


2c
himvk


(∗∂qm
∂xk


−
∗∂qk


∂xm


)


−
e


c
vk
∗∂qi


∂xk
−
e


c
4inkq


nvk =


= −
e


2c
himvk


∗∂qk


∂xm
−


e


2c
vk
∗∂qi


∂xk
−


e


2c
himqnvk


∗∂hkm


∂xn
.


(3.156)
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Finally the spatial part of chronometrically invariant equations of motion of mass-bearing charged
particle that move into future and into past (3.142, 3.144) take the form, respectively


d
(
mvi


)


dτ
−mF i + 2m


(
Dik +A


∙i
k∙


)
vk +m4inkv


nvk =


= −e


(


Ei +
1


2c
εikmvkH∗m


)


+
e


c


(
qk −


ϕ


c
vk
)
Dik + eh


ik
∗∂ϕ


∂xk
+


+
e


c
Aikqk −


e


2c
himvk


∗∂qk


∂xm
−


e


2c
vk
∗∂qi


∂xk
−


e


2c
himqnvk


∗∂hkm


∂xn
,


(3.157a)


d
(
mvi


)


dτ
+mF i +m4inkv


nvk =


= −e


(


Ei +
1


2c
εikmvkH∗m


)


+
e


c


(
qk −


ϕ


c
vk
)
Dik + eh


ik
∗∂ϕ


∂xk
+


+
e


c
Aikqk −


e


2c
himvk


∗∂qk


∂xm
−


e


2c
vk
∗∂qi


∂xk
−


e


2c
himqnvk


∗∂hkm


∂xn
.


(3.157b)


From here we see that the first term −e
(
Ei+ 12cε


ikmvkH∗m


)
in the right parts of the equations is


different from chronometrically invariant Lorentz force Φ=−e
(
Ei+1c ε


ikmvkH∗m


)
by coefficient 1/2


at the term that stands for magnetic component of the force. In Section 9 herein we are going to show
the structure of electromagnetic potential Aα at which the other terms in M i fully compensate the
coefficient 1/2 so that only Lorentz force is left in the right parts of chronometrically invariant spatial
equations of motion of charged particle.


3.7 Equations of motion, obtained using the least action principle as
a partial case of the previous equations


In this Section we are going to obtain chronometrically invariant notation of equations of motion of
mass-bearing charged particle, using the least action principle. The principle says that action S to
displace a particle along the shortest trajectory is the least, i. e. variation of action is zero


δ


∫ b


a


dS = 0 . (3.158)


Therefore, equations of motion, obtained from the least action principle are equations of the
shortest lines.
Elementary action of gravitational and electromagnetic fields to displace charged mass-bearing


particle is [1]


dS = −m0cds−
e


c
Aαdx


α, (3.159)


where ds is elementary space-time interval. We see that the value is only applicable to characterize
particles that move along non-isotropic trajectories (ds 6=0). On the other hand, obtaining equations
through method of parallel transfer (constant direction line) is equally applicable to both isotropic
and non-isotropic trajectories, along which ds=0. Moreover, parallel transfer is as well applicable to
non-metric geometries, in particular, to obtain equations of motion of particles in fully degenerated
space-time (zero-space). Therefore equations of the least length lines, obtained through the least
action method, are merely a narrow specific case of constant direction lines, which result from parallel
transfer.
But we are returning to the least action principle (3.158). For mass-bearing charged particle the


condition takes the form


δ


∫ b


a


dS = −δ
∫ b


a


m0cds− δ
∫ b


a


e


c
Aαdx


α = 0 , (3.160)
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where the first term can be denoted as


−δ
∫ b


a


m0cds = −
∫ b


a


m0cDUαδx
α =


=


∫ b


a


m0c (dUαds− Γα,μνU
μdxν) δxα.


(3.161)


We represent variation of the second integral from the initial formula (3.160) as the sum of the
follow terms


−
e


c
δ


∫ b


a


Aαdx
α = −


e


c


(∫ b


a


δAαdx
α +


∫ b


a


Aαdδx
α


)


. (3.162)


Integrating the second term part by part we obtain


∫ b


a


Aαdδx
α = Aαδx


α|ba −
∫ b


a


dAαδx
α. (3.163)


Here the first term is zero, as the integral is variated with the given values of coordinates of
integration limits. Taking into account that variation of covariant vector is


δAα =
∂Aα


∂xβ
δxβ , dAα =


∂Aα


∂xβ
dxβ , (3.164)


we obtain variation of electromagnetic part of action


−
e


c
δ


∫ b


a


Aαdx
α = −


e


c


∫ b


a


(
∂Aα


∂xβ
dxαδxβ −


∂Aα


∂xβ
δxαdxβ


)


. (3.165)


Transpositioning free indices α and β in the first term of the formula and accounting for variation of
gravitational part of the action (3.161) we arrive to variation of the total action (3.160) of gravitational
and electromagnetic fields on particle as


δ


∫ b


a


dS =


∫ b


a


[
m0c (dUα − Γα,μνU


μdxν)−
e


c
Fαβdx


β
]
δxα, (3.166)


where Fαβ=
∂Aβ
∂xα
−∂Aα
∂xβ


is Maxwell tensor, and Uμ=dx
μ


ds
is four-dimensional velocity of particle.


Because value δxα is arbitrary the formula under integral is always zero. Hence, we arrive to general
covariant equations of motion of mass-bearing charged particle


m0c


(
dUα


ds
− Γα,μνU


μUν
)


=
e


c
FαβU


β , (3.167)


or, lifting α index, we arrive to more convenient form


m0c


(
dUα


ds
+ ΓαμνU


μUν
)


=
e


c
Fα∙∙β U


β . (3.168)


Therefore, the obtained equations (3.168) are Minkowski equations in pseudo-Riemannian space.
In Galilean frame of reference in a flat Minkowski space of Special Relativity the transform into regular
relativistic equations (3.93).
Projecting the general covariant Minkowski equations (3.168) onto time and space in accompanying


frame of reference we obtain chronometrically invariant Minkowski equations in pseudo-Riemannian
space for a charged mass-bearing particle that moves in our world


dE


dτ
−mFiv


i +mDikv
ivk = −eEiv


i, (3.169)
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d
(
mvi


)


dτ
−mF i + 2m


(
Dik+A


∙i
k∙


)
vk +m4inkv


nvk = −e


(


Ei +
1


c
εikmvkH∗m


)


, (3.170)


and for a charged mass-bearing particle in the mirror world


−
dE


dτ
−mFiv


i +mDikv
ivk = −eEiv


i, (3.171)


d
(
mvi


)


dτ
+mF i +m4inkv


nvk = −e


(


Ei +
1


c
εikmvkH∗m


)


. (3.172)


Scalar equations of motion, both in our and the mirror worlds, represent theorem of live forces.
Vector equations are three-dimensional Minkowski equations, which right parts have chronometrically
invariant Lorentz force (calculated in pseudo-Riemannian space). As easily seen, in Galilean frame
of reference in Minkowski space these equations turn into theorem of live forces (3.92) and regular
equations of motion of charged particle (3.90) from classical electrodynamics.
Evidently, the right parts of the equations (3.169–3.172), obtained through the least action method,


are different from the right parts of equations of motion (3.146, 3.157) obtained by parallel transfer.
The difference is in absence here (3.169–3.172) of a few terms that characterize the structure of
electromagnetic field and that of the space itself. But as we have already mentioned, the least length
lines, described by equations based on the least action principle, are only a specific case of constant
direction lines, defined by parallel transfer. Therefore there is little surprise in that equations of
parallel transfer, as more general ones, have additional terms, which account for the structures of
space and electromagnetic field.


3.8 Geometric structure of electromagnetic four-dimensional potential


In this Section we are going to find a structure of four-dimensional potential of electromagnetic field
Aα that conserves the length of summary vector Qα=Pα+ e


c2
Aα in parallel transfer.


As known, parallel transfer in the meaning of Levi-Civita conserves the length of vector Qα being
transferred, i. e. constancy condition QαQ


α=const is true. Given that the square of vector length is
invariant in pseudo-Riemannian space, this condition must be true in any frame of reference, including
the case of observer accompanying his body of reference. Hence we can analyze the condition, formu-
lating it with physical observable values in accompanying frame of reference, i. e. in chronometrically
invariant form.
Components of vector Qα in accompanying frame of reference are


Q0 =
(
1−


w


c2


)(
±m+


eϕ


c2


)
, (3.173)


Q0 =
1


1−
w


c2


[(
±m+


eϕ


c2


)
+
1


c2
vi


(
mvi +


e


c
qi
)]


, (3.174)


Qi = −
1


c


(
mvi +


e


c
qi


)
−
1


c


(
±m+


eϕ


c2


)
vi , (3.175)


Qi =
1


c


(
mvi +


e


c
qi
)
, (3.176)


and its square is


QαQ
α = m20 +


e2


c4
(
ϕ2 − qiq


i
)
+
2me


c2


(


±ϕ−
1


c
viq
i


)


. (3.177)


From here we can see that the square of length of summary vector of mass-bearing charged particle
falls apart into the following values:


• square of length of four-dimensional eigenvector of particle’s impulse PαPα=m20;
• square of length of four-dimensional impulse e


c2
Aα that charged particle gains from electromag-


netic field (the second term);
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• the term 2me
c2
(±ϕ−1


c
viq
i), that describes interaction between gravitational “charge” of particle


m and its electric charge e.


In the formula for square of vector Qα (3.177), the first term m20 is conserved in any case. In other
words, it is an invariant, that does not depend upon frame of reference. Our goal is to calculate the
conditions, under which the whole formula for square of vector Qα (3.177) is conserved.
We propose that vector-potential of the field has the structure


qi =
ϕ


c
vi. (3.178)


In this case18 the second term (3.177), which is square of e
c2
Aα, is


e2


c4
AαA


α =
e2ϕ2


c4


(


1−
v2


c2


)


. (3.179)


Transforming the third term in a similar way, we obtain formula for square of vector Qα (3.177)
in the form


QαQ
α = m20 +


e2ϕ2


c4


(


1−
v2


c2


)


+
2m0e


c2
ϕ


√


1−
v2


c2
. (3.180)


Then introducing notation for scalar potential of electromagnetic field


ϕ =
ϕ0√


1− v
2


c2


, (3.181)


we can represent the obtained formula (3.180) as


QαQ
α = m20 +


e2ϕ20
c4
+
2m0eϕ0
c2


= const. (3.182)


From here we see that length of summary vector Qα of charged mass-bearing particle conserves in
parallel transfer (i. e. is an invariant not depending upon frame of reference), if its observable potentials
ϕ and qi in the field are related to four-dimensional field potential Aα as


A0
√
g00
= ϕ =


ϕ0√


1− v
2


c2


, Ai = qi =
ϕ


c
vi. (3.183)


Then for four-dimensional vector e
c2
Aα, that characterizes interaction of charged particle with


electromagnetic field we have


e


c2
A0
√
g00
=


eϕ0


c2
√


1− v
2


c2


,
e


c2
Ai =


eϕ0


c3
vi


√


1− v
2


c2


. (3.184)


Note that the dimensions of vectors e
c2
Aα and Pα=m0


dxα


ds
in CGSE and Gaussian systems of


units are the same and equal to a mass m [g].
Comparing physical observable components of both vectors we can easily see that the analog for


relativistic mass m in particle’s interaction with electromagnetic field is the value


eϕ


c2
=


eϕ0


c2
√


1− v
2


c2


, (3.185)


18A similar problem could be solved, assuming that qi=±ϕc v
i. But in comparative analysis of of the two groups of


equations only positive values of qi=
ϕ
c v
i will be important, because observer’s physical time τ , by definition, flows from


past into future only (reference time), while interval of physical observable time dτ is always greater than zero.
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where eϕ is potential energy of charged particle that travels at observable velocity vi=dx
i


dτ
in electro-


magnetic field (which rests in respect to the observer and his body of reference). In general, scalar
potential ϕ is potential energy of the field itself, divided by unit of charge. Then eϕ is relativistic
potential energy of particle with charge e in electromagnetic field, while eϕ0 is its rest potential energy.
When particle rests in respect to field, its rest potential energy equals to relativistic potential energy.
Comparing E=mc2 and W=eϕ we can conclude that W/c2 is electromagnetic analog for rela-


tivistic mass m. Respectively, W0=
eϕ0
c2
is electromagnetic analog for rest-mass m0. Then physical


observable value e
c2
Ai=


eϕ
c3
vi is similar to 1c p


i=1cmv
i (observable vector of impulse of mass-bearing


particle, divided by light speed). Therefore, when particle rests in respect to field, its “electro-
magnetic” projection onto space (vector value) is zero, while only its temporal projection (poten-
tial rest-energy eϕ0=const) is observable. But if a particle moves in field at velocity v


i, its ob-
servable “electromagnetic” projections will be relativistic potential energy eϕ and three-dimensional
impulse


eϕ
c3
vi.


Having obtained chronometrically invariant components of vector e
c2
Aα (3.184) calculated for the


given structure of components of vector Aα (3.183), we can restore it in general covariant form,
formulating with scalar potential of resting charged particle ϕ0 in electromagnetic field. Taking into
account that component Ai is


Ai = qi =
ϕ


c
vi =


ϕ
√


1− v
2


c2


1


c


dxi


dτ
= ϕ0


dxi


ds
, (3.186)


we obtain the desired general covariant notation of Aα


Aα = ϕ0
dxα


ds
,


e


c2
Aα =


eϕ0


c2
dxα


ds
. (3.187)


At the same time, projecting the obtained formula for Aα (3.187) onto time and space


A0
√
g00
= ±ϕ = ±


ϕ0√


1− v
2


c2


, Ai = qi =
ϕ


c
vi, (3.188)


we obtain alternating signs in temporal projection, which was not the case in the initial temporal
projection of the value (3.183). Naturally, a question arises: how did temporal observable component
of vector Aα, initially defined as ϕ, at the given structure of vector Aα (3.187) accept the alternating
sign? The answer is that in the first case observable values ϕ and qi are defined proceeding from
general rule of building chronometrically invariant values. But without knowing the structure of the
projected vector Aα itself, we can not calculate them.
Therefore in formulas for temporal and spatial projections (3.183) the symbols ϕ and qi merely


denote observable components without revealing their “inner” structure. On the other hand, in
formulas (3.188) value ϕ and qi are calculated using formulas ϕ=


√
g00A


0+
g0i√
g00


Ai and qi=Ai, where


the structure of components A0 and Ai is given. Hence in the second case value ±ϕ results from
calculation and sets a concrete formula


ϕ = ±
ϕ0√


1− v
2


c2


. (3.189)


Therefore calculated values of chronometrically invariant components of vector e
c2
Aα have the form


e


c2
A0
√
g00
= ±


eϕ


c2
= ±


eϕ0


c2
√


1− v
2


c2


,
e


c2
Ai =


eϕ


c3
vi, (3.190)
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where “plus” sign stands for particles of our world that travel from past into future (direct flow of
time), while “minus” stands for mirror-world particles that travel into past in respect to us (reverse
flow of time). The square of length of this vector is


e2


c4
AαA


α =
e2ϕ2


c4


(


1−
v2


c2


)


=
e2ϕ20
c4
= const (3.191)


along the entire trajectory of particle’s motion (parallel transfer lines). Vector e
c2
Aα itself has real


length at v2<c2, zero length at v2=c2 and imaginary length at v2>c2. But here we limit our study
to real form of the vector (sub-light particles), because light-like or super-light charged particles are
unknown to us.
Comparing formulas for vectors Pα=m0


dxα


ds
and e


c2
Aα=


eϕ0
c2


dxα


ds
we can see that both vector are


collinear, i. e. are tangential to the same non-isotropic trajectory, to which derivation parameter s is
assumed. Hence in this case dynamic vector of particle Pα is co-directed with action of electromagnetic
field on it (particle moves “along” field).
We are going to consider the general case of not co-directed vector. From the square of summary


vector Qα (3.177) we see that the third term is doubled scalar product of vectors Pα and e
c2
Aα.


Parallel transfer of the two vectors conserves their scalar product


D (PαA
α) = AαDPα + PαDAα = 0 , (3.192)


because absolute increment of each vector is zero. Hence we obtain


2e


c2
PαA


α =
2me


c2


(


±ϕ−
1


c
viq
i


)


= const, (3.193)


that is, scalar product of Pα and e
c2
Aα is conserved. Consequently lengths of both vectors are


conserved too. In particular


AαA
α = ϕ2 − qiq


i = const. (3.194)


As known, scalar product of two vectors is product of their lengths multiplied by cosine of the angle
between them. Therefore parallel transfer also conserves the angle between vectors being transferred


cos
(
̂Pα;Aα


)
=


PαA
α


m0
√
ϕ2 − qiqi


= const. (3.195)


Taking into account the formula for relativistic mass m, we can re-write the condition (3.193) as
follows


2e


c2
PαA


α = ±
2m0e


c2
ϕ


√


1− v
2


c2


−
2m0e


c2
1


c


viq
i


√


1− v
2


c2


= const, (3.196)


or as relationship between scalar and vector potentials


±
ϕ


√


1− v
2


c2


−
1


c


viq
i


√


1− v
2


c2


= const. (3.197)


For instance, we can find the relationship between potentials ϕ and qi for a particle in field, when
four-dimensional vector of particle Pα is orthogonal to four-dimensional impulse e


c2
Aα, which particle


gains from field. Because parallel transfer of two vectors conserves the angle between them, according
to general formula (3.195) cosine of angle between these orthogonal vectors is zero along the entire
trajectory


PαA
α = ±ϕ−


1


c
viq
i = 0 . (3.198)
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Consequently, if particle travels in electromagnetic field so that vectors Pα and Aα are orthogonal,
then scalar potential of field is


ϕ = ±
1


c
viq
i, (3.199)


i. e. is scalar product of two chronometrically invariant vectors: observable velocity of particle vi and
particle’s vector-potential in field qi.
Now we are going to obtain the formula for the square of summary particle’s vector Qα taking


into account that structure of four-dimensional electromagnetic potential is Aα=ϕ0
dxα


ds
(3.187), i. e.


that field vector Aα is collinear to particle’s impulse vector Pα. Then


QαQ
α = m2 −


m2


c2
viv
i +


e2


c4
(
ϕ2 − qiq


i
)
= m20 +


e2


c4
ϕ20 . (3.200)


Multiplying both parts of the equation by c4 and denoting relativistic energy of particle as E=mc2,
we arrive to


E2 − c2p2 + e2ϕ2 − e2qiq
i = E20 + e


2ϕ20 , (3.201)


where p2=pip
i, pi=mvi is three-dimensional chronometrically invariant potential of particle, eϕ is


potential energy of charged particle in electromagnetic field, eqi is three-dimensional impulse that
particle gains from interaction between its charge and electromagnetic field.


3.9 Building Minkowski equations as partial case of the obtained equations
of motion


In Section 3.6 we obtained chronometrically invariant (observable) projections of general covariant
equations of motion of mass-bearing charged particle in pseudo-Riemannian space. There the initial
general covariant equations of motion were obtained using method of parallel transfer of particle’s
summary vector.
In the same Section we showed that temporal observable projection (3.147) of these equations


of motion in Galilean frame of reference takes the form of the temporal component of Minkowski
equations (3.98). In three-dimensional Euclidean space our chronometrically invariant scalar equation
(3.147) becomes theorem of live forces of classical electrodynamics (3.92). But the right parts of spatial


observable projections, instead of chronometrically invariant Lorentz force Φi=−e
(
Ei+1c ε


ikmvkH∗m


)
,


have the term −e
(
Ei+ 12cε


ikmvkH∗m


)
and some other additional terms that depend upon observable


characteristics of electromagnetic field and the space itself. Therefore for three-dimensional observable
projections of equations of motion in pseudo-Riemannian space, obtained through parallel transfer,
the principle of correspondence with three-dimensional components of Minkowski equations is set
non-trivially.
On the other hand, equations of constant direction lines, obtained through parallel transfer in


pseudo-Riemannian space, are a more general case of the least length lines, obtained with method
of the least action. Note that equations of motion, obtained from principle of the least action (in
Section 3.7), have the structure matching that of Minkowski equations. Hence we can suppose that
temporal and spatial projections of our equations of motion of charged particle, as more general ones,
in a certain special case can be transformed into spatial projections of equations of motion, obtained
from the least action principle.
To find out exactly under what conditions this can be true, we are going to consider the right parts


of spatial projections of equations of motion (3.157), which contain the mismatch with Lorentz force.
For analyzes convenience we considered the right parts as separate formulas up denoted as M i. Using
physical observable component Hik (3.12) of Maxwell tensor Fαβ , we write down the term


eϕ
c2
Aikvk


from M i as
eϕ


c2
Aikvk =


e


2c
himvn


(∗∂qm
∂xn


−
∗∂qn


∂xm


)


−
e


2c
εikmH∗mvk , (3.202)
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where εikmH∗m=H
ik. Now we substitute into (3.157) the observable components of potential of


electromagnetic field Aα as of (3.188). With this potential, impulse vector e
c2
Aα that charged particle


gains from electromagnetic field is tangential to trajectory. Using the first formula qm=
ϕ
c vm we


arrive to dependence of the right part under consideration from only the scalar potential of electro-
magnetic field


M i = − e


(


Ei +
1


c
εikmvkH∗m


)


+ ehik
(


1−
v2


c2


) ∗∂ϕ


∂xk
+
eϕ


2
hik


∗∂


∂xk


(


1−
v2


c2


)


. (3.203)


Substituting relativistic formula for scalar potential ϕ (3.181) into this formula we see that the
sum of the last two terms becomes zero


−
eϕ


2
hik


∗∂


∂xk


(


1−
v2


c2


)


+
eϕ


2
hik


∗∂


∂xk


(


1−
v2


c2


)


= 0 . (3.204)


Then M i takes the form of chronometrically invariant Lorentz force in pseudo-Riemannian space


M i = −e


(


Ei +
1


c
εikmvkH∗m


)


, (3.205)


which is exactly what we had to prove. Therefore, spatial projections of equations of motion of charged
mass-bearing particle, obtained through parallel transfer method in pseudo-Riemannian space, match
spatial projections of equations of motion, obtained using the least action principle, in a specific case


where four-dimensional electromagnetic potential has the structure as Aα=ϕ0
dxα


ds
(3.187). Conse-


quently, given this structure of electromagnetic potential in Galilean frame of reference in flat space-
time, our chronometrically invariant equations of motion fully match Minkowski equations and in
three-dimensional Euclidean space take the form of equations of motion in classical electrodynamics.
Now we are going to consider the right part c2T of scalar equation of motion (3.147) under condition


that vector Aα has the structure as mentioned in the above and is tangential to trajectory of particle’s
motion. Substituting observable components ϕ and qi for vector Aα of the given structure into (3.146),
we transform value T to bring it to the form


c2T = − eEivi − e
∗∂ϕ


∂t
+


e


c2


[∗∂
∂t


(
ϕhikv


k
)
− ϕDikq


k


]


vi =


= − eEivi − e
∗∂ϕ


∂t


(


1−
v2


c2


)


+
eϕ


c2
Dikv


ivk +
eϕ


c2
vk
∗∂vk


∂t
.


(3.206)


Substituting relativistic definition of potential ϕ (3.181) into the first derivative and after derivation
returning to ϕ again we obtain


c2T = − eEivi −
eϕ


2c2


∗∂


∂t


(
hikv


ivk
)
+
eϕ


c2
Dikv


ivk +
eϕ


c2
vk
∗∂vk


∂t
=


= − eEivi −
eϕ


2c2


(∗∂hik
∂t
vivk + 2vk


∗∂vk


∂t


)


+
eϕ


c2
Dikv


ivk +
eϕ


c2
vk
∗∂vk


∂t
= − eEiv


i,


(3.207)


because we took into account that
∗∂hik
∂t
=2Dik by definition of the tensor of deformation velocities


of the space Dik (1.40).
Therefore the right part of scalar chronometrically invariant equation of motion of charged parti-


cle fully matches temporal projection of four-dimensional Minkowski equations in pseudo-Riemannian
space. Consequently if four-dimensional vector-potential of electromagnetic field is tangential to four-
dimensional trajectory of charged particle, then equations of motion obtained through parallel transfer
fully match equations of motion obtained using the least action principle. Noteworthy, this is yet an-
other illustration of the geometric fact that the least length lines, obtained from the least action
principle, are merely a very specific case of constant direction lines, which result from parallel trans-
fer method.
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3.10 Structure of the space with stationary electromagnetic field


It is evident that setting a particular structure of electromagnetic field imposes certain limits on
motion of charged particle, which, in its turn, imposes limitations on structure of pseudo-Riemannian
space where the motion takes place.
We are going to find out what kind of structure pseudo-Riemannian space should have so that


particle moved in stationary electromagnetic field.
Chronometrically invariant equations of motion of charged mass-bearing particle in our world have


the form
dE


dτ
−mFiv


i+mDikv
ivk = −e


dϕ


dτ
+
e


c


(
Fiq


i−Dikq
ivk
)
, (3.208)


d
(
mvi


)


dτ
−mF i+2m


(
Dik+A


∙i
k∙


)
vk+m4inkv


nvk=


= −
e


c


dqi


dτ
−
e


c


(ϕ
c
vk+qk


) (
Dik+A


∙i
k∙


)
+
eϕ


c2
F i−


e


c
4inkq


nvk.


(3.209)


Because we assume electromagnetic field to be stationary, field potentials ϕ and qi depend upon
spatial coordinates, but not time.
Observable components of electromagnetic field tensor (Maxwell tensor) for a stationary field are


Ei =
∗∂ϕ


∂xi
−
ϕ


c2
Fi =


∂ϕ


∂xi
− ϕ


∂ ln
(
1− w


c2


)


∂xi
, (3.210)


H∗i =
1


2
εimnHmn =


1


2
εimn


(
∂qm


∂xn
−
∂qn


∂xm
−
2ϕ


c
Amn


)


. (3.211)


From here we can arrive to limitations on metric of the space, imposed by stationary state of
electromagnetic field.
Hence, the formulas for Ei andH


∗i, along with chronometrically invariant derivatives of field vector
and scalar potentials, also include chronometrically invariant properties of the space of reference:
vector of gravitational inertial force Fi and tensor of space non-holonomity (rotation Aik). Evidently,
for a stationary electromagnetic field of reference physical observable properties of space


Fi =
c2


c2 − w


(
∂w


∂xi
−
∂vi


∂t


)


, Aik =
1


2


(
∂vk


∂xi
−
∂vi


∂xk


)


+
1


2c2
(Fivk − Fkvi) (3.212)


should be stationary as well.
From these definitions we see that: values Fi and Aik are stationary (do not depend upon time)


if linear velocity of space rotation is stationary too, i. e. ∂vi
∂t
=0. Consequently, ∂vi


∂t
=0 condition, i. e.


stationary rotation of space turns chronometrically invariant derivative to spatial coordinates into a
regular derivative


∗∂


∂xi
=


∂


∂xi
−
1


c2


∗∂vi


∂t
=


∂


∂xi
. (3.213)


Because chronometrically invariant derivative to time is different from a regular derivative only


down to multiplier ∂
∂t
=
(
1−w


c2


)∗∂
∂t
, regular derivative of stationary value is zero too.


For tensor of deformation velocities Dik in case of stationary rotation of space we have the follows


∗∂Dik


∂t
=
1


2


∗∂hik


∂t
=
1


2


∗∂


∂t


(


−gik +
1


c2
vivk


)


= −
1


2


∗∂gik


∂t
. (3.214)


Because the right parts of the equations of motion are stationary, the left parts should be the
same too. This implies, that the space is not deformed. Then according to (3.124) three-dimensional
coordinate metric gik does not depend upon time and chronometrically invariant Christoffel symbols
4ijk (1.47) are stationary as well.
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Observable components of Maxwell tensor (3.210, 3.211) follow Maxwell equations (3.63, 3.64),
which for a stationary field are


∂Ei


∂xi
+
∂ ln
√
h


∂xi
Ei −


2


c
Ω∗mH


∗m = 4πρ


εikm ∗∇̃k
(
H∗m


√
h
)
=
4π


c
ji
√
h







Group I, (3.215)


∂H∗i


∂xi
+
∂ ln
√
h


∂xi
H∗i +


2


c
Ω∗mE


m = 0


εikm ∗∇̃k
(
Em
√
h
)
= 0







Group II. (3.216)


Then Lorentz condition (3.65) and equation of continuity (3.66), respectively, take the form as down


∗∇̃iq
i = 0 , ∗∇̃i j


i = 0 . (3.217)


Therefore we have found the way that stationary state of electromagnetic field affects physical
observable properties of pseudo-Riemannian space and the basic equations of electrodynamics.
In the next Sections we will use these results to solve equations of motion for charged particle in


pseudo-Riemannian space (3.208, 3.209) in three specific cases of stationary fields: (a) in stationary
electric field (magnetic component is zero); (b) in stationary magnetic field (electric component is
zero); (c) in stationary electric and magnetic fields.


3.11 Motion of charged particle in stationary electric field


We are going to consider motion of charged mass-bearing particle in stationary electric field in pseudo-
Riemannian space. Magnetic field is absent, i. e. does not reveal itself for the observer.
What conditions should pseudo-Riemannian space satisfy to allow existence of pure “electric type”


stationary electromagnetic field? From the formula for magnetic strength of stationary field


Hik =
∂qi


∂xk
−
∂qk


∂xi
−
2ϕ


c
Aik (3.218)


we see that Hik=0 provided two conditions:


1. vector-potential qi is irrotational
∂qi
∂xk
=
∂qk
∂xi
;


2. the space is holonomic, i. e. Aik=0.


Strength of stationary electric field Ei (3.210) is the sum of spatial derivative of scalar potential
ϕ and the term


ϕ
c2
Fi that characterizes interaction between field with potential ϕ and field of gravi-


tational inertial force Fi. But on the Earth surface the ratio of gravitational potential and the square
of light speed is


w


c2
=
GM⊕


c2R⊕
≈ 10−10. (3.219)


Therefore in conditions of a real Earth laboratory the second term in (3.210) may be neglected so
that Ei will only depend upon spatial distribution of scalar potential of field


Ei =
∂ϕ


∂xi
. (3.220)


Because the right parts of equations of motion that stand for Lorentz force are stationary, the left
parts should be stationary too. Under the conditions we are considering this is trues if deformations
velocity tensor is zero, i. e. space is not deformed. Therefore, if stationary electromagnetic field has
non-zero electric component and zero magnetic component, then pseudo-Riemannian space should
satisfy the conditions as:
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1. gravitational potential is negligible w≈0;
2. space does not rotate, i. e. Aik=0;


3. space is not deformed, i. e. Dik=0.


Besides, to make calculations easier we assume that for our measurements the structure of three-
dimensional space is close to that of Euclidean space, i. e. 4ink≈0.
Then chronometrically invariant (physical observable) equations of motion of mass-bearing charged


particle in our world we obtained up (3.208, 3.209) will take the form


dm


dτ
= −


e


c2
dϕ


dτ
, (3.221)


d


dτ


(
mvi


)
= −


e


c


dqi


dτ
. (3.222)


From scalar equation of motion (theorem of live forces) we can see that change of relativistic energy
of particle E=mc2 is due to work done by electric component Ei.
From vector equation of motion we can see that three-dimensional observable impulse of particle


changes under action of the term
dqi


dτ
. Assuming that four-dimensional potential of field is tangential


to the world line of particle, we, as shown in Section 9, will get three-dimensional Lorentz force
Φi=−eEi in the right part of the vector equation. That is, in the considered case three-dimensional
impulse of particle also changes under action of strength of electric field.
Both groups of Maxwell equations for stationary field (3.215, 3.216) in this case take a simple form


∂Ei


∂xi
= 4πρ


ji = 0







Group I, (3.223)


εikm
∂Em


∂xk
= 0


}


Group II. (3.224)


Integrating scalar equation of motion (called theorem of live forces) we arrive to so-called integral
of live forces


m+
eϕ


c2
= B = const, (3.225)


where B is integration constant.
Another consequence from Maxwell equations is that in this case scalar potential of field satis-


fies either:


1. Poisson equation
∂2ϕ
∂x2
+
∂2ϕ
∂y2
+
∂2ϕ
∂z2
=4πρ, if ρ 6=0;


2. Laplace equation
∂2ϕ
∂x2
+
∂2ϕ
∂y2
+
∂2ϕ
∂z2
=0, if density of charges ρ=0.


We have found out the properties of a pseudo-Riemannian space that allows motion of charged
particle in constant electromagnetic field. It would be natural now to obtain exact solutions of
equations of motion of particle for a certain particular case. But unless a particular structure of the
field itself is set by Maxwell equations this can not be done. Hence to simplify calculations we assume
electric field uniform.
We assume that covariant vector of strength of electric field Ei, which is chronometric invariant,


is directed along the x axis. Following Landau and Lifshitz (see Section 20 of The Classical Theory
of Fields [1]) we are going to consider the case of charged particle repulsed by field, i. e. the case of
negative value of electric field strength and increasing coordinate x of particle (naturally, in case of
particle attracted by field the strength is positive while the coordinate of particle will decrease). Then
components of the vector Ei are


E1 = Ex = −E = const, E2 = E3 = 0 . (3.226)
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Because uniformity of electric field implies Ei=
∂ϕ
∂xi
=const, then scalar potential ϕ is function of


x that satisfies Laplace equation
∂2ϕ


∂x2
=
∂E


∂x
= 0 . (3.227)


This result formula implies that uniform constant electric field satisfies condition of absence of
density of charges ρ=0.
We assume that particle’s motion is co-directed with vector electric field strength Ei, i. e. is directed


along x. Then its equations of motion with Lorentz force in the right part will be (in by-component
notation)


dm


dτ
= −


e


c2
dϕ


dτ
= −


e


c2
dϕ


dxi
vi =


e


c2
E
dx


dτ
, (3.228)


d


dτ


(


m
dx


dτ


)


= eE ,
d


dτ


(


m
dy


dτ


)


= 0 ,
d


dτ


(


m
dz


dτ


)


= 0 . (3.229)


Integrating scalar equation of motion of charged particle (theorem of live forces), we arrive to
integral of live forces in the form


m =
eE


c2
x+B , B = const. (3.230)


Constant B can be obtained from the initial conditions of integration m|τ=0=m(0) and x|τ=0=x(0)
at the moment τ=0. As a result the constant equals


B = m(0) −
eE


c2
x(0) . (3.231)


Then the solution (3.230) of scalar equation of motion takes the form


m =
eE


c2
(
x− x(0)


)
+m(0) . (3.232)


Substituting the obtained integral of live forces into vector equations of motion (3.229) we bring
them to the following form (dot stands for derivation to physical observable time τ)


eE


c2
ẋ2 +


(


B +
eE


c2
x


)


ẍ = eE ,


eE


c2
ẋẏ +


(


B +
eE


c2
x


)


ÿ = 0 ,


eE


c2
ẋż +


(


B +
eE


c2
x


)


z̈ = 0 .


(3.233)


From here two last equations are equations with separable variables


ÿ


y
=
−
eE


c2
ẋ


B +
eE


c2
x


,
z̈


z
=
−
eE


c2
ẋ


B +
eE


c2
x


, (3.234)


which can be integrated. Their solutions are


ẏ =
C1


B +
eE


c2
x


, ż =
C2


B +
eE


c2
x


, (3.235)


where C1 and C2 are integration constants which can be found setting the initial conditions ẏ|τ=0=ẏ(0)
and ẋ|τ=0=ẋ(0) and using the formula for B (3.121). As a result we obtain


C1 = m(0) ẏ(0) , C2 = m(0) ż(0) . (3.236)
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Now we are going to solve the equation of motion along x axis, i. e. the first one from (3.233). To


do this we replace ẋ=dx
dτ
=p. Then


ẍ =
d2x


dt2
=
dp


dt
=
dp


dx


dx


dt
= pp′. (3.237)


As a result the above equation of motion along x axis transforms into an equation with separable
variables


pdp


1− p2


c2


=
eEdx


B +
eE


c2
x


, (3.238)


which is a table integral. After integration we arrive to the solution


√


1−
p2


c2
=


C3


B +
eE


c2
x


, C3 = const. (3.239)


Assuming p=ẋ|τ=0=ẋ(0) and substituting B from (3.231) we find the integration constant


C3 = m(0)


√


1−
ẋ2(0)


c2
. (3.240)


In the case under consideration we can replace interval of physical observable time dτ with interval
of coordinate time dt. Here is why. In The Classical Theory of Fields Landau and Lifshitz solved
equations of motion of charged particle in Galilean frame of reference in a flat Minkowski space [1].
Naturally, to be able to compare our solutions with theirs we consider the same specific case —
motion in stationary and uniform electric field (see Section 20 in The Classical Theory of Fields).
But in stationary and uniform electric field, as we showed earlier in this Section, using methods of
chronometric invariants, Fi=0 and Aik=0, hence


dτ =
(
1−


w


c2


)
dt−


1


c2
vidx


i = dt . (3.241)


In other words, in the four-dimensional area under study where particle travels in this case the
metric is Galilean one.
Substituting variable p=dx


dt
into the formula (3.239) we arrive to the last equation with separable


variables


dx


dt
= c


√(


B +
eE


c2
x


)2
− C23


B +
eE


c2
x


, (3.242)


which solution is


ct =
c2


eE


√(


B +
eE


c2
x


)2
− C23 + C4 , C4 = const, (3.243)


where integration constant C4, taking into account the initial conditions at the moment t=0, is


C4 = −
m(0)c


eE
ẋ(0) . (3.244)


Now formulating coordinate x explicitly from (3.243) with t we obtain the final solution of equation
of motion of charged mass-bearing particle along x axis


x =
c2


eE


[√
e2E2


c4
(ct− C4)


2
+ C23 −B


]


, (3.245)







CHAPTER 3. MOTION OF CHARGED PARTICLE 71


or, after substituting integration constants


x =


√√
√
√
(


ct+
m(0)cẋ(0)


eE


)2
+


(
m(0)c


2


eE


)2(


1−
ẋ2(0)


c2


)


−
m(0)c


2


eE
+ x(0) .


If the field attracts charged particle (electric strength is positive E1=Ex=E=const), we will obtain
the same solution for x but bearing the opposite sign


x =
c2


eE


[


B −


√
e2E2


c4
(ct− C4)


2
+ C23


]


. (3.247)


In The Classical Theory of Fields [1] a similar problem is considered, but Landau and Lifshitz
solved it through integration of three-dimensional components of general covariant equations of motion
of charged particle (three-dimensional Minkowski equations) without accounting for theorem of live
forces. As a result their formula for x is


x =
1


eE


√
(m0c2)


2
+ (ceEt)


2
. (3.248)


This formula fully matches our solution (3.245) if x(0)−
m(0)c


2


eE
=0 and the initial velocity of particle


is zero ẋ(0)=0. The latter stands for significant simplifications accepted in The Classical Theory of
Fields, according to which some integration constants are assumed zeroes.
As seen, even when solving equations of motion in Galilean frame of reference in flat Minkowski


space method of chronometric invariants gives certain advantages revealing hidden factors that are
left unnoticed when solving regular three-dimensional components of general covariant equations of
motion. That means that even when physical observable values coincide with coordinate values, it
is geometrically correct to solve a system of chronometrically invariant equations of motion, because
theorem of live forces, being scalar equation of motion, inevitably affects solution of three-dimensional
vector equations of motion.
Of course in case of non-uniform non-stationary electrical field some additional terms will appear


in our solution to reflect more complicated and varying in time structure of field.
Now we are going to calculate three-dimensional observable trajectory of particle that moves in


stationary uniform electric field.
To do this, we integrate equations of motion along axis y and z (3.235), formulate time from there


and substitute it into the solution for x we have obtained.
First, substituting the obtained solution for x (3.245) into equation for ẏ, we obtain equation with


separable variables
dy


dt
=


C1√
e2E2


c4
(ct− C4)


2
+ C23


, (3.249)


integrating which we have


y =
m(0) ẏ(0) c


eE
arc sinh


eEt+m(0) ẋ(0)


m(0) c


√


1−
ẋ2(0)


c2


+ C5 , (3.250)


where C5 is integration constant. After substituting the initial condition y=y(0) at the moment t=0
into here we find formula for the constant C5


C5 = y(0) −
m(0) ẏ(0) c


eE
arc sinh


ẋ(0)


c


√


1−
ẋ2(0)


c2


. (3.251)
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Substituting the constant into y (3.250) we finally have


y = y(0) +
m(0) ẏ(0) c


eE









arc sinh
eEt+m(0) ẋ(0)


m(0) c


√


1−
ẋ2(0)


c2


− arc sinh
ẋ(0)


c


√


1−
ẋ2(0)


c2









. (3.252)


Formulating from here t with y and y(0) and taking into account that a=arcsinh b if b=sinh a and


substituting arcsinh b= ln(b+
√
b2+1) into the second term we have


t =
1


eE









m(0) c


√


1−
ẋ2(0)


c2
sinh












y − y(0)
m(0) ẏ(0) c


eE + ln
ẋ(0) + c


c


√


1−
ẋ2(0)


c2










−m(0) ẋ(0)









. (3.253)


Now we substitute it into our solution for x (3.246). As a result we obtain the desired equation
for three-dimensional trajectory of particle


x = x(0) +
m(0) c


2


eE


√


1−
ẋ2(0)


c2
cosh









y − y(0)
m(0) ẏ(0) c


eE + ln
ẋ(0) + c


c


√


1−
ẋ2(0)


c2









−
m(0) c


2


eE
. (3.254)


The obtained formula implies that charged mass-bearing particle in our world in uniform stationary
electric field travels along a curve based on chain line, while factors that deviate it from “pure” chain
line are functions of the initial conditions.
Our formula for particle’s trajectory (3.254) fully matches the result obtained in The Classical


Theory of Fields


x =
m(0) c


2


eE
cosh


eEy


m(0) ẏ(0) c
(3.255)


(formula 20.5 in [1]) once we assume that x(0)−
m(0) c


2


eE
=0, and the initial velocity of particle ẋ(0)=0 as


well. The latter condition suggests that the integration constant in scalar equation of motion (theorem
of live forces) is zero, which is not always true.
At low velocities of motion after equaling relativistic terms to zero and expanding hyperbolic cosine


into series cosh b=1+b
2


2!
+b
4


4!
+b
6


6!
+. . . our formula for three-dimensional trajectory of particle (3.254)


takes the form (higher order terms withheld here)


x = x(0) +
eE
(
y − y(0)


)2


2m(0) ẏ
2
(0)


, (3.256)


i. e. particle travels along parabola. This conclusion, once the initial coordinates of particle are assumed
zeroes, also matches the result from The Classical Theory of Fields


x =
eEy2


2m(0) ẏ
2
(0)


. (3.257)


Integration of equation of motion along axis z gives the same results. This is because the only
difference between equations in respect to ẏ and ż (3.235) is a fixed coefficient — integration constant
(3.236), which equals to the initial impulse of particle along axis y (in the equation for ẏ) and along
axis z (in equation for ż).
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We are going to find dynamic properties of charged particle in stationary uniform electric field
— its energy and impulse. Calculating the relativistic square root (accounting for the assumptions
we made)


√


1−
v2


c2
=


√


1−
ẋ2+ẏ2+ż2


c2
=


m(0)


√


1−
ẋ2(0)+ẏ


2
(0)+ż


2
(0)


c2


m(0)+
eE


c2
(
x−x(0)


) , (3.258)


we obtain the energy of particle


E =
m(0) c


2


√


1−
v2


c2


=
m(0) c


2 + eE
(
x− x(0)


)


√


1−
ẋ2(0) + ẏ


2
(0) + ż


2
(0)


c2


, (3.259)


which for a particle’s velocity much lower than that of light speed is


E = m(0) c
2 + eE


(
x− x(0)


)
. (3.260)


Relativistic impulse of particle is obtained in the same way, but the formula being bulky is with-
held here.
We have studied motion of charged mass-bearing particle of our world in stationary uniform electric


field. Now we consider motion of mass-bearing charged particle of the mirror world under the same
conditions. Its chronometrically invariant equations of motion, taking into account the constraints
imposed here on geometric structure of space, are


dm


dτ
=


e


c2
dϕ


dτ
, (3.261)


d


dτ


(
mvi


)
= −


e


c


dqi


dτ
. (3.262)


In other words, the only difference from equations of motion for our-world particle (3.221, 3.222)
is the sign in theorem of live forces.
We assume that electric strength is negative (field repulses the particle) and that the particle’s


motion is co-directed with vector of field strength along axis x. Then integrating theorem of live forces
for the mirror-world particle (3.261) we obtain


m = −
eE


c2
x+B , (3.263)


where integration constant, calculated from the initial conditions, is


B = m(0) +
eE


c2
x(0) . (3.264)


Substituting the results into vector equations of motion (3.262) in by-component notation, we have
(comp. 3.233)


−
eE


c2
ẋ2 +


(


B −
eE


c2
x


)


ẍ = eE ,


−
eE


c2
ẋẏ +


(


B −
eE


c2
x


)


ÿ = 0 ,


−
eE


c2
ẋż +


(


B −
eE


c2
x


)


z̈ = 0 .


(3.265)


After some algebra similar to that done to obtain trajectory of charged particle in our world, we
arrive to


x =
c2


eE


[


B −


√


C23 −
e2E2


c4
(ct− C4)


2


]


, (3.266)
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where C3 = m(0)


√


1 +
ẋ2(0)
c2
and C4 = −


cm(0)x(0)
eE


. Or,


x = −


√√
√
√
(
m(0)c


2


eE


)2(


1 +
ẋ2(0)


c2


)


−


(


ct+
m(0)cẋ(0)


eE


)2
+
m(0)c


2


eE
+ x(0) . (3.267)


The obtained formula for coordinate x of mirror-world charged particle, repulsed by field, is
similar to that for our-world particle attracted by field (3.247) when electric strength is positive
E1=Ex=E=const. Hence an interesting conclusion: transition of particle from our world into the
mirror world (the one with reverse flow of time) is the same as changing the sign of its charge.
Noteworthy, similar conclusion can be done in respect to particles’ masses: purported transition


of particle from our world into the mirror world is the same as changing the sign of its mass. Hence
our-world particles and mirror-world particle are mass and charge complementary.
Let us find three-dimensional trajectory of charged mass-bearing particle of the mirror world in


stationary uniform electric field. Calculating y in the same manner as for charged our-world particle,
we have


y = y(0) +
m(0) ẏ(0) c


eE









arcsin
eEt+m(0) ẋ(0)


m(0) c


√


1 +
ẋ2(0)


c2


− arcsin
ẋ(0)


c


√


1 +
ẋ2(0)


c2









. (3.268)


Contrasted to the formula for our-world particle (3.252) this formula has regular arcsine and “plus”
sign under the square route.
Formulating time t from here with coordinates y and y(0)


t =
1


eE









m(0) c


√


1+
ẋ2(0)


c2
sin












y − y(0)
m(0) ẏ(0) c


eE + ln
ẋ(0) + c


c


√


1+
ẋ2(0)


c2










−m(0) ẋ(0)









, (3.269)


and substituting it into our formula for x (3.267) we obtain the equation of three-dimensional trajectory
of charged mass-bearing particle of the mirror world that travels in uniform stationary electric field,


x = x(0) −
m(0) c


2


eE


√


1 +
ẋ2(0)


c2
cos









y − y(0)
m(0) ẏ(0) c


eE + arcsin
ẋ(0)


c


√


1+
ẋ2(0)


c2









−
m(0) c


2


eE
. (3.270)


In other words, the motion of the particle is harmonic oscillation. Once we assume the initial
coordinates of the particle equal to zero, as well as its initial velocity ẋ(0)=0 and the integration
constant B=0, the obtained equation of the trajectory takes a simpler form


x = −
m(0) c


2


eE
cos


eEy


m(0) ẏ(0) c
. (3.271)


At low velocity of motion, equaling relativistic terms to zero and expanding into the cosinus series


cos b=1−b
2


2!
+b
4


4!
−b
6


6!
+. . .≈1−b


2


2!
(which is always possible within a smaller part of trajectory), we


bring our formula for three-dimensional trajectory of the mirror-world particle (3.270) as


x = x(0) +
eE
(
y − y(0)


)2


2m(0) ẏ
2
(0)


, (3.272)
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which is equation of parabola. That means charged mirror-world particle at low velocity travels along
a parabola, as does our-world particle.
Therefore, relativistic charged particle from our world in uniform stationary electric field travels


along a chain line, which at low velocities becomes a parabola. Relativistic charged mirror-world
particle travels along a harmonic trajectory, smaller parts of which at low velocities becomes parabola
(as is the case for our-world particle).


3.12 Motion of charged particle in stationary magnetic field


Let us consider motion of charged particle when electric component of field is absent while stationary
magnetic field is present. In this case physical observable vectors electric and magnetic strengths are


Ei =
∗∂ϕ


∂xi
−
ϕ


c2
Fi =


∂ϕ


∂xi
−
ϕ


c2
1


1−
w


c2


∂w


∂xi
= 0 , (3.273)


H∗i =
1


2
εimnHmn =


1


2
εimn


(
∂qm


∂xn
−
∂qn


∂xm
−
2ϕ


c
Amn


)


6= 0 (3.274)


because in “pure” magnetic field ϕ=const (Ei=0) then gravitational effect can be neglected. From
(3.274) we can see that magnetic strength H∗i is not zero, if at least one of the following condi-
tions is true:


1. field of potential qi is rotational;


2. the space is non-holonomic, i. e. Aik 6=0.


We are going to consider motion of particle in general case, when both conditions are true, because
non-holonomic space we will use later as the basic space for a spin-particle. As we did in the previous
Section, we assume deformation of space to be zero and three-dimensional metric to be Euclidean


one gik=δik. But the observed metric hik=−gik+ 1
c2
vivk in this case is not Galilean, because in


non-holonomic space hik 6=−gik.
We assume that the space of reference rotates around axis z at constant angular velocity, that is


Ω12=−Ω21=Ω. Then linear velocity of rotation of space vi=Ωikxk has two non-zero components
v1=Ωy and v2=−Ωx, while non-holonomity tensor has the only non-zero components A12=−A21=−Ω.
In this case the metric will take the form


ds2 = c2dt2 − 2Ωydtdx+ 2Ωxdtdy − dx2 − dy2 − dz2. (3.275)


In a space with this kind of metric Fi=0 and Dik=0. In the below we will use this metric to study
motion of charged particle in stationary fields. In the previous Section, which focused on motion
in stationary electric field, we also assumed Christoffel symbols to be zeroes. In other words, we
considered motion of particle in Galilean frame of reference in Minkowski space. But in this Section
three-dimensional observable metric hik is not Euclidean because of rotation of space itself and thus
Christoffel symbols 4ijk (1.47) are not zeroes.
If linear velocity of rotation of space is not infinitesimal compared to speed of light, components


of observable metric tensor hik are


h11 = 1+
Ω2y2


c2
, h22 = 1+


Ω2x2


c2
, h12 = −


Ω2xy


c2
, h33 = 1 . (3.276)


Then the determinant of this tensor and components of hik are


h = det ‖hik‖ = h11h22 − h
2
12 = 1 +


Ω2
(
x2 + y2


)


c2
, (3.277)


h11 =
1


h


(


1 +
Ω2x2


c2


)


, h22 =
1


h


(


1 +
Ω2y2


c2


)


, h12 =
Ω2xy


hc2
, h33 = 1 . (3.278)
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Respectively, from here we obtain non-zero components of chronometrically invariant Christoffel
symbols 4ijk (1.47)


4111 =
2Ω4xy2


c4


(


1 +
Ω2
(
x2 + y2


)


c2


) , (3.279)


4112 =
Ω2y


(


1 +
2Ω2x2


c2


)


c2


(


1 +
Ω2
(
x2 + y2


)


c2


) , (3.280)


4122 = −
2Ω2x


c2


1 +
Ω2x2


c2


1 +
Ω2
(
x2 + y2


)


c2


, (3.281)


4211 = −
2Ω2y


c2


1 +
Ω2y2


c2


1 +
Ω2
(
x2 + y2


)


c2


, (3.282)


4212 =
Ω2x


(


1 +
2Ω2y2


c2


)


c2


(


1 +
Ω2
(
x2 + y2


)


c2


) , (3.283)


4222 = −
2Ω4x2y


c4


(


1 +
Ω2
(
x2 + y2


)


c2


) . (3.284)


We are going to solve equations of motion of mass-bearing charged particle in stationary magnetic
field. To make calculations easier we assume that four-dimensional potential of field Aα is tangential to
the world line (four-dimensional trajectory) of particle. Because electric component of field is absent,
strength Ei does not perform any work, i. e. the right parts of scalar equations of motion turn into
zeroes. Therefore, chronometrically invariant equations of motion of mass-bearing charged particle
from our-world (3.208, 3.209) in stationary magnetic field are


dm


dτ
= 0 , (3.285)


d


dτ


(
mvi


)
+ 2mA∙ik∙v


k +m4inkv
nvk = −


e


c
εikmvkH∗m . (3.286)


For mirror-world charged particle that moves in stationary magnetic field, the respective equations
of motion are


−
dm


dτ
= 0 , (3.287)


d


dτ


(
mvi


)
+m4inkv


nvk = −
e


c
εikmvkH∗m . (3.288)


Integrating theorem of live forces for our-world particle and mirror-world particle we obtain, re-
spectively


m=
m0√


1−
v2


c2


=const=B , −m=
m0√


1−
v2


c2


=const=B̃ , (3.289)
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where B and B̃ are integration constants. That implies v2=const, i. e. module of observable velocity
of particle stays constant in absence of electric component of field. Then vector equations of motion
for our-world particle (3.286) can be represented as


dvi


dτ
+ 2A∙ik∙v


k +4inkv
nvk = −


e


mc
εikmvkH∗m . (3.290)


Respectively, vector equations of motion of mirror-world particle (3.288) will have the form


dvi


dτ
+4inkv


nvk = −
e


mc
εikmvkH∗m . (3.291)


Strength of magnetic field in these equations is defined from Maxwell equations for stationary field
(3.215, 3.216), which in absence of electric strength and under the constraints we assumed in this
Section, are


Ω∗mH
∗m = −2πcρ


εikm ∗∇k
(
H∗m


√
h
)
=
4π


c
ji
√
h







Group I, (3.292)


∗∇iH
∗i =


∂H∗i


∂xi
+
∂ ln
√
h


∂xi
H∗i = 0


}


Group II. (3.293)


From the first equation of Group I we see that scalar product of pseudovectors of field of non-
holonomity of space and of magnetic field strength is function of density of charge. Hence if density
of charge ρ=0, pseudovectors Ω∗i and H


∗i are orthogonal.
In the below we consider two possible orientations of magnetic field in respect to field of non-


holonomity of space.


A Magnetic field is co-directed with non-holonomity field


We assume that pseudovector of strength of magnetic field H∗i is directed along axis z, i. e. in the same
direction as pseudovector of angular velocity of space rotation Ω∗i= 12ε


ikmAkm. Then pseudovector of
angular velocity has one non-zero component Ω∗3=Ω, while pseudovector of magnetic strength has


H∗3 =
1


2
ε3mnHmn =


1


2


(
ε312H12 + ε


321H21
)
= H12 =


ϕ


c


(
∂v1
∂x
−
∂v2
∂y


)


+
2ϕ


c
Ω . (3.294)


The condition ϕ=const stems from absence of electric field. Hence Maxwell equations Group I
(2.392) will be


Ω∗3H
∗3 =


Ωϕ


c


(
∂v1
∂x
−
∂v2
∂y


)


+
2ϕΩ2


c
= −2πcρ


∂


∂y


(
H∗3
√
h
)
=
4π


c
j1
√
h


−
∂


∂x


(
H∗3
√
h
)
=
4π


c
j2
√
h


j3 = 0









. (3.295)


Equations in Group II (3.293) will be trivial turning into simple relationship ∂H∗3


∂z
=0, i. e.


H∗3=const. Actually this implies that the stationary magnetic field we consider is uniform along
z. In the below we assume the stationary magnetic field to be fully uniform, i. e. H∗i=const. Then
from the first equation from Group I (3.295) we see that magnetic field is uniform provided that


(
∂v1
∂x
−
∂v2
∂y


)


= const, ρ = −
ϕΩ2


πc2
= const. (3.296)
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Hence charge density ρ>0 if scalar potential of field ϕ<0. In this case the other equations from
Group I (3.295) will be


j1 =
c


4π


∂ ln
√
h


∂y
, j2 =


c


4π


∂ ln
√
h


∂x
. (3.297)


Because h=1+
Ω2(x2+y2)


c2
(3.277) this implies: vector of current in stationary uniform magnetic


field is only non-zero in strong field of non-holonomity, i. e. when rotation velocity is comparable to
speed of light. In a weak field of non-holonomity h=1, hence j1=j2=0.
Now having obtained magnetic strength from Maxwell equations we write down by-component


notation of vector equations of motion of our-world charged mass-bearing particle (3.290, 3.291)


ẍ+
2Ω


h


[
Ω2xyẋ


c2
+


(


1 +
Ω2x2


c2


)


ẏ


]


+4111ẋ
2 + 24112ẋẏ+


+4122ẏ
2 = −


eH


mc


[


−
Ω2xyẋ


c2
+


(


1 +
Ω2x2


c2


)


ẏ


]


,


ÿ −
2Ω


h


[
Ω2xyẏ


c2
+


(


1 +
Ω2y2


c2


)


ẋ


]


+4211ẋ
2 + 24212ẋẏ+


+4222ẏ
2 =


eH


mc


[


−
Ω2xyẏ


c2
+


(


1 +
Ω2y2


c2


)


ẋ


]


,


z̈ = 0 ,


(3.298)


and those of mirror-world particle


ẍ+4111ẋ
2 + 24112ẋẏ +4


1
22ẏ
2 = −


eH


mc


[


−
Ω2xyẋ


c2
+


(


1 +
Ω2x2


c2


)


ẏ


]


,


ÿ +4211ẋ
2 + 24212ẋẏ +4


2
22ẏ
2 =


eH


mc


[


−
Ω2xyẏ


c2
+


(


1 +
Ω2y2


c2


)


ẋ


]


,


z̈ = 0 .


(3.299)


The terms in the right parts that contain Ω
2


c2
appear because in rotation of space three-dimensional


observable metric hik is not Euclidean. Hence in the case under consideration there is difference
between contravariant components of the observable velocity and its covariant components. The right
parts include the covariant components


v2 = h21v
1 + h22v


2 = −
Ω2xy


c2
ẋ+


(


1 +
Ω2x2


c2


)


ẏ , (3.300)


v1 = h11v
1 + h12v


2 = −
Ω2xy


c2
ẏ +


(


1 +
Ω2y2


c2


)


ẋ . (3.301)


If rotation of space is absent, i. e. Ω=0, the equations of motion of charged mass-bearing our-world
particle (3.298) up within a sign match equations of motion in stationary uniform magnetic field as
given by Landau and Lifshitz (formula 21.2 in The Classical Theory of Fields)


ẍ =
eH


mc
ẏ , ÿ = −


eH


mc
ẋ , z̈ = 0 , (3.302)


while our equations (3.298) imply that


ẍ = −
eH


mc
ẏ , ÿ =


eH


mc
ẋ , z̈ = 0 . (3.303)
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The difference stems from the fact that Landau and Lifshitz assumed magnetic strength in Lorentz
force to bear “plus” sign, while in our equations it bears “minus”, which is not that important though,
because only depends upon choice of signature.
If the space rotates (is non-holonomic), the equations of motion will include the terms that contain


Ω, Ω
2


c2
, and Ω


4


c4
. In a strong field of non-holonomity solving equations of motion is a non-trivial task,


which is likely to be tackled in future with computer-aided numerical methods. Hopefully, the results
will be quite interesting.
We are going to find exact solutions in weak field of non-holonomity, i. e. truncating terms of the


second order of smallness and below. Here equations of motion we obtained (3.298, 3.299) for charged
mass-bearing our-world particle are


ẍ+ 2Ωẏ = −
eH


mc
ẏ , ÿ − 2Ωẋ =


eH


mc
ẋ , z̈ = 0 , (3.304)


and for charged mass-bearing mirror-world particle are


ẍ = −
eH


mc
ẏ , ÿ =


eH


mc
ẋ , z̈ = 0 . (3.305)


First we approach equations for our-world particle. The equation along z axis can be integrated
straightaway. The solution is


z = ż(0)τ + z(0) . (3.306)


From here we see that if at the initial moment particle’s velocity along z is zero, the particle will
be moving within xy plane only. The rest two equations we from (3.304) we re-write as


dẋ


dτ
= − (2Ω + ω) ẏ ,


dẏ


dτ
= (2Ω + ω) ẋ , (3.307)


where we denote ω=eHmc for convenience. The same notation was used in Section 21 of The Classical
Theory of Fields. Then, formulating ẋ from the second equation, we derivate it to the observable time
ẋ and substitute into the first equation. As a result we obtain


d2ẏ


dτ2
+ (2Ω + ω)


2
ẏ = 0 , (3.308)


which is equation of oscillations; it solves as


ẏ = C1 cos (2Ω + ω) τ + C2 sin (2Ω + ω) τ , (3.309)


where C1=ẏ(0) and C2=
ÿ(0)
2Ω+ω are integration constants. Substituting ẏ (3.309) into the first equation


(3.307) we obtain the expression


dẋ


dτ
= − (2Ω + ω) ẏ(0) cos (2Ω + ω) τ − ÿ(0) sin (2Ω + ω) τ , (3.310)


after integration of which we have


ẋ = ẏ(0) sin (2Ω + ω) τ −
ÿ(0)


2Ω + ω
cos (2Ω + ω) τ + C3 , (3.311)


where integration constant C3=ẋ(0)+
ÿ(0)
2Ω+ω .


Having all constants substituted, the obtained formulas for ẋ (3.311) and ẏ (3.309) finally trans-
form into


ẋ = ẏ(0) sin (2Ω + ω) τ −
ÿ(0)


2Ω + ω
cos (2Ω + ω) τ + ẋ(0) +


ÿ(0)


2Ω + ω
, (3.312)


ẏ = ẏ(0) cos (2Ω + ω) τ +
ÿ(0)


2Ω + ω
sin (2Ω + ω) τ . (3.313)
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Hence the formulas for components of velocity of particle ẋ and ẏ in stationary uniform magnetic
field are equations of harmonic oscillations at frequency that in a weak field of non-holonomity is


2Ω+ω=2Ω+eHmc .
From integral of live forces in stationary magnetic field (3.289) we see that the square of particle’s


velocity is a constant value. Calculating v2=ẋ2+ẏ2+ż2 for our-world particle we obtain that the value


v2 = ẋ2(0) + ẏ
2
(0) + ż


2
(0) + 2


(


ẋ(0) +
ÿ(0)


2Ω + ω


)


×


×


[
ÿ(0)


2Ω + ω
+ ẏ(0) sin (2Ω + ω) τ −


ÿ(0)


2Ω + ω
cos (2Ω + ω) τ


] (3.314)


is constant v2=const, provided that C3=ẋ(0)+
ÿ(0)
2Ω+ω=0.


Integrating ẋ and ẏ to τ we obtain coordinates of our-world particle in stationary uniform mag-
netic field


x =


[
ÿ(0)


2Ω + ω
sin (2Ω + ω) τ − ẏ(0) cos (2Ω + ω) τ


]
1


2Ω + ω
+


(


ẋ(0) +
ÿ(0)


2Ω + ω


)


τ + C4 , (3.315)


y =


[


ẏ(0) sin (2Ω + ω) τ +
ÿ(0)


2Ω + ω
cos (2Ω + ω) τ


]
1


2Ω + ω
+ C5 , (3.316)


where integration constants are


C4 = x(0) +
ẏ(0)


2Ω + ω
, C5 = y(0) +


ÿ(0)


(2Ω + ω)
2 . (3.317)


From the formula for x we see that particle performs harmonic oscillations along x provided


that the equation ẋ(0)+
ÿ(0)
2Ω+ω=0 is true. This is also the condition for constant square of particle’s


velocity (3.314), i. e. satisfies the integral of live forces. Taking this into account we arrive to equation
of trajectory of particle within xy plane


x2 + y2 =
1


(2Ω + ω)
2


[


ẏ2(0) +
ÿ2(0)


(2Ω + ω)
2


]


−
2C4
2Ω + ω


×


×


[


ẏ(0) cos (2Ω + ω) τ +
ÿ(0)


2Ω + ω
sin (2Ω + ω) τ


]


+


+


[


ẏ(0) sin (2Ω + ω) τ +
ÿ(0)


2Ω + ω
cos (2Ω + ω) τ


]
2C5
2Ω + ω


+ C24 + C
2
5 .


(3.318)


Assuming for the initial moment of time ÿ(0)=0 and integration constants C4 and C5 to be zeroes,
we can dramatically simplify the obtained formulas for coordinates of particle (3.315, 3.316)


x = −
1


2Ω + ω
ẏ(0) cos (2Ω + ω) τ , (3.319)


y =
1


2Ω + ω
ẏ(0) sin (2Ω + ω) τ . (3.320)


Given this, our equation of trajectory (3.318) transforms into a simple equation of a circle


x2 + y2 =
ẏ2(0)


(2Ω + ω)
2 . (3.321)


Hence if the initial velocity of charged our-world particle in respect to the axis of uniform magnetic
field (z axis) is zero, particle moves within xy plane along a circle with radius


r =
ẏ(0)


2Ω + ω
=


ẏ(0)


2Ω +
eH


mc


, (3.322)
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which depends upon the strength of the field and the velocity of space rotation. If initial velocity
of particle along the direction of magnetic field is not zero, it moves along a spiral line with radius
r along the field. In general case particle moves along ellipse within xy plane (3.318), which shape
deviates from that of a circle depending upon the initial conditions of the motion.
As can be easily seen, our results match those in Section 21 of The Classical Theory of Fields


x = −
1


ω
ẏ(0) cosωτ , y =


1


ω
ẏ(0) sinωτ , (3.323)


once we assume rotation of space Ω=0, i. e. in absence of field of non-holonomity. Given this, the


radius r=
ẏ(0)
ω =


mc
eH


ẏ(0) of particle’s trajectory does not depend upon velocity of rotation of space. If


Ω 6=0, field of non-holonomity of space disturbs motion of particle in magnetic field adding up with
field of magnetic strength, due to which correction value 2Ω to the term ω=eHmc appears in equations


of the theory. In a strong field of non-holonomity, when Ω can not be neglected compared to the speed
of light, the disturbance is even stronger.
On the other hand, in non-holonomic space the argument of trigonometric functions in our equa-


tions contains a sum of two terms, one of which stems from interaction of particle’s charge with
strength of magnetic field, while another is a result of rotation of the space itself, which depends
neither from electric charge of particle, nor from presence of magnetic field. This allows considering
two special cases of motion of particle in non-holonomic space.
In first case, when particle is electrically neutral or magnetic field is absent, its motion will be


the same as that under action of magnetic component of Lorentz force, save that this motion will be


caused by angular velocity of rotation of space 2Ω, comparable to ω=eHmc .
How real this case may be? To answer this question we need at least an approximate assessment


of the ratio between velocity of space rotation Ω and magnetic field H in a special case. The best
example may be an atom, because on the scales of electronic orbits electromagnetic interaction is a
few orders of magnitude stronger than the others and beside, orbital velocities of electrons are relati-
vely high.
Such assessment can be made proceeding from second case of special motion of charged particle


in uniform stationary magnetic field, when


eH


mc
= −2Ω , (3.324)


is true and hence the argument of trigonometric functions in equations of motion becomes zero.
We consider the observer’s frame of reference, whose space of reference is attributed to atomic


nucleus. Then the ratio in question (in CGSE and Gaussian systems of units) for electron in atom is


Ω


H
= −


e


2mec
= −


4.8 ∙ 10−10


18.2 ∙ 10−28 3.0 ∙ 1010
= − 8.8 ∙ 106, (3.325)


where their “minus” sign stems from the fact that Ω and H in (3.324) are oppositely directed. Hence
field of non-holonomity if the nucleus is the basic factor that affects motion of orbiting electron and
is dominant compared to magnetic component of the Lorentz force.
Now we are going to solve equations of motion of mirror-world particle in stationary uniform


magnetic field we obtained in non-holonomic (self-rotating) space (3.305), which match equations of
motion in absence of field of non-holonomity (rotation) of space by Landau and Lifshitz [1]


ẍ = −ωẏ , ÿ = ωẋ , z̈ = 0 . (3.326)


The solution of the third equation of motion (along z axis) is a simpler integral z=ż(0)τ+z(0).
Equations of motion along x and y axis are similar to those for our-world particle, save for the


fact that the argument of trigonometric functions has ω instead of ω+2Ω


ẋ = ẏ(0) sinωτ −
ÿ(0)


ω
cosωτ + ẋ(0) +


ÿ(0)


ω
, (3.327)
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ẏ = ẏ(0) cosωτ +
ÿ(0)


ω
sinωτ . (3.328)


Hence the formulas for components of velocity of mirror-world particle ẋ and ẏ are equations of


harmonic oscillations at frequency ω=eHmc .
Consequently, their solutions, i. e. formulas for coordinates of mirror-world particle in stationary


uniform magnetic field are


x =
1


ω


(
ÿ(0)


ω
sinωτ − ẏ(0) cosωτ


)


+


(


ẋ(0) +
ÿ(0)


ω


)


τ + C4 , (3.329)


y =
1


ω


(


ẏ(0) sinωτ +
ÿ(0)


ω
cosωτ


)


+ C5 , (3.330)


where integration constants are


C4 = x(0) +
ẏ(0)


ω
, C5 = y(0) +


ÿ(0)


ω2
. (3.331)


As we have already mentioned, integral of live forces in stationary magnetic field (3.289) implies
constant relativistic mass of particle and hence constant square of its observable velocity. Then putting
solutions for velocities of mirror-world particle ẋ, ẏ, ż in the power of two and adding them up we
obtain that


v2 = ẋ2(0) + ẏ
2
(0) + ż


2
(0) + 2


(


ẋ(0) +
ÿ(0)


ω


)(
ÿ(0)


ω
+ ẏ(0) sinωτ −


ÿ(0)


ω
cosωτ


)


(3.332)


is constant v2=const provided that


ẋ(0) +
ÿ(0)


ω
= 0 . (3.333)


From the formula for x (3.329) we see that particle performs purely harmonic oscillations along
x provided the same condition (3.333) is true. Taking this into account, putting in the power of two
and adding up x (3.329) and y (3.330) for mirror-world particle in stationary uniform magnetic field,
we obtain its trajectory within xy plane


x2 + y2 =
1


ω2


(


ẏ2(0) +
ÿ2(0)


ω2


)


−
2C4
ω


(


ẏ(0) cosωτ +
ÿ(0)


ω
sinωτ


)


+


+


(


ẏ(0) sinωτ +
ÿ(0)


ω
cosωτ


)
2C5
ω
+ C24 + C


2
5 ,


(3.334)


which only differs from our-world particle trajectory (3.318) by ω+2Ω replaced with ω and by values
of integration constants (3.331). Therefore charged mirror-world particle, with zero initial velocity
along z (the direction of magnetic strength), moves along an ellipse within xy plane.
Once we assume ÿ(0), as well as constants C4 and C5 to be zeroes, the solutions become simpler


x = −
1


ω
ẏ(0) cosωτ , y =


1


ω
ẏ(0) sinωτ . (3.335)


In such simplified case mirror-world particle that rests in respect to the field direction makes a
circle within xy plane


x2 + y2 =
ẏ2(0)


ω2
(3.336)


with radius r=
ẏ(0)
ω =


mc
eH


ẏ(0). Consequently, if the initial velocity of a mirror-world particle along


the direction of magnetic field (z axis) is not zero, the particle moves along a spiral line around
the direction of magnetic field. Hence motion of charged mirror-world particle in stationary uniform
magnetic field is the same as that of our-world particle in absence of non-holonomity of space.







CHAPTER 3. MOTION OF CHARGED PARTICLE 83


B Magnetic field is orthogonal to non-holonomity field


We are going to consider the case of pseudovector of magnetic field strength H∗i is orthogonal to
pseudovector of non-holonomity field of space Ω∗i= 12ε


ikmAkm. Then the first equation from Group I
of Maxwell equations for stationary magnetic field (3.292) implies that density of charges is zero ρ=0.
We assume that strength of magnetic field is directed along y (only component H∗2=H is not


zero), while non-holonomity field is still directed along z (only component Ω∗3=Ω is not zero). We
also assume that magnetic field is stationary and uniform. Hence the only non-zero component of
magnetic strength is


H∗2 = H31 =
ϕ


c


(
∂v3
∂x
−
∂v1
∂z


)


= const . (3.337)


Then in weak non-holonomity field equations of motion of our-world particle will be


ẍ+ 2Ωẏ =
eH


mc
ż , ÿ − 2Ωẋ = 0 , z̈ = −


eH


mc
ẋ , (3.338)


or, denoting ω = eH
mc ,


ẍ+ 2Ωẏ = ωż , ÿ − 2Ωẋ = 0 , z̈ = −ωẋ . (3.339)


Derivating the first equation to τ and substituting ÿ and z̈ into it from the second and the third
equations we have


...
x +


(
4Ω2 + ω2


)
ẋ = 0 . (3.340)


Replacing variables ẋ=p we arrive to equation of oscillations


p̈+ ω̃2p = 0 , ω̃ =
√
4Ω2 + ω2 =


√


4Ω2 +


(
eH


mc


)2
, (3.341)


which solves as
p = C1 cos ω̃τ + C2 sin ω̃τ , (3.342)


where C1=ẋ(0) and C2=
ẍ(0)
ω̃2
are integration constants. Integrating ẋ=p with respect to τ we obtain


the expression for x as


x =
ẋ(0)


ω̃
sin ω̃τ −


ẍ(0)


ω̃2
cos ω̃τ + x(0) +


ẍ(0)


ω̃2
, (3.343)


where x(0)+
ẍ(0)
ω̃2
=C3 is integration constant.


Substituting ẋ=p (3.342) into equations of motion in respect to y and z (3.339) after integration
we obtain


ẏ =
2Ω


ω̃
ẋ(0) sin ω̃τ −


2Ω


ω̃2
ẍ(0) cos ω̃τ + ẏ(0) +


2Ω


ω̃2
ẍ(0) , (3.344)


ż =
ω


ω̃2
ẍ(0) cos ω̃τ −


ω


ω̃
ẋ(0) sin ω̃τ + ż(0) −


ω


ω̃2
ẍ(0) , (3.345)


where ẏ(0)+
2Ωẍ(0)
ω̃2


=C4 and ż(0)−
ωẍ(0)
ω̃2
=C5 are new integration constants. Then integrating these


equations (3.344, 3.345) with respect to τ we obtain final formulas for y and z


y = −
2Ω


ω̃2


(


ẋ(0) cos ω̃τ +
ẍ(0)


ω̃
sin ω̃τ


)


+ ẏ(0)τ +
2Ω


ω̃2
ẍ(0)τ + y(0) +


2Ω


ω̃2
ẋ(0) , (3.346)


z =
ω


ω̃2


(


ẋ(0) cos ω̃τ +
ẍ(0)


ω̃
sin ω̃τ


)


+ ż(0)τ −
ω


ω̃2
ẍ(0)τ + z(0) −


ω


ω̃2
ẋ(0) , (3.347)


where y(0)+
2Ωẋ(0)
ω̃2


=C6 and z(0)−
ωẋ(0)
ω̃2
=C7.
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Provided that Ω=0, i. e. rotation of space is absent, and that some integration constants are zeroes,
the above equations fully match well-known formulas of relativistic electrodynamics for the case of
stationary magnetic field directed along z axis


x =
ẋ(0)


ω
sin ω̃τ , y = y(0) + ẏ(0)τ , z =


ẋ(0)


ω
cos ω̃τ . (3.348)


Because integral of live forces implies that square of observable velocity of particle in station-
ary magnetic field is constant, we can calculate v2=ẋ2+ẏ2+ż2. Substituting into here the obtained
formulas for velocity components, we obtain


v2 = ẋ2(0) + ẏ
2
(0) + ż


2
(0) +


2


ω̃


(
ẍ(0) + 2Ωẏ(0) − ωż(0)


)
(
ẍ(0)


ω̃
+ ẋ(0) sin ω̃τ −


ẍ(0)


ω̃
cos ω̃τ


)


, (3.349)


i. e. v2=const provided that
ẍ(0) + 2Ωẏ(0) − ωż(0) = 0 . (3.350)


Three-dimensional (spatial) trajectory of particle in stationary uniform magnetic field, orthogonal
to field of non-holonomity, can be found calculating x2+y2+z2


x2 + y2 + z2 =
1


ω̃2


(


ẋ2(0) +
ẍ2(0)


ω̃2


)


+ C23 + C
2
6 + C


2
7 +


(
C24 + C


2
5


)
τ2+


+2 (C4C6 + C5C7) τ +


[


(ωC7 − 2ΩC6) + 2 (ωC5 − 2ΩC6) τ


]


×


×


(


ẋ(0) cos ω̃τ +
ẍ(0)


ω̃
sin ω̃τ


)
1


ω̃2
+
2C3


ω̃2


(


ẋ(0) cos ω̃τ −
ẍ(0)


ω̃
sin ω̃τ


)


,


(3.351)


which includes a linear and a quadratic (to time) terms, as well as a parametric and two harmonic
terms. In a specific case, if we assume integration constants to be zeroes, the obtained formula (3.351)
takes the form of a regular equation of a sphere


x2 + y2 + z2 =
1


ω̃2


(


ẋ2(0) +
ẍ2(0)


ω̃2


)


, (3.352)


which radius is


r =
1


ω̃


√


ẋ2(0) +
ẍ2(0)


ω̃2
, (3.353)


where ω̃=
√
4Ω2+ω2=


√


4Ω2+
(
eH
mc


)2
. Therefore charged our-world particle in stationary uniform


magnetic field, orthogonal to field of non-holonomity, moves on a surface of a sphere which radius
depends upon magnetic strength and velocity of space rotation.
In a specific case, when field of non-holonomity is absent and the initial acceleration is zero, our


equation of trajectory simplifies significantly becoming an equation of sphere


x2 + y2 + z2 =
1


ω2
ẋ2(0) , r =


1


ω
ẋ(0) =


mc


eH
ẋ(0) (3.354)


with radius that depends only upon interaction of particle’s charge with magnetic field — the result
well-known in electrodynamics (see Section 21 in The Classical Theory of Fields).
For mirror-world particle that moves in stationary uniform magnetic field, orthogonal to field of


non-holonomity, the equations of motion are


ẍ =
eH


mc
ż, ÿ = 0, z̈ = −


eH


mc
ẋ . (3.355)


These are only different from equations for our-world particle (3.338) by absence of the terms
that include space rotation velocity Ω. In practice that means that in the mirror world the solutions
simply do not depend upon rotation of space and match the solutions in our world provided field of
non-holonomity is absent.
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3.13 Motion of charged particle in stationary electromagnetic field


In this Section we are going to focus on motion of charged particle under action of both magnetic and
electric components of stationary electromagnetic field.
As a “background” we will consider non-holonomic space that rotates around z axis at a constant


angular velocity Ω12=−Ω21=Ω, i. e. the space with metric as of (3.275). In such metric space Fi=0
and Dik=0. We will solve the problem assuming that the field of non-holonomity is weak and hence
the three-dimensional observable space has Euclidean metric. Here Maxwell equations for stationary
field (3.215, 3.216) are


Ω∗mH
∗m = −2πcρ


εikm∇k
(
H∗m


√
h
)
=
4π


c
ji
√
h = 0







Group I, (3.356)


Ω∗mE
m = 0


εikm∇k
(
Em
√
h
)
= 0







Group II, (3.357)


because the condition of observable uniformity of field is equality to zero of its chronometrically
invariant derivative [8, 10], while in the specific case under consideration chronometrically invariant
Christoffel symbols equal to zero (metric is Galilean one) and chronometrically invariant derivative
is the same as regular one. Hence Maxwell equations imply that the following conditions will be
true here:


• field of non-holonomity and electric field are orthogonal to each other (Ω∗mEm=0);
• field of non-holonomity and magnetic field are orthogonal to each other, charge density ρ=0;
• current is absent (ji=0).


The last condition implies that presence of current or currents ji 6=0 stems from non-uniformity of
magnetic field.
Given that field of non-holonomity is orthogonal to electric field we can consider motion of particle


in two cases of mutual orientation of fields: (1)
−→
H⊥
−→
E and


−→
H ‖
−→
Ω ; (2)


−→
H ‖
−→
E and


−→
H⊥
−→
Ω .


In either case we assume that vector of electric strength is co-directed with x axis. In the back-
ground metric (3.275) pseudovector of space’s rotation is co-directed with z. Hence in the first case
magnetic strength is co-directed with z, while in the second case it is co-directed with x.
Equations of motion of charged particle in stationary electromagnetic field in case of vector of


electromagnetic strength co-directed with x are as follows. For our-world particle


dm


dτ
= −


eE1


c2
dx


dτ
, (3.358)


d


dτ


(
mvi


)
+ 2mA∙ik∙v


k = −e


(


Ei +
1


c
εikmvkH∗m


)


, (3.359)


and for mirror-world particle
dm


dτ
=
eE1


c2
dx


dτ
, (3.360)


d


dτ


(
mvi


)
= −e


(


Ei +
1


c
εikmvkH∗m


)


. (3.361)


As we did before, we will consider the case of a particle repulsed by filed. Then components of
strength of electric field Ei, co-directed with x, are (in Galilean frame of reference covariant and
contravariant indices of tensor values are the same)


E1 = Ex =
∂ϕ


∂x
= const = −E , E2 = E3 = 0 . (3.362)
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Integration of theorem of live forces gives integral of live forces for our world and the mirror world
(respectively)


m =
eE


c2
x+B , m = −


eE


c2
x+ B̃ . (3.363)


Here B is our-world integration constant and B̃ is mirror-world integration constant. Calculated
from the initial conditions at the moment τ=0 these are


B = m(0) −
eE


c2
x(0) , B̃ = m(0) +


eE


c2
x(0) , (3.364)


where m(0) is relativistic mass of particle and x(0) is displacement of particle at the initial moment
of time τ=0.
From the obtained integrals of live forces (3.363) we see that the differences between the three


case under study, due to different orientation of magnetic strength
−→
H , will only reveal themselves in


vector equations of motion, while scalar equations (3.358, 3.360) and their solutions (3.363) will be
the same.


Note that vector
−→
E can be also directed along y axis, but can not be directed along z, because in


space with such metrics co-directed with z is field of non-holonomity
−→
Ω while Group II of Maxwell


equations require strength
−→
E to be orthogonal to


−→
Ω .


Now taking into account the results of integration of theorem of live forces (3.363) we will write
down by-component notations of vector equations of motion of particle in stationary uniform electric
and magnetic fields for all three cases under study.


1. We assume that
−→
H⊥
−→
E and


−→
H ‖
−→
Ω , i. e. the vector magnetic strength


−→
H is directed along


z (parallel to the field of non-holonomity of space). Then out of all components of the vector of
magnetic strength the only non-zero one will be


H∗3 = H12 =
ϕ


c


(
∂v1
∂y
−
∂v2
∂x


)


+
2ϕ


c
A12 = const = H . (3.365)


Consequently, vector equations of motion for our-world particle in by-component notation will be


eE


c2
ẋ2 +


(


B +
eE


c2
x


)


(ẍ+ 2Ωẏ) = eE −
eH


c
ẏ ,


eE


c2
ẋẏ +


(


B +
eE


c2
x


)


(ÿ − 2Ωẋ) =
eH


c
ẋ ,


eE


c2
ẋż +


(


B +
eE


c2
x


)


z̈ = 0 ,


(3.366)


and for mirror-world particle


eE


c2
ẋ2 +


(


B̃ −
eE


c2
x


)


ẍ = eE −
eH


c
ẏ ,


eE


c2
ẋẏ +


(


B̃ −
eE


c2
x


)


ÿ =
eH


c
ẋ ,


eE


c2
ẋż +


(


B̃ −
eE


c2
x


)


z̈ = 0 .


(3.367)


Besides, Group I of Maxwell equations require that in the case under study, when magnetic field
and non-holonomity field are parallel, the condition should be true


Ω∗3H
∗3 = −2πcρ , (3.368)


where Ω∗3=Ω=const and H
∗3=H=const. Hence this mutual orientation of non-holonomity and mag-


netic field is only possible in case density of electric charge as a field source ρ 6=0.







CHAPTER 3. MOTION OF CHARGED PARTICLE 87


2.
−→
H ‖
−→
E ,
−→
H⊥
−→
Ω , and


−→
E⊥
−→
Ω , i. e. magnetic and electric strengths are co-directed with x, while


non-holonomity field is still directed along z. Here out of all components of magnetic strength only
the first component will be not zero


H∗1 = H23 =
ϕ


c


(
∂v2
∂z
−
∂v3
∂y


)


= const = H , (3.369)


while vector equations of motion for our-world particle in by component notation become


eE


c2
ẋ2 +


(


B +
eE


c2
x


)


(ẍ+ 2Ωẏ) = eE ,


eE


c2
ẋẏ +


(


B +
eE


c2
x


)


(ÿ − 2Ωẋ) = −
eH


c
ż ,


eE


c2
ẋż +


(


B +
eE


c2
x


)


z̈ =
eH


c
ẏ ,


(3.370)


and for mirror-world particle
eE


c2
ẋ2 +


(


B̃ −
eE


c2
x


)


ẍ = eE ,


eE


c2
ẋẏ +


(


B̃ −
eE


c2
x


)


ÿ = −
eH


c
ż ,


eE


c2
ẋż +


(


B̃ −
eE


c2
x


)


z̈ =
eH


c
ẏ ,


(3.371)


Now that we have equations of motion of charged particle for all three cases of mutual orienta-
tion of stationary fields (i. e. electric field, magnetic field and non-holonomity field) we can turn to
solving them.


A Magnetic field is orthogonal to electric field and is parallel to non-holonomity field


We are going to solve vector equations of motion of charged particle (3.366, 3.367) in non-relativistic
approximation, i. e. assuming absolute value of its observable velocity negligible compared to the speed
of light. Hence we can also assume particle’s mass at the initial moment of time equal to its rest mass


m(0) =
m0√


1− v
2


c2


∼= m0 . (3.372)


We assume electric strength E to be negligible as well, thus the term eEx
c2
can be truncated. Given


that, vector equations of motion of charged particle will transform as follows. For our-world particle


m0 (ẍ+2Ωẏ) = eE−
eH


c
ẏ , m0 (ÿ−2Ωẋ) =


eH


c
ẋ , m0z̈ = 0 , (3.373)


and for mirror-world particle


m0ẍ = eE −
eH


c
ẏ , m0ÿ =


eH


c
ẋ , m0z̈ = 0 . (3.374)


These equations match those obtained in Section 22 in The Classical Theory of Fields [1] in case
field of rotation of space Ω=0 and strength of electric field is co-directed with x.
The obtained equations for mirror-world particle are a specific case of our-world equations at Ω=0.


Therefore we can only integrate our-world equations, while the mirror-world solutions are obtained
automatically by assuming Ω=0. Integrating equation of motion along z we arrive to


z = ż(0)τ + z(0) . (3.375)


Integrating the second one (along y) we arrive to


ẏ =


(


2Ω +
eH


m0c


)


x+ C1 , (3.376)
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where integration constant is C1=ẏ(0)−
(
2Ω+ eH


m0c


)
x(0).


Substituting ẏ into the first equation (3.373) we obtain second-order differential equation in
respect to x


ẍ+ ω2x =
eE


m0
+ ω2x(0) − ωẏ(0) , (3.377)


where ω=2Ω+ eH
m0c
. Introducing a new variable


u = x−
A


ω2
, A =


eE


m0
+ ω2x(0) − ωẏ(0) , (3.378)


we obtain equation of harmonic oscillations


ü+ ω2u = 0 , (3.379)


which solves as
u = C2 cosωτ + C3 sinωτ , (3.380)


where integration constants are C2=u(0), C3=
u̇(0)
ω . Returning to variable x by reverse substitution


of variables we finally obtain


x =
1


ω


(


ẏ(0) −
eE


m0ω


)


cosωτ +
ẋ(0)


ω
sinωτ +


eE


m0ω2
+ x(0) −


ẏ(0)


ω
. (3.381)


Substituting the formula into the obtained equation for ẏ (3.376), after integration we arrive to
formula for y


y =
1


ω


(


ẏ(0) −
eE


m0ω


)


sinωτ −
ẋ(0)


ω
cosωτ +


eE


m0ω2
+ y(0) +


ẋ(0)


ω
. (3.382)


Vector mirror-world equations have the same solutions, but because for them Ω=0, the frequency


equals ω= eH
m0c
.


Energies of our-world and mirror-world particles are E=mc2 and E=−mc2, respectively.
Three-dimensional impulse of our-world charged particle in stationary uniform electromagnetic


field (when magnetic field is orthogonal to electric field and is parallel to non-holonomity field) takes
the form


p1 = m0ẋ =


(
eE


ω
−m0ẏ(0)


)


sinωτ +m0ẋ(0) cosωτ ,


p2 = m0ẏ =


(
2Ωm0
ω
+
eH


ωc


)(
eE


m0ω
− ẏ(0)


)


+m0ẏ(0) +


+


(
2Ωm0
ω
+
eH


ωc


)[(


ẏ(0) −
eE


m0ω


)


cosωτ + ẋ(0) sinωτ


]


,


p3 = m0ż = m0ż(0) .


(3.383)


From here we see that impulse of our-world charged particle in the given configuration performs
harmonic oscillations along x and y, while along z it is a linear function of observable time τ (if initial


velocity ż 6=0). Within xy plane the oscillation frequency is ω=2Ω+ eH
m0c
.


In the mirror world given this configuration of electric field, magnetic field and non-holonomity
field we have, respectively


p1 =


(
eE


ω
−m0ẏ(0)


)


sinωτ +m0ẋ(0) cosωτ ,


p2 =
eE


ω
+m0


[(


ẏ(0) −
eE


m0ω


)


cosωτ + ẋ(0) sinωτ


]


,


p3 = m0ż(0) ,


(3.384)
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where contrasted to our world the frequency is ω= eH
m0c
.


We should note obtaining exact general solutions of equations of motion of charged particle in
electric field and magnetic field at the same time is rather problematic, because elliptic integrals have
to be solved in the process. Possibly in future in case of any practical necessity the general solutions
will be obtained on computers, but this evidently stays beyond the goal of this book. Presumably
Landau and Lifshitz faced a similar problem, because in Section 22 of The Classical Theory of Fields
when considering a similar problem (but contrasted to this book, they used general covariant methods
and did not account for non-holonomity of space) they obtained equations of motion and solved them


assuming velocity to be non-relativistic and electric field weak eEx
c2
≈0.


B Magnetic field is parallel to electric field and is orthogonal to non-holonomity field


We are going to solve vector equations of motion of charged particle (3.370, 3.371) in the same
approximation as we did in the first case. Then for our world and for the mirror world these will be,
respectively


ẍ+ 2Ωẏ =
eE


m0
, ÿ − 2Ωẋ = −


eH


m0c
ż , z̈ =


eH


m0c
ẏ , (3.385)


ẍ =
eE


m0
, ÿ = −


eH


m0c
ż , z̈ =


eH


m0c
ẏ . (3.386)


Integrating the first equation of motion in our world (3.385) we obtain


ẋ =
eE


m0
τ − 2Ωy + C1 , C1 = const = ẋ(0) + 2Ωy(0) . (3.387)


Integrating the third equation (along z) we have


ż =
eH


m0c
y + C2 , C2 = const = ż(0) −


eH


m0c
y(0) . (3.388)


Substituting the obtained formulas for ẋ and ż into the second equation of motion (3.385) we
obtain linear differential 2nd order equation in respect to y


ÿ +


(


4Ω2 +
e2H2


m20c
2


)


y =
2ΩeE


m0
τ + 2ΩC1 −


eH


m0c
C2 . (3.389)


We are going to solve it with method of replacement of variables. Introducing a new variable u


u = y +
1


ω2


(
eH


m0c
C2 − 2ΩC1


)


, ω2 = 4Ω2 +
e2H2


m20c
2
, (3.390)


we obtain equation of forced oscillations


ü+ ω2u =
2ΩeE


m0
τ , (3.391)


which solution is sum of general solution of free oscillations equation


ü+ ω2u = 0 , (3.392)


and of a partial solution of inhomogeneous equation that can be presented as


ũ =Mτ +N , (3.393)


where M=const and N=const. Derivating ũ twice to τ and substituting the results into the inho-
mogeneous equation (3.391) and then equating the obtained coefficients for τ we obtain the linear
coefficients


M =
2ΩeE


m0ω2
, N = 0 . (3.394)
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Then the general solution of the initial inhomogeneous equation (3.391) becomes


u = C3 cosωτ + C4 sinωτ +
2ΩeE


m0ω2
τ , (3.395)


where integration constants can be obtained by substituting the initial conditions at τ=0 into the


obtained formula. As a result we have C3=u(0) and C4=
u̇(0)
ω .


Returning to the old variable y (3.390) we find the final solution for this coordinate


y =


[


y(0) +
1


ω2


(
eH


m0c
C2 + 2ΩC1


)]


cosωτ +


+
ẏ(0)


ω
sinωτ −


1


ω2


(
eH


m0c
C2 + 2ΩC1


)


+
2ΩeE


m0ω
2 τ .


(3.396)


Then substituting this formula into equations for ẋ and ż after integration we arrive to solutions
for x and z


x =
eE


2m0


(


1−
4Ω2


ω2


)


τ2 −
2Ω


ω


(
y(0) +A


)
sinωτ +


+
2Ωẏ(0)


ω
cosωτ + (C1 + 2ΩA) τ + C5 ,


(3.397)


z =
eH


m0cω


[
(
y(0) +A


)
sinωτ −


ẏ(0)


ω
cosωτ


]


−


(
eH


m0c
A− C2


)


τ + C6 , (3.398)


where a convenience notation was introduced


A =
1


ω2


(
eH


m0c
C2 − 2ΩC1


)


, (3.399)


while the new integration constants are


C5 = x0 −
2Ωẏ(0)


ω
, C6 = z(0) +


eHẏ(0)


m0cω2
. (3.400)


If we assume Ω=0, then from coordinates of our-world charged particle (3.396–3.398) we immedi-
ately obtain solutions for mirror-world charged particle


x =
eE


2m0
τ2 + ẋ(0)τ + x(0) , (3.401)


y =
ż(0)


ω
cosωτ +


ẏ(0)


ω
sinωτ −


ż(0)


ω
+ y(0) , (3.402)


z =
ż(0)


ω
sinωτ −


ẏ(0)


ω
cosωτ +


ẏ(0)


ω
+ z(0) . (3.403)


Consequently, components of three-dimensional impulse of our-world charged particle in stationary
uniform electromagnetic field (when magnetic field is parallel to electric field and is orthogonal to non-
holonomity field) take the form


p1 = m0ẋ(0) + eE


(


1−
4Ω2


ω2


)


τ − 2m0Ω


[
ẏ(0)


ω
sinωτ +


(
y(0) +A


)
cosωτ −


ẏ(0)


ω
−A


]


,


p2 = m0
[
ẏ(0) cosωτ − ω


(
y(0) +A


)
sinωτ


]
+
2ΩeE


ω2
,


p3 = m0ż(0) +
eH


c


[
(
y(0) +A


)
cosωτ +


ẏ(0)


ω
sinωτ −A+


2ΩeE


m0ω
2 τ − y(0)


]


,


(3.404)
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where the frequency is ω=


√
4Ω2+e


2H2


m20c
.


In the mirror world, given this configuration of electric field, magnetic field and non-holonomity
field, components of three-dimensional impulse of charged particle are


p1 = m0ẋ(0) + 2eEτ ,


p2 = m0
(
ẏ(0) cosωτ − ż(0) sinωτ


)
,


p3 = m0
(
ż(0) cosωτ − ẏ(0) sinωτ


)
,


(3.405)


where contrasted to our world the frequency is ω= eH
m(0)c


.


3.14 Conclusions


In fact the theory we have built in this Chapter can be more precisely referred to as chronometrically
invariant representation of electrodynamics in pseudo-Riemannian space. Or, because the mathemat-
ical apparatus of physical observable values initially assumes pseudo-Riemannian space, simply as
chronometrically invariant electrodynamics (CED). Here we presented only the basics of this theory:


• chronometrically invariant components of electromagnetic field tensor (Maxwell tensor);
• chronometrically invariant Maxwell equations;
• law of electric charge conservation in chronometrically invariant form;
• chronometrically invariant Lorentz condition;
• chronometrically invariant d’Alembert equations (wave propagation equations) for scalar poten-
tial and vector-potential of electromagnetic field;


• chronometrically invariant Lorentz force;
• tensor of energy-impulse of electromagnetic field and its chronometrically invariant components;
• chronometrically invariant equations of motion of mass-bearing charged particle;
• geometric structure of four-dimensional potential of electromagnetic field.


Evidently the whole scope of chronometrically invariant electrodynamics is much wider. In addition
to what has been done we could obtain chronometrically invariant equations of motion of charge
distributed in space or study motion of particle that bears its own electromagnetic emission, which
interacts with the field or deduce equations of motion for particle that travels at an arbitrary angle
to field (either for individual particle or a distributed charge), or tackle scores of other interesting
problems.







Chapter 4


Particle with spin in pseudo-Riemannian space


4.1 Problem statement


In this Chapter we are going to obtain dynamic equation of motion of particle with inner mechanical
momentum (spin). As we mentioned in Chapter 1, these are equations of parallel transfer of four-
dimensional dynamic vector of particle Qα, which is the sum of vectors


Qα = Pα + Sα, (4.1)


where Pα=m0
dxα


ds
is four-dimensional vector of impulse of particle and Sα is four-dimensional impulse


that particle gains from its inner momentum (spin), which makes its motion non-geodesic. Therefore
we will refer to Sα as four-dimensional spin-impulse of particle. Because we know all components
of dynamic vector of impulse Pα, to define summary dynamic vector Qα we only need to obtain
components of spin-impulse Sα, which are functions of particle’s spin.
Hence our first step will be defining particle’s spin as geometric value in four-dimensional pseudo-


Riemannian space. Then in Section 4.2 herein we are going to deduce four-dimensional impulse Sα


that particle gains from its spin. In Section 4.3 our goal will be dynamic equations of motion of
spin-particle in pseudo-Riemannian space and their chronometrically invariant (physical observable)
projections onto time and space. Other Sections will focus on motion of elementary particles.
So, absolute value of spin is ±nh̄, measured in fractions of Planck constant, where n is so-called


spin quantum number. As of today it is known [5] that for various types of particles this number
may be n=0, 1/2, 1, 3/2, 2. Alternating sign ± stands for possible right-wise or left-wise inner rotation
of particle. Besides, Planck constant h̄ has dimension of impulse momentum [g cm2 s−1]. This alone
hints that spin’s tensor by its geometric structure should be similar to tensor of impulse momentum,
i. e. should be an antisymmetric 2nd rank tensor. We are going to check if other source prove that.
The second Bohr postulate says that the length of electron orbit should comprise integer number


of de Broglie wavelengths λ=hp , which stands for electron according to wave-particle concept. In other


words, length of electron orbit 2πr comprises k de Broglie wavelengths


2πr = kλ = k
h


p
, (4.2)


where p is orbital impulse of electron. Taking into account that Planck constant with a bar is h̄= h
2π ,


equation (4.2) should be
rp = kh̄ . (4.3)


Because radius-vector of electron orbit ri is orthogonal to vector of its orbital impulse pk, this
formula in tensor notation is vector product


[
ri; pk


]
= kh̄ik . (4.4)


From here we see that Planck constant deduced from the second Bohr postulate in tensor notation
is antisymmetric 2nd rank tensor.


92







CHAPTER 4. MOTION OF SPIN-PARTICLE 93


But this representation of Planck constant is linked to orbital model of atom — of the system more
complicated than electron or any other elementary particle. Nevertheless spin, also defined by this
constant, is an inner property of elementary particles themselves. Therefore according to the second
Bohr postulate we have to consider geometric structure of Planck constant proceeding from another
experimental relationship which is related to inner structure of electron only.
We have such opportunity thanks to classical experiments by O. Stern and W.Gerlach (1921). One


of their results is that electron bears inner magnetic momentum L(m), which is proportional to its
inner mechanical momentum (spin)


me


e
L(m) = nh̄ , (4.5)


where e is charge of electron, me is its mass and n is spin quantum number (for electron n=1/2).
Magnetic momentum of a contour with area S=πr2, which conducts current I, is L(m)=IS. Current


equals to charge e divided by its period of circulation T=2πru along this contour


I =
eu


2πr
, (4.6)


where u is linear velocity of charge circulation. Hence, in accordance with the definition L(m)=IS,
inner magnetic momentum of electron is


L(m) =
1


2
eur , (4.7)


or in tensor notation19


Lik(m) =
1


2
e
[
ri;uk


]
=
1


2


[
ri; pk(m)


]
, (4.8)


where ri is radius-vector of circulation of inner current of electron and uk is vector of circulation
velocity. From here we see that Planck constant, being calculated from inner magnetic momentum of
electron (4.5), is also a vector product of two vectors, i. e. antisymmetric 2nd rank tensor


me


2e


[
ri; pk(m)


]
= nh̄ik, (4.9)


which proves similar conclusion based on second Bohr postulate.
Subsequently, considering inter-atomic and inter-electronic quantum relationships in four-


dimensional pseudo-Riemannian space, we arrive to four-dimensional antisymmetric Planck tensor
h̄αβ , which spatial components are three-dimensional values h̄ik


h̄αβ =










h̄00 h̄01 h̄02 h̄03


h̄10 h̄11 h̄12 h̄13


h̄20 h̄21 h̄22 h̄23


h̄30 h̄31 h̄32 h̄33







 . (4.10)


This antisymmetric tensor h̄αβ corresponds to dual Planck pseudotensor h̄∗αβ= 12E
αβμν h̄μν . Sub-


sequently, spin of particle in four-dimensional pseudo-Riemannian space is characterized by antisym-
metric tensor nh̄αβ , or by its dual pseudotensor nh̄∗αβ . Note that physical nature of spin does not
matter here, it is enough that this fundamental property of particle is characterized by a tensor (or
a pseudotensor) of a certain kind. Thanks to this approach we can solve a problem of motion of
spin-particle without any preliminary assumption on their inner structure, i. e. using purely formal
mathematical method.
Hence from geometric viewpoint Planck constant is antisymmetric 2nd rank tensor with dimensions


of impulse momentum irrespective of through what values it was obtained: mechanical or electromag-
netic ones. The latter also implies that Planck tensor does not characterize rotation of masses inside


19Equations (4.8) and (4.9) are given for Minkowski space, which is quite acceptable for the above experiments. In
Riemannian space result of integration depends upon the integration path. Therefore radius-vector of a finite length is
not defined in Riemannian space, because its length depends upon constantly varying direction.
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atoms or any masses inside elementary particles, but stems from some fundamental quantum rotation
of space itself and sets all “elementary” rotations in space irrespective of their nature.
Specific rotation of space is characterized by three-dimensional chronometrically invariant (observ-


able) tensor Aik (1.36), which results from lowering indices Aik=himhknA
mn in components Amn of


contravariant four-dimensional tensor


Aαβ = chαμhβνaμν , aμν =
1


2


(
∂bν


∂xμ
−
∂bμ


∂xν


)


. (4.11)


In accompanying frame of reference (bi=0) auxiliary value aμν are


a00 = 0 , a0i =
1


2c2


(
∂w


∂xi
−
∂vi


∂t


)


, aik =
1


2c


(
∂vi


∂xk
−
∂vk


∂xi


)


, (4.12)


and components of four-dimensional tensor of space rotation become


A00 = 0 , A0i = −Ai0 = 0 , Aik =
1


2


(
∂vk


∂xi
−
∂vi


∂xk


)


+
1


2c2
(Fivk − Fkvi) . (4.13)


In absence of gravitational field tensor of angular velocities of space rotation formulates with linear
velocity of rotation vi only, hence we denote it as Aαβ=Ωαβ


Ω00 = 0 , Ω0i = −Ωi0 = 0 , Ωik =
1


2


(
∂vk


∂xi
−
∂vi


∂xk


)


. (4.14)


On the other hand, according to wave-particle concept any particle corresponds to a wave with
energy E=mc2=h̄ω, where m is relativistic mass of particle and ω is its specific frequency. In other
words, from geometric viewpoint any particle can be considered as wave defined within infinite prox-
imity of geometric location of particle, which specific frequency depends upon certain distribution of
angular velocities ωαβ , also defined within this proximity. Then the above quantum relationship in


tensor notation becomes mc2=h̄αβωαβ .
Because Planck tensor is antisymmetric, all of its diagonal elements are zeroes. Its space-time


(mixed) components in accompanying frame of reference also should be zero similar to respective
components of four-dimensional tensor of angular velocities of space rotation (4.14). Values of spatial
(three-dimensional) components of Planck tensor, observable in experiments, are ±h̄ depending upon
direction of rotation and make three-dimensional chronometrically invariant (observable) Planck tensor
h̄ik. In case of left-wise rotation components h̄12, h̄23, h̄31 are positive, while components h̄13, h̄32,
h̄21 are negative.
Then geometric structure of four-dimensional Planck tensor, represented as matrix, becomes


h̄αβ =










0 0 0 0
0 0 h̄ −h̄
0 −h̄ 0 h̄
0 h̄ −h̄ 0







 . (4.15)


In case of right-wise rotation components h̄12, h̄23, h̄31 change sign to become negative, while
components h̄13, h̄32, h̄21 become positive


h̄αβ =










0 0 0 0
0 0 −h̄ h̄
0 h̄ 0 −h̄
0 −h̄ h̄ 0







 . (4.16)


The square of four-dimensional Planck tensor can be calculated as follows


h̄αβ h̄
αβ = 2h̄2


[(
g11g22 − g212


)
+
(
g11g33 − g213


)
+
(
g22g33 − g223


)
+


+2 (g12g23 − g22g13 − g12g33 + g13g23 − g11g23 + g12g13)
]
,


(4.17)
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and in Minkowski space, when frame of reference is Galilean one and metric is diagonal (2.70), it equals
to h̄αβ h̄


αβ=6h̄2. In pseudo-Riemannian space the value h̄αβ h̄
αβ can be deduced by substitution of


dependency of three-dimensional components of fundamental metric tensor from observable three-


dimensional metric tensor hik=−gik+ 1
c2
vivk and space rotation velocity into (4.17). Hence, though


physical observable components h̄ik of Planck tensor are constant (bear opposite signs for left and
right-wise rotation), its square in general case depends from angular velocity of space rotation.
Now having components of Planck tensor defined, we can approach deduction of impulse that par-


ticle gains from its spin as well as dynamic equations of motion of spin-particle in pseudo-Riemannian
space. This will be the focus of the next Section.


4.2 Spin-impulse of a particle in the equations of motion


The additional impulse Sα that particle gains from its spin can be obtained from considering action
for spin-particle.
Action S for a particle that bears inner scalar field k, with which some external scalar field A


interacts and thus displaces the particle by interval ds, is


S = α(kA)


∫ b


a


kAds , (4.18)


where α(kA) is a scalar constant that characterizes properties of the particle in a given interaction and
equalizes dimensions [1, 4]. If inner scalar field of particle k corresponds to external filed of 1st rank
tensor Aα, then action to displace particle by that field is


S = α(kAα)


∫ b


a


kAαdx
α. (4.19)


In interaction of particle’s inner scalar field k with external field of 2nd rank tensor Aαβ this action
of field to displace the particle is


S = α(kAαβ)


∫ b


a


kAαβdx
αdxβ . (4.20)


And so forth. For instance, if specific vector potential of particle kα corresponds to external vector
field Aα then action of this interaction to displace the particle is


S = α(kαAα)


∫ b


a


kαAαds . (4.21)


Besides, action can be represented as follows irrespective of nature of inner properties of particles
and external field


S =


∫ t2


t1


Ldt , (4.22)


where L is so-called Lagrange function. Because the dimension of action S is [erg s=g cm2 s−1], then
Lagrange function has dimension of energy [erg=g cm2 s−2]. And derivative from Lagrange function


to three-dimensional coordinate velocity ui=dx
i


dt
of particle


∂L


∂ui
= pi (4.23)


is covariant notation of its three-dimensional impulse pi=cP i which can be used to restore full notation
for four-dimensional impulse vector of particle Pα. Hence having action for the particle, having
Lagrange function outlined and derivated to coordinate velocity of particle, we can calculate the
additional impulse that particle gains from its spin.
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As known, action to displace free particle in pseudo-Riemannian space is20


S =


∫ b


a


m0cds . (4.24)


In Galilean frame of reference in Minkowski space because non-diagonal terms of metric tensor are
zeroes, space-time interval is


ds =
√
gαβdxαdxβ = cdt


√


1−
u2


c2
, (4.25)


and hence action becomes


S =


∫ b


a


m0cds =


∫ t2


t1


m0c
2


√


1−
u2


c2
dt . (4.26)


Therefore Lagrange function of free particle in Galilean frame of reference in Minkowski space is


L = m0c
2


√


1−
u2


c2
. (4.27)


Derivating it to coordinate velocity we arrive to covariant form of its three-dimensional impulse


pi =
∂L


∂ui
= m0c


2
∂


√


1−
u2


c2


∂ui
= −


m0ui√


1−
u2


c2


, (4.28)


from which, having indices lifted, we arrive to four-dimensional impulse vector of free particle as


Pα =
1


c


m0√


1−
u2


c2


dxα


dt
= m0


dxα


ds
. (4.29)


Because here in the final formula both multipliers, m0 and
dxα


ds
, are general covariant values, i. e.


do not depend upon choice of a particular frame of reference, this formula obtained in Galilean frame
of reference is also true in another arbitrary frame of reference in four-dimensional pseudo-Riemannian
space.
Now we are going to consider motion of particle that possesses inner structure, which in experi-


ments reveals itself like its spin. Inner rotation (spin) of particle nh̄αβ in four-dimensional pseudo-
Riemannian space corresponds to external field Aαβ of rotation of space. Therefore summary action
of spin-particle is


S =


∫ b


a


(
m0cds+ α(s)h̄


αβAαβds
)
, (4.30)


where α(s) [s cm
−1] is a scalar constant that characterizes particle in spin-interaction. Because constant


of action may include only characteristics of particle’s properties or physical constants, α(s) is evidently
spin quantum number n, which is function of inner properties of particle, divided by speed of light
α(s)=


n
c . Then action to displace particle, produced by interaction of the spin with field of non-


holonomity of space Aαβ is


S = α(s)


∫ b


a


h̄αβAαβds =
n


c


∫ b


a


h̄αβAαβds . (4.31)


20In The Classical Theory of Fields [1] Landau and Lifshitz put “minus” before action, while we always have “plus”
before integral of action and Lagrange function. This is because the sign of action depends upon signature of pseudo-
Riemannian space. Landau and Lifshitz use signature (−+++), where time is imaginary, spatial coordinates are real
and three-dimensional coordinate impulse is positive (see in the below). To the contrary, we stick to Zelmanov’s [10]
signature (+ − −−), where time is real and spatial coordinates are imaginary, because in this case three-dimensional
observable impulse is positive.
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A note should be taken that building four-dimensional impulse vector for spin-particle using the
same method as for free particle is impossible. As known, we first obtained impulse of free particle
in Galilean frame of reference in Minkowski space, where formula for ds presented with interval of
coordinate time dt and substituted into action had simple form (4.25). It was shown that the obtained
formula (4.29) due to its property of general covariance was true in any frame of reference in pseudo-
Riemannian space. But as we can see from the formula of action for spin-particle, spin affects motion
of particle in non-holonomic space Aαβ 6=0 only, i. e. when non-diagonal terms g0i of fundamental
metric tensor are not zeroes. In Galilean frame of reference, by definition, all non-diagonal terms in
metric tensor are zeroes, hence zeroes are velocity of space rotation vi=− c


g0i√
g00
and non-holonomity


tensor Aαβ . Therefore it is pointless to deduce formula for spin-particle impulse in Galilean frame
of reference in Minkowski space (where it is a priori zero), instead we should deduce it directly in
pseudo-Riemannian space.
In arbitrary accompanying frame of reference in pseudo-Riemannian space four-dimensional inter-


val ds can be presented in the form


ds = cdτ


√


1−
v2


c2
= cdt


(


1−
w+viu


i


c2


)√√
√
√
√
√
1−


u2


c2
(


1−
w+viu


i


c2


)2 , (4.32)


where coordinate velocity of particle ui=dx
i


dt
can be expressed with its observable velocity vi=dx


i


dτ
as


vi =
ui


1−
w + viu


i


c2


, v2 =
hiku


iuk


(


1−
w + viu


i


c2


)2 . (4.33)


Then the additional action (4.31), produced by interaction of spin with field of non-holonomity of
space, becomes


S = n


∫ t2


t1


h̄αβAαβ


√(


1−
w + viui


c2


)2
−
u2


c2
dt . (4.34)


Therefore Lagrange function for action produced by particle’s spin is


L = nh̄αβAαβ


√(


1−
w + viui


c2


)2
−
u2


c2
. (4.35)


Now to deduce the additional impulse produced by spin we only have to derivate the Lagrange
function (4.35) to coordinate velocity of particle. Taking into account that h̄αβ , being a tensor of inner
rotation of particle, and Aαβ (4.13), being a tensor of specific rotation of space, are not functions of
velocity of particle, after derivation we obtain


pi =
∂L


∂ui
= nh̄mnAmn


∂


∂ui


√(


1−
w + viu


i


c2


)2
−
u2


c2
= −


1


c2
nh̄mnAmn√


1−
v2


c2


(vi + vi) , (4.36)


where vi=hikv
k. We compare (4.36) with spatial covariant component pi=cPi of four-dimensional


impulse vector Pα=m0
dxα


ds
of mass-bearing particle in pseudo-Riemannian space. For mass-bearing


particle in our world that travels from past into future in respect to an usual observer (direct flow of
time), three-dimensional covariant impulse equals


pi = cPi = cgiαP
α = −m (vi + vi) = −


m0√


1−
v2


c2


(vi + vi) . (4.37)
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From here we see that four-dimensional impulse vector Sα that particle gains from its spin (i. e.
spin-impulse of particle) is


Sα =
1


c2
nh̄μνAμν


dxα


ds
, (4.38)


or, introducing notation η0=nh̄
μνAμν=nh̄


mnAmn to make the formula simpler


Sα =
1


c2
η0
dxα


ds
. (4.39)


Then the summary dynamic vector Qα (4.1) that characterizes motion of spin-particle is


Qα = Pα + Sα = m0
dxα


ds
+
1


c2
nh̄μνAμν


dxα


ds
. (4.40)


Therefore spin-particle in non-holonomic space (Aμν 6=0) actually gains additional impulse that
deviates its motion from geodesic (free-particle) trajectory and makes it non-geodesic. In absence
of space rotation (holonomic space) values Aμν=0 and the spin does not affect motion of particle.
But there is hardly an area in space where rotation is fully absent. Therefore spin most often affects
motion of particle in the subject domain of atomic physics, where rotation is especially strong.


4.3 Equations of motion of spin-particle


Dynamic equations of motion of spin-particle are equations of parallel transfer of summary vector
Qα=Pα+Sα (4.40) along the trajectory of motion of the particle (its parallel transfer) in four-
dimensional pseudo-Riemannian space


d


ds
(Pα + Sα) + Γαμν (P


μ + Sμ)
dxν


ds
= 0 , (4.41)


where the square of vector being transferred conserves along the entire trajectory QαQ
α=const.


Our goal is to deduce chronometrically invariant (physically observable) projections of these equa-
tions onto time and space in accompanying frame of reference. These equations in general notation,
as obtained in Chapter 2, are


dϕ


ds
−
1


c
Fiq


i dτ


ds
+
1


c
Dikq


i dx
k


ds
= 0 , (4.42)


dqi


ds
+


(
ϕ


c


dxk


ds
+ qk


dτ


ds


)
(
Dik +A


∙i
k∙


)
−
ϕ


c
F i
dτ


ds
+4imkq


m dx
k


ds
= 0 , (4.43)


where ϕ is projection of summary vector Qα on time and q
i is its projection on space


ϕ = bαQ
α =


Q0
√
g00
=


P0
√
g00
+


S0
√
g00


, (4.44)


qi = hiαQ
α = Qi = P i + Si. (4.45)


Therefore attaining the goal requires deducing ϕ and qi, substituting them into (4.42, 4.43) and


canceling similar terms. Projections of impulse vector of mass-bearing particle Pα=m0
dxα


ds
are


P0
√
g00
= ±m, P i =


1


c
mvi, (4.46)


and now we have to deduce projections of spin-impulse Sα. Taking into account in the formula for
Sα (4.39) that space-time interval, formulated with physical observable values, is ds=cdτ


√
1−v2/c2,


we obtain components of spin-impulse Sα


S0 =
1


c2
nh̄mnAmn√


1−
v2


c2


(
viv
i ± c2


)


c2
(


1−
w


c2


) , (4.47)
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Si =
1


c3
nh̄mnAmn√


1−
v2


c2


vi, (4.48)


S0 = ±
1


c2


(
1−


w


c2


) nh̄mnAmn√


1−
v2


c2


, (4.49)


Si = −
1


c3
nh̄mnAmn√


1−
v2


c2


(vi ± vi) , (4.50)


also formulated with physical observable values. From here we see that physical observable projections
of spin-impulse of particle are


S0
√
g00
= ±


1


c2
η , Si =


1


c3
ηvi, (4.51)


where η is


η =
nh̄mnAmn√


1−
v2


c2


, (4.52)


while alternating signs, which results from substituting function of time dt
dτ
(1.55) indicate motion of


particle into future (the upper sign) or into past (the lower sign). Then the square of spin-impulse is


SαS
α = gαβS


αSβ =
1


c4
η20gαβ


dxαdxβ


ds2
=
1


c4
η20 , (4.53)


and the square of summary dynamic vector Qα is


QαQ
α = gαβQ


αQβ = m20 +
2


c2
m0η0 +


1


c4
η20 . (4.54)


Therefore the square of length of summary vector of spin-particle falls apart into three parts,
namely:


• the square of length of specific four-dimensional vector of impulse of particle PαPα=m20;


• the square of length of four-dimensional spin-impulse of particle SαSα= 1
c4
η20 ;


• the term 2
c2
m0η0 that describes spin-gravitational interaction.


To effect parallel transfer (4.41) it is necessary that the square of transferred summary vector
conserved along the entire path. But the obtained formula (4.54) implies that because m0=const the
square of summary vector of spin-particle Qα conserves only provided that η0=const, i. e.


dη0 =
∂η0


∂xα
dxα = 0 . (4.55)


Dividing both parts of the equation by dτ , which is always possible because elementary interval
of observer’s physical time is greater than zero21, we obtain chronometrically invariant condition of
conservation of the square of summary vector of spin-particle


dη0


dτ
=
∗∂η0


∂t
+ vk


∗∂η0


∂xk
= 0 . (4.56)


Substituting here η0 = nh̄
mnAmn we have


nh̄mn
(∗∂Amn


∂t
+ vk


∗∂Amn


∂xk


)


= 0 . (4.57)


21The condition dτ=0 only has sense in generalized space-time, where degeneration of fundamental metric tensor gαβ
is possible. In this case the above condition defines fully degenerated domain (zero-space) that hosts zero-particles,
which are capable of instant displacement, i. e. are carriers of long-range action.
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To illustrate the result we formulate three-dimensional chronometrically invariant tensor of angular
velocity of space rotation Aik with pseudovector of three-dimensional angular velocity of this rotation


Ω∗i =
1


2
εimnAmn , (4.58)


which is also a chronometric invariant. Multiplying Ω∗i by εipq


Ω∗iεipq =
1


2
εimnεipqAmn =


1


2


(
δmp δ


n
q − δ


n
p δ
m
q


)
Amn = Apq , (4.59)


we obtain (4.57) as


nh̄mn
[∗∂
∂t


(
εimnΩ


∗i
)
+ vk


∗∂


∂xk
(
εimnΩ


∗i
)
]


=


= nh̄mnεimn


[
1
√
h


∗∂


∂t


(√
hΩ∗i


)
+ vk


1
√
h


∗∂


∂xk


(√
hΩ∗i


)]


= 0 .


(4.60)


Gravitational inertial force and tensor of non-holonomity are related through Zelmanov’s identities,
one of which (formula 13.20 in [10]) is


2
√
h


∗∂


∂t


(√
hΩ∗i


)
+ εijk ∗∇jFk = 0 , (4.61)


or, in a different notation


∗∂Aik


∂t
+
1


2
(∗∇kFi −


∗∇iFk) =
∗∂Aik


∂t
+
1


2


(∗∂Fk
∂xi


−
∗∂Fi


∂xk


)


= 0 , (4.62)


where εijk ∗∇jFk is chronometrically invariant (observable) rotor of field of gravitational inertial force
Fk. From here we see that non-stationarity of tensor of angular velocity Aik is due to rotor character
of field of gravitational inertial force Fik in the space of the body of reference. Hence taking into
account equation (4.61) our formula (4.60) becomes


−nh̄mn ∗∇mFn + nh̄
mnεimnv


k 1√
h


∗∂


∂xk


(√
hΩ∗i


)
= 0 , (4.63)


or in another notation


nh̄mn ∗∇mFn = nh̄
mnεimnv


k


(


Ω∗i
∗∂ ln


√
h


∂xk
+
∗∂Ω∗i


∂xk


)


. (4.64)


Now we should recall that this formula is nothing but expanded chronometrically invariant notation
of the condition of conservation of the square of summary vector (4.57). The left part (4.64) equals


± 2nh̄ (∗∇1F2−
∗∇2F1+


∗∇1F3−
∗∇3F1+


∗∇2F3−
∗∇3F2) , (4.65)


where “plus” and “minus” stand for right and left frames of reference, respectively. Therefore the
left part of formula (4.64) is chronometrically invariant rotor of gravitational inertial force. The right
part (4.64) depends upon spatial orientation of field of pseudovector of angular velocities of space’s
rotation Ω∗i.
Hence to conserve the square of transferred vector of spin-particle it is necessary that the right and


the left parts of (4.64) are equal to each other along the entire trajectory of the particle. In general
case, i. e. without any additional assumptions on geometric structure of the space of reference, this
requires balance between rotor field of gravitational inertial force of space of reference and spatial
distribution of pseudovector of angular velocity of its rotation.
If field of gravitational inertial force is vortless, the left part of the conservation condition (4.64)


is zero and this condition becomes


nh̄mnεimnv
k 1√


h


∗∂


∂xk


(√
hΩ∗i


)
= 0 . (4.66)
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After denoting chronometrically invariant derivative as
∗∂
∂xk
= ∂
∂xk
+ 1
c2
vk
∗∂
∂t
we have


nh̄mnεimnv
k 1√


h


[
∂


∂xk


(√
hΩ∗i


)
−
1


c2
vk
∗∂


∂t


(√
hΩ∗i


)]


= 0 . (4.67)


Since the field of force Fi is vortless, because of (4.66) the second term in this formula is zero.
Therefore the square of summary vector of spin particle conserves in vortless field of force Fi provided
that chronometrically invariant formula (4.66) and the formula with regular derivatives are zeroes


nh̄mnεimnv
k 1√


h


∂


∂xk


(√
hΩ∗i


)
= 0 . (4.68)


For mass-bearing particles this is the case, for instance, when vk=0, i. e. when particle rests in
respect to observer and his body of reference. In this case equality to zero of derivatives in (4.68) is
not essential. But massless particles travel at the speed of light, hence for such in vortless field of


force Fi the derivatives
∂
∂xk
(
√
hΩ∗i) must be zeroes.


Now we are going to obtain chronometrically invariant dynamic equations of motion of spin-
particle in pseudo-Riemannian space. Substituting (4.46) and (4.51) into (4.44) and (4.45) we arrive
to observable components of summary vector of spin-particle


ϕ = ±


(


m+
1


c2
η


)


, qi =
1


c
mvi +


1


c3
ηvi. (4.69)


Having these values substituted for ϕ>0 into (4.42, 4.43) we obtain chronometrically invariant
equations of motion of mass-bearing spin-particle that travels from past into future


dm


dτ
−
m


c2
Fiv


i +
m


c2
Dikv


ivk = −
1


c2
dη


dτ
+
η


c4
Fiv


i −
η


c4
Dikv


ivk, (4.70)


d


dτ


(
mvi


)
+ 2m


(
Dik +A


∙i
k∙


)
vk −mF i +m4inkv


nvk =


= −
1


c2
d


dτ


(
ηvi
)
−
2η


c2
(
Dik +A


∙i
k∙


)
vk +


η


c2
F i −


η


c2
4inkv


nvk.
(4.71)


For mass-bearing spin-particle that travels from future into past, having the values (4.69) substi-
tuted for ϕ<0 the equations become


−
dm


dτ
−
m


c2
Fiv


i +
m


c2
Dikv


ivk =
1


c2
dη


dτ
+
η


c4
Fiv


i −
η


c4
Dikv


ivk, (4.72)


d


dτ


(
mvi


)
+mF i +m4inkv


nvk == −
1


c2
d


dτ


(
ηvi
)
−
η


c2
F i −


η


c2
4inkv


nvk, (4.73)


We wrote down the obtained equations in a way that the left parts have geodesic part, which
describes free (geodesic) motion of particle, while the right parts have the terms produced by spin,
which makes its motion non-geodesic (non-geodesic part). Hence for moving no-spin particle the right
parts become zeroes and we obtain chronometrically invariant dynamic equations of motion of free
particle. In the next Sections such form of equations will facilitate their analysis.
Within wave-particle concept massless particle is described by four-dimensional wave vector


Kα=ωc
dxα


dσ
, where dσ2=hikdx


idxk is three-dimensional physical observable interval, not equal to


zero along isotropic trajectories. Because massless particles travel along isotropic trajectories (light
propagation trajectories), vector Kα is also isotropic one: its square is zero. But because the dimen-
sion of wave vector Kα is [s−1], equations of motion of massless particles, obtained with its help, have
the dimension different from that of equations of motion of mass-bearing particles. Besides, this fact
does not permit building uniform formula of action for both massless and mass-bearing particles [10].
On the other hand, spin is a physical property, possessed by mass-bearing and massless particles


(photons, for instance). Therefore deduction of equations of motion of spin-particles require using
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uniform dynamic vector for both types of particles. Such vector can be obtained by applying physical
conditions that are true along isotropic trajectories,


ds2 = c2dτ2 − dσ2 = 0 , cdτ = dσ 6= 0 , (4.74)


to four-dimensional impulse of mass-bearing particle Pα=m0
dxα


ds


Pα = m0
dxα


ds
=
m


c


dxα


dτ
= m


dxα


dσ
. (4.75)


As a result observable three-dimensional interval, not equal to zero along isotropic trajectories, be-
comes the derivation parameter, while the dimension of entire formula, contrasted to four-dimensional
wave vector Kα [s−1], coincides with that of four-dimensional impulse vector Pα [g]. Relativistic mass
m, not equal to zero for massless particles, can be obtained from its energy equivalent using E=mc2


formula. For instance, photon energy of E=1Mev=1.6∙10−6 erg corresponds to its relativistic mass of
m=1.8∙10−28 g.
Therefore four-dimensional impulse vector (4.75), depending upon its form, may describe motion


of either mass-bearing particles (non-isotropic trajectories) or massless ones (isotropic trajectories).
As a matter of fact, for massless particles m0=0 and ds=0, therefore their ratio in (4.75) is a 0/0
indeterminance. However the transition (4.75) solves the indeterminance, because relativistic mass
(motion mass) of massless particles m 6=0 and along their trajectory dσ 6=0.
Evidently that in the form applicable to massless particles (i. e. along isotropic trajectories) the


square of Pα (4.75) equals to zero


PαP
α = gαβP


αP β = m2gαβ
dxα


dσ


dxβ


dσ
= m2


ds2


dσ2
= 0 . (4.76)


Evidently also that physical observable components of four-dimensional impulse vector for massless


particles Pα=mdxα


dσ
are


P0
√
g00
= ±m, P i =


1


c
mci, (4.77)


where ci is three-dimensional chronometrically invariant vector of light velocity (its square equals
cic
i=hikc


ick=c2 in an accompanying frame of reference).
Along isotropic (light-like) trajectories spin-impulse of particle (4.39) is also isotropic


Sα =
1


c2
η0
dxα


ds
=
1


c2
η
dxα


cdτ
=
1


c2
η
dxα


dσ
, (4.78)


because its square is zero


SαS
α = gαβS


αSβ =
1


c4
η2gαβ


dxαdxβ


dσ2
=
1


c4
η2
ds2


dσ2
= 0 , (4.79)


and hence the square of summary dynamic vector of massless spin-particle Qα=Pα+Sα is also zero.
Observable projections of isotropic spin-impulse (spin-impulse of massless particle) are


S0
√
g00
= ±


1


c2
η , Si =


1


c3
ηci, (4.80)


while its observable projection coincides with the one for mass-bearing particles (4.51), and the spatial
projection instead of observable velocity vi (4.51) has vector of observable light velocity ci. Subse-
quently, observable components of summary vector of massless spin-particle are


ϕ = ±


(


m+
1


c2
η


)


, qi =
1


c
mci +


1


c3
ηci. (4.81)


Having these values substituted for positive ϕ into the initial formulas (4.42, 4.43), we arrive to
chronometrically invariant dynamic equations of motion for massless (light-like) spin-particle that
travels from past into future
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dm


dτ
−
m


c2
Fic


i +
m


c2
Dikc


ick = −
1


c2
dη


dτ
+
η


c4
Fic


i −
η


c4
Dikc


ick, (4.82)


d


dτ


(
mci


)
+ 2m


(
Dik +A


∙i
k∙


)
ck −mF i +m4inkc


nck =


= −
1


c2
d


dτ


(
ηci
)
−
2η


c2
(
Dik +A


∙i
k∙


)
ck +


η


c2
F i −


η


c2
4inkc


nck.
(4.83)


For massless spin-particle that travels from future into past, having the values (4.81) substituted
for ϕ<0, the equations become


−
dm


dτ
−
m


c2
Fic


i +
m


c2
Dikc


ick =
1


c2
dη


dτ
+
η


c4
Fic


i −
η


c4
Dikc


ick, (4.84)


d


dτ


(
mci


)
+mF i +m4inkc


nck = −
1


c2
d


dτ


(
ηci
)
−
η


c2
F i −


η


c2
4inkc


nck. (4.85)


4.4 Physical conditions of spin-interaction


As we have shown, spin (inner mechanical momentum) of particle interacts with external field of


space rotation — field of non-holonomity tensor Aαβ= 12ch
αμhβν


(
∂bν
∂xμ
−
∂bμ
∂xν


)


, which is a function of


rotor of four-dimensional vector of observer’s velocity bα. In electromagnetic phenomena particle also


interacts with external field of 2nd rank tensor — field of Maxwell tensor Fαβ=
∂Aβ
∂xα
−∂Aα
∂xβ
. Therefore


it seems natural to compare physical observable components of Maxwell field Fαβ to their analogs for
non-holonomity field Aαβ .
In the previous Chapter we obtained that field of Maxwell tensor has two groups of observable


values, produced by covariant tensor Fαβ itself and by its dual pseudotensor F
∗αβ= 12E


αβμνFμν , where


Eαβμν is four-dimensional completely antisymmetric discriminant tensor that produce pseudotensors
in four-dimensional pseudo-Riemannian space


F ∙i0∙√
g00
= Ei, F ik = Hik,


F ∗∙i0∙√
g00
= H∗i, F ∗ik = E∗ik. (4.86)


Similar components of general covariant tensor of non-holonomity Aαβ (4.11) and of pseudotensor
A∗αβ= 12E


αβμνAμν , deduced in accompanying frame of reference are


A∙i0∙√
g00
= 0 , Aik = himhknAmn ,


A∗∙i0∙√
g00
= 0 , A∗ik = 0 . (4.87)


Comparing these formulas with those for observable components of Maxwell tensor and pseudoten-
sor (4.86), also deduced in accompanying frame of reference, we see that spin-interaction presents only
the analog for “magnetic” component Hik=Aik=himhknAmn of non-holonomity field. The analog for


“electric” component of non-holonomity field in spin-interaction turns to be zero E i= A∙i0∙√
g00
=0. Which


is no surprise, because spin (inner field of rotation) of particle interacts with external field of non-
holonomity of space and both fields are produced by motion.
Besides, for non-holonomity field the analog of “magnetic” component Hik=Aik 6=0 can not be dual


to zero value H∗i= A∗∙i0∙√
g00
=0. Similarity with electromagnetic field turns out to be incomplete. But full


matching could not even be expected, because tensor of non-holonomity and tensor of electromagnetic


field have somewhat different structures: Maxwell tensor is a “pure” rotor Fαβ=
∂Aβ
∂xα
−∂Aα
∂xβ
, while


tensor of non-holonomity is an “add-on” rotor Aαβ= 12ch
αμhβν


(
∂bν
∂xμ
−
∂bμ
∂xν


)


. On the other hand we


have no doubts that in future comparative analysis of these fields with such similar structures will
produce theory of spin interactions, similar to that of electromagnetic field.
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Incomplete similarity of non-holonomity field and electromagnetic field also leads to another result.
If we define force of spin-interaction in the same way we define Lorentz force Φα=ecF


α∙
∙σ U


σ, the obtained


formula Φα=
η0
c2
Aα∙∙σU


σ will include not all the terms from the right parts of equations of motion of


spin-particle. But an external force that acts on particle, by definition, must include all factors that
deviate the particle from geodesic trajectory, i. e. all terms in the right parts of dynamic equations
of motion. In other words, four-dimensional force of spin-interaction Φα [g s−1] is defined by general
covariant formula


Φα =
DSα


ds
=
dSα


ds
+ ΓαμνS


μ dx
ν


ds
, (4.88)


which projection onto space (after being divided by c) gives three-dimensional force of spin-interaction
Φi [g cm s−2]. For instance, for mass-bearing our-world particles from (4.71) we have


Φi = −
1


c2
d


dτ


(
ηvi
)
−
2η


c2
(
Dik +A


∙i
k∙


)
vk +


η


c2
F i −


η


c2
4inkv


nvk. (4.89)


From further comparison of electromagnetic and spin-interaction, using similarity with electro-
magnetic field invariants (3.25, 3.26) we deduced invariants of non-holonomity field


J1 = AαβA
αβ = AikA


ik = εikmε
iknΩ∗mΩ∗n = 2Ω∗iΩ


∗i, (4.90)


J2 = AαβA
∗αβ = 0 . (4.91)


Hence scalar invariant J1=2Ω∗iΩ
∗i is always non-zero, because otherwise the space would be


holonomic (not rotating) and spin-interaction will be absent.
Now we are approaching physical conditions of motion of elementary spin-particles. Using the


definition of chronometrically invariant vector of gravitational inertial force


Fi =
1


1−
w


c2


(
∂w


∂xi
−
∂vi


∂t


)


= −c2
∂ ln


(


1−
w


c2


)


∂xi
−
∗∂vi


∂t
(4.92)


we formulate non-holonomity tensor Aik with gravitational potential w of reference’s body and linear
velocity vi of rotation of reference’s space


Aik =
1


2


(∗∂vk
∂xi
−
∗∂vi


∂xk


)


+ vi


∂ ln


√
1−


w


c2


∂xk
− vk


∂ ln


√
1−


w


c2


∂xi
. (4.93)


From here we see that non-holonomity tensor Aik is a three-dimensional observable rotor of lin-
ear velocity of space rotation with two additional terms, produced by interaction between field of
gravitational potential w and field of space rotation.
On the other hand, because of small absolute value of Planck constant, spin-interaction only affects


elementary particles. And as known, on the scales of such small masses and distances gravitational in-
teraction is a few orders of magnitude weaker than electromagnetic, weak (spin) or strong interactions.
Keeping this fact in mind, we can assume that for spin-interaction in the formula for non-


holonomity tensor Aik (4.93) gravitational potential w→0. Then on the microscopic scales of ele-
mentary particles Aik is physical observable rotor in “pure” notation


Aik =
1


2


(∗∂vk
∂xi


−
∗∂vi


∂xk


)


, (4.94)


while the gravitational inertial force (4.92) will have only inertial part


Fi = −
∗∂vi


∂t
= −


1


1−
w


c2


∂vi


∂t
= −


∂vi


∂t
. (4.95)
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Zelmanov’s identities (see formulas 13.20 and 13.21 from [10]), that link gravitational inertial force
and space rotation


2
√
h


∗∂


∂t


(√
hΩ∗i


)
+ εijk ∗∇jFk = 0 ,


∗∇kΩ
∗k +


1


c2
FkΩ


∗k = 0 (4.96)


for elementary particles (w→0) become


1
√
h


∂


∂t


(√
hΩ∗i


)
+
1


2
εijk


( ∗∂2vk
∂xj∂t


−
∗∂2vj


∂xk∂t


)


= 0 ,


∗∇kΩ∗k −
1


c2


∗∂vk


∂t
Ω∗k = 0 .


(4.97)


If we substitute here
∗∂vk
∂t
=0, i. e. assume that the observable rotation of space is stationary, we


obtain ∗∇kΩ∗k=0, i. e. pseudovector of angular velocity of space rotation will conserve. Then the first
(vector) equation will become


DΩ∗i +
∗∂Ω∗i


∂t
= 0 , (4.98)


from which we see that D=det||Djj ||=
∗∂ ln


√
h


∂t
, i. e. rate of relative expansion of elementary volume


of space is zero D=0.
Therefore, these equations suggest that for elementary particles (w→0) in stationary rotation


of space (
∗∂vk
∂t
=0) tensor of angular velocities of this rotation conserves ∗∇kΩ∗k=0 and relative


expansion (deformation) of the space is absent D=0.
It is possible, that stationarity of field of non-holonomity of space (as the external field in spin-


interaction) is the necessary condition of stability of elementary particle. Out of this we may conclude
that long-living spin-particles should possess stable inner rotation, while short-living particles must
be rotors.
To study motion of short-living particles is pretty problematic as we do not have experimental data


on structure of rotors that may produce them. At the same time the study for long-living ones, i. e.
in vortless (stationary) field of space rotation, can give exact solutions of their equations of motion.
We will focus on these issues in the next Section.


4.5 Motion of elementary spin-particles


As we have mentioned, Planck constant, being a small absolute value, only “works” on the scales
of elementary particles, where gravitational interaction is a few orders of magnitude weaker than
electromagnetic, weak and strong ones. Hence assuming w→0 in equations of motion of spin-particles
(4.70–4.73) and (4.82–4.85), we will arrive to equations of motion of elementary particles.


Besides, as we obtained in the previous Section, in stationary rotation of space (
∗∂vk
∂t
=0) on the


scales of elementary particles the trace of tensor of space deformation velocities is zero D=0. Of
course zero trace of a tensor does not necessarily imply the tensor itself is zero. On the other hand,
deformation of space is a rare phenomenon and for our study of motion of elementary particles we
will assume Dik=0.
In Section 4.3 we showed that in stationary rotation of space the condition of conservation of


spin-impulse of particle Sα becomes (4.68)


nh̄mnεimnv
k 1√


h


∂


∂xk


(√
hΩ∗i


)
= 0 . (4.99)


On the other hand, with
∗∂vk
∂t
=0 Zelmanov’s identities we applied for elementary particles (4.97)


imply that


∗∇kΩ
∗k =


∂Ω∗k


∂xk
+
∂
√
h


∂xk
Ω∗k =


1
√
h


∂


∂xk


(√
hΩ∗k


)
= 0 . (4.100)
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The first condition is true provided that 1√
h


∂
∂xk
(
√
hΩ∗k)=0. This is true if pseudovector of


angular velocity of space rotation is


Ω∗i =
Ω∗i(0)√
h
, Ω∗i(0) = const , (4.101)


in this case the second condition (4.100) is true too.
Taking the above into account, from the formulas (4.70, 4.71) we obtain chronometrically invariant


equations of motion of our-world mass-bearing elementary particle that travels into future in respect
to an regular observer (direct flow of time)


dm


dτ
= −


1


c2
dη


dτ
, (4.102)


d


dτ


(
mvi


)
+ 2mA∙ik∙v


k +m4inkv
nvk = −


1


c2
d


dτ


(
ηvi
)
−
2η


c2
A∙ik∙v


k −
η


c2
4inkv


nvk, (4.103)


and from (4.72, 4.73) we obtain the equations for mirror-world mass-bearing elementary particle that
travels into past (reverse flow of time),


−
dm


dτ
=
1


c2
dη


dτ
, (4.104)


d


dτ


(
mvi


)
+m4inkv


nvk = −
1


c2
d


dτ


(
ηvi
)
−
η


c2
4inkv


nvk. (4.105)


In this case scalar equations of motion (temporal projections) are the same for mass-bearing
particles in our world and in the mirror world.
Integrating scalar equation of motion for direct flow of time


∫ τ2


τ1=0


d


dτ


(
m+


η


c2


)
dτ = 0 , (4.106)


we obtain
m+


η


c2
= const = B , (4.107)


where B is integration constant that can be defined from the initial conditions.
To illustrate physical sense of the obtained live forces integral, we use analogy between observable


components of four-dimensional impulse vector of particle Pα=m0
dxα


ds
and those of spin-impulse


Sα=
η0
c2
dxα


ds
. Both vectors are tangential to the world line of motion of particle, while their observable


components are


P0√
g00
= ±m, P i =


1


c
mvi =


1


c
pi,


S0√
g00
= ±


1


c2
η , Si =


1


c3
ηvi. (4.108)


Using analogy with relativistic mass of particle ±m we will refer to the value ± 1
c2
η as relativistic


spin-mass. Then 1
c2
η0 is rest spin-mass of a particle. Further, live forces theorem for spin elementary


particle (4.107) implies that with the assumptions we made the sum of relativistic mass of elementary
particle and of its spin-mass conserves along the trajectory.
Now using live forces integral (solution of scalar equation of motion) we approach vector equations


of motion of our-world mass-bearing elementary particle (4.103). Substituting (4.107) into vector
equations of motion (4.103) having the constant canceled we obtain


dvi


dτ
+ 2A∙ik∙v


k +4inkv
nvk = 0 , (4.109)


i. e. pure kinematic equations of motion (non-geodesic one, in this case). The term 4inkv
nvk, which


is contraction of chronometrically invariant Christoffel symbols with observable velocity of particle,
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is relativistic in the sense that it is a quadratic function of velocity of particles. Therefore it can be


neglected provided that observable metric hik=−gik+ 1
c2
vivk along the trajectory is close to Euclidean


one. Such is possible when velocity of space rotation is much lower than the speed of light, while three-
dimensional coordinate metric gik is Euclidean one. Then the diagonal components of observable
metric tensor are


h11 = h22 = h33 = +1 , (4.110)


while the other components hik=0 if i 6=k. Noteworthy, the four-dimensional metric can not be Galilean
here, because three-dimensional space rotates in respect to time. In other words, though space in this
case is a flat Euclidean one, four-dimensional space-time is not a flat Minkowski space but is a pseudo-
Riemannian space with metric


ds2 = g00dx
0dx0 + 2g0idx


0dxi + gikdx
idxk =


= c2dt2 + 2g0icdtdx
i −
(
dx1
)2
−
(
dx2
)2
−
(
dx3
)2
.


(4.111)


We assume that space rotates at constant angular velocity Ω=const around a single axis, axis x3,
for instance. Then linear velocity of the space of reference vi=Ωikx


k becomes


v1 = Ω12x
2 = Ωy , v2 = Ω21x


1 = −Ωx , (4.112)


where Aik=Ωik. Then tensor of space non-holonomity Aik has only two non-zero components


A12 = −A21 = −Ω . (4.113)


Taking this into account vector equations of motion of our-world elementary particle (4.109)
become


dv1


dτ
+ 2Ωv2 = 0 ,


dv2


dτ
− 2Ωv1 = 0 ,


dv3


dτ
= 0 . (4.114)


The third equation solves immediately as


v3 = v3(0) = const. (4.115)


Taking into account that v3=dx
3


dτ
, we represent coordinate x3 as


x3 = v3(0)τ + x
3
(0) , (4.116)


where x3(0) is the value of coordinate x
3 at the initial moment of time τ=0. Now we formulate v2 from


the first equation (4.114)


v2 = −
1


2Ω


dv1


dτ
, (4.117)


having this formula derivated to dτ
dv2


dτ
= −


1


2Ω


d2v1


dτ2
, (4.118)


and having it substituted into the second equation (4.114) we obtain


d2v1


dτ2
+ 4Ω2v1 = 0 , (4.119)


i. e. equation of free oscillations. It solves as


v1 = C1 cos (2Ωτ) + C2 sin (2Ωτ) , (4.120)


where C1 and C2 are integration constants (4.119), which can be defined from the conditions at
the moment τ=0


v1(0) = C1 ,
dv1


dτ


∣
∣
∣
∣
τ=0


= − 2ΩC1 sin (2Ωτ)|τ=0 + 2ΩC2 cos (2Ωτ)|τ=0 . (4.121)
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Thus C1=v
1
(0), C2=


v̇1(0)
2Ω , where v̇


1
(0)=


dv1


dτ
|τ=0. Then the equation for v1 finally solves as


v1 = v1(0) cos (2Ωτ) +
v̇1(0)


2Ω
sin (2Ωτ) , (4.122)


i. e. velocity of elementary particle along x1 performs sinusoidal oscillations at frequency equal to
double angular velocity of space rotation.


Taking into account that v1=dx
1


dτ
, we integrate the obtained formula (4.122) to dτ . We obtain


x1 =
v1(0)


2Ω
sin (2Ωτ)−


v̇1(0)


4Ω2
cos (2Ωτ) + C3 . (4.123)


Assuming that at the initial moment τ=0 the value x1=x1(0) we obtain the integration constant


C3=x
1
(0)+


v̇1(0)
4Ω2
. Then we have


x1 =
v1(0)


2Ω
sin (2Ωτ)−


v̇1(0)


4Ω2
cos (2Ωτ) + x10 +


v̇1(0)


4Ω2
, (4.124)


i. e. coordinate x1 of elementary particle also performs free oscillations at frequency 2Ω.
Now having the obtained v1 (4.122) substituted into the second equation (4.114), we arrive to


dv2


dτ
= 2Ωv1(0) cos (2Ωτ) + v̇


1
(0) sin (2Ωτ) , (4.125)


which after integration gives formula for v2


v2 = v1(0) sin (2Ωτ)−
v̇1(0)


2Ω
cos (2Ωτ) + C4 . (4.126)


Assuming for the moment τ=0 velocity v2=v2(0), we obtain the constant C3=v
2
(0)+
v̇1(0)
2Ω . Then


v2 = v1(0) sin (2Ωτ)−
v̇1(0)


2Ω
cos (2Ωτ) + v2(0) +


v̇1(0)


2Ω
. (4.127)


Taking into account that v2=dx
2


dτ
, we integrate the formula to dτ . Then we obtain the formula


for coordinate x2 of elementary particle


x2 = −
v̇1(0)


4Ω2
sin (2Ωτ)−


v1(0)


2Ω
cos (2Ωτ) + v2(0)τ +


v1(0)τ


2Ω
+ C5 . (4.128)


Integration constant can be found from the conditions x2=x2(0) at τ=0 as C5=x
2
(0)+
v1(0)
2Ω . Then


coordinate x2 finally is


x2 = v2(0)τ +
v1(0)τ


2Ω
−
v̇1(0)


4Ω2
sin (2Ωτ)−


v1(0)


2Ω
cos (2Ωτ) + x2(0) +


v1(0)


2Ω
. (4.129)


From this formula we see: if at the initial moment of observable time τ=0 elementary particle had
velocity v2(0) along x


2 and acceleration v̇1(0) along x
1, then this particle, along with free oscillations of


coordinate x2 at frequency, equal to double angular velocity of space rotation Ω, is subjected to linear


displacement by 4x2=v2(0)τ+
v1(0)τ


2Ω .


Refering back to live forces integral (solution of scalar equation of motion) for a spin elementary
particle m+


η
c2
=B=const (4.107), we define integration constant B. From (4.107), presented as


m0 +
η0


c2
= B


√


1−
v2


c2
, (4.130)
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we see that the square of observable velocity of particle v2=const. Because components of observable
velocity of particle have been already defined, we can present the formula for its square, which, because
the three-dimensional metric in question is a Euclidean one, becomes


[
v1
]2
+
[
v2
]2
+
[
v3
]2
=
[
v1(0)


]2
+
[
v2(0)


]2
+
[
v3(0)


]2
+


+


[
v̇1(0)


]2


2Ω2
+
v̇1(0)v


2
(0)


Ω
+ 2


[


v2(0) +
v̇1(0)


2Ω


][


v1(0) sin (2Ωτ)−
v̇1(0)


2Ω
cos (2Ωτ)


]


.


(4.131)


We see that the square of velocity conserves, if v̇2(0)=0 and v̇
1
(0)=0. The integration constant B


from the live forces integral is


B =
1


√


1−
v2(0)


c2


(


m0 +
η0


c2


)


, v2(0) =
(
v1(0)


)2
+
(
v3(0)


)2
= const, (4.132)


while the live forces integral itself (4.170) becomes


m+
η


c2
=


1
√


1−
v2(0)


c2


(


m0 +
η0


c2


)


, (4.133)


i. e. is the condition of conservation of the sum of relativistic mass of particle m and its spin-mass
η
c2
.


A note should be taken here concerning all we have said in the above on elementary particles.
Taking into account in η0=nh̄


mnAmn that Amn=εmnkΩ
∗k, we obtain


η0 = nh̄
mnAmn = 2nh̄∗kΩ


∗k. (4.134)


where h̄∗k=
1
2εnmkh̄


mn. Formally, h̄∗k is a three-dimensional pseudovector of the inner momentum of
elementary particle. Hence η0 is a scalar product of three-dimensional pseudovectors: that of inner
momentum of particle h̄∗k and that of angular velocity rotation of space Ω


∗k. Hence spin interaction
is absent if pseudovectors of inner rotation and external rotation of space are collinear.
Now we refer back to equations of motion of spin-particles. Taking into account integration con-


stants, vector equations of motion solve as


v1 = v1(0) cos (2Ωτ) , x1 =
v1(0)


2Ω
sin (2Ωτ) + x1(0) ,


v2 = v2(0) sin (2Ωτ) , x2 = −
v1(0)


2Ω
cos (2Ωτ) +


v1(0)


2Ω
+ x2(0) ,


v3 = v3(0), x3 = v3(0)τ + x
3
(0) .


(4.135)


We are going to look at the form of spatial curve along which our-world mass-bearing particle
moves. We set a frame of reference so that the initial displacement of particle is zero x1(0)=x


2
(0)=x


3
(0)=0.


Now all its spatial coordinates at an arbitrary moment of time are


x1=x=a sin (2Ωτ) , x2=y=a [1− cos (2Ωτ)] , x3=z=bτ , (4.136)


where a=
v1(0)
2Ω , b=v


3
(0). The obtained solutions for coordinates are parametric equations of a surface,


along which mass-bearing particle travels. To illustrate what kind of surface it is, we switch from
parametric notation to coordinate one, removing parameter τ from the equations. Putting formulas
for x and y in the power of two we obtain


x2 + y2 = 2a2 [1− cos (2Ωτ)] = 4a2 sin2 (Ωτ) = 4a2 sin2
zΩ


b
. (4.137)
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The obtained result reminds of a spiral line equation x2+y2=a2, z=bτ . However the similarity
is not complete — the particle travels along the surface of a cylinder at a constant velocity b=v3(0)
along its z axis, while the radius of the cylinder oscillates at frequency Ω within the range22 from


zero up to the maximum 2a=
v1(0)
Ω at z=πkb2Ω .


So our-world three-dimensional trajectory of mass-bearing elementary particle reminds of a spiral
line “wound” over an long oscillating cylinder. Particle’s life span is the length of the cylinder divided
by its speed along z axis (cylinder axis). Oscillations of the cylinder are energy “breath ins” and
“breath outs” of the particle.
That means that the cylinder we obtained is the cylinder of events of particle from its birth in our


world (act of materialization) through its death (dematerialization). But even after death (decay) of
particle the cylinder of events does not disappear completely, but splits into a few cylinders of events
of other particles, produced by the decay either in our world or in the mirror world.
Therefore analysis of births and decays of elementary particles in General Relativity implies anal-


ysis of branch points of cylinders of events taking into account possible branches that lead into the
mirror world.
If we consider motion of two linked spin-particles that rotate around a common center of masses,


for instance, that of positronium (dumb-bell shaped system of electron and positron), we obtain a
double DNA-like spiral — a twisted “rope ladder” with a number of steps (links of particles), wound
over an oscillating cylinder of events.
Now we are going to solve equations of motion of mass-bearing spin-particle in the mirror world, a


world with reverse flow of time. Under physical conditions we consider (stationary rotation of space at
low velocity, absence of deformation and Euclidean three-dimensional metric), these equations (4.104,
4.105) become


−
dm


dτ
=
1


c2
dη


dτ
, (4.138)


d


dτ


(
mvi


)
= −


1


c2
d


dτ


(
ηvi
)
. (4.139)


Solution of the scalar equation is live forces integral in the form m+
η
c2
=B=const, as was the case


for our-world particle (4.107). Substituting it into vector equations (4.139) we solve them as


dvi


dτ
= 0 , (4.140)


hence vi=vi(0)=const. That implies that from viewpoint of a regular observer mirror-world mass-
bearing particles travel linearly at a constant velocity, as contrasted to observable motion of our-world
particles that travel along oscillating “spiral” line.
On the other hand, from viewpoint of a hypothetical observer of the mirror world, motion of


our-world mass-bearing particles will be linear and even, while mirror-world particles will travel along
oscillating “spiral” lines.
We could also analyze motion of massless (light-like) spin-particles in a similar way, but we don’t


know how adequate in such case would be our assumption that linear velocity of rotation of space of
reference is much smaller compared to speed of light. And it was this assumption thanks to which we
were able to obtain exact solutions of equations of motion of mass-bearing elementary spin-particles.
Though in general, the methods to solve equations of motion are the same for mass-bearing and
massless particles.


4.6 Spin-particle in electromagnetic field


In this Section we are going to deduce and analyze chronometrically invariant dynamic equations of
motion of particle that bears electric charge and spin, and travels in external electromagnetic field in


22Where k=0, 1, 2, 3, . . . If v3
(0)
=0, particle simply oscillates within xy plane (plane of cylinder’s section).
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four-dimensional pseudo-Riemannian space. The method to be used is projection of general covariant
equations of parallel transfer of summary vector on space and time


Qα = Pα +
e


c2
Aα + Sα, (4.141)


were Pα is four-dimensional impulse vector of particle that travels, in this case, along a non-geodesic
trajectory. Respectively, the rest two terms are four-dimensional impulse that particle gains from
interaction of its charge with electromagnetic field and the impulse gained from interaction of the spin
with field of non-holonomity of space.
Note, that because vectors Pα and Sα are tangential to four-dimensional trajectory (the world


line), we will assume that the third vector Aα (four-dimensional potential of electromagnetic field) is


also tangential to the world line of particle. In this case the vector is Aα=ϕ0
dxα


ds
, while the formula


qi=
ϕ
c v
i (see Section 3.8) sets the relationship between scalar potential ϕ and vector potential qi of


electromagnetic field.
Then physical observable components of ϕ̃ and q̃i of the summary vector of charged spin-particle,


which are sums of similar components of all three added-up vectors, become


ϕ̃ = ±
(
m+


eϕ


c2
+
η


c2


)
, q̃i =


1


c2
mvi +


1


c3
(η + eϕ) vi, (4.142)


where m is relativistic mass of particle, ϕ is scalar potential of electromagnetic field, while η describes
interaction of particle’s spin with external field of non-holonomity of space


m =
m0√


1−
v2


c2


, ϕ =
ϕ0√


1−
v2


c2


, η =
η0√


1−
v2


c2


. (4.143)


Generally these equations can be deduced in the same way as those for charged particle and spin-
particle severally, save that now we have to project absolute derivative of the sum of the three vectors.
Using formulas for ϕ̃ and q̃i (4.142), we obtain chronometrically invariant equations of motion of
charged mass-bearing spin-particle that travels in our world (from past into future)


dm


dτ
−
m


c2
Fiv


i +
m


c2
Dikv


ivk = −
1


c2
d


dτ
(η + eϕ) +


η + eϕ


c4
Fiv


i −
η + eϕ


c4
Dikv


ivk, (4.144)


d


dτ


(
mvi


)
+ 2m


(
Dik +A


∙i
k∙


)
vk −mF i +m4inkv


nvk =


= −
1


c2
d


dτ


[
(η + eϕ) vi


]
−
2 (η + eϕ)


c2
(
Dik +A


∙i
k∙


)
vk +


η + eϕ


c2
F i −


η + eϕ


c2
4inkv


nvk,


(4.145)


as well as equations of motion of charged mass-bearing spin-particle that travels in the mirror world
(i. e. from future into past),


−
dm


dτ
−
m


c2
Fiv


i +
m


c2
Dikv


ivk =
1


c2
d


dτ
(η + eϕ) +


η + eϕ


c4
Fiv


i −
η + eϕ


c4
Dikv


ivk, (4.146)


d


dτ


(
mvi


)
+mF i +m4inkv


nvk = −
1


c2
d


dτ


[
(η + eϕ) vi


]
−
η + eϕ


c2
F i −


η + eϕ


c2
4inkv


nvk. (4.147)


Parallel transfer in Riemannian space conserves length of transferred vector. Hence its square
is invariant in any frame of reference. In particular, in accompanying frame of reference it is also
constant and is


QαQ
α = gαβ


(


Pα +
e


c2
Aα + Sα


)(


P β +
e


c2
Aβ + Sβ


)


=


= gαβ


(


m0 +
eϕ0


c2
+
η0


c2


)2
dxα


ds


dxβ


ds
=


(


m0 +
eϕ0


c2
+
η0


c2


)2
.


(4.148)







CHAPTER 4. MOTION OF SPIN-PARTICLE 112


In Section 3.9 we already showed that orientation of four-dimensional electromagnetic potential Aα


along the world line substantially simplifies the right parts of chronometrically invariant equations of
motion of charged particle. The right part of vector equations of motion is chronometrically invariant


Lorentz force Φi=−e
(
Ei+1c ε


ikmvkH∗m


)
, while the right part of the scalar equation is scalar product


of electric strength vector Ei and chronometrically invariant velocity of particle. Keeping this in
mind, we present chronometrically invariant equations of motion of charged mass-bearing spin-particle
(4.144–4.147) in a more specific form. For particle that travels in our world (i. e. from past into future,
direct flow of time), we have


d


dτ


(


m+
η


c2


)


−
1


c2


(


m+
η


c2


)


Fiv
i +
1


c2


(


m+
η


c2


)


Dikv
ivk = −


e


c2
Eiv


i, (4.149)


d


dτ


[(


m+
η


c2


)


vi
]


+ 2


(


m+
η


c2


)
(
Dik +A


∙i
k∙


)
vk−


−


(


m+
η


c2


)


F i +


(


m+
η


c2


)


4inkv
nvk = − e


(


Ei +
1


c
εikmvkH∗m


)


,


(4.150)


and for particle in the mirror world that travels from future into past (reverse flow of time), we have


−
d


dτ


(


m+
η


c2


)


−
1


c2


(


m+
η


c2


)


Fiv
i +
1


c2


(


m+
η


c2


)


Dikv
ivk = −


e


c2
Eiv


i, (4.151)


d


dτ


[(


m+
η


c2


)


vi
]


+


(


m+
η


c2


)


F i +


(


m+
η


c2


)


4inkv
nvk = − e


(


Ei +
1


c
εikmvkH∗m


)


. (4.152)


Now to make concrete conclusions on motion of charged spin-particles in pseudo-Riemannian space
we have to set concrete geometric structure of the space. As we did in the previous Section, where we
analyzed motion of non-charged particles, we will assume that:


• because gravitational interaction on the scales of elementary particles is infinitesimal, so we can
assume w→0;


• rotation of space is stationary, i. e.
∗∂vk
∂t
=0;


• deformation of space is absent, i. e. Dik=0;
• three-dimensional coordinate metric gikdxidxk is Euclidean, i. e. three-dimensional metric tensor


is gik =


∣
∣
∣
∣
−1, i=k
0, i 6=k


;


• space rotates at a constant angular velocity Ω around x3=z, i. e. components of linear rotation
velocity of space are v1=Ω12x


2=Ωy, v2=Ω21x
1=−Ωx.


Keeping in mind these constraints, metric of space-time on the scales of elementary particles
becomes


ds2 = c2dt2 − 2Ωydtdx+ 2Ωxdtdy − dx2 − dy2 − dz2, (4.153)


while physical observable characteristics of the reference’s space in the space-time with the metric are


Fi = 0 , Dik = 0 , A12 = −A21 = −Ω , A23 = A31 = 0 . (4.154)


As we did in the previous Section looking at motion of elementary spin-particles, we assume that
velocity of space rotation is much less than speed of light (weak field of non-holonomity of space). In
such case physical observable three-dimensional metric hik is Euclidean and all Christoffel symbols4ijk
become zeroes, which dramatically simplifies the involved algebra. Then chronometrically invariant
equations of motion of charged mass-bearing spin-particle in our world (in by-component notation)
become


d


dτ


(
m+


η


c2


)
= −


e


c2
Ei
dxi


dτ
, (4.155)
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d


(


m+
η


c2


)


v1


dτ
+ 2


(


m+
η


c2


)


Ωv2 = −e


(


E1 +
1


c
ε1kmvkH∗m


)


,


d


(


m+
η


c2


)


v2


dτ
− 2


(


m+
η


c2


)


Ωv1 = −e


(


E2 +
1


c
ε2kmvkH∗m


)


,


d


(


m+
η


c2


)


v3


dτ
= −e


(


E3 +
1


c
ε3kmvkH∗m


)


,


(4.156)


while for mirror-world particle these are


d


dτ


(
m+


η


c2


)
=


e


c2
Ei
dxi


dτ
, (4.157)


d


(


m+
η


c2


)


v1


dτ
= −e


(


E1 +
1


c
ε1kmvkH∗m


)


,


d


(


m+
η


c2


)


v2


dτ
= −e


(


E2 +
1


c
ε2kmvkH∗m


)


,


d


(


m+
η


c2


)


v3


dτ
= −e


(


E3 +
1


c
ε3kmvkH∗m


)


.


(4.158)


From scalar equation of motion in our world (4.155) and in the mirror world (4.157) we see that
the sum of relativistic mass of elementary particle and of its spin-mass (property of spin-interaction
with non-holonomity field) equals to work of electric field to displace this charged particle along dxi


interval. From vector equations of motion we see that in our world (4.156) as well as in the mirror
world (4.158) the sum of spatial three-dimensional impulse vector of particle and spin-impulse of
particle along x3=z is defined only by Lorentz force’s component along the same axis.
Now our goal is to obtain trajectory of elementary charged spin-particle in a particular electro-


magnetic field with known properties. As we did in Chapter 3, we will assume electromagnetic field
constant, i. e. not dependent from time. The strengths Ei and H


∗i are


Ei =
∂ϕ


dxi
, (4.159)


H∗i =
1


2
εimnHmn =


1


2c
εimn


[
∂ (ϕvm)


dxn
−
∂ (ϕvn)


dxm
− 2ϕAmn


]


. (4.160)


In Chapter 3 we tackled a similar problem — solving equations of motion for charged mass-
bearing particles, but without taking spin into account. Evidently, in a specific case when spin is zero,
solutions of equations of motion of charged spin-particle, as more general ones, should coincide with
those obtained in Chapter 3 within “pure” electrodynamics.
To compare our results with those obtained in electrodynamics, it would be reasonable to analyze


motion of mass-bearing spin-particle in three typical kinds of electromagnetic fields, which were under
study in Chapter 3 as well as in The Classical Theory of Fields by Landau and Lifshitz [1]: (a) uniform
electric field with magnetic component absent; (b) uniform magnetic field with electric component
absent; (c) uniform electric and magnetic fields.
On the other hand, electrodynamics studies motion of regular (not elementary) particles and it


is not a priori evident that all three cases mentioned in the above are applicable, given the metric
constraints, typical for micro-world. Here is why.
First, spin of particle affects its motion only if external field of non-holonomity (rotation) of


space exists, hence tensor of non-holonomity Aik 6=0. But from the formulas for electric and magnetic
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strengths Ei andH
∗i (4.159, 4.160) we see that non-holonomity of space only affects magnetic strength.


Hence we will largely focus on motion of elementary particle in magnetic field.
Second, scalar equation of motion of mass-bearing charged spin-particle (4.155)


(
m0 +


η0


c2


) d


dτ


1
√


1−
v2


c2


= −
e


c2
Eiv


i (4.161)


in non-relativistic case, when particle’s velocity is much less than speed of light, becomes


Eiv
i = 0 , (4.162)


i. e. electric field does not perform work to displace charged particle under constraints on metric,
typical for the world of elementary particle. Because we are looking at stationary field, the obtained
condition (4.162) can be presented as


Eiv
i =


∂ϕ


∂xi
vi =


∂ϕ


∂xi
dxi


dτ
=
dϕ


dτ
= 0 , (4.163)


which implies that scalar potential of field ϕ = const and


H∗i =
ϕ


2c
εimn


[
∂vm
∂xn


−
∂vn
∂xm


− 2


(
∂vm


∂xn
−
∂vn


∂xm


)]


. (4.164)


For relativistic charged elementary particle electric field reveals itself (i. e. performs work to displace
it) provided that the absolute value of its velocity is not stationary


1


2c2
(


1−
v2


c2


)3
2


(
m0 +


η0


c2


) dv2


dτ
= −


e


c2
Eiv


i 6= 0 . (4.165)


Hence electric component of field, given the constraints on metric, typical for elementary particles,
reveals itself only for relativistic particles, which velocity is not constant along the trajectory. Hence
all “slow-moving” particle fall out of our consideration in electric field.
Therefore, the general case, i. e. motion of elementary particle at arbitrary velocity (either low


or relativistic one) should be only studied for stationary magnetic field (when electric component is
absent). This will be done in the next Section.


4.7 Motion in stationary magnetic field


In this Section we are going to look at motion of charged spin-particle in stationary uniform mag-
netic field.
As we did in the previous Section, we will assume that space-time has the metric (4.153). Then


Fi=0 and Dik=0. Field of non-holonomity is stationary. In rotation around z out of all components of
non-holonomity tensor only the components A12=−A21=−Ω=const are not zeroes, i. e. space rotates
within xy plane at a constant velocity Ω.
Under the considered conditions the value η0=nh̄


mnAmn, which describes interaction between spin
(inner rotation) of particle and external field of non-holonomity (rotation) of the space itself, is


η0 = nh̄
mnAmn = n


(
h̄12A12 + h̄


21A21
)
= −2nh̄Ω , (4.166)


where the sign before the product h̄Ω depends only upon mutual orientation of h̄ and Ω. “Plus”
stands for co-directed h̄ and Ω, “minus” implies they are oppositely directed.
Equations of motion of charged spin-particle become (provided potential Aα is oriented along the


world line): for our-world particle
d


dτ


(
m+


η


c2


)
= 0 , (4.167)
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d


dτ


[(


m+
η


c2


)


vi
]


+ 2


(


m+
η


c2


)


A∙ik∙v
k +


(


m+
η


c2


)


4inkv
nvk = −


e


c
εikmvkH∗m, (4.168)


and for mirror-world particle


−
d


dτ


(
m+


η


c2


)
= 0 , (4.169)


d


dτ


[(
m+


η


c2


)
vi
]
+
(
m+


η


c2


)
4inkv


nvk = −
e


c
εikmvkH∗m . (4.170)


Having theorem of live forces integrated (scalar equation of motion), we obtain integral of live
forces for charged spin-particle in stationary uniform magnetic field. In our world and in the mirror
world it is


m+
η


c2
= B = const , m+


η


c2
= −B̃ = const , (4.171)


where B is integration constant in our world and B̃ is that in the mirror world. We can obtain these
constants having the initial conditions at τ=0 substituted into (4.171). As a result, we obtain


B = m0 +
η0


c2
= m0 +


nh̄mnAmn


c2
, (4.172)


B̃ = −m0 −
η0


c2
= −m0 −


nh̄mnAmn


c2
. (4.173)


The formulas for live forces integrals (4.171) imply that in absence of electric component the square
of velocity of charged spin-particle conserves v2=hikv


ivk=const.
Having the formulas for live forces integrals substituted into (4.168, 4.170), we arrive to vector


equations of motion in our world and in the mirror world, respectively


dvi


dτ
+ 2A∙ik∙v


k +4inkv
nvk = −


e


cB
εikmvkH∗m , (4.174)


dvi


dτ
+4inkv


nvk = −
e


cB̃
εikmvkH∗m . (4.175)


These are similar to equations of motion of non-spin charged particle in stationary magnetic field
(3.290, 3.291), save that here the integration constant from live forces integral, found in the right part,
is not equal to relativistic mass m, as it was in electrodynamics (3.290, 3.291), but to the formula
(4.171), which accounts for interaction of spin with field of non-holonomity of space. The same is true
for by-component notation of vector equations (3.298, 3.299).
For those of our readers with special interest in the method of chronometric invariants we will


make a note related to by-component notation of equations of motion. When obtaining components
of the term A∙1k∙v


k, found only in our-world equations, we have, for instance, for i=1


A∙1k∙v
k = A∙11∙v


1 +A∙12∙v
2 = h12A12v


1 + h11A21v
2, (4.176)


where A12 = −A21 = −Ω. Then obtaining A∙11∙ and A
∙1
2∙ we have


A∙11∙ = h
1mA1m = h


11A11 + h
12A12 = h


12A12 , (4.177)


A∙12∙ = h
1mA2m = h


11A21 + h
12A22 = h


11A21 , (4.178)


where h11 and h12 are elements of a matrix reciprocal to matrix hik


h11 =
h22


h
, h12 = −


h12


h
. (4.179)


Then because determinant of three-dimensional observable metric tensor (see Section 3.12) is
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h = det ‖hik‖ = 1 +
Ω2
(
x2 + y2


)


c2
, (4.180)


the unknown value A∙1k∙v
k (4.176) is


A∙1k∙v
k =
Ω


h


[
Ω2


c2
xyẋ+


(


1 +
Ω2x2


c2


)


ẏ


]


. (4.181)


Component A∙2k∙v
k, found in equation of motion along y, can be found in a similar way.


Now we are going to refer back to vector equations of motion of charged spin-particle in stationary
uniform magnetic field. We are going to approach them in two possible cases of mutual orientation of
magnetic field and non-holonomity field.


A Magnetic field is co-directed with non-holonomity field


We assume that field of non-holonomity is directed along z and is weak. Then vector equations
of motion of mass-bearing charged spin-particle, in by-component notation, become: for our-world
particle


ẍ+ 2Ωẏ = −
eH


cB
ẏ , ÿ − 2Ωẋ = −


eH


cB
ẋ , z̈ = 0 , (4.182)


and for mirror-world particle


ẍ = −
eH


cB̃
ẏ , ÿ = −


eH


cB̃
ẋ , z̈ = 0 . (4.183)


These equations are also different from those for non-spin charged particle in stationary magnetic
field, co-directed with weak non-holonomity field (3.104, 3.305) only by having in the right part the
integration constant from live forces integral, which describes interaction of spin with field of non-
holonomity, instead of relativistic mass of particle.
Using ready solutions from Section 3.12 we can immediately obtain the formulas for coordinates


of our-world charged spin-particle


x = −
[
ẏ(0) cos (2Ω + ω) τ + ẋ(0) sin (2Ω + ω) τ


] 1


2Ω + ω
+ x(0) +


ẏ(0)


2Ω + ω
, (4.184)


y =
[
ẏ(0) sin (2Ω + ω) τ − ẋ(0) cos (2Ω + ω) τ


] 1


2Ω + ω
+ y(0) −


ẋ(0)


2Ω + ω
, (4.185)


and those for mirror-world particle


x = −
1


ω


(
ẏ(0) cosωτ + ẋ(0) sinωτ


)
+ x(0) +


ẏ(0)


ω
, (4.186)


y =
1


ω


(
ẏ(0) sinωτ − ẋ(0) cosωτ


)
+ y(0) −


ẋ(0)


ω
, (4.187)


which are different from solutions for charged particle in electrodynamics only by the fact that fre-
quency ω accounts for interaction of spin with field of non-holonomity.
In our world masses of particles are positive, hence frequency ω is


ω =
eH


mc+
η


c


=


eH


√


1−
v2(0)


c2


m0c+
η0


c


=


eH


√


1−
v2(0)


c2


m0c∓
2nh̄Ω


c


, (4.188)


where the sign in the denominator depends upon mutual orientation of h̄ and Ω: “minus” stands
for co-directed h̄ and Ω (their scalar product is positive), while “plus” implies they are oppositely
directed, irrespective of choice of right or left-hand frame of reference.
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Masses of particles that inhabit the mirror world are always negative


m =
−m0√


1−
v2(0)


c2


< 0 . (4.189)


Hence in the mirror world frequency ω is


ω =
eH


mc+
η


c


=


eH


√


1−
v2(0)


c2


−m0c+
η0


c


=


eH


√


1−
v2(0)


c2


−m0c∓
2nh̄Ω


c


. (4.190)


Note that the obtained formulas for coordinates (4.184–4.187) already took account of the fact that
the square of particle’s velocity is constant both in our world and in the mirror world (respectively)


ẋ(0) +
ÿ0


2Ω + ω
= 0 , ẋ(0) +


ÿ0


ω
= 0 , (4.191)


which results from integral of live forces (Section 3.12).
The third equation of motion (along z) solves simply as


z = ż(0)τ + z(0) . (4.192)


The obtained formulas for coordinates (4.184–4.187) say that mass-bearing charged spin-particle
in stationary uniform magnetic field, parallel to weak field of non-holonomity, performs harmonic
oscillations along x and y. In our world the frequency of the oscillations is


ω̃ = 2Ω + ω = 2Ω +
eH


m0c∓
2nh̄Ω


c


√


1−
v2(0)


c2
. (4.193)


In the mirror world particle performs similar oscillation at frequency ω, as obtained in (4.190).
In a weak field of non-holonomity nh̄Ω is much less than energy m0c


2, because for any small value


α it is true that 1
1∓α


∼=1±α, for low velocities we have


ω̃ ∼= 2Ω +
eH


m0c


(


1±
2nh̄Ω


m0c2


)


. (4.194)


If at the initial moment of time the displacement and the velocity of our-world particle satisfy the
conditions


x(0) +
ẏ0


2Ω + ω
= 0 , y(0) −


ẋ0


2Ω + ω
= 0 , (4.195)


it will travel, like a charged non-spin particle, within xy plane along a circle23


x2 + y2 =
ẏ20


(2Ω + ω)
2 . (4.196)


But in this case, its radius equal to


r =
ẏ0


2Ω + ω
=


ẏ0


2Ω +
eH


m0c∓
2nh̄Ω


c


√


1−
v2(0)


c2


, (4.197)


23We set axis y along the initial impulse of the particle, which is always possible. Then all formulas for coordinates
will have zero initial velocity of particle along x.
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will depend upon absolute value and orientation of the spin. If the initial velocity of charged particle
with spin oriented along magnetic field (along z axis) is not zero, it travels along magnetic field along
spiral line with the same radius r (4.197).
Mirror-world particle, provided its displacement and velocity at the initial moment of time satisfy


the conditions


x(0) +
ẏ0


ω
= 0 , y(0) −


ẋ0


ω
= 0 , (4.198)


will also travel along a circle


x2 + y2 =
ẏ20
ω2


, (4.199)


with radius


r =
ẏ0


ω
=


ẏ0


eH


−m0c∓
2nh̄Ω


c


√


1−
v2(0)


c2


. (4.200)


In general case, i. e. with no additional conditions (4.195, 4.198) imposed, the trajectory within xy
plane will be not circle.
Now we are going to obtain energy and impulse of charged spin-particle in magnetic field. Using for-


mulas for live forces integrals, we can find that the value η0=nh̄
mnAmn=n(h̄


12A12+h̄
21A21)=−2nh̄Ω.


Then for mass-bearing our-world particle we have


Etot = Bc
2 =


m0c
2 ∓ 2nh̄Ω


√


1−
v2(0)


c2


= const , (4.201)


and for mass-bearing mirror-world particle we have


Etot = B̃c
2 =
−m0c2 ∓ 2nh̄Ω√


1−
v2(0)


c2


= const . (4.202)


Because in this Section we assumed that electric component of field is absent, electromagnetic field
does not contribute into the total energy of particle (as known, magnetic field does not perform work
to displace electric charge).
From the obtained formulas (4.201, 4.202) we see that the total energy of spin-particle is constant,


while its absolute value depends upon mutual orientation of particle’s inner momentum h̄ and angular
velocity of space rotation Ω.
The latter statement requires some comments to be made. By definition scalar value n (absolute


value of spin in h̄ units) is always positive, while h̄ and Ω are numerical values of components of
antisymmetric tensors hik and Ωik, which take opposite signs in right or left-handed frames of reference.
But because we are dealing with the product of the values, only their mutual orientation matters,
which does not depend upon choice of right or left-handed frame of reference.
If h̄ and Ω are co-directed, the total energy of our-world particle Etot (4.201) is the sum of its


relativistic energy E=mc2 and “spin-energy”


Es =
2nh̄Ω


√


1−
v2(0)


c2


, (4.203)


i. e. the total energy is greater than E=mc2.
If h̄ and Ω are oppositely directed, the value Etot is the difference between the relativistic energy


and the spin-energy. Such orientation permits a specific case, when m0c
2=2nh̄Ω and therefore the


total energy becomes zero (this case will be discussed in the next Section).







CHAPTER 4. MOTION OF SPIN-PARTICLE 119


For negative masses particles, which inhabit the mirror world, the situation is different: the total
energy Etot (4.202) is negative and by its absolute value is greater than relativistic energy E=−mc2,
provided that h̄ and Ω are oppositely oriented.
The formula for the total three-dimensional impulse of charged spin-particle in magnetic field in


our world is


pitot =
m0c


2 ∓ 2nh̄Ω


c2


√


1−
v2(0)


c2


vi = mvi ∓
2nh̄Ω


c2


√


1−
v2(0)


c2


vi, (4.204)


i. e. is an algebraic sum of relativistic observable impulse pi=mvi and of spin-impulse that particle
gains from field of non-holonomity. The total impulse of spin-particle is greater than relativistic
impulse, if h̄ and Ω are co-directed and is less then relativistic impulse otherwise.
In case of opposite mutual orientation of h̄ and Ω the total impulse of spin-particle becomes zero


(and so does the total energy) provided the condition m0c
2=2nh̄Ω is true.


For mirror-world particle in magnetic field spatial impulse is


pitot =
−m0c2 ∓ 2nh̄Ω


c2


√


1−
v2(0)


c2


vi = −mvi ∓
2nh̄Ω


c2


√


1−
v2(0)


c2


vi, (4.205)


i. e. the particle moves more slowly if h̄ and Ω are co-directed and faster otherwise.
Components of velocity of charged spin-particle in magnetic field co-directed with non-holonomity


field, taking into account conditions (4.191), in our world are


ẋ = ẏ(0) sin (2Ω + ω) τ − ẋ(0) cos (2Ω + ω) τ , (4.206)


ẏ = ẏ(0) cos (2Ω + ω) τ + ẋ(0) sin (2Ω + ω) τ , (4.207)


and in the mirror world they are


ẋ = ẏ(0) sinωτ − ẋ(0) cosωτ , (4.208)


ẏ = ẏ(0) cosωτ + ẋ(0) sinωτ . (4.209)


Then components of the total impulse of particle are (the initial impulse within xy plane is directed
along y): for our world


p1tot =
m0c


2 ∓ 2nh̄Ω


c2


√


1−
v2(0)


c2


ẏ(0) sin (2Ω + ω) τ , (4.210)


p2tot =
m0c


2 ∓ 2nh̄Ω


c2


√


1−
v2(0)


c2


ẏ(0) cos (2Ω + ω) τ , (4.211)


p3tot =
m0c


2 ∓ 2nh̄Ω


c2


√


1−
v2(0)


c2


ż(0) , (4.212)


where ω is as of (4.189); and for the mirror world


p1tot =
−m0c2 ∓ 2nh̄Ω


c2


√


1−
v2(0)


c2


ẏ(0) sinωτ , (4.213)
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p2tot =
−m0c2 ∓ 2nh̄Ω


c2


√


1−
v2(0)


c2


ẏ(0) cosωτ , (4.214)


p3tot =
−m0c2 ∓ 2nh̄Ω


c2


√


1−
v2(0)


c2


ż(0) , (4.215)


where ω is as of (4.190). Noteworthy, though strength of magnetic field does not appear in the the
total energy Etot, it appears in that for the total impulse, being part of the formula for ω (4.190).


B Magnetic field is orthogonal to non-holonomity field


Now we are going to approach motion of mass-bearing charged spin-particle in magnetic field, orthog-
onal to field of non-holonomity of space. Of course we are still assuming magnetic field is stationary
and uniform. So field of non-holonomity is directed along z and is weak, while magnetic field is di-
rected along y. Then vector equations of motion of spin-particle will be similar to those for non-spin
particle, as obtained under the above field conditions for a non-spin particle in our world (3.338)


ẍ+ 2Ωẏ =
eH


cB
ż , ÿ − 2Ωẋ = 0 , z̈ = −


eH


cB
ẋ . (4.216)


The difference from (3.338) is that here the denominator of the right part instead of the relativistic
mass contains integration constant from the live forces integral, which accounts for interaction between
the spin and the non-holonomity field. After integration the equations solve as


x =
ẋ(0)


ω̃
sin ω̃τ −


ẍ(0)


ω̃2
cos ω̃τ + x(0) +


ẍ(0)


ω̃2
, (4.217)


y = −
2Ω


ω̃2


(


ẋ(0) cos ω̃τ +
ẍ(0)


ω̃
sin ω̃τ


)


+ ẏ(0)τ +
2Ω


ω̃2
ẍ(0)τ + y(0) +


2Ω


ω̃2
ẋ(0) , (4.218)


z =
ω


ω̃2


(


ẋ(0) cos ω̃τ +
ẍ(0)


ω̃
sin ω̃τ


)


+ ż(0)τ −
ω


ω̃2
ẍ(0)τ + z(0) −


ω


ω̃2
ẋ(0) , (4.219)


which are different from the respective solutions for a non-spin particle by the fact that frequency ω̃
here depends upon spin and its mutual orientation with field of non-holonomity


ω̃ =
√
4Ω2 + ω2 =


√√
√
√
√
√
√
√
√
4Ω2 +


e2H2


(


1−
v2(0)


c2


)2


(


m0c2 ∓
2nh̄Ω


c


)2 . (4.220)


Subsequently, equation of trajectory of a spin-particle is similar to that of a non-spin particle. In
a specific case, i. e. under certain initial conditions, the equation of its trajectory is that of a sphere


x2 + y2 + z2 =
1


ω̃2
ẋ2(0) , (4.221)


which radius, as contrasted to the radius of trajectory of non-spin particle, depends upon spin of
particle and its orientation in respect to the field of non-holonomity


r =
1


√√
√
√
√
√
√
√
√
4Ω2 +


e2H2


(


1−
v2(0)


c2


)2


(


m0c
2 ∓
2nh̄Ω


c


)2


ẋ(0) . (4.222)







CHAPTER 4. MOTION OF SPIN-PARTICLE 121


For mirror-world particle vector equations of motion in weak field of non-holonomity, orthogonal
to magnetic field (and directed along y), are


ẍ =
eH


cB̃
ż , ÿ = 0 , z̈ = −


eH


cB̃
ẋ , (4.223)


i. e. are different from equations of motion of our-world particle (4.216) by absence of the terms that
contain space rotation velocity Ω. As a result their solutions can be obtained from the solutions for
our world (4.217–4.219) if we assume ω̃=ω. Subsequently, equation of trajectory of spin-particle in
the mirror world is


x2 + y2 + z2 =
1


ω2
ẋ2(0) , r =


−m0c2 ∓
2nh̄Ω


c


eH


√


1−
v2(0)


c2


ẋ(0) . (4.224)


The formula for the total energy of spin-particle Etot in magnetic field, orthogonal to field of non-
holonomity, is the same as it was for the case of parallel orientation of fields. But the formulas for
components of the total impulse (4.201, 4.205) are different, because they include velocity of particle
that depends upon mutual orientation of magnetic field and non-holonomity field. In this particular
case, where the fields are orthogonal to each other, components of particle’s velocity (obtained by
derivation of formulas for coordinates) in our world are


ẋ = ẋ(0) cos ω̃τ +
ẍ(0)


ω̃
sin ω̃τ , (4.225)


ẏ =
2Ω


ω̃
ẋ(0) sin ω̃τ −


2Ω


ω̃2
ẍ(0) cos ω̃τ + ẏ(0) +


2Ω


ω̃2
ẍ(0) , (4.226)


ż =
ω


ω̃2
ẍ(0) cos ω̃τ −


ω


ω̃
ẋ(0) sin ω̃τ + ż(0) −


ω


ω̃2
ẍ(0) , (4.227)


and in the mirror world are


ẋ = ẋ(0) cosωτ +
ẍ(0)


ω
sinωτ , (4.228)


ẏ = ẏ(0) , (4.229)


ż =
1


ω
ẍ(0) cos ω̃τ − ẋ(0) sinωτ + ż(0) −


1


ω
ẍ(0) . (4.230)


Now we assume that the initial acceleration of particle and the integration constants are zeroes
and set axis x along the initial impulse of particle. From a frame of such consideration we obtain
components of its total impulse in our world


p1tot =
m0c


2 ∓ 2nh̄Ω


c2


√


1−
v2(0)


c2


ẋ(0) cos ω̃τ , (4.231)


p2tot =
m0c


2 ∓ 2nh̄Ω


c2


√


1−
v2(0)


c2


2Ω


ω̃
ẋ(0) sin ω̃τ , (4.232)


p3tot =
m0c


2 ∓ 2nh̄Ω


c2


√


1−
v2(0)


c2


ω


ω̃
ẋ(0) sin ω̃τ , (4.233)


and in the mirror world, respectively
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p1tot =
−m0c2 ∓ 2nh̄Ω


c2


√


1−
v2(0)


c2


ẋ(0) cos ω̃τ , (4.234)


p2tot =
−m0c2 ∓ 2nh̄Ω


c2


√


1−
v2(0)


c2


ẏ(0) = 0 , (4.235)


p3tot =
−m0c2 ∓ 2nh̄Ω


c2


√


1−
v2(0)


c2


ẋ(0) sin ω̃τ . (4.236)


As easily seen, the solutions obtained here can be transformed into respective ones from electro-
dynamics (Section 3.12) by assuming h̄→0.


4.8 Law of quantization of masses of elementary particles


Scalar equations of motion of charged spin-particle in electromagnetic field in our world and in the
mirror world are, respectively


d


dτ


(
m+


η


c2


)
= −


e


c2
Eiv


i, −
d


dτ


(
m+


η


c2


)
= −


e


c2
Eiv


i. (4.237)


The equations can be easily integrated to produce live forces integrals


m+
η


c2
= B , −


(
m+


η


c2


)
= B̃ , (4.238)


where B is integration constant in our world and B̃ is that in the mirror world. The constants depend
only upon the initial conditions. Hence it is possible to choose them as to make the integration
constants zeroes.
We will find out under what initial conditions integration constants in the scalar equations of


motion become zeroes. For charged spin-particles in our world and in the mirror world (4.238),
respectively


m+
η


c2
= 0 , −


(
m+


η


c2


)
= 0 , (4.239)


while the right parts of the vector equations of motion (4.150, 4.152), which contain three-dimensional
invariant Lorentz force, also become zeroes. In other words, with integration constants in scalar
equations equal to zero electromagnetic field does not affect particles.
Having relativistic square root cancelled in (4.239), which is always possible for particles that have


non-zero rest-masses, we can present these formulas in a notation that does not depend upon velocity
of particle. Then for our-world mass-bearing particles we have


m0c
2 = −nh̄mnAmn , (4.240)


and for mirror-world mass-bearing particles we have


m0c
2 = nh̄mnAmn . (4.241)


We will refer to these formulas (4.240, 4.241) as the law of quantization of masses of elementary
particles, which reads:


Rest-mass of spin-particle is proportional to energy of interaction of its spin with field


of non-holonomity of space, taken with the opposite sign.


Or, in other words:


Rest-energy of mass-bearing elementary particle, which has a spin equals to energy of


interaction of its spin with field of non-holonomity of space, taken with the opposite sign.
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Because in the mirror world energy of particle has negative value, “plus” in the right part of (4.241)
stands for energy of interaction in the mirror world taken with the opposite sign. The same is true
for “minus” in (4.240) for our world.
Evidently, these quantum formulas are not applicable to non-spin particles.
Let us make some quantitative estimates that stem from the obtained law. We will obtain nu-


merical values of η0=nh̄
mnAmn, which characterize energy of interaction between spin and field of


non-holonomity (“spin-energy”), as follows. We formulate tensor of angular velocities of space rotation
Amn with pseudovector of the rotation Ω


∗i= 12ε
imnAmn


Ω∗iεimn =
1


2
εipqεimnApq =


1


2
(δpmδ


q
n − δ


p
nδ
q
m)Apq = Amn . (4.242)


Hence Amn = εimnΩ
∗i. Then because


1


2
εimnh̄


mn = h̄∗i (4.243)


is Planck pseudovector, the value η0 = nh̄
mnεimnΩ


∗i is


η0 = 2nh̄∗iΩ
∗i, (4.244)


i. e. is double scalar product of three-dimensional Planck pseudovector and three-dimensional pseu-
dovector of space rotation velocity, multiplied by particle’s spin quantum number (scalar).
As known, scalar product of two pseudovectors is product of their absolute values (modules)


multiplied by cosine of angle between them. Then if h̄∗i and Ω
∗i are co-directed then the cosinus is


positive, hence


η0 = 2nh̄∗iΩ
∗i = 2nh̄Ωcos(


−̂→
h̄ ;
−→
Ω ) > 0 , (4.245)


while if they are oppositely directed, then


η0 = 2nh̄∗iΩ
∗i = 2nh̄Ωcos(


−̂→
h̄ ;
−→
Ω ) < 0 . (4.246)


Therefore for our-world mass-bearing particles integration constant from live forces integral be-
comes zero, provided that pseudovectors h̄∗i and Ω


∗i are oppositely oriented. For mirror-world particles
the constant becomes zero if pseudovectors h̄∗i and Ω


∗i are co-oriented.
This implies that if energy of interaction of mass-bearing spin-particle with field of space’s non-


holonomity becomes equal to its rest-energy E=m0c
2, impulse of particle reveals itself neither in our


world nor in the mirror world.
We assume that axis z is co-directed with pseudovector of angular velocity of space rotation Ω∗i.


Then out of all three components of Ω∗i the only non-zero one is


Ω∗3 =
1


2
ε3mnAmn =


1


2


(
ε312A12 + ε


321A21
)
= ε312A12 =


e312
√
h
A12 . (4.247)


To simplify the algebra we assume that three-dimensional metric gik is Euclidean, while the space
rotates at constant angular velocity Ω. Then components of linear velocity of rotation are v1=Ωx,
v2=−Ωy, and A12=−Ω. Hence


Ω∗3 =
e312
√
h
A12 =


A12√
h
= −


Ω
√
h
. (4.248)


The square root of determinant of observable metric tensor, as defined from (4.180) is


√
h =


√
det ‖hik‖ =


√


1 +
Ω2 (x2 + y2)


c2
. (4.249)


Because we are dealing with very small coordinate values on the scales of elementary particles,
we can assume


√
h≈1 and according to (4.248) also Ω∗3=−Ω=const. Then the law of quantization
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of masses of elementary particles (4.240) becomes: for mass-bearing particles in our world and mass-
bearing particles in the mirror world, respectively


m0 =
2nh̄Ω


c2
, m0 = −


2nh̄Ω


c2
. (4.250)


Hence for elementary particles in our world that bear spin the following relationship between their
rest-masses m0 and angular velocity of space’s rotation Ω is true


Ω =
m0c


2


2nh̄
. (4.251)


This means that rest-mass (the true mass) of observable object, under regular conditions not
dependent from properties of observer’s references, on the scales of elementary particles becomes
strictly dependent from such; in particular, from angular velocity of space’s rotation.
Hence, proceeding from the quantization law, we can calculate frequencies of rotation of observer’s


spaces, corresponding to rest-masses of our-world particles. The results are given in Table 1.


Elementary particles Rest-mass Spin Ω, s−1


Leptons
electron e−, positron e+ 1 1/2 7.782 ∙ 1020


electron neutrino νe and
electron anti-neutrino ν̃e <4 ∙10−4 1/2 <3 ∙ 1017


μ-meson neutrino νμ and
μ-meson anti-neutrino ν̃μ <8 1/2 <6 ∙ 1021


μ−-meson, μ+-meson 206.766 1/2 1.609 ∙ 1023


Barions
nuclons
proton p, anti-proton p̃ 1836.09 1/2 1.429 ∙ 1024


neutron n, anti-neutron ñ 1838.63 1/2 1.431 ∙ 1024


hyperons
Λ0-hyperon, anti-Λ0-hyperon 2182.75 1/2 1.699 ∙ 1024


Σ+-hyperon, anti-Σ+-hyperon 2327.6 1/2 1.811 ∙ 1024


Σ−-hyperon, anti-Σ−-hyperon 2342.6 1/2 1.823 ∙ 1024


Σ0-hyperon, anti-Σ0-hyperon 2333.4 1/2 1.816 ∙ 1024


Ξ−-hyperon, anti-Ξ−-hyperon 2584.7 1/2 2.011 ∙ 1024


Ξ0-hyperon, anti-Ξ0-hyperon 2572 1/2 2.00 ∙ 1024


Ω−-hyperon, anti-Ω−-hyperon 3278 3/2 8.50 ∙ 1023


Table 1. Frequencies of rotation of observer’s space of reference,
which correspond to mass-bearing elementary particles


The results from Table 1 say that on the scales of elementary particles observer’s space is always
non-holonomic. For instance, in observation of electron re=2.8∙10−13 cm linear velocity of rotation
of observer’s space is v=Ωr=2200 km/s24. Because other elementary particles are even smaller this
linear velocity seems to be the upper limit25.
So, what have we got? Generally observer compares results of his measurements with the body


of reference, but the body and himself are not related to the observed object and do not affect it
during observations. Hence in macroworld there is no dependence of the true properties of observed
bodies (e. g. rest-mass of particle) from properties of the body and space of reference — these can be
arbitrary, just like for any non-related objects.


24The value v equals to velocity of electron in the first Bohr orbit, though when calculating velocity of space rotation
(see Table 1) we considered a free electron, i. e. the one not related to an atomic nucleus and quantization of orbits in
atom of hydrogen. The reason is that “genetic” quantum non-holonomity of space seems not only to define rest-masses
of elementary particles, but to be the reason of rotation of electrons in atoms.
25Interestingly, angular velocities of rotation of spaces of barions (Table 1) up within the order of magnitude match
the frequency ∼1023 s−1 that characterizes elementary particles as oscillators [36].
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In other words, though observed images are distorted by influence from physical properties of
observer’s frame of references, the observer himself and his body of reference in macroworld do not
affect measured objects in any way.
But the world of elementary particles presents a big difference. In this Section we have seen


that once we reach the scales of elementary particle, where spin, a quantum property of particle,
significantly affects its motion, physical properties of the space of reference (the body of reference)
and those of the particle become tightly linked to each other, i. e. body of reference affects the observed
particle. In other words, observer does not just compare properties of the observed object to those
of his references any longer, but instead directly affects the observed object. The observer shapes its
properties in a tight quantum relationship with properties of the references he possesses (body and
space of reference).
This means: when looking at effects in the world of elementary particles, e. g. spin effects, there


is no border between the observer, i. e. his body of reference, and the observed elementary particle.
Hence we get an opportunity to define relationship between field of non-holonomity of space, linked to
the observer, and rest-masses of the observed particles — objects of observations, which in macroworld
are not related to the body of reference. Therefore, the obtained laws of quantization of masses are
only true for elementary particles.
Please note that we have obtained the result using only geometric methods of General Relativity,


not methods of probabilities of quantum mechanics. In future, this result may possibly become a
“bridge” between these two fields.


4.9 Compton wavelength


We have obtained that in observation of elementary particle with rest-mass of m0 the frequency


of non-holonomity of observer’s space is Ω=m0c
2


2nh̄
(4.251). We are going to find the wavelength


that corresponds to that frequency. Assuming that this wave, i. e. wave of non-holonomity of space,
propagates at light speed λΩ=c, we have


λ =
c


Ω
= 2n


h̄


m0c
. (4.252)


In other words, when we observe mass-bearing particle with spin n=1/2 the length of non-


holonomity wave equals to Compton wavelength of the particle λ–c=
h̄
m0c
.


What does that mean? Compton effect, named after A.Compton who discovered it in 1922, is
“diffraction” of photon on a free electron, which results in decrease of its own frequency


4λ = λ2 − λ1 =
h


mec
(1− cosϑ) = λec (1− cosϑ) , (4.253)


where λ1 and λ2 are photon wavelengths before and after the encounter, ϑ is the angle of “diffraction”.
The multiplier λec, specific to electron, at first was called Compton wavelength of electron. Later it
was found out that other elementary particles during “diffraction” of photons also reveal their specific


wavelengths λc=
h
m0c
, or, respectively, λ–c=


h̄
m0c
. That is, every type of elementary particle (i. e.


electrons, protons, neutrons etc.) have their own Compton wavelengths. The physical sense behind
the value was explained later. It was obtained, within an area smaller than λ–c, elementary particle
is no longer a point object and its interaction with other particles (and with observer) is described
by quantum mechanics. Hence the λ–c-sized area is sometimes interpreted as “the size” of elementary
particle, in a sense in which we can speak of “size” of elementary particles at all.
As for the results we obtained in the previous Section, these can be interpreted as follows: in


observation of mass-bearing particle angular velocity of rotation of observer’s space grows up the level
that makes the wavelength, which corresponds to such velocity, equal to Compton wavelength of the
observed particle, i. e. to the “size” inside which the particle is no longer a point object. In other
words, it is angular velocity of space rotation (wavelength of the field of non-holonomity of space)
that defines observable Compton wavelength (specific “sizes”) of mass-bearing elementary particles.
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4.10 Massless spin-particle


Because massless particles do not bear electric charge, their scalar equations of motion in our world
and in the mirror world are, respectively,


d


dτ


(
m+


η


c2


)
= 0 , −


d


dτ


(
m+


η


c2


)
= 0 . (4.254)


Their integration always gives the constant equal to zero, hence we always obtain the formulas as
of (4.239). Hence for massless particles in our world and in the mirror world, respectively


mc2 = − η , mc2 = η . (4.255)


On the other hand, the term “rest-mass” is not applicable to massless particles — they are always
on the move. Their relativistic masses are defined from energy equivalent E=mc2, measured in
electron-volts. Subsequently, massless particles have no rest spin-energy η0=nh̄


mnAmn.
Nevertheless, Planck tensor found in spin-energy η enables quantization of relativistic masses of


massless particles and angular velocities of space rotation. Hence to obtain angular velocities of space
rotation for massless particles we need an expanded formula of their relativistic spin-energy η, which
would not contain relativistic square root.
Quantum mechanics speaks of “spirality” of massless particles — projection of spin onto direction


of impulse. The reason for introducing such term is the fact that massless particle can not rest
in respect to a regular observer, as it always travels at light speed in respect to such. Hence we
can assume that spin of massless particle is tangential to light-like trajectory (either co-directed or
oppositely directed to it).
Keeping in mind that spin quantum number n of massless particles is 1, we assume for them that


η = h̄mnÃmn , (4.256)


where Ãmn is three-dimensional tensor of angular velocities of rotation of massless particles’ space
(light-like space).
Hence to obtain relativistic spin-energy of massless particle (4.256) we need to find components of


tensor of angular velocities of rotation of light-like space. We are going to build the tensor similar to
four-dimensional tensor of angular velocity Aαβ (4.11), which describes rotation of space of a frame
of reference that travels in respect to observer and his body of reference at an arbitrary velocity
(non-accompanying frame of reference). As a result we obtain


Ãαβ =
1


2
ch̃αμh̃βμãμν , ãμν =


∂b̃ν


∂xμ
−
∂b̃μ


∂xν
, (4.257)


where b̃α is four-dimensional velocity of light-like frame of reference in respect to observer and


h̃αμ = −gαμ + b̃αb̃μ (4.258)


is four-dimensional generalization of “observable” metric tensor of space of light-like frame of reference.
The space inhabited by massless particles is an area of space-time, which corresponds with four-


dimensional light-like (isotropic) cone set by equation gαβdx
αdxβ=0. This cone exists at any point of


Riemannian space with alternating signature (+ −−−), i. e. at any point of four-dimensional pseudo-
Riemannian space.
Four-dimensional vector of velocity of light-like frame of reference of massless particles is


b̃α =
dxα


dσ
=
1


c


dxα


dτ
, b̃αb̃


α = 0 , (4.259)


its physical observable components in frame of reference of a regular “sub-light-speed” observer are


b̃0
√
g00
= ±1, b̃i =


1


c


dxi


dτ
=
1


c
ci, (4.260)
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while the other components of isotropic vector (4.259) are


b̃0 =
1
√
g00


(
1


c2
vic
i ± 1


)


, b̃i = −
1


c
(ci ± vi) , (4.261)


where ci is chronometrically invariant vector of light velocity.
Now we are going to consider properties of massless particles’ space in details. The condition of


isotropy of four-dimensional velocity of massless particle bαb
α=0 in chronometrically invariant form


becomes


hikc
ick = c2 = const, (4.262)


where hik is observable metric tensor of space of reference (of a regular “sub-light-speed” observer).
Components of four-dimensional tensor h̃αβ (4.258), which three-dimensional components make up
observable metric tensor of space of massless particle h̃ik, are


h̃00 =
vkv


k ± 2vkc
k +


1


c2
vkvnc


kcn


c2
(


1−
w


c2


)2 , h̃0i =
vi ± ci +


1


c2
vkc


kci


c


(


1−
w


c2


) , h̃ik = hik +
1


c2
cick , (4.263)


where “plus” stands for space with direct flow of time (our world) and “minus” stands for reverse-time
(mirror) world.
Now we have to deduce components of rotor of four-dimensional velocity of massless particle, found


in the formula for tensor of rotation of massless particle’s space (4.257). After some algebra we obtain


ã00 = 0 , ã0i =
1−


w


c2


2c2


(


±Fi −
∗∂ci


∂t


)


, ãik =
1


2c


(
∂ci


∂xk
−
∂ck


∂xi


)


±
1


2c


(
∂vi


∂xk
−
∂vk


∂xi


)


. (4.264)


Generally, to define spin-energy of massless particle (4.256) we need covariant spatial components
of tensor of rotation of its space, i. e. components with lower indices Ãik. To deduce them we take
the formula for contravariant components Ãik and lower their indices, as for any chronometrically
invariant value using three-dimensional observable metric tensor of observer’s space of reference.
Substituting into


Ãik = c
(
h̃i0h̃k0ã00 + h̃


i0h̃kmã0m + h̃
imh̃k0ãm0 + h̃


imh̃knãmn


)
(4.265)


the obtained components h̃αβ and ãαβ , we arrive to


Ãik = himhkn
[
1


2


(
∂cm


∂xn
−
∂cn


∂xm


)


+
1


2c2
(Fncm − Fmcn)


]


±


±himhkn
[
1


2


(
∂vm


∂xn
−
∂vn


∂xm


)


+
1


2c2
(Fnvm − Fmvn)


]


+


+


(
1


c2
vnc


n ± 1


)
(
ckhim − cihkm


) ∗∂cm
∂t


−
(
vkhim − vihkm


) ∗∂cm
∂t
+


+
1


2c2
cm
(
cihkn − ckhin


)
[(


∂cm


∂xn
−
∂cn


∂xm


)


±


(
∂vm


∂xn
−
∂vn


∂xm


)]


.


(4.266)


The value 12


(
∂vm
∂xn
− ∂vn
∂xm


)
+ 1
2c2
(Fnvm−Fmvn), by definition, is chronometrically invariant (ob-


servable) tensor of angular velocities of rotation of observer’s space of reference Amn, i. e. tensor of
non-holonomity of non-isotropic space26.


26We will refer as non-isotropic space to an area of four-dimensional space-time where particles with non-zero rest-
masses exist. This is the area of world trajectories along which ds 6=0. Subsequently, if interval ds is real, the particles
travel at sub-light speeds (regular particles); if it is imaginary, the particles travel at super-light speeds (tachyons).
Space of both types of particles is non-isotropic by definition.
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By its structure the value 12


(
∂cm
∂xn
− ∂cn
∂xm


)
+ 1
2c2
(Fncm−Fmcn) is similar to tensor Amn, but instead


of velocity of rotation vi of non-isotropic observer’s space it has components of covariant light velocity
cm=hmnc


n. We denote that tensor as Ămn, where the inward curved cap means the value belongs to
isotropic space27 with direct flow of time — the “upper” part of light cone, which in twisted space-time
gets “round” shape. Then


Ămn =
1


2


(
∂cm


∂xn
−
∂cn


∂xm


)


+
1


2c2
(Fncm − Fmcn) . (4.267)


In a specific case, when gravitational potential is negligible (w≈0) the tensor becomes


Ămn =
1


2


(
∂cm


∂xn
−
∂cn


∂xm


)


, (4.268)


i. e. is chronometrically invariant rotor of light velocity. Therefore we will refer to Ămn as rotor of
isotropic space.
The following example gives geometric illustration of rotor of isotropic space. As known, the


necessary and sufficient condition of equality Amn=0 (condition of space holonomity) is equality
to zero of all components vi=−c


g0i√
g00
, i. e. absence of space rotation. Tensor Ămn is defined only


in isotropic space, inhabited by massless particles. Outside isotropic space it is senseless, because
the “interior” of the light cone is inhabited by sub-light-speed particles, while tachyons inhabit its
“exterior”.
Our subject are spin massless particles, i. e. photons. From (4.268) it is seen that presence of


field of non-holonomity of isotropic space is linked to rotor character of velocity of motion of massless
particles cm. Hence photons are rotors of isotropic space, while photon spin results from interaction
between the inner field of the rotor with external field of tensor Ămn.
To make the explanations even more illustrative, we depict areas of existence of different types


of particles. Light cone exists in every point of space. Equation of light cone gαβdx
αdxβ=0 in


chronometrically invariant notation is


c2τ2 − hikx
ixk = 0 , hikx


ixk = σ2. (4.269)


On Minkowski diagram the “interior” of light cone is filled with non-isotropic space, where sub-
light-speed particles exist. Outside there is also an area of non-isotropic space, inhabited by super-
light-speed particles (tachyons). The specific space of massless particles is space-time membrane
between these two non-isotropic areas. The picture is mirror-symmetric: in the upper part of cone
there is sub-light-speed space with direct flow of time (our world), separated with spatial section from
the lower part — a sub-light-speed space with reverse flow of time (mirror world). In other words,
the upper part is inhabited by real particles with positive mass and energy, while the lower part is
inhabited by their mirror “counterparts”, whose mass and energy are negative (from our viewpoint).
Therefore, rotation of sub-light-speed non-isotropic space “inside” the cone involves the surround-


ing light membrane (isotropic space). As a result, the light cone begins rotation described by tensor
Ămn — rotor of isotropic space. Of course we can assume a reverse order of events, where rotation of
the light cone involves “the content” of its inner part. But because particles “inside” the cone bear
non-zero rest-mass they are “heavier” that massless particles on the light membrane. Hence the inner
“content” of the light cone is too inertial media.
Now we return to the formula for relativistic spin-energy of massless particle η=h̄mnÃmn (4.256).


By lowering indices in contravariant tensor of non-holonomity of isotropic space Ãik (4.266) we obtain


Ãik = ±Aik+Ăik+
1


2c2
cm
{


ci


[
∂ (cm±vm)


∂xk
−
∂ (ck±vk)
∂xm


]


−ck


[
∂ (cm±vm)


∂xi
−
∂ (ci±vi)
∂xm


]}


+


+


(


vi


∗∂ck


∂t
−vk


∗∂ci


∂t


)


+


(
1


c2
vnv


n±1


)(


ck


∗∂ci


∂t
−ci


∗∂ck


∂t


)


.


(4.270)


27We will refer as isotropic space to an area of four-dimensional space-time, inhabited by massless (light-like) particles.
This area can be also called light membrane. From geometric viewpoint light membrane is the surface of isotropic cone,
i. e. the set of its four-dimensional elements (world lines of light propagation).
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Having Ãik contracted with Planck tensor h̄
ik we have


η = η0+nh̄
ikĂik+


[(
1


c2
vnv


n±1


)(


ck


∗∂ci


∂t
−ci


∗∂ck


∂t


)


+


(


vi


∗∂ck


∂t
−vk


∗∂ci


∂t


)]


nh̄ik+


+
1


2c2
nh̄ikcm


{


ci


[
∂ (cm±vm)


∂xk
− −


∂ (ck±vk)
∂xm


]


−ck


[
∂ (cm±vm)


∂xi
−
∂ (ci±vi)
∂xm


]}


,


(4.271)


where “plus” stands for our world and “minus” — for the mirror world.
The value η0=η


√
1−v2/c2 for massless particles is zero, because they travel at speed of light.


Hence keeping in mind that η0=nh̄
mnAmn we obtain an additional condition imposed on tensor of


non-holonomity of isotropic space Ãik: at any point of trajectory of massless particle the following
condition must be true


h̄mnAmn = 2h̄ (A12 +A23 +A31) = 0 , (4.272)


or, in another notation, Ω1+Ω2+Ω3=0.
Therefore, in an area, where observer “sees” massless particle, angular velocity of rotation of non-


isotropic observer’s space equals to zero. Other terms in the formula for relativistic spin-energy of


massless particle (4.271) are due to possible non-stationarity of light velocity
∗∂ci
∂t
and other depen-


dencies which include squares of light velocity.
We analyze the obtained formula (4.271) to make two simplification assumptions:


1. gravitational potential is negligible (w≈0);
2. three-dimensional chronometrically invariant velocity of light is stationary.


In this case the formulas for Aik and Ăik, i. e. for tensor of space non-holonomity and for rotor of
isotropic space, become


Aik =
1


2


(
∂vk


∂xi
−
∂vi


∂xk


)


, Ăik =
1


2


(
∂ck


∂xi
−
∂ci


∂xk


)


, (4.273)


and relativistic spin-energy of massless particle (4.271) becomes


η = n


(


h̄ikĂik +
1


c2
cic
mh̄ikĂkm


)


. (4.274)


Therefore the value η (4.274) that describes action of spin of massless particle, is defined (aside
for spin) only by rotor of isotropic space and in no way depends upon non-holonomity (rotation) of
observer’s space of reference.
To make further deductions simpler we transform η (4.274) as follows. Similar to pseudovector of


angular velocity of space rotation Ω∗i= 12ε
ikmAkm we introduce pseudovector


Ω̆∗i =
1


2
εikmĂkm , (4.275)


which can be formally interpreted as pseudovector of angular velocity of rotation of isotropic space,
i. e. of space where only isotropic curves exist — trajectories of massless (light-like) particle travelling
at light speed.
Subsequently, Ăkm=εkmnΩ̆


∗n. Then the formula for η (4.274) can be presented as


η = n


(


h̄∗iΩ̆
∗i +


1


c2
cic
mh̄ikεkmnΩ̆


∗n


)


. (4.276)


That means that inner rotor (spin) of massless particle only reveals itself in interaction with rotor
of isotropic space. The result of the interaction is scalar product h̄∗iΩ̆


∗i, to which spin of massless
particle is attributed. Hence massless particles are elementary light-like rotors of isotropic space itself.
Now we are going to estimate rotations of isotropic space for massless particles with different


energies. At present we know for sure that among the massless particles are photons — quanta of
electromagnetic field.
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Spin quantum number of photon is 1. Besides, its energy E=h̄ω is positive in our world. Hence
taking into account integral of live forces (4.255), for observable our-world photons we have


h̄ω = h̄∗iΩ̆
∗i +


1


c2
cic
mh̄ikεkmnΩ̆


∗n. (4.277)


We assume that pseudovector of rotation of isotropic space Ω∗i is directed along z, while light
velocity is directed along y. Then the relationship (4.277) obtained for photons becomes h̄ω=2h̄Ω̆, or,
after having Planck constant cancelled,


Ω̆ =
ω


2
=
2πν


2
= πν , (4.278)


i. e. frequency Ω̆ of rotor of isotropic space, each interacts with photon spin, up within a constant
coincides with its own frequency ν. Thanks to this formula, which results from the law of quantization
of relativistic masses of light-like particles, we can estimate angular velocities of rotation of isotropic
space, which correspond to photons with different energy levels. Table 2 gives the results.


Kind of photons Frequency Ω̆, s−1


Radiowaves 103 – 1011


Infra-red rays 1011 – 1.2 ∙ 1015


Visible light 1.2 ∙ 1015 – 2.4 ∙ 1015


Ultraviolet rays 2.4 ∙ 1015 – 1017


X-rays 1017 – 1019


Gamma rays 1019 – 1023 and above


Table 2. Frequencies of rotation of isotropic space,
which correspond to photons


From Table 2 we see that angular velocities of rotation of isotropic space of photons in gamma
range match rotation frequencies of regular (non-isotropic) space of electrons and other elementary
particles (see Table 1).


4.11 Conclusions


Here is what we have discussed in this Chapter.
Spin of particle is characterized by four-dimensional antisymmetric 2nd rank Planck tensor, which


diagonal and space-time components are zeroes, while non-diagonal spatial components are ±h̄ de-
pending upon orientation of spin and choice of right or left-handed frame of reference.
Spin (inner vortex field of particle) interacts with external field of non-holonomity of space; as


a result, particle gains additional impulse that deviates its trajectory from geodesic line. Energy of
the interaction is found in scalar equation of motion (live forces theorem), which must be taken into
account when solving vector (spatial) equations of motion.
Partial solution of scalar equation is law of quantization of masses of elementary spin-particles,


which unambiguously links rest-masses of mass-bearing elementary particles with angular velocities
of rotation of observer’s space, as well as between relativistic masses of photons and angular velocities
of rotation of their isotropic (light-like28) space.


28Because the area of existence of light-like particles is the area of four-dimensional isotropic trajectories, the terms
“isotropic space” and “light-like space” can be used as synonyms.







Chapter 5


Physical vacuum and the mirror Universe


5.1 Introduction


According to the recent data the average density of matter in our Universe is 5–10∙10−30 g/cm3. That
of substance concentrated in galaxies is even lower at ≈3∙10−31 g/cm3, which seems to be due to
so-called “hidden masses” in galaxies. Besides, astronomical observations show that most part of the
cosmic mass is accumulated in compact objects, e. g. in stars, which total volume is incomparable to
that of the whole Universe (“island” distribution of substance). We can therefore assume that our
Universe is predominantly empty.
For a long time the words “emptiness” and “vacuum” have been considered synonyms. But since


1920’s geometric methods of General Relativity have showed that those are different states of matter.
Distribution of matter in space is characterized by energy-impulse tensor, which is linked to ge-


ometric structure of space-time (fundamental metric tensor) with equations of gravitational field. In
Einstein’s theory of gravitation, which is an application of the geometrical methods of General Rela-
tivity, the equations referred to as Einstein equations are29


Rαβ −
1


2
gαβR = −æTαβ + λgαβ , (5.1)


which aside for energy-impulse tensor and fundamental metric tensor, include other values, namely:


• Rασ=R
...β
αβσ∙ is Ricci tensor, which is a result of contraction of curvature Riemann-Christoffel


tensor Rαβγδ by two indices;


• R=gαβRαβ is scalar curvature;


• æ=8πG
c2
=1.862∙10−27 [cm g−1] is Einstein gravitational constant, where G=6.672∙10−8 is gravi-


tational constant [cm3 g−1s−2]. Note that some researchers prefer to use not æ=8πG
c2
[6, 8, 10],


but æ=8πG
c4
[1]. To understand the reason we have to look at chronometrically invariant com-


ponents of energy-impulse tensor Tαβ :
T00
g00
=ρ is observable density of mass,


cT i0√
g00
=J i is vector


of observable density of impulse, and c2T ik=U ik is tensor of observable impulse flux density


[8, 10]. Scalar observable component of Einstein equations is G00g00
=−æT00g00


+λ. As known, Ricci


tensor has dimension [cm−2], hence Einstein tensor Gαβ and the value
æT00
g00
=
8πGρ
c2


has the


same one. Consequently, it is evident that the dimension of energy-impulse tensor Tαβ is that


of mass density [g cm−3]. That implies that when we use 8πG
c4
in the right part of Einstein


equations, we actually use not energy-impulse tensor itself, but c2Tαβ , which scalar and vector


observable components are density of energy c
2T00
g00
=ρc2 and energy flux


c3T i0√
g00
=c2J i;


29The left part of Einstein field equations (5.1) is often referred to as Einstein tensor Gαβ=Rαβ−
1
2
gαβR, i. e. in brief


notation Gαβ=−æTαβ+λgαβ .
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• λ [cm−2] is a cosmological term that describes non-Newtonian forces of attraction or repulsion,
depending upon sign before λ (λ>0 stands for repulsion, λ<0 stands for attraction). The
term is referred to as cosmological one, because it is assumed that forces described by λ grow
up proportional to distance and therefore reveal themselves on a full scale at “cosmological”
distances comparable to size of the Universe. Because non-Newtonian gravitational fields (λ-
fields) have never been observed, for our Universe in general the cosmological term is |λ|<10−56


(as of today’s measurement accuracy).


From Einstein equations (5.1) we see that energy-impulse tensor (which describes distribution of
matter) is genetically linked to metric tensor and Ricci tensor, and hence to Riemann-Christoffel cur-
vature tensor. Equality of Riemann-Christoffel tensor to zero is the necessary and sufficient condition
for the given space-time to be flat. Riemann-Christoffel tensor is not zero for curved space only. It
reveals itself as increment of vector V α in its parallel transfer along a closed contour


4V μ = −
1


2
R...μαβγ∙V


α4σβγ , (5.2)


where 4σβγ is the area of this contour. As a result, the initial vector V α and vector V α+4V α


have different directions. From quantitative viewpoint the difference is described by K, referred to as
four-dimensional curvature of pseudo-Riemannian space along the given parallel transfer (for detailed
account to Chapter 9 in Zelmanov’s lectures [10])


K = lim
4σ→0


tanϕ


4σ
, (5.3)


where tanϕ is the tangent of angle between vector V α and the projection of vector V α+4V α on the
area constrained by the transfer contour. For instance, we consider a surface and “a geodesic” triangle
on it, produced by crossing of three geodesic lines. We transfer a vector, defined in any arbitrary point
of that triangle, parallel to itself along the sides of the triangle. The summary angle of rotation ϕ
after the vector returns to the initial point will be ϕ=Σ−π (where Σ is the sum of the inner angles of
the triangle). We assume curvature of the surface K equal in all its points, then


K = lim
4σ→0


tanϕ


4σ
=
ϕ


σ
= const, (5.4)


where σ is the triangle’s area and ϕ=Kσ is called spherical excess. If ϕ=0, then the curvature K=0,
i. e. the surface is flat. In this case the sum of all inner angles of the geodesic triangle is π (flat space).
If Σ>π (the transferred vector is rotated towards the circuit), then there is positive spherical excess
and the curvature K>0. An example of such space is surface of a sphere: a triangle on surface of
a sphere is convex. If Σ<π (the transferred vector is rotated counter the circuit), spherical excess is
negative and the curvature K<0.
Einstein postulated that gravitation is curvature of space-time. He understood curvature as not


equality to zero of Riemann-Christoffel tensor Rαβγδ 6=0 (the same is assumed in Riemannian geom-
etry). This concept fully includes Newtonian gravitational concept, i. e. Einstein’s four-dimensional
gravitation-curvature for a regular physical observer can reveal itself as: (a) Newtonian gravitation; (b)
rotation of three-dimensional space; (c) deformation of three-dimensional space; (d) three-dimensional
curvature, i. e. when Christoffel symbols are not zeroes (see Section 13.5 in Zelmanov’s lectures [10]).
According to Mach Principle, on which Einstein theory of gravitation rests, “. . . the property of inertia
is fully determined by interaction of matter” [25], i. e. curvature of space-time is produced by matter
that fills it (in a certain form). Proceeding from that and from Einstein equations (5.1) we can give
mathematical definitions of emptiness and vacuum:


• emptiness is the state of space-time for which Ricci tensor Rαβ=0, i. e. absence of substance
Tαβ=0 and non-Newtonian gravitational fields λ=0. Field equations (5.1) in emptiness are as
simple as Rαβ=0


30;


30If we put down Einstein equations for empty space Rαβ−
1
2
gαβR=0 in a mixed form R


β
α−


1
2
g
β
αR=0, after contrac-


tion (Rαα−
1
2
gααR=0) we obtain R−


1
2
4R=0, i. e. scalar curvature in emptiness R=0. Hence field equations (Einstein


equations) in empty space are Rαβ=0.
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• vacuum is the state in which substance is absent Tαβ=0, but λ 6=0 and hence Rαβ 6=0. Emptiness
is a specific case of vacuum in absence of λ-fields. Equations of field in vacuum are


Rαβ −
1


2
gαβR = λgαβ . (5.5)


Einstein equations are applicable to the most varied cases of distribution of matter, aside for
the cases when the density is close to that of substance in atomic nuclei. It is hard to give accurate
mathematical description to all cases of distribution of matter because such problem is too general one
and can’t be approached per se. On the other hand, average density of substance in our Universe is so
small 5–10∙10−30 g/cm3, that we can assume it is nearly vacuum. Einstein equations say that energy-
impulse tensor is functionally dependent from metric tensor and Ricci tensor (i. e. from curvature
tensor contracted by two indices). At such small values of density we can assume energy-impulse
tensor proportional to metric tensor Tαβ∼gαβ and hence proportional to Ricci tensor. Therefore aside
for field equations in vacuum (5.5) we can consider field equations as


Rαβ = kgαβ , k = const, (5.6)


i. e. when energy-impulse tensor is different from metric tensor only by a constant. This case, including
absence of masses (vacuum) and some conditions close to it and related to our Universe, where studied
in details by A. Z. Petrov [3]. Spaces for which energy-impulse tensor is proportional to metric tensor
(and to Ricci tensor) he called Einstein spaces.
Spaces with Rαβ=kgαβ (Einstein spaces) are uniform in every their point, have no mass fluxes,


while the density of matter that fills them (including any substances, if any) is every where constant.
In this case


R = gαβRαβ = kgαβg
αβ = 4k , (5.7)


while Einstein tensor takes the form


Gαβ = Rαβ −
1


2
gαβR = −kgαβ , (5.8)


where kgαβ is the analog of energy-impulse tensor for matter that fills Einstein spaces.
To find out what types of matter fill Einstein spaces, Petrov studied algebraic structure of energy-


impulse tensor. This is what he did: tensor Tαβ was compared to metric tensor in an arbitrary point;
for this point the difference Tαβ−ξgαβ is calculated, where ξ are so-called eigenvalues of matrix Tαβ ;
the difference is equaled to zero to find ξ values which make the equality true. This problem is also
referred to as the problem of matrix eigenvalues31. The set of matrix eigenvalues allows to define the
matrix’s algebraic type. For sign-constant metric the problem had been already solved, but Petrov
proposed a method to bring a matrix to canonical form for indefinite (sign-alternating) metric, which
allowed using is in pseudo-Riemannian space, in particular, to study algebraic structure of energy-
impulse tensor. This can be illustrated as follows. Eigenvalues of matrix Tαβ are similar to basic
vectors of metric tensor matrix, i. e. are a sort of “skeleton” of Tαβ (skeleton of matter); but even if
we know what is the skeleton like, we may not know exactly what are the muscles. Nevertheless, the
structure of such skeleton (length and mutual orientation of vectors) we can judge on the properties
of matter, such as uniformity or isotropy, and their relation to curvature of space.
As a result, Petrov obtained that Einstein spaces have three basic algebraic types of energy-impulse


tensor and a few subtypes. According to algebraic classification of energy-impulse tensor and curvature
tensor, all Einstein spaces are sub-divided into three basic types (so-called Petrov classification)32.
Type I spaces are best intuitively comprehensible, because field of gravitation there is produced by


a massive island (“island” distribution of substance), while the space itself may be empty or filled with
vacuum. Curvature of such space is created by island mass and by vacuum. At the infinite distance
from the island mass, in absence of vacuum, space remains flat. Devoid of island mass but filled with


31Generally, the problem of matrix eigenvalues should be solved in a given point, but the obtained result is applicable
to any point of the space.
32Chronometrically invariant interpretation of algebraic classification of Einstein spaces (or, in other words, of Petrov
fields of gravitation) was obtained in 1970 by a co-author of this book (L.B.Borissova, née Grigoreva [26]).
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vacuum, Type I space also bears curvature (e. g. de Sitter space). Empty Type I space, i. e. the one
devoid of island masses or vacuum, is flat.
Types II and III spaces are more exotic because are curved by themselves. Their curvature is


not related to island distribution of masses or presence of vacuum. Types II and III are generally
attributed to radiation fields, for instance, to gravitational waves.
A few years later E.B.Gliner [27, 28, 29] in his study of algebraic structure of energy-impulse


tensor of vacuum-like states of matter (Tαβ∼gαβ , Rαβ=kgαβ) outlined its special type for which all
four eigenvalues are the same, i. e. three space vectors and one temporal vector of “ortho-reference” of
tensor Tαβ are equal to each other


33. The matter that corresponds to energy-impulse tensor of such
structure has constant density μ=const, equal to the value of coinciding eigenvalues of energy-impulse
tensor μ=ξ (the dimension of [μ]=[Tαβ ]=[g cm


−3]). Energy-impulse tensor itself in this case is34


Tαβ = μgαβ . (5.9)


Equations of field at λ=0 are


Rαβ −
1


2
gαβR = −æμgαβ , (5.10)


and with cosmological term λ 6=0


Rαβ −
1


2
gαβR = −æμgαβ + λgαβ . (5.11)


Gliner called such state of matter μ-vacuum [27, 28, 29], because it is related to vacuum-like states
of substance (Tαβ∼gαβ , Rαβ=kgαβ), but is not exactly vacuum (in vacuum Tαβ=0). At the same time
Gliner showed that spaces filled with μ-vacuum are Einstein spaces and three basic types of μ-vacuum
exist, which correspond to three basic algebraic types of energy-impulse tensor (and curvature tensor).
In other words, Einstein space of each type (I, II, and III), if matter is present in them, is filled with
μ-vacuum of corresponding type (I, II, or III).
Actually, because for “ortho-reference” of energy-impulse tensor of μ-vacuum all three space vectors


and one temporal vector are the same (all four directions are equal), μ-vacuum is the highest degree of
isotropy of matter. Besides, because Einstein spaces are uniform and density of matter in their every
point is everywhere equal [3], then μ-vacuum that fills them does not only have constant density, but
is uniform as well.
As we have seen, Einstein spaces can be filled with μ-vacuum, with regular vacuum Tαβ=0 or


with emptiness. Besides, there may exist isolated “islands” of mass, which also produce curvature.
Therefore Type I Einstein spaces are the best illustration of our knowledge of our Universe as a whole.
And thus to study geometry of our Universe and physical states of matter that fills it is to study
Type I Einstein spaces.
Petrov has proposed and proven a theorem: “Any space with constant curvature is Einstein space”


(see Section 13 in [3]). And also that “. . .Types II and III Einstein spaces can not be constant curvature
spaces”. Hence constant curvature spaces are type I spaces according to Petrov classification (Einstein
spaces). If K=0 Type I Einstein space is flat. This makes the study of vacuum and vacuum-like states
of matter in our Universe even simpler, because by today we have well studied constant curvature
spaces. These are de Sitter spaces, or, in other words, spaces with de Sitter metric.
In de Sitter space Tαβ=0, and λ 6=0, it is spherically symmetric, filled with regular vacuum and


does not contain “islands” of substance. On the other hand we know that the average density of
matter in our Universe is rather low. Looking at it in general, we can neglect presence of occasional
“islands” and inhomogeneities, which locally distort spherical symmetry. Hence our space can be
generally assumed as de Sitter space with radius equal to that of the Universe.


33If we introduce a local flat space, tangential to Riemannian space in a given point, then eigenvalues ξ of tensor
Tαβ are values in oath-reference, corresponded to this tensor, as contrasted to eigenvalues of metric tensor gαβ in
ortho-reference, defined in this tangential space.
34Gliner used signature (−+++), hence he had Tαβ=−μgαβ and because observable density is positive ρ=


T00
g00
=−μ>0,


Gliner had negative μ values. In our book we use signature (+−−−), because in this case three-dimensional observable
interval is positive. Hence we have μ>0 and Tαβ=μgαβ .
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Theoretically de Sitter space may bear either positive (K>0) or negative (K<0) curvature. Anal-
ysis (J. L. Synge) shows that in de Sitter world with K<0 time-like geodesic lines are closed: test
particle repeats its motion again and again along the same trajectory. This hints some ideas, which
seem to be too “revolutionary” from viewpoint of today’s physics [30]. Consequently, most physicists
(Synge, Gliner, Petrov, et al.) have left negative curvature de Sitter space beyond the scope of their
consideration.
As known, positive curvature Riemannian spaces are generalization of a regular sphere, while the


negative curvature ones are generalization of Lobachewski-Bolyai space, an imaginary-radius sphere.
In Poincaré interpretation spaces with negative curvature reflect onto the inner surface of sphere.
Using methods of chronometric invariants, Zelmanov showed that in pseudo-Riemannian space (which
metric is indefinite) three-dimensional observable curvature is negative to four-dimensional curvature.
Because we percept our planet as a sphere, the observable three-dimensional curvature of our world
is positive. If any hypothetical beings inhabited the “inner” surface of Earth, they would percept it
as concave and their world will be negative curvature one.
Such illustration inspired some researchers for the idea of possible existence of our mirror twin, the


mirror Universe inhabited by antipodes. Initially it was assumed that once our world has positive cur-
vature, the mirror Universe must be negative curvature space. But Synge showed ([30], Chapter VII)
that in de Sitter positive curvature space space-like geodesic trajectories are open, while in negative
curvature de Sitter space they are closed. In other words, negative curvature de Sitter space is not a
mirror reflection of its positive curvature counterpart.
On the other hand, in our previous studies [15, 16] (see also Section 1.3 herein) we found another


approach to concept of the mirror Universe. Study of motion of free particles with time flow reversed in
respect to that of observer, showed that observable scalar component of their four-dimensional impulse
vector is negative relativistic mass. Noteworthy, particles with “mirror” masses were obtained as a
formal result of projecting four-dimensional impulse on time and was not related to changing sign
of space curvature: particles with either direct or reverse flow of time may either exist positive or
negative curvature spaces.
These results obtained by geometric methods of General Relativity inevitably affect our view of


matter and cosmology of our Universe.
In Section 5.2 we are going to obtain formula for energy-impulse tensor of vacuum and at the same


time the formula for its observable density. We will also introduce classification of matter according
to form of energy-impulse tensor (T-classification). In Section 5.3 we are going to look at physical
properties of vacuum in type I Einstein spaces; in particular, we will discuss properties of vacuum in
de Sitter space and make conclusions on global structure of our Universe. Following this approach in
Section 5.4 we will set forth the concept of origination and development of the Universe as a result of
Inversion Explosion from the pra-particle that possessed some specific properties. In Section 5.5 we
will obtain the formula for non-Newtonian gravitational inertial force that is proportional to distance.
Sections 5.6 and 5.7 will focus on collapse in Schwarzschild space (gravitational collapse, black hole)
and in de Sitter space (inflational collapse, inflanton). Section 5.8 will show that our Universe and
the mirror Universe are worlds with mirror time that co-exist in de Sitter space with four-dimensional
negative curvature. Also we will set forth physical conditions, which allow transition through the
membrane that separates our world and the mirror Universe.


5.2 Observable density of vacuum. T-classification of matter


Einstein equations (field equations in Einstein gravitation theory) are functions that link curvature
of space to distribution of matter. Generally they are Rαβ− 12gαβR=−æTαβ+λgαβ . The left part, as
known, describe geometry of space, while the right one describes matter. The sign of the second term
depends upon that of λ. As we are going to see, the sign of λ, i. e. behavior of Newtonian gravitation
(attraction or repulsion) is directly linked to the sign of vacuum density.
Einstein space are defined by condition Tαβ∼gαβ , field equations for them are Rαβ=kgαβ . Such


field equations can exist in two cases: (a) when Tαβ 6=0 (substance); (b) when Tαβ=0 (vacuum).
But because in Einstein spaces, filled with vacuum, energy-impulse tensor equals to zero, it can not
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be proportional to metric tensor, it contradicts with the definition of Einstein spaces (Tαβ∼gαβ).
So what is the problem here? In absence of any substance (i. e. in vacuum) field equations become
Rαβ− 12gαβR=λgαβ , i. e. curvature is produced by λ-fields (non-Newtonian fields of gravitation) rather
then by substance. In absence of both substance and λ-fields Rαβ=0, i. e. space empty but generally
is not flat.
As a result we can see that λ-fields and vacuum are practically the same thing, i. e. vacuum is


non-Newtonian field of gravitation (we will call this physical definition of vacuum). Hence λ-fields are
action of own potential of vacuum.
This means that the term λgαβ can not be omitted in field equations in vacuum, whatever small


it is, because it describes vacuum, which is among the reasons that make space curved. Then field
equations Rαβ− 12gαβR=−æTαβ+λgαβ can be put down as


Rαβ −
1


2
gαβR = −æ T̃αβ , (5.12)


in the right part of which the 2nd rank tensor


T̃αβ = Tαβ + T̆αβ = Tαβ −
λ


æ
gαβ (5.13)


is energy-impulse tensor that describes matter in general (both substance and vacuum). The first
term here is energy-impulse tensor of substance. The second term


T̆αβ = −
λ


æ
gαβ (5.14)


is analog to energy-impulse tensor for vacuum.
Therefore because Einstein spaces may be filled with vacuum, their mathematical definition is


better to be set forth in a more general form to take account for presence of both substance and
vacuum (λ-fields): T̃αβ∼gαβ . In particular, doing this helps to avoid contradictions when considering
Einstein empty spaces.
Noteworthy, the obtained formula for energy-impulse tensor of vacuum (5.14) is a direct conse-


quence of field equations in general form.
If λ>0, then non-Newtonian forces of gravitation repel and the physical observable density of


vacuum is negative


ρ̆ =
T̆00


g00
= −


λ


æ
= −
|λ|
æ


< 0 , (5.15)


while if λ<0 (non-Newtonian forces of gravitation attract) the observable density of vacuum is, to the
contrary, positive


ρ̆ =
T̆00


g00
= −


λ


æ
=
|λ|
æ


> 0 . (5.16)


The latter fact, as we will see in the next Section, is of great importance, because de Sitter space
with λ<0, which is constantly negative (four-dimensional) curvature space filled with vacuum only
(no substance present), best fits our observation data on our Universe in general.
Therefore proceeding from studies by Petrov and Gliner and taking into account our note on


existence of own energy-impulse tensor (and hence physical properties) in vacuum (λ-fields), we can
set forth “geometric” classification of states of matter according to energy-impulse tensor. We will
call this T-classification of matter


I. emptiness: Tαβ=0, λ=0 (space-time without matter), field equations are Rαβ=0;


II. vacuum: Tαβ=0, λ 6=0 (produced by λ-fields), field equations are Gαβ=−λgαβ ;


III. μ-vacuum: Tαβ=μgαβ , μ=const (vacuum-like state of substance), in this case field equations
are Gαβ=−æμgαβ ;


IV. substance: Tαβ 6=0, Tαβ 6∼gαβ (this state comprises both regular substance and electromag-
netic field).
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Generally energy-impulse tensor of substance (Type IV in T-classification) is not proportional
to metric tensor. On the other hand, there are states of substance in which energy-impulse tensor
contains a term proportional to metric tensor, but because it also contains other terms it is not
μ-vacuum. Such are, for instance, ideal fluid


Tαβ =
(
ρ−


p


c2


)
UαUβ −


p


c2
gαβ , (5.17)


and electromagnetic field
Tαβ = FρσF


ρσgαβ − FασF
∙σ
β∙ , (5.18)


where FρσF
ρσ is the first invariant of electromagnetic field (3.27), Fαβ is Maxwell tensor, and p is


fluid pressure. If p=ρc2 (substance inside atomic nuclei) and p = const, energy-impulse tensor of ideal
fluid seems to be proportional to metric tensor.
But in the next Section we will show that equation of state of μ-vacuum has fully different form


p=−ρc2 (state of inflation, expansion in case of positive density). Hence pressure and density in atomic
nuclei should not be constant as to prevent transition of their inner substance into vacuum-like state.
Noteworthy, this T-classification, just like equations of field, is only about distribution of matter


that affects space curvature, but not about test particles — material points which own masses and
sizes are so small that their effect on curvature of space can be neglected. Therefore energy-impulse
tensor is not defined for particles, and they should be considered beyond this T-classification.


5.3 Physical properties of vacuum. Cosmology


Einstein spaces are defined by field equations like Rαβ=kgαβ , where k=const. With λ 6=0 and
Tαβ=μgαβ space is filled with matter, which energy-impulse tensor is proportional to fundamental
metric tensor, i. e. with μ-vacuum. As we saw in the previous Section, for vacuum energy-impulse
tensor is also proportional to metric tensor. This means that physical properties of vacuum and those
of μ-vacuum are mostly the same, save for a scalar coefficient that defines composition of matter
(λ-fields or substance) and absolute values of the acting forces. Therefore we are going to consider
Einstein space filled with vacuum and μ-vacuum. In this case field equations become


Rαβ −
1


2
gαβR = − (æμ− λ) gαβ . (5.19)


Putting them down in a mixed form and then contracting we arrive to scalar curvature


R = 4 (æμ− λ) , (5.20)


substituting which into the initial equations (5.19) we obtain field equations in final form


Rαβ = (æμ− λ) gαβ , (5.21)


where the term æμ−λ=const=k.
Now we are going to look at physical properties of vacuum and μ-vacuum. We deduce chronometri-


cally invariant components of energy-impulse tensor: observable density of matter ρ=T00g00 , observable


density of impulse J i=
cT i0√
g00
, and observable tensor of strengths U ik=c2T ik.


For energy-impulse tensor of μ-vacuum Tαβ=μgαβ physical observable components are


ρ =
T00


g00
= μ , (5.22)


J i =
cT i0√
g00
= 0 , (5.23)


U ik = c2T ik = −μc2hik = −ρc2hik. (5.24)
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For energy-impulse tensor T̆αβ=− λægαβ (5.14) that describes vacuum, observable values are


ρ̆ =
T̆00


g00
= −


λ


æ
, (5.25)


J̆ i =
cT̆ i0√
g00
= 0 , (5.26)


Ŭ ik = c2T̆ ik =
λ


æ
c2hik = −ρ̆c2hik. (5.27)


From here we see that vacuum (λ-fields) and μ-vacuum have constant density, i. e. are uniformly
distributed matter and are also non-emitting media, because energy flux c2J i in them is zero


c2J̆ i =
c3T̆ i0√
g00
= 0 , c2J i =


c3T i0√
g00
= 0 . (5.28)


In the frame of reference that accompanies the medium, tensor of strengths equals (according to
Zelmanov’s works [6, 8])


Uik = p0hik − αik = phik − βik , (5.29)


where p0 is equilibrium pressure, defined from the equation of state, p is the true pressure, αik is
2nd type viscosity (viscous strengths tensor) βik=αik− 13αhik is its anisotropic part (1st type viscosity,
which reveal itself in anisotropic deformation), where α=αii is trace of 2nd type viscosity tensor.
Formulating tensor of strengths for μ-vacuum (5.24) in the frame of reference that accompanies


μ-vacuum itself, we arrive to
Uik = phik = −ρc


2hik , (5.30)


and similarly to tensor of strengths for vacuum (5.27)


Ŭik = p̆hik = −ρ̆c
2hik . (5.31)


This implies that vacuum and μ-vacuum are non-viscous media (αik=0, βik=0) which equations
of state35


p̆ = −ρ̆c2, p = −ρc2. (5.32)


Such state of matter is referred to as inflation because at positive density of matter pressure
becomes negative and the media expands.
These are the basic physical properties of vacuum and μ-vacuum: uniform (ρ=const), non-viscous


(αik=0, βik=0), and non-emitting (c
2J i=0) media in the state of inflation.


From general physical properties we are going to turn now to analysis of vacuum that fills constant
curvature spaces, in particular, de Sitter space, which is the closest approximation of our Universe as
a whole.
In constant curvature spaces Riemann-Christoffel tensor is (see Chapter VII in Synge’s book [30])


Rαβγδ = K (gαγgβδ − gαδgβγ) , K = const. (5.33)


Having the tensor contracted by two indices, we obtain the formula for Ricci tensor, which subse-
quent contraction allows to deduce a scalar value. As a result we have


Rαβ = −3Kgαβ , R = −12K . (5.34)


Assuming our Universe a constant curvature space, we obtain field equations formulated with
curvature


3Kgαβ = −æTαβ + λgαβ . (5.35)


35Equation of state of distributed matter is dependence of its pressure from density. For example, p=0 is equation
of state of dust media, p=ρc2 is equation of state of matter in atomic nuclei, p= 1


3
ρc2 is equation of state of ultra-


relativistic gas.
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We put them down in Synge’s notation as (λ−3K) gαβ=æTαβ . Then energy-impulse tensor of
substance in constant curvature spaces is


Tαβ =
λ− 3K
æ


gαβ . (5.36)


From here we see that in constant curvature space the problem of geometrization of matter solves
by itself: energy-impulse tensor (5.36) contains metric tensor and constants only.
De Sitter space is a constant curvature space where Tαβ=0 and λ 6=0, i. e. the one filled with


vacuum (substance is absent). Then having energy-impulse tensor of substance (5.36) equaled to zero
we obtain the same result as did Synge: in de Sitter space λ=3K.
Taking into account this relation, the formula for observable density of vacuum in de Sitter world


becomes


ρ̆ = −
λ


æ
= −
3K


æ
= −
3Kc2


8πG
. (5.37)


Now we are approaching the key question: what is the sign of four-dimensional curvature in our
Universe? The reason to ask is not pure curiosity. Depending from the answer the de Sitter world
cosmology we have built may fit the available data of observations or may lead to results totally alien
to commonly accepted astronomical facts.
As a matter of fact, given that four-dimensional curvature is positive (K>0) density of vacuum will


be negative and hence inflational pressure will be greater than zero — vacuum contracts. Then because
λ>0 non-Newtonian forces of gravitation are those of repulsion. We will then witness struggle of two
actions: positive inflational pressure of vacuum, which tend to compress the space, and repulsion forces
of non-Newtonian gravitation. The result will be as follows: firstly, because λ-forces are proportional
to distance, their expanding effect would grow along with growth of radius of the Universe and the
expansion would accelerate. Secondly, if the Universe has ever been of size less than the distance, at
which contracting pressure of vacuum is equal to expanding action of λ-forces, the expansion would
become impossible.
If to the contrary the four-dimensional curvature is negative (i. e. K<0), the inflational pressure


will be less than zero — vacuum expands. Besides, because in this case λ<0, non-Newtonian forces of
gravitation are those of attraction. Then the Universe can keep expanding from nearly a point until
density of vacuum becomes so low that its expanding action becomes equal to non-Newtonian λ-forces
of attraction.
As seen, the question of curvature sign is the most crucial one for cosmology of our Universe.
But human perception is three-dimensional and a regular observer can not judge anything on sign


of four-dimensional curvature by means of direct observations. What can be done then? The way out
of the situation is in theory of chronometric invariants — a method to define physical observable values.
Among the goals that Zelmanov set for himself was to build tensor of curvature of three-dimensional


non-holonomic space, which would possess properties of Riemann-Christoffel tensor and, at the same
time, would be chronometrically invariant. Zelmanov decided to build such tensor using similarity
with Riemann-Christoffel tensor, which results from non-commutativity of the second derivatives from
an arbitrary vector in a given space. Deducing the difference of the second chronometrically invariant
derivatives from an arbitrary vector, he arrived to


∗∇i
∗∇kQl −


∗∇k
∗∇iQl =


2Aik
c2


∗∂Ql


∂t
+H ...jlkiQj , (5.38)


which contains chronometrically invariant tensor


H ...jlki =
∗∂4jil
∂xk


−
∗∂4jkl
∂xi


+4mil4
j
km −4


m
kl4


j
im , (5.39)


which is similar to Schouten tensor from theory of non-holonomic manifolds36. But in general case
in presence of space rotation (Aik 6=0), tensor H


...j
lki is algebraically different from Riemann-Christoffel


36J.A. Schouten built the theory of non-holonomic manifolds for an arbitrary number of measurements, considering
m-dimensional sub-space in n-dimensional space, where m<n [31]. In theory of chronometric invariants we actually
consider an (m=3)-dimensional sub-space in (n=4)-dimensional space.
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tensor. Therefore Zelmanov introduced a new tensor


Clkij =
1


4
(Hlkij −Hjkil +Hklji +Hiljk) , (5.40)


which was not only chronometrically invariant, but also possessed all algebraic properties of Riemann-
Christoffel tensor. Therefore Clkij is tensor of curvature of three-dimensional space of reference of
observer, who accompanies his body of reference. Having it contracted, we obtain chronometrically
invariant values


Ckj = C
...i
kij∙ = h


imCkimj , C = Cjj = h
ljClj , (5.41)


which also describe curvature of three-dimensional space. Because Clkij , Ckj , and C are chronomet-
rically invariant, they are physical observable values. In particular C is three-dimensional observable
curvature [8, 10].
Concerning our analysis of vacuum properties and cosmology, we need to know how observable


three-dimensional curvature C is linked to four-dimensional curvature K in general and in de Sitter
space in particular. We are going to tackle this problem step-by-step.
Four-dimensional Riemann-Christoffel curvature tensor is a 4th-rank tensor, hence it has n4=256


components, out of which only 20 are significant. Other components are either zeroes or contain each
other, because Riemann-Christoffel tensor is:


• symmetric by each pair of indices Rαβγδ=Rγδαβ ;
• antisymmetric in respect to transposition inside each pair of indices Rαβγδ=−Rβαγδ,
Rαβγδ=−Rαβδγ ;
• its components are constrained with the relationship Rα(βγδ)=0, where round brackets stand for
transpositions by indices β, γ, δ.


Significant components of Riemann-Christoffel tensor produce three chronometrically invariant
(physical observable) tensors


Xik = −c2
R∙i∙k0∙0∙
g00


, Y ijk = −c
R∙ijk0...√
g00


, Zijkl = −c2Rijkl. (5.42)


Tensor Xik has 6 components, tensor Y ijk has 9 components, while tensor Zijkl has only 9 due
to its symmetry. Components of the second tensor are constrained by Y(ijk)=Yijk+Yjki+Ykij=0.
Formulating the values with chronometrically invariant properties of space of reference and having
indices lowered we obtain


Xij =
∗∂Dij


∂t
−
(
Dli +A


∙l
i∙


)
(Djl +Ajl) +


1


2
(∗∇iFj +


∗∇jFi)−
1


c2
FiFj , (5.43)


Yijk =
∗∇i (Djk +Ajk)−


∗∇j (Dik +Aik) +
2


c2
AijFk , (5.44)


Ziklj = DikDlj −DilDkj +AikAlj −AilAkj + 2AijAkl − c
2Ciklj . (5.45)


From these Zelmanov formulas we see that spatial observable components of Riemann-Christoffel
curvature tensor (5.45) are directly linked to chronometrically invariant tensor of three-dimensional
observable curvature Ciklj .
Now we are going to deduce the formula for three-dimensional observable curvature in a constant


curvature space. In this case Riemann-Christoffel tensor is as of (5.33), then


R0i0k = −Khikg00 , (5.46)


R0ijk =
K


c


√
g00 (vjhik − vkhij) , (5.47)


Rijkl = K


[


hikhjl − hilhkj +
1


c2
vi (vlhkj − vkhjl) +


1


c2
vj (vkhil − vlhik)


]


. (5.48)
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Having deduced its physical observable components (5.42), we obtain Having deduced its chrono-
metrically invariant (physical observable) components (5.42), we obtain


Xik = c2Khik, Y ijk = 0 , Zijkl = c2K
(
hikhjl − hilhjk


)
, (5.49)


hence spatial observable components with lower indices will be


Zijkl = c
2K (hikhjl − hilhjk) . (5.50)


Contracting this value step-by-step we obtain


Zjl = Z
i...
∙jil = 2c


2Khjl , Z = Zjj = 6c
2K . (5.51)


On the other hand, we know the formula for Zijkl in an arbitrary curvature space (5.45), which
explicitly contains tensor of three-dimensional observable curvature. Evidently it is true for K=const
as well. Then having the general formula (5.45) contracted we have


Zil = DikD
k
l −DilD +AikA


∙k
l∙ + 2AikA


k∙
∙l − c


2Cil , (5.52)


Z = hilZil = DikD
ik −D2 −AikA


ik − c2C . (5.53)


In a constant curvature space Z=6c2K (5.51), hence in such space the relationship between four-
dimensional curvature K and physical observable three-dimensional curvature C is


6c2K = DikD
ik −D2 −AikA


ik − c2C . (5.54)


From here we see that in absence of rotation and deformation of space four-dimensional curvature
has the opposite sign in respect to three-dimensional observable curvature. In de Sitter space (because
there rotation and deformation are absent) we have


K = −
1


6
C , (5.55)


i. e. three-dimensional observable curvature equals C=−6K.
Now we are able to build a model for development of our Universe relying upon two experimental


facts: (a) the sign of observable density of matter, and (b) the sign of observable three-dimensional
curvature.
Firstly, our everyday experience shows that density of matter in our Universe is positive however


sparse it may be. Then to ensure that density of vacuum (5.37) is positive, the cosmological term
should be negative λ<0 (non-Newtonian forces attract) and hence four-dimensional curvature should
be negative K<0.
Secondly, as D. Ivanenko wrote in his preface to J.Weber’s book [25] “Though the data of cos-


mological observations are evidently not exact, but, for instance, McWittie [32] maintains that the
best results of observation of Hubble red shift H≈75–100 km/s ∙Mpc and of average density of matter
ρ≈10−31 g/sm3 support the idea of non-disappearing cosmological term λ<0”.
As a result we can assume that density of vacuum in our Universe is positive and three-dimensional


observable curvature C>0. Hence four-dimensional curvature K<0 and hence cosmological term λ<0.
Then from (5.37) we obtain observable density of vacuum in our Universe, formulated with observable
three-dimensional curvature


ρ̆ = −
λ


æ
= −
3K


æ
=


C


2æ
> 0 , (5.56)


i. e. inflational pressure of vacuum is negative p̆=−ρ̆c2 (vacuum expands). And because uniform
distribution in space is among the physical properties of vacuum, negative inflational pressure also
implies expansion of the Universe as a whole.
Therefore observable three-dimensional space of our Universe (C>0) is a three-dimensional ex-


panding sphere, which is a sub-space of four-dimensional space-time (K<0), a space with generalized
Lobachewski-Bolyai geometry.
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Of course de Sitter space is merely an approximation of our Universe. Astronomical data say
that though “islands” of masses are occasional and hardly affect the global curvature, their effect on
space curvature in their vicinities is significant (deviation of light rays within the gravitational field
and similar effects). But in study of the Universe as a whole we can neglect occasional “islands”
of substance and local non-uniformities in curvature. In such cases de Sitter space with negative
four-dimensional curvature (observable three-dimensional curvature is positive) can be assumed the
background space of our Universe.


5.4 Concept of Inversion Explosion of the Universe


From the previous Section we know that in a de Sitter space λ=3K, i. e. that according to its phys-
ical sense λ-term is the same as curvature. For three-dimensional spherical sub-space observable
curvature C=−6K is


C =
1


R2
, (5.57)


where R is observable radius of curvature (sphere radius). Then four-dimensional curvature of space-
time equals


K = −
1


6R2
, (5.58)


i. e. the larger is the radius of sphere, the less is curvature K. According to astronomical estimates, our
Universe emerged 10–20 billion years ago. Hence the distance covered by a photon since it was born
at the dawn of the Universe is RH≈1027–1028 cm. This distance is referred to as radius of the horizon
of events. Assuming our Universe as whole to be a de Sitter space with K<0 for four-dimensional
curvature and hence for λ-term λ=3K we have the estimate


K = −
1


6R2H
≈ −10−56cm−2. (5.59)


On the other hand, similar figures for the horizon of events, curvature and λ-term are available
from Roberto di Bartini [29, 30], who studied relationships between physical constants from topological
viewpoint. In his works the space radius of the Universe is interpreted as the longest distance, defined
from topological context. According to di Bartini’s inversion relationship


Rρ


r2
= 1, (5.60)


the space radius R (the longest distance) is an inversion image of gravitational radius of electron
ρ=1.347∙10−55 cm in respect to radius of spherical inversion r=2.818∙10−13 cm, which equals to clas-
sical radius of electron (according to di Bartini — radius of spherical inversion). The space radius
(the largest radius of the horizon of events) equals


R = 5.895 ∙ 1029 cm . (5.61)


From topological context di Bartini also defined the space mass (the mass within the space radius)
and the space density, which are


M = 3.986 ∙ 1057 g , ρ = 9.87 ∙ 10−34 g/cm3. (5.62)


As a matter of fact, studies done by di Bartini say that the space of the Universe (from classical
radius of electron up to the horizon of events) is an external inversion image of the inner space of a
certain particle with size of electron (its radius can be estimated within the range from the classical
radius of electron up to its gravitational radius). From other viewpoints the particle is different from
electron: its mass equals to space mass M=3.986 ∙1057 g, while that of electron is m=9.11∙10−28 g.
The space within that particle can not be represented as a de Sitter space. As a matter of fact, the


density of vacuum in de Sitter space with K<0 and observable radius of curvature r=2.818∙10−13 cm is


ρ̆ = −
3K


æ
= −


1


2ær2
= 3.39 ∙ 1051 g/cm3, (5.63)
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while that inside di Bartini’s particle is


ρ =
M


2π2r3
= 9.03 ∙ 1093 g/cm3. (5.64)


On the other hand, an outer space, being the inversion image of the inner one, according to its
properties can be assumed as a de Sitter space. Let us assume that a space with radius of curvature,
equal to di Bartini radius R=5.895 ∙1029 cm, is a de Sitter space with K<0. Then four-dimensional
curvature and λ-term are


K = −
1


6R2
= −4.8 ∙ 10−61 cm−2, (5.65)


λ = 3K = −
1


2R2
= −14.4 ∙ 10−61 cm−2, (5.66)


i. e. are five orders of magnitude less than the observed estimate, which equals |λ|<10−56. This can
be explained because the Universe keeps on expanding and in a distant future absolute values of its
curvature and the cosmological term will grow down to approach the figures in (5.65, 5.66), calculated
for the longest distance (the space radius). Estimated density of vacuum in de Sitter space within the
space radius is


ρ̆ = −
3K


æ
= −
3Kc2


8πG
≈ 7.7 ∙ 10−34 g/cm3 (5.67)


is also less than observed average density of matter in the Universe (5–10∙10−30 g/cm3) and is close
to the density of matter within the space radius according to di Bartini 9.87∙10−34 g/cm3.
To find how long will our Universe keep expanding we have to define the gap between the observed


radius of the horizon of events RH and the radius of curvature R. Assuming the maximum radius of
the horizon of events in the Universe RH(max) equal to the space radius (the outer inversion distance),


which according to di Bartini is R=5.895∙1029 cm (5.61), and comparing it with the observed radius
of the horizon of events (RH≈1027–1028 cm), we obtain 4R=RH(max)−RH≈5.8∙1029 cm, i. e. the time
left for expansion is


t =
4R
c
≈ 600 billion years. (5.68)


These calculations of the density of vacuum and of other properties of de Sitter space pave the
way for conclusions on the origin and evolution of our Universe and allow the only interpretation of
di Bartini’s inversion relationship. We will call it cosmological concept of Inversion Explosion. The
concept based upon our analysis of properties of de Sitter space using geometric methods of General
Relativity, and di Bartini’s inversion relationship as a result of contemporary knowledge of physical
constants. We can set forth the concept as follows:


In the beginning there existed a single pra-particle with radius equal to classical radius


of electron and with mass equal to mass of the entire Universe.


Then the inversion explosion occurred: a topological transition inverted matter in the pra-


particle in respect to its surface into the outer world, which gave birth to our expanding


Universe. At present, 10–20 billion years since the explosion, the Universe is in the early


stage of its evolution. The expansion will continue for almost 600 billion years.


At the end of this period the expanding Universe will reach its radius of curvature,


at which non-Newtonian forces of gravitation, proportional to distance, will equalize


inflational expanding pressure of vacuum. The expansion will discontinue and stability


will be reached, which will last until the next inversion topological transition occurs.


Parameters of matter at stages of evolution are calculated in Table 3 — pra-particle before the inversion
explosion, the stage of inversion expansion at the present time, and the stage after the expansion.
The reasons for topological transition, which led to spherical inversion of matter from pra-particle


(Inversion Explosion), remain unknown. . . but so do the reasons for the “emerge” of the Universe in
some other contemporary cosmological concepts, for instance, in the concept of the Big Bang from a
singular point.
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Evolution Age, Space Density, λ-term,
stage years radius, cm g/cm3 cm−2


Pra-particle 0 2.82 ∙ 10−13 9.03 ∙ 1093 ?


Present time 10–20 ∙ 109 1027–1028 5–10 ∙ 10−30 <10−56


After expansion 623 ∙ 109 5.89 ∙ 1029 9.87 ∙ 10−34 1.44 ∙ 10−60


Table 3. Parameters of matter at stages of evolution of the Universe


5.5 Non-Newtonian gravitational forces


Type I Einstein spaces, including constant curvature spaces, aside for having occasional “islands
of matter” may be either empty or filled with uniform matter. But empty Type I Einstein space
(curvature K=0) is dramatically different from not empty one (K=const 6=0).
To make our discourse more concrete, we are going to look at the most typical examples of empty


and not-empty Type I Einstein space.
If an island of mass is a ball (spherically symmetric distribution of mass in the island) placed into


emptiness, then curvature of such space is produced by Newtonian field of gravitation of island and
such is not a constant curvature space. At an infinite distance from the island space becomes flat
again, i. e. constant curvature space with K=0. A typical example of field of gravitation produced by
spherically symmetric island of mass in emptiness is a field described by Schwarzschild metric


ds2 =
(
1−


rg


r


)
c2dt2 −


dr2


1−
rg


r


− r2
(
dθ2 + sin2 θdϕ2


)
, (5.69)


where r is distance from the island and rg is its gravitational radius.
In Schwarzschild metric space rotation and deformation are absent. Components of vector of


gravitational inertial force (1.38) can be deduced as follows. According to the metric (5.69), g00 is


g00 = 1−
rg


r
, (5.70)


then derivative from potential w=c2(1−
√
g00) is


∂w


∂xi
= −


c2


2
√
g00


∂g00


∂xi
. (5.71)


Having this derivative substituted into the formula for gravitational inertial force (1.38) in absence
of rotation we have


F1 = −
c2rg


2r2
1


1−
rg


r


, F 1 = −
c2rg


2r2
. (5.72)


Therefore, vector F i in Schwarzschild metric space describes Newtonian gravitational force, which
is reciprocal to square of distance r from the mass (the source of field).
If space is filled with spherically symmetric distribution of vacuum and does not include an island


of mass, its curvature will be everywhere the same. An example of such field is that described by
de Sitter metric


ds2 =


(


1−
λr2


3


)


c2dt2 −
dr2


1−
λr2


3


− r2
(
dθ2 + sin2 θdϕ2


)
. (5.73)


Note that though de Sitter space has not islands of mass that produce Newtonian fields of gravi-
tation. So, in de Sitter space we can consider motion of small (test) particles, which own Newtonian
fields are so weak that can be neglected.
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De Sitter metric space is a constant curvature one, which becomes flat space only in absence of
λ-fields. Rotation or deformation are also absent here, while components of gravitational inertial force
vector are


F1 =
λc2


3


r


1−
λr2


3


, F 1 =
λc2


3
r , (5.74)


i. e. vector F i in de Sitter space describes non-Newtonian gravitational forces, proportional to r: if
λ<0, those are attraction forces, if λ>0 those are repulsion forces. Therefore forces of non-Newtonian
gravitation (λ-forces) grow along with distance at which they act.
Therefore we can see the principal difference between empty and non-empty Type I Einstein space:


in empty one with an island of mass only Newtonian forces exist, while in the one filled with vacuum
without islands of mass there are non-Newtonian gravitation forces only. An example of “mixed”
Type I space is that with Kottler metric [35]


ds2 =


(


1+
ar2


3
+
b


r


)


c2dt2−
dr2


1+
ar2


3
+
b


r


−r2
(
dθ2+sin2 θdϕ2


)
,


F1 = −c2


ar


3
−


b


2r2


1+
ar2


3
+
b


r


, F 1 = −c2
(
ar


3
−


b


2r2


)


,


(5.75)


where both Newtonian and λ-forces exist: it is filled with vacuum and includes islands of mass, which
produce Newtonian forces of gravitation. On the other hand, F.Kottler proposed his metric with two
unknown constants a and b to define which some additional constraints are required. Hence despite
some of attractive features of Kottler metric, only two its “ultimate” cases are of practical interest for
us — Schwarzschild metric (Newtonian forces) and de Sitter metric (λ-forces).


5.6 Gravitational collapse


Evidently, representing our Universe as either a de Sitter space (filled with vacuum without islands of
mass) or a Schwarzschild space (islands of mass in emptiness) is a certain approximating assumption.
The real metric of our world in “something in the between”. Nevertheless, in some problems dealt
with non-Newtonian gravitation (produced by vacuum), where influence of concentrated masses can
be neglected, de Sitter metric is optimal. And vice versa, in problems with field of concentrated masses
Schwarzschild metric is more reasonable. An illustrative example of such “split” of models is collapse
— a state of space-time in which g00=0.
Gravitational potential w for an arbitrary metric is (1.38). Then


g00 =
(
1−


w


c2


)2
= 1−


2w


c2
+
w2


c4
, (5.76)


i. e. collapse (g00=0) occurs at w=c
2.


Commonly, gravitational collapse is considered — compression of an island of mass under action
of Newtonian gravitation until it reaches its gravitational radius. Hence “pure” gravitational collapse
occurs in Schwarzschild metric space (5.69), where only Newtonian field of spherically symmetric
island of mass in emptiness is present.
At larger distances from concentrated mass gravitational field becomes weak and Newtonian law


of gravitation becomes true. Hence in a weak field of Newtonian gravitation potential is


w =
GM


r
, (5.77)


where G is Newton-Gauss gravitational constant, M is mass of the body that produced that field of
gravitation. In a weak field the third term in (5.76) is small and can be neglected; hence the formula
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for g00 becomes


g00 = 1−
2GM


c2r
, (5.78)


i. e. gravitational collapse in Schwarzschild space occurs if


2GM


c2r
= 1 , (5.79)


where the value


rg =
2GM


c2
, (5.80)


which has the dimension of length, is referred to as gravitational radius. Then g00 can be presented as


g00 = 1−
rg


r
. (5.81)


From here we see that at r=rg in Schwarzschild space collapse occurs. In such case all mass of
spherically symmetric body (the source of Newtonian field) becomes concentrated within its gravi-
tational radius. Therefore the surface of a spherical body, which radius equals to its gravitational
radius, is referred to as Schwarzschild sphere. Such objects are also called black holes because within
the gravitational radius escape velocity is above that of light and hence light can not be emitted from
such objects outside.
As seen from metric formula (5.69), in Schwarzschild field of gravitation three-dimensional space


does not rotate (g0i=0) and hence interval of observable space (1.25) is


dτ =
√
g00 dt =


√


1−
rg


r
dt , (5.82)


i. e. at the distance r=rg interval of observable time equals zero dτ=0: from viewpoint of an external
observer the time on the surface of Schwarzschild sphere stops37. Inside Schwarzschild sphere interval
of observable time becomes imaginary. We can also be sure that a regular observer who lives on the
surface of the Earth, apparently stays outside its Schwarzschild sphere with radius of 0.443 cm and
can only look at process of gravitational collapse from “outside”.
If r=rg then the value


g11 = −
1


1−
rg


r


(5.83)


grows up to infinity. But the determinant of metric tensor gαβ is


g = −r4 sin2 θ < 0 , (5.84)


and hence space-time inside gravitational collapser is generally not degenerated, though collapse is
also possible in zero-space.
At this point a note concerning photometric distance and metric physically observable distance


should be taken.
The value r is not a metric distance along axis x1=r, because the formula for metric (5.69) contains


dr2 with coefficient
(
1−


rg
r


)−1
. Value r is photometric distance defined as function of illumination


produced by a stable source of light and reciprocal to square of distance. In other words, r is radius
of non-Euclidean sphere with surface are 4πr2 [10].


37At g00=0 (collapse) interval of observable time (1.25) equals to dτ=− 1
c2
vidx


i, where vi=−c
g0i√
g00
is velocity of


space rotation (1.37). Only assuming goi=0 and vi=0 the condition of collapse can be defined correctly: for an external
observer time on the surface of collapser stops dτ=0, while four-dimensional interval equals to ds2=−dσ2=gikdxidxk.
From here a single conclusion can be made: on the surface of collapser space is holonomic (collapser does not rotate).
In our previous studies [15, 16] we showed that zero-space collapses if it does not rotate. Here we proved a more
general theorem: if g00=0 space is holonomic irrespective of whether it is degenerated (g=0, zero space) or for it g<0
(space-time of General Relativity).
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According to theory of chronometric invariants, metric elementary observable distance between
two points in Schwarzschild space is


dσ =


√√
√
√


dr2


1−
rg


r


+ r2
(
dθ2 + sin2 θdϕ2


)
. (5.85)


At θ=const and ϕ=const it is


σ =


∫ r2


r1


√
h11 dr =


∫ r2


r1


dr
√


1−
rg


r


(5.86)


and is not the same as photometric distance r.
Now we are going to define metric of space-time inside Schwarzschild sphere. To do this we


formulate external metric (5.69) for radius r<rg. As a result we have


ds2 = −
(rg
r
− 1
)
c2dt2 +


dr2


rg


r
− 1
− r2


(
dθ2 + sin2 θdϕ2


)
. (5.87)


Introducing notations r=ct̃ and ct=r̃ we obtain


ds2 =
c2dt̃2


rg


ct̃
− 1
−
(rg
ct̃
− 1
)
dr̃2 − c2dt̃2


(
dθ2 + sin2 θdϕ2


)
, (5.88)


i. e. metric of space-time inside Schwarzschild sphere is similar to the external metric provided that
the temporal coordinate and the spatial coordinate r swap their roles: photometric distance r outside
black hole is coordinate time ct̃ inside, while coordinate time outside black hole ct is photometric
distance r̃ inside.
From the first term of Schwarzschild inner metric (5.88) we see that it is not stationary and exists


within a limited period of time


t̃ =
rg


c
. (5.89)


For the Sun, which gravitational radius is 3 km, life span of such space would be approximately
<10−5 s. For the Earth, which gravitational radius is a small as 0.443 cm, life span of inner Schwarz-
schild metric would be even less at 1.5∙10−11 s.
Comparison of metrics inside gravitational collapser (5.88) and outside of the collapsed body (5.69)


implies that:


1. space of reference of both metrics is holonomic, i. e. does not rotate (Aik=0);


2. external metric is stationary, vector of gravitational inertial force is F 1=−GM
r2
;


3. internal metric is non-stationary, vector of gravitational inertial force is zero.


Now we are going to give external and internal metrics more detailed analysis; to make it simpler
we assume θ=const and ϕ=const, i. e. out of all possible spatial directions we limit our study to radial
directions only. Then the external metric will be


ds2 = −
(rg
r
− 1
)
c2dt2 +


dr2


rg


r
− 1


, (5.90)


while the internal metric is, respectively


ds2 =
c2dt̃2


rg


ct̃
− 1
−
(rg
ct̃
− 1
)
dr̃2. (5.91)


Now we will define physical observable distance (5.86) along radial direction to the attracting mass
(gravitational collapser)
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σ =


∫
dr


√


1−
rg


r


=
√
r (r − rg) + rg ln


(√
r +


√
r − rg


)
+ const. (5.92)


From here we see: at r−rg observable distance


σg = rg ln
√
rg + const, (5.93)


and is a constant value. This means that Schwarzschild sphere, defined by photometric radius rg, for
an external observer is a sphere with observable radius σg=rg ln


√
rg+const (5.93). Therefore for an


external observer gravitational collapser (black hole) is a sphere with constant observable radius, on
which surface time stops.
Now we are going to analyze gravitational collapser’s interiors. Interval of observable time (5.82)


inside Schwarzschild sphere is imaginary for an external observer


dτ = i


√
rg


r
− 1 dt , (5.94)


or, in “interior” coordinates r=ct̃ and ct=r̃ (from viewpoint of an “inner” observer),


dτ̃ =
1


√
rg


ct̃
− 1


dt̃ . (5.95)


Hence for an external observer the internal “imaginary” time of collapser (5.94) stops at its surface,
while the “inner” observer sees the pace of observable time on the surface grow infinitely.
From external viewpoint three-dimensional metric distance inside collapser according to (5.87) is


σ =


∫
dr


√
rg


r
− 1
= −


√
r (r − rg) + rg arctan


√
rg


r
− 1 + const, (5.96)


or, from viewpoint of the “inner” observer


σ̃ =


∫ √
rg


ct̃
− 1 dr . (5.97)


From here we see: at r=ct̃=rg for an external observer observable distance between any two points
converges to a constant, while for the “inner” observer observable spatial interval grows down to zero.
In conclusion we will address the question of what happens to particles, which fall from “outside”


on Schwarzschild sphere along a radial direction. External metric can be presented as


ds2 = c2dτ2 − dσ2, dτ =
(
1−


rg


r


)
dt , dσ =


dr


1−
rg


r


. (5.98)


For real-mass particles ds2>0, for light-like particles ds2=0, for super-light-speed tachyons ds2<0
(their mass is imaginary). In radial motion towards black hole these conditions can be represented as:


1. mass-bearing real particles
(
dτ
dt


)2
<c2


(
1−


rg
r


)2
;


2. light-like particles
(
dτ
dt


)2
= c2


(
1−


rg
r


)2
;


3. imaginary particles-tachyons
(
dτ
dt


)2
>c2


(
1−


rg
r


)2
.


On Schwarzschild sphere r=rg. Hence
dτ
dt
=0, i. e. any particle, including light-like one, will stop


there. Four-dimensional interval on Schwarzschild sphere is space-like


ds2 = −dσ2, (5.99)


i. e. ds2<0. This implies that Schwarzschild sphere is filled with particles with imaginary rest-mass.
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5.7 Inflational collapse


There are no islands of mass in de Sitter space, hence field of Newtonian gravitation is absent too
— gravitational collapse is impossible. Nevertheless, condition g00=0 is a purely geometric definition
of collapse, not necessarily related to Newtonian fields. Subsequently, we can consider it in any
arbitrary space.
We are going to look at a de Sitter metric space (5.73), which describes non-Newtonian field of


gravitation in a constant curvature space without islands of mass. In this case collapse may occur due
to non-Newtonian gravitational forces. From de Sitter metric (5.73) we see that


g00 = 1−
λr2


3
, (5.100)


i. e. gravitational potential w=c2(1−
√
g00) in de Sitter space is


w = c2


(


1−


√


1−
λr2


3


)


. (5.101)


Because it is a potential of non-Newtonian gravitation, produced by vacuum, we will call it
λ-potential. From this formula we see that λ-potential equals to zero if de Sitter space is flat (in
this case λ=3 and K=0).
Because in de Sitter space λ=3K, hence


• g00=1−Kr2>0 at distances r < 1√
K
;


• g00=1−Kr2<0 at distances r > 1√
K
;


• g00=1−Kr2=0 (collapse) at distances r= 1√
K
.


At curvature K<0 the value g00=1−Kr2 is always greater than zero. Hence collapse is only
possible in a de Sitter space with K>0.
In Section 5.3 we showed that space in our Universe as a whole has K<0. But we can assume


presence of local non-uniformities with K>0, which do not affect curvature of the space in general.
In particular, on such non-uniformities collapse may occur. Therefore it is reasonable to consider
de Sitter space with K>0 as a local space in the vicinities of some compact objects.
Three-dimensional physical observable curvature C is linked to four-dimensional curvature with


relationship C=−6K (5.55). Then assuming three-dimensional space is a sphere, we obtain C= 1
R2


(5.57) and hence K=− 1
6R2


(5.58), where R is three-dimensional observable radius of curvature. In


case K<0 value R is real, at K>0 it becomes imaginary.
Collapse in de Sitter space is only possible at K>0. In this case observable radius of curvature is


imaginary. We denote R=iR∗, where R∗ is its absolute value. Then in de Sitter space with K>0


K =
1


6R∗2
, (5.102)


and the collapse condition g00=1−Kr2 can be represented as


r = R∗
√
6 , (5.103)


i. e. at the distance r=R∗
√
6 in de Sitter space with K>0 the value g00=0 and hence observable time


stops and collapse occurs.
In other words, an area of de Sitter space within radius r=R∗


√
6 stays in collapse. Taking into


account that vacuum that fills de Sitter space stays in inflation, we will refer to such collapsed area as
inflational collapse, while the value r=R∗


√
6 (5.77) will be referred to as inflational radius rinf . Then


collapsed area of de Sitter space within inflational radius will be referred to as inflational collapser
(or as inflanton).
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Inside inflanton K>0 (observable three-dimensional curvature C<0). In this case density of vac-
uum is negative (inflational pressure is positive, vacuum compresses) and λ>0, i. e. non-Newtonian
forces repulse. This means that inflational collapser (inflanton) is filled with vacuum with negative
density and is in the state of fragile balance between compacting pressure of vacuum and expanding
forces of non-Newtonian gravitation.
Interval of observable time in de Sitter space with K>0 is


dτ =
√
g00 dt =


√
1−Kr2 dt =


√


1−
r2


r2inf
dt , (5.104)


i. e. on the surface of inflational sphere observable time stops dτ=0. The signature we have accepted
(+−−−), i. e. the condition g00>0 is true at r<rinf .
Using inflational radius we represent de Sitter metric with K>0 as


ds2 =


(


1−
r2


r2inf


)


c2dt2 −
dr2


1−
r2


r2inf


− r2
(
dθ2 + sin2 θdϕ2


)
. (5.105)


Components of gravitational inertial force (5.74) in this case are


F1 =
c2


1−
r2


r2inf


r


r2inf
, F 1 = c2


r


r2inf
. (5.106)


Now we are going to deduce observable distance and observable inflational radius. To make calcu-
lations simpler we assume θ=const and ϕ=const, i. e. out of all spatial directions only radial one will
be considered. Then observable three-dimensional interval is


σ =


∫ √
h11 dr =


∫
dr


√
1−Kr2


= rinf arcsin
r


rinf
+ const, (5.107)


and hence observable inflational radius is constant


σinf =


∫ rinf


0


dr
√
1−Kr2


=
π


2
rinf . (5.108)


In Schwarzschild metric space, which we looked at in the previous Section, collapser is a col-
lapsed compact mass, which produces curvature of space as a whole: regular observer stays outside
gravitational collapser.
In de Sitter metric space collapser is vacuum, which fills the whole space. Collapse area in de Sitter


space is comparable to surface, which radius equals to radius of curvature of space, hence regular
observer stays under the surface of inflational collapser and “watches” it from inside.
To look beyond inflational collapser we present de Sitter metric with K>0 (5.105) for r>rinf .


Considering radial directions, in coordinates of a regular observer (“inner” coordinates of the collapser)
we obtain


ds2 = −


(
r2


r2inf
− 1


)


c2dt2 +
dr2


r2


r2inf
− 1


, (5.109)


or, from viewpoint of an observer, who styes outside collapser (in “external” coordinates of this
collapser r=ct̃ and ct=r̃)


ds2 =
c2dt̃2


c2t̃2


r2inf
− 1


−


(
c2t̃2


r2inf
− 1


)


dr̃2. (5.110)
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5.8 Concept of the mirror Universe. Conditions of transition through
membrane from our world into the mirror Universe


As we mentioned in Section 5.1, attempts to represent our world and the mirror Universe as two
spaces with positive and negative curvature failed: even within de Sitter metric, which is among the
simplest space-time metrics, trajectories in positive curvature spaces are substantially different from
those in negative curvature spaces (see Chapter VII in J. L. Synge’s book [30]).
On the other hand, numerous researchers, beginning from P.Dirac, intuitively predicted that the


mirror Universe (as the antipode to our Universe) must be sought not in a space with opposite
curvature sign, but rather in a space with different sign of mass and energy. That is, because masses
of particles in our Universe are positive, then those of the mirror Universe particles must be evidently
negative.
Joseph Weber [25] wrote that neither law of universal gravitation nor relativistic theory of gravita-


tion ruled out existence of negative masses; rather, our empirical experience says they have never been
observed. Both Newtonian theory of gravitation and General Relativity predicted behavior of negative
masses, totally different from what electrodynamics prescribes for negative charges. For two bodies,
one of which bears positive mass and another bears negative one, but equal to the first one in absolute
value, it would be expected that positive mass will attract the negative one, while the negative mass
will repulse the positive one, so that one will chase the other! If motion occurs along line that links
the centers of the two bodies, such system will move with constant acceleration. This problem was
studied by H.Bondi [37]. Assuming gravitational mass of positron to be negative (observations say
its inertial mass is positive) and using methods of quantum electrodynamics, L. I. Schiff obtained the
difference between inertial and gravitational masses of positron. The difference proved to be much
greater than the error margin in the experiment by Eötvös, who showed equality of gravitational and
inertial masses [38]. As a result, Schiff concluded that negative gravitational mass in positron can not
exist (see Chapter 1 in J.Weber’s book [25]).
Besides, “co-habitation” of positive and negative masses particles in the same space-time area


would cause ongoing annihilation. Possible consequences of “mixed” particles with positive and neg-
ative masses were also studied by Ya. P.Terletskii [39, 40].
Therefore the idea of the mirror Universe as a world of negative masses and energies faced two


obstacles: (a) experimentum crucis, which would point directly at exchange interactions between our
world and the mirror Universe, and (b) absence of theory that would clearly explain separation of
worlds with positive and negative masses in space-time of General Relativity.
In this Section we are going to tackle the second (theoretical) part of the problem. In the next


Chapter we will show that the experimentum crucis has been actually accomplished in the recent
decade by various researchers (anomalous rate of orthopositronium annihilation), but in absence of
proper theoretical “back-up” its results have not been interpreted as proof of existence of the mirror
Universe and are still open for discussion.
We are going to look at the term “mirror properties” as applied to space-time metric. To solve


the problem we present the square of space-time interval in chronometrically invariant form


ds2 = c2dτ2 − dσ2, (5.111)


where
dσ2 = hikdx


idxk, (5.112)


dτ =
(
1−


w


c2


)
dt−


1


c2
vidx


i =


(


1−
w + viu


i


c2


)


dt . (5.113)


From here we see that elementary spatial interval (5.112) is a quadratic function of elementary
spatial increments dxi. Spatial coordinates xi are all equal, i. e. there is no principal difference between
translational movement to the right or to the left, up or down. Therefore we will no longer consider
mirror reflections in respect to spatial coordinates.
Time is a different thing. Physical observable (observer’s own) time τ of regular observer always


flows from past into future, hence dτ>0. But there are two cases when time stops. Firstly, it is possible
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in a regular space-time in a state of collapse. Secondly, this happens in zero-space — degenerated four-
dimensional space-time. Therefore the state of an observer, whose own time stops, may be regarded
transitional one, i. e. unavailable under regular conditions.
We will consider the problem of the mirror world for both dτ>0 and dτ=0. In the latter case the


analysis will be done separately for collapsed areas of regular space-time and for zero-space. We begin
the analysis from a regular case of dτ>0. From the formula for physical observable time (5.113) it is
evident, that this condition is true when


w + viu
i < c2. (5.114)


In absence of space rotation (vi=0) it becomes w<c
2, which corresponds to space-time structure


in state of collapse.
The square of four-dimensional interval (5.111) can be expanded as


ds2 =


(


1−
w


c2


)2
c2dt2 − 2


(


1−
w


c2


)


vidx
idt− hikdx


idxk +
1


c2
vivkdx


idxk, (5.115)


on the other hand


ds2 = c2dτ2 − dσ2 = c2dτ2
(


1−
v2


c2


)


, v2 = hikv
ivk. (5.116)


Let us divide both parts of the formula for space-time interval ds2 (5.115) by different values in
accordance with the kind of space-time trajectory of particle (real non-isotropic, zero isotropic, or
imaginary non-isotropic):


1. c2dτ2
(


1−v
2


c2


)


if space-time interval is real ds2>0;


2. c2dτ2 if space-time interval equals zero ds2=0;


3. −c2dτ2
(
v2


c2
−1


)


if space-time interval is imaginary ds2<0.


As a result in all cases we obtain the same quadratic equation in respect to function of coordinate
time of the object dt from the observer’s own time dτ


(
dt


dτ


)2
−


2viv
i


c2
(


1−
w


c2


)
dt


dτ
+


1
(


1−
w


c2


)2


(
1


c4
vivkv


ivk − 1


)


= 0 , (5.117)


which has two solutions (
dt


dτ


)


1


=
1


1−
w


c2


(
1


c2
viv
i + 1


)


, (5.118)


(
dt


dτ


)


2


=
1


1−
w


c2


(
1


c2
viv
i − 1


)


. (5.119)


Having coordinate time of the object t integrated to τ we obtain


t =
1


c2


∫
vidx


i


1−
w


c2


±
∫


dτ


1−
w


c2


+ const. (5.120)


It can be easily integrated if space does not rotate and gravitational potential w=0. Then the
integral is t=±τ+const. Proper choice of the initial conditions can make integration constant zero.
In this case the formula for coordinate time t becomes


t = ±τ , τ > 0 , (5.121)
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which graphically represents two beams, which are mirror reflections of each other in respect to τ>0.
We can say that observer’s own time serves here as the mirror (membrane), while the mirror itself
separates two worlds: one with coordinate time (observable change of temporal coordinate) that
flows from past into future t=τ , and the other, mirror one, where coordinate time flows from future
into past t=−τ .
Noteworthy, world with reverse flow of time is not like a videotape being rewound. Both worlds are


quite equal, but for a regular observer values of temporal coordinate in the mirror world a negative.
The mirror (membrane) in this case only reflects flow of time, but does not affect it.
Now we assume that space does not rotate (vi=0), but gravitational potential is not zero (w 6=0).


Then coordinate time equals


t = ±
∫


dτ


1−
w


c2


+ const. (5.122)


If gravitational potential is weak (w�c2), the integral is


t = ±


(


τ +
1


c2


∫
wdτ


)


= ± (τ +4t) , (5.123)


where 4t is a correction to take account for presence of field w, which produces acceleration. Value w
may define any scalar field — either field of Newtonian potential or field of non-Newtonian gravitation.
If gravitational field produced by potential w is strong, integral will become as of (5.122) and


will depend upon potential w: the stronger is field w, faster flows coordinate time t (5.122). In the
ultimate case, when w=c2, t→∞. On the other hand, at w=c2 collapse occurs (dτ=0). We will look
at that case in the below, but now we are still assuming w<c2.
Now we are going to look at coordinate time in Schwarzschild and de Sitter spaces. If potential w


describes Newtonian gravitational field (Schwarzschild metric space), then


t = ±
∫


dτ


1−
GM


c2r


= ±
∫


dτ


1−
rg


r


, (5.124)


which implies that the closer we approach the gravitational radius of the mass, the bigger is the
difference between coordinate time and observer’s own time. If w is potential of non-Newtonian field
of gravitation (de Sitter metric space), then


t = ±
∫


dτ
√


1−
λr2


3


= ±
∫


dτ
√


1−
r2


r2inf


, (5.125)


which implies that the closer is photometric distance r to inflational radius of collapser, the faster (in
its absolute value) flows coordinate time t. In the ultimate case at r→rinf coordinate time t→∞.
Therefore in absence of rotation of space but in presence of gravitation coordinate time t flows the


faster the stronger is potential of field.
Now we turn to a more general case, when both rotation and gravitational field are present. Then


integral for t takes the form (5.120), i. e. coordinate time in non-holonomic (rotating) space includes:


1. “rotational” time determined by presence of the term vidx
i, which has dimension of rotational


moment divided by unit mass;


2. regular coordinate time, linked to pace of observer’s own time.


From integral for t (5.120) we see that rotational coordinate time, produced by rotation of space,
exist independently from observer (because does not depend from τ). For an observer who rests on
Earth’s surface (anywhere aside for the poles) it can be interpreted as time flow determined by rotation
of the planet. It always exists irrespectively of whether observer records it in this particular location
or not. Regular coordinate time is linked to presence of observer (depends from his own time τ) and
to the field that exists at the point of observation; in particular, to field of Newtonian potential.
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Noteworthy, at vi 6=0 temporal coordinate t at the initial time of observation (when observer’s own
time τ0=0) is not zero.
Presenting integral for t (5.120) as


t =


∫ 1
c2
vidx


i ± dτ


1−
w


c2


, (5.126)


we obtain that the formula under the integral sign is


• positive, if 1
c2
vidx


i>∓dτ ;


• zero, if 1
c2
vidx


i=±dτ ;


• negative, if 1
c2
vidx


i<∓dτ .


Hence coordinate time t for real observer stops if scalar product of rotation velocity of space by
physical observable velocity of the object is viv


i=±c2. This happens when absolute values of both
velocities equal to that of light, and are either co-directed or oppositely directed.
An area of space-time which satisfies condition viv


i=±c2, at which coordinate time stops for a real
observer, is the membrane (the mirror) that separates areas of space with positive and negative time
coordinate — areas with direct and reverse flow of time.
It is also evident that no real (material) observer can accompany such space of reference (or body


of reference).
We will refer as the mirror space to an area of space-time where coordinate time takes negative


values. We are going to analyze properties of particles in the mirror space in respect to those of
particles in regular world, where temporal coordinate is positive.
Physical observable components of four-dimensional impulse vector of mass-bearing particle


Pα = m0
dxα


ds
, (5.127)


i. e. of a particle with non-zero rest mass are [15, 16]


P0
√
g00
= m


dt


dτ
= ±m, P i =


m


c
vi, (5.128)


where “plus” stands for direct flow of coordinate time, while “minus” stands for reverse flow of
coordinate time in respect to observer’s own time. Square of four-dimensional impulse of mass-bearing
particle is


PαP
α = gαβP


αP β = m20 , (5.129)


while its length is ∣
∣
∣
√
PαPα


∣
∣
∣ = m0 . (5.130)


Therefore any particle with non-zero rest-mass, being a space-time (four-dimensional) structure,
is projected onto time as dipole, which consists of positive mass +m and negative mass −m. But
in projection of Pα onto three-dimensional space both projections merge into a single one — three-
dimensional observable impulse pi=mvi. In other words, each observable particle with positive rela-
tivistic mass has its own mirror twin with negative mass: particle and its mirror twin are only different
by the sign of mass, while three-dimensional observable impulses of both particles are positive.
Similarly, for four-dimensional wave vector


Kα =
ω


c


dxα


dσ
= k


dxα


dσ
, (5.131)


that describes massless (light-like) particle, physical observable projections are [15, 16]


K0
√
g00
= ±k , Ki =


k


c
ci. (5.132)
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This implies that any massless particle, as a four-dimensional object, also exists in two states: in
our world with direct flow of time it is a massless particle with positive frequency, while in the world
with reverse flow of time it is a massless particle with negative frequency.
We define material Universe as four-dimensional space-time, filled with substance and fields. Then


because any particle is a space-time dipole object, we can say that the material Universe as a com-
bination of basic space-time and particles is also a four-dimensional dipole object, which exists in
two states: as our Universe, where masses of particles and the temporal coordinate are positive, and
as its mirror twin (the mirror Universe), where masses of particles and the temporal coordinate are
negative, while three-dimensional observable impulse is positive. On the other hand, our Universe and
the mirror world have the same background four-dimensional space-time.
For instance, analyzing properties of the Universe as a whole, we neglect action of Newtonian


fields of occasional islands of substance and hence assume the space of our Universe to be a de Sitter
space with negative four-dimensional curvature (three-dimensional observable curvature is positive,
see Section 5 in this Chapter). Hence we can assume that our Universe as a whole is an area in
de Sitter space with negative four-dimensional curvature, where the temporal coordinate and masses
of particles are positive, and vice versa, the mirror Universe is an area of the same de Sitter space,
where the temporal coordinate and masses of particles are negative.
The membrane that separates our Universe and the mirror Universe in the basic space-time and


does not allow them to “mix”, thus preventing total annihilation, will be discussed at the end of
this Section.
Now we are turning to dipole structure of the Universe for dτ=0, i. e. for collapsed areas of regular


space-time (collapsers) and for degenerated space-time (zero-space).
As we have shown, condition dτ=0 is true in a regular (non-degenerated) space-time when collapse


occurs and the space is holonomic (does not rotate). Then


dτ =
(
1−


w


c2


)
dt = 0 . (5.133)


This condition is true for collapse of any type, i. e. for any type of gravitational potential w,
including non-Newtonian potential. At dτ=0 (5.133) four-dimensional metric becomes


ds2 = −dσ2 = −hikdx
idxk = gikdx


idxk = giku
iukdt2, (5.134)


hence in this case absolute value of the interval ds equals


|ds| = idσ = i
√
hikuiuk dt = iudt , u2 = hiku


iuk, (5.135)


and four-dimensional impulse vector on the surface of collapser is


Pα = m0
dxα


dσ
, dσ = udt . (5.136)


Its square is
PαP


α = gαβP
αP β = −m20 , (5.137)


hence length of vector Pα (5.136) is imaginary


∣
∣
∣
√
PαPα


∣
∣
∣ = im0 . (5.138)


The latter, in particular, implies that surface of collapser is inhabited by particles with imaginary
masses. But, at the same time, this does not imply that super-light-speed particles (tachyons) should
be found there, because their masses are imaginary too. On surface of collapser the term “observable
velocity” is void, because observable time stops there (dτ=0).
Components of four-dimensional impulse vector of particles found on surface of collapser (5.136),


can be formally presented as


P 0 =
m0c


u
, P i =


m0


u
ui. (5.139)
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But as a matter of fact we can not observe them because at the surface of collapser own time of a


regular (real) observer stops. On the other hand, velocity ui=dx
i


dt
, found in this formula, is coordinate


one and does not depend from observer’s own time. Hence we can interpret spatial vector P i=m0u ui


as coordinate impulse of particle and m0c
3


u as its energy on the surface of collapser. Here energy
of particle has only one sign and thus the surface of collapser as four-dimensional area of space-time
(material Universe) is not a dipole four-dimensional object that exists as two mirror twins; surface of
collapser (irrespective of its nature) exists in a single state.
On the other hand, the surface of collapser g00=0 can be regarded as a membrane that separates


four-dimensional areas of space-time before the collapse and after the collapse. Before collapse g00>0
and observer’s own time τ is real. After collapse g00<0 and thus τ becomes imaginary. When observer
crosses the surface of collapser his own time subjects to 90◦ “rotation”, swapping roles with spatial
coordinates.
The term “light-like particle” has no sense at the surface of collapser, as for light-like particles


dσ=cdτ and on the surface (dτ=0) for them


u =
√
hikuiuk =


√
hikdxidxk


dt2
=
dσ


dt
=
cdτ


dt
= 0 . (5.140)


Observer’s own time also stops (dτ=0) in a fully degenerated space-time (zero-space): there, by
definition, dτ=0 and dσ=0 [15, 16]. These conditions (conditions of degeneration) can be presented as


w + viu
i = c2, giku


iuk = c2
(
1−


w


c2


)2
. (5.141)


Particles found in degenerated space-time (zero-particles) bear zero regular relativistic mass m=0,
but non-zero mass M (1.71) and non-zero constant-sign impulse


M =
m


1−
1


c2
(
w + viu


i
) , pi =Mui. (5.142)


Therefore, mirror twins are only found in regular matter — massless and mass-bearing particles
not in state of collapse. Collapsed objects in regular space-time (collapsers, including black holes),
which do not possess the property of mirror dipoles, are common objects for our Universe and the
mirror Universe. Zero-space objects, which neither possess the property of mirror dipoles, lay beyond
the basic space-time due to full degeneration of their metric. It is possible to enter “neutral zones”
on surfaces of collapsed objects of regular space and in zero-space from either our Universe (where
coordinate time is positive) or the mirror Universe (where coordinate time is negative).
Now we need to discuss the question of the membrane that separates our world and the mirror


Universe in the basic space-time thus preventing total annihilation of all particles with negative and
positive masses.
In our world dt>0, in the mirror Universe dt<0. Hence the membrane is an area of space-time


where dt=0 (coordinate time stops); i. e. it is an area where


dt


dτ
=


1


1−
w


c2


(
1


c2
viv
i ± 1


)


= 0 , (5.143)


which can be also presented as the physical condition


dt =
1


1−
w


c2


(
1


c2
vidx


i ± dτ


)


= 0 . (5.144)


The latter notation is more versatile, because of being applicable not only in General Relativity
space, but also in generalized space-time that permits degeneration of metric.
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Physical conditions inside the membrane t=const (i. e. dt=0) according to (5.144) are defined by
the formula


vidx
i ± c2dτ = 0 , (5.145)


which can be also presented as
viv
i = ±c2. (5.146)


This condition is scalar product of velocity of space rotation and observable velocity of the space
of reference (body of reference) of the observer. It can be presented as


viv
i = |vi|


∣
∣vi
∣
∣ cos ̂(vi; vi) = ±c


2. (5.147)


From here we see that it is true when absolute values of velocities vi and v
i equal to that of light


and are either co-directed (“plus”) or oppositely directed (“minus”).
Thus the membrane from physical viewpoint is a space which experiences translational motion


at light speed and at the same time rotates also at light speed, i. e. travels along right or left-hand
light-like spiral. In the world of elementary particles such space may be attributed to particles that
possess property of spirality (e. g. photons).
Having dt=0 substituted into the formula for ds2 we obtain metric inside the membrane


ds2 = gikdx
idxk, (5.148)


which is the same as on the surface of collapser. Because it is a specific case of space-time metric with
signature (+ − −−), then ds2 is always positive. This implies that in the area of space-time, which
serves the membrane between our world and the mirror world, four-dimensional interval is space-like.
The difference from space-like metric on the surface of collapser (5.134) is that during collapse rotation


of space is absent (gik=−hik), while in this case gik=−hik+ 1
c2
vivk (1.18). Or


ds2 = gikdx
idxk = −hikdx


idxk +
1


c2
vivkdx


idxk, (5.149)


i. e. four-dimensional metric in the membrane becomes space-like due to rotation of space which makes
the condition vidx


i=±c2dτ true.
As a result regular mass-bearing particle (irrespective of the sign of its mass) can not in its


“natural” form pass through the membrane: this area of space-time is inhabited by light-like particles
that move along right or left-handed light-like spirals.
On the other hand the ultimate case of particles with m>0 or m<0 are particles with relativistic


mass m=0. From geometric viewpoint the area where such particles are found is tangential to areas
inhabited by particles with either m>0 or m<0. This implies that zero-mass particles may have
exchange interactions with either our-world particles (m>0) or mirror-world particles (m<0).
Particles with zero relativistic mass, by definition, exist in an area of space-time where ds2=0 and


c2dτ2=dσ2=0. Equalling ds2 to zero inside the membrane (5.148) we obtain


ds2 = gikdx
idxk = 0 . (5.150)


Analysis shows that this condition may be true in two cases: (1) when all dxi=0; (2) three-
dimensional metric is degenerated g̃=det||gik||=0.
The first case may occur in regular space-time at the ultimate conditions on surface of collapser:


when all the surface shrinks into a point, all dxi=0 and the metric on the surface according to
ds2=−hikdxidxk=gikdxidxk (5.134) becomes zero.
The second case occurs on surface of collapser in zero-space: because in zero-space we have the


condition gikdx
idxk=


(
1−w


c2


)2
c2dt2, then at w=c2 then gikdx


idxk=0 always.


The first case is asymptotic because never occurs in reality. Hence we can expect that “middlemen”
in exchanges between our world and the mirror Universe are particles with zero relativistic mass (zero-
particles) on surfaces of collapsers in degenerated space-time (zero-space).
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5.9 Conclusions


We have shown that our Universe is observable area of basic space-time where temporal coordinate is
positive and all particles bear positive masses (energies). The mirror Universe is an area of the basic
space-time, where from viewpoint of regular observer temporal coordinate is negative and all particles
bear negative masses. Also, from viewpoint of our-world observer the mirror Universe is a world with
reverse flow of time, where particles travel from future into past in respect to us.
The two worlds are separated with the membrane — an area of space-time inhabited by light-like


particles that travel along light-like right or left-handed (isotropic) spirals. On the scales of elementary
particles such space can be attributed to particles that possess spirality (e. g. photons). The membrane
prevents mixing of positive and negative-mass particles and thus their total annihilation. Exchange
interactions between the two worlds can be effected through particles with zero relativistic masses
(zero-particles) under physical conditions that exist on surfaces of collapsers in degenerated space-
time (zero-space).







Chapter 6


Annihilation and the mirror Universe


6.1 Isotope anomaly and λT-anomaly of orthopositronium. The history
and problem statement


Recently our colleague B.M. Levin in connection with his experimental studies of anomalies of or-
thopositronium decay suggested that the results of precision measurements of these anomalies (Ann
Arbor, Michigan, USA, 1982–1990 and Moscow–Gatchina, Russia, 1984–1987) may be explained by
exchange interactions between our world and the mirror Universe [44], which presumably occurs during
the experiments.
In a nutshell, the problem that has been a subject of discussions for over a decade is as follows.
Positronium is an atom-like orbital system that includes electron and its anti-particle, positron,


coupled by electrostatic forces. There are two kinds of positronium: parapositronium SPs, in which
spins of electron and positron are oppositely directed and the summary spin is zero, and orthopositro-
nium TPs, in which the spins are co-directed and the summary spin is one. Because a particle-
antiparticle system is unstable, life span of positronium is rather small. In vacuum parapositronium
decays in τ '1.25∙10−10 s, while orthopositronium is τ '1.4∙10−7 s after birth. In a medium the life
span is even shorter because positronium tends to annihilate with electrons of the media. Due to law
of conservation of charge parity parapositronium decays into even number of γ-quanta (2, 4, 6, . . . )
while orthopositronium annihilates into odd number of γ-quanta (3, 5, 7, . . . ). The older modes of
annihilation are less probable and their contributions are very small. For instance, the rate of five-
photons annihilation of TPs compared to that of three-photons annihilation is as small as λ5≈10−6λ3.
Hence parapositronium actually decays into two γ-quanta SPs→2γ, while orthopositronium decays
into three γ-quanta TPs→3γ.
In laboratory environment positronium can be obtained by placing a source of free positrons into


a matter, for instance, one-atom gas. The source of positrons is β+-decay, self-triggered decays of
protons in neutron-deficient atoms38


p→ n + e+ + νe . (6.1)


Some of free positrons released from β+-decay source into gas quite soon annihilate with free
electrons and electrons in the container’s walls. Other positrons capture electrons from gas atoms
thus producing orthopositronium and parapositronium (in 3:1 statistical ratio).
Temporal spectrum of positrons (number of positrons vs. life span) is the basic characteristics


of their annihilation in matter. In particular, in such spectrum one can see parts corresponding to
annihilation with free electrons and annihilation of SPs and TPs.
In inert gases temporal spectrum of annihilation of free positrons generally reminds of exponential


curve with a plateau in its central part, known as “shoulder” [41, 42].
In 1965 P.E.Osmon published [41] pictures of observed temporal spectra of annihilation of posit-


rons in inert gases (He, Ne, Ar, Kr, Xe). In his experiments he used 22NaCl as a source of β+-
decay positrons. Analyzing the results of the experiments, Levin noted that the spectrum in neon


38It is also known as positron β-decay. During β−-decay in nucleus neutron decays n→p+e−+ν̃e.
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was peculiar compared to those in other one-atom gases: in neon points in the curve were so widely
scattered, that presence of a “shoulder” was unsure. Repeated measurements of temporal spectra
of annihilation of positrons in He, Ne, and Ar, later accomplished by Levin [43, 44], have proven
existence of anomaly in neon. Specific feature of the experiments done by Osmon, Levin and some
other researchers in the UK, Canada, and Japan is that the source of positrons was 22Na, while the
moment of birth of positron was registered according to γn-quantum of decay of excited


22∗Ne


22∗Ne→ 22Ne + γn , (6.2)


from one of products of β+-decay of 22Na. This method is quite justified and is commonly used,
because life span of excited 22∗Ne is as small as τ '4∙10−12 s, which is a few orders of magnitude less
than those of positron and parapositronium.
In his further experiments [45, 46] Levin discovered that the peculiarity of annihilation spectrum in


neon (abnormally wide scattered points) is linked to presence in natural neon of substantial quantity
of its isotope 22Ne (around 9%). Levin named this effect isotope anomaly. Temporal spectra were
measured in neon environments of two isotopic compositions: (1) natural neon (90.88% of 20Ne, 0.26%
of 21Ne, and 8.86% of 22Ne); (2) neon with reduced content of 22Ne (94.83% of 20Ne, 0.22% of 21Ne,
and 4.91% of 22Ne). Comparison of temporal spectra of positron decay revealed: in natural neon
(composition 1) the shoulder is fuzzy, while in neon poor with 22Ne (composition 2) the shoulder
is always clearly pronounced. In the part of spectrum, to which TPs-decay mostly contributes, the
ratio between intensity of decay in poor neon and that in natural neon (with much isotope 22Ne) is
1.85±0.1 [46].
The relationship between anomaly of positron annihilation in neon and presence of 22Ne admixture,


as shown in [45, 46], hints on existence in gas neon of collective nuclear excitation of 22Ne isotopes. In
the terminal stage of β+-decay nuclear excitation of 22∗Ne (life expectancy τ '4∙10−12 s) is somehow
passed to a set of 22Ne nuclea around the source of positrons and is taken away by nuclear γn-
quantum after a long delay at the moment of self-annihilation of orthopositronium (free positrons and
parapositronium live much longer).
Hence collective excitation of 22Ne atoms seems to be the reason of isotope anomaly (phenomenol-


ogy). On the other hand it is still unclear what is the material carrier that passes excitation of nuclear
22∗Ne to the surrounding 22Ne atoms and what links orthopositronium with this collective excitation:
by far collective nuclear excitation is only known in crystals (Mössbauer effect, 1958).
In 1990 Levin [47] suggested that as a result of relationship between orthopositronium and collective


nuclear excitation, 1-photon mode of its annihilation should be observed. But decay of TPs into
one γ-quantum would break laws of conservation of Quantum Electrodynamics (QED). To justify
this phenomenological conclusion without breaking QED laws, Levin in his generalization study [48]
suggested, that in the specific experimental environment annihilation of some orthopositronium atoms
releases one γ-quantum into our world and two γ-quanta into the mirror Universe, which makes them
unavailable for observation. However before any experiments are accomplished to prove or disprove
existence of such “1-photon” mode or any theory is developed to explain the observed effect, the
problem still welcomes discussion.
Another anomaly is substantially higher measured rate of annihilation of orthopositronium (the


value reciprocal to its life span) compared to that predicted by QED.
Measurement of orthopositronium annihilation rate is among the main tests aimed to experimental


verification of QED laws of conservation. Before the middle 1980’s no difference between theory and
practice was observed, as the measurement precision stayed at the same low level.
In 1987 thanks to new precision technology a group of researchers based in the University of


Michigan (Ann Arbor) made a breakthrough in this area. The obtained results showed substantial gap
between experiment and theory. The anomaly that the Michigan group revealed was that measured
rates of annihilation at λT(exp)=7.0514±0.0014μs−1 and λT(exp)=7.0482±0.0016μs−1 (with unseen-
before precision of 0.02% and 0.023% using vacuum and gas methods [49, 50, 51, 52]) were much higher
compared to λT(theor)=7.00383±0.00005μs−1 as predicted by QED [53, 54, 55, 56]. As a result the
measured anomalous effect was 0.2% from theoretically predicted value, i. e. the effect was 10 times
higher than the measurement precision 0.02% ! The effect was later called λT-anomaly [48].
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Theorists foresaw possible annihilation rate anomaly not long before the first experiments were
accomplished in Michigan. In 1986 Robert Holdom [57] suggested that “mixed type” particles may
exist, which being in the state of oscillation stay for some time in our world and for some time in
the mirror Universe, possessing negative masses and energies. In the same year S.Glashow [58] gave
further development to the idea and showed that in case of 3-photon annihilation TPs will “mix up”
with its mirror twin thus producing two effects: (1) higher annihilation rate due to additional mode of
decay TPs→nothing, because products of decay passed into the mirror Universe can not be detected;
(2) the ratio between orthopositronium and parapositronium numbers will decrease from TPs :SPs=3:1
to 1.5:1. But because at that time (in 1986) no such effects were reported, Glashow concluded that
no interaction is possible between our-world and mirror-world particles.
On the other hand, by the early 1990’s these theoretic studies encouraged many researchers world-


wide for experimental search of various “exotic” (i. e. not explained in QED) modes of TPs decay,
which could lit some light on abnormally high rate of decay. These were, to name just a few, search
for TPs→nothing mode [55], check of possible contribution from 2-photon mode [60, 61, 62] or from
other exotic modes [63, 64, 65]. As a result it has been shown that no exotic modes can contribute to
the anomaly, while contribution of TPs→nothing mode is limited to


(
TPs→nothing


)
< 5.8 ∙ 10−4


(
TPs→3γ


)
. (6.3)


In a generalization study in 1995 Levin pointed out [48] that the program of critical experiments
was limited to search of 1-photon mode TPs→γ\2γ′ involving the mirror Universe and to search of the
mode TPs→nothing. The situation has not changed significantly over the past five years. The most
recent (as of time of writing of this book) publication on this subject in May 2000 [66] still focused on
Holdom-Glashow suggestion of possible explanation of λT-anomaly by interaction of orthopositronium
with its mirror-world twin, as well as on search of TPs→nothing mode. But no theory has been yet
suggested to prove possibility of such interaction and to describe its mechanism.
The absence of theoretical explanation of λT-anomaly encouraged G. S.Adkins et al. [67] to suggest


experiments made in Japan [68] in 1995 as an alternative to the basic Michigan experiments. No
doubt, high statistical accuracy of Japanese measurements [68] puts them on the same level with the
basic experiments [49, 50, 51, 52]. But all Michigan measurements possessed the property of a “full
experiment”, which in this particular case means no external influence could affect wave function of
positronium. Such influence is inevitable due to electrodynamic nature of positronium and can be
avoided only using special technique. In Japanese measurements [68] this was not taken into account
and thus they do not possess property of “full experiment”.
As early as in 1993 S.G.Karshenboim [69] showed that QED had actually run out of any of its


theoretical capabilities to explain orthopositronium anomaly. Given that we assume our goal as to
study the annihilation anomaly in another domain, using methods of General Relativity. To do this,
we are going first to study process of annihilation in general with methods of chronometric invariants
and then to apply the results to parapositronium and orthopositronium. As a result we should be able
to answer the question of what channels of annihilation of orthopositronium are physical observable
in our world and whether “drain” of some energy into the mirror Universe is possible.


6.2 Zero-space as home space for virtual particles. Interpretation of
Feynman diagrams in General Relativity


Feynman diagrams are graphical description of interactions between elementary particles. The dia-
grams clearly show that the actual carriers of interactions are virtual particles. In other words, almost
all physical processes rely upon emission and absorption of virtual particles [70].
Another notable property of Feynman diagrams is that they are capable of describing particles (e. g.


electrons) and antiparticles (e. g. positrons) at the same time. In this example positron is represented
as electron that moves back in time [70].
According to QED, interaction of particles at branching points of Feynman diagram conserves


four-dimensional impulse. This suggests interpretation of Feynman diagrams in General Relativity.
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As a matter of fact, in four-dimensional pseudo-Riemannian space, which is the basic space-time
of General Relativity, the following objects can get correct formal definitions:


1. free particle as particle that moves along geodesic trajectory;


2. non-free (dependent) particle as particle that under action of external non-gravitational fields
moves along non-geodesic trajectory;


3. antiparticle (either free or dependent) as particle that travels back in time in respect to regular
observer [15, 16].


Hence to translate Feynman diagrams into “geometrese” we only need formal definition of virtual
particles in General Relativity.
In QED virtual particles are particles for which contrary to regular ones the relationship between


energy and impulse is not true


E2 − c2p2 = E20 , (6.4)


where E=mc2, p2=m2v2, E0=m0c
2. In other words, for virtual particles E2−c2p2 6=E20 .


In pseudo-Riemannian space this relationship in chronometrically invariant form is similar [15, 16]
but p2=hikp


ipk, where pi=mvi stands for (physical observable) vector of particle’s impulse.
Dividing both parts of the equation by c4, we obtain


m2 −
p2


c2
= m20 , (6.5)


which is chronometrically invariant notation of the requirement of constancy of four-dimensional
impulse vector of mass-bearing real particle


PαP
α = gαβP


αP β = m20gαβ
dxα


ds


dxβ


ds
= m20 (6.6)


in parallel transfer along trajectory, where ds2>0, i. e. along sub-light-speed trajectory. For super-
light-speed particles (tachyon), which four-dimensional impulse vector is


Pα = m0
dxα


|ds|
, (6.7)


the relationship between mass and impulse (6.5) becomes


p2


c2
−m2 = (im0)


2
, (6.8)


therefore rest-mass of tachyons is imaginary. For photons, i. e. particles that move along isotropic
(light-like) trajectories, rest-mass is zero and the relationship between mass and impulse transforms as


m2 =
p2


c2
, (6.9)


where relativistic mass m is defined from energy equivalent E=mc2, while observable impulse pi=mci


is expressed through chronometrically invariant vector of light velocity.
So equations (6.5, 6.8, and 6.9) characterize relationship between mass and impulse for regular


particles that inhabit pseudo-Riemannian space. Interactions between them are carried by virtual
particles. Given that, to geometrically interpret Feynman diagrams we need geometric description of
virtual particles.
By definition the relationship between mass and impulse (6.5) is not true for virtual particles. From


geometric viewpoint that implies that the square of four-dimensional impulse of virtual particles does
not conserve in parallel transfer. In Riemannian space, in particular in four-dimensional pseudo-
Riemannian space (the basic space of General Relativity) the square of vector conserves in parallel
transfer by definition. That implies that trajectories of virtual particles lay in a space with non-
Riemannian geometry, i. e. outside four-dimensional pseudo-Riemannian space — the basic space-time
of General Relativity.
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In our studies [15, 16], not related to virtual particles, we showed that trajectories along which
the square of vector being transferred does not conserve lay in fully degenerated space-time
(g=det ||gαβ ||=0), also known as zero-space. In pseudo-Riemannian space g<0 is always true by
definition. Hence zero-space lays beyond four-dimensional pseudo-Riemannian space and its geom-
etry is not Riemannian. Besides, as was shown, relativistic mass of particles that zero-space hosts
(zero-particles) is zero and from viewpoint of our-world observer their motion is perceived as instant
displacement (long-range action).
Analysis of the above facts brings us to the conclusion that zero-particles can be equaled to virtual


particles in generalized space-time (g≤0), which we also considered in our previous studies. This space
permits degeneration of metric and considering not only motion of regular massless or mass-bearing
particles, but also their interaction by means of exchange with virtual particles (zero-particles) in
zero-space. In fact, this is the way of geometric interpretation of Feynman diagrams in General
Relativity.
We are going to show why the square of a vector being transferred does not conserve. Zero-space


is defined by the following conditions


ds2 = c2dτ2 − dσ2 = 0 , c2dτ2 = dσ2 = 0 , (6.10)


i. e. physical observable time and physical observable three-dimensional interval are degenerated


dτ =
(
1−


w


c2


)
dt−


1


c2
vidx


i = 0 , dσ2 = hikdx
idxk = 0 . (6.11)


Substituting into the second condition the formula for physical observable metric tensor


hik = −gik +
1


c2
vivk , (6.12)


dividing the equation by dt2 and substituting viu
i=c2−w from the first condition, we arrive to inner


coordinate metric of zero-space


dμ2 = gikdx
idxk =


(
1−


w


c2


)2
c2dt2 6= inv, (6.13)


which is not physical observable value and not zero. Hence coordinate metric of zero-space can be
deduced from the condition of degeneration of three-dimensional observable metric and is not invariant
by definition.
In particular, because metric of zero-space dμ2 is not invariant, the square of four-dimensional


vector in zero-space does not conserve


Uα =
dxα


dt
, UαU


α = giku
iuk =


(
1−


w


c2


)2
c2 6= const. (6.14)


But applying theory of observable values to this situation again shows us the way out. Because
within that theory we consider all values from viewpoint of a regular observer in pseudo-Riemannian
space, then all values, including those in zero-space, can be expressed through parameters of his space
of reference. Therefore zero-particles from viewpoint of a regular observer possess four-dimensional
impulse (1.72) which square is zero and conserves


Pα = m0
dxα


ds
=
M


c


dxα


dt
, PαP


α =
M2


c2
ds2


dt2
= 0 , (6.15)


because in zero-space, by definition, ds2=0. But once we turn to the frame of reference of a hypothet-
ical observer in zero-space, i. e. to the space with metric dμ2 (6.13), the square of transferred vector
does not conserve any longer.
Now we are going to see what kinds of particles zero-space hosts. First we look at degeneration


conditions (1.69, 1.70) in absence of gravitational potential (w=0). These are


viu
i = c2, giku


iuk = c2, (6.16)
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i. e. in absence of gravitational potential zero-particles travel at coordinate velocities, that equal to
light speed


u =
√
gikuiuk = c . (6.17)


The first condition of degeneration is scalar product of the velocity of space’s rotation and three-
dimensional coordinate velocity of particle


viu
i = vu cos ̂(vi;ui) = c


2. (6.18)


Because u=c, this condition is true if vectors vi and u
i are co-directed (or coincide like in this


case). Hence in absence of gravitational potential zero-particles move at forward velocity equal to
speed of light at the same time rotating at light speed as well. We will refer to such particles as virtual
photons. Zero-space metric along their trajectories is


dμ2 = gikdx
idxk = c2dt2 6= 0 , (6.19)


similar to metric dσ2=c2dτ2 6=0 along trajectories of regular photons in pseudo-Riemannian space.
Now we will look at degeneration conditions (1.69, 1.70) when gravitational potential w 6=0. Here


viu
i = c2 − w , u2 = gikdx


idxk =
(
1−


w


c2


)2
c2. (6.20)


Then scalar product viu
i=c2−w can be represented as


viu
i = vu cos ̂(vi;ui) = vc


(
1−


w


c2


)
cos ̂(vi;ui) =


(
1−


w


c2


)
c2. (6.21)


This equation is true given that vectors vi and u
i are co-directed and v=c, i. e. when particle


travels in zero-space at velocity which magnitude equals to


v = c
(
1−


w


c2


)
, (6.22)


and rotates along with space at speed of light v=c.
But when we turn to metric along zero-trajectories in presence of gravitational potential


dμ2 = gikdx
idxk =


(
1−


w


c2


)2
c2dt2, (6.23)


we see that the “temporal” parameter here is the following variable (“gravitational” time)


t∗ =
(
1−


w


c2


)
t , (6.24)


i. e. coordinate velocity of zero-particles along such trajectories depends upon gravitational potential


ui∗ =
dxi


dt∗
=


ui


1−
w


c2


. (6.25)


Because of the second degeneration condition (6.20) the square of coordinate velocity of these
zero-particles equals to square of light speed


u2∗ = giku
i
∗u
k
∗ =


gikdx
idxk


(


1−
w


c2


)2 = c
2, (6.26)


i. e. they are virtual photons as well. Basing on the first degeneration condition we can as well show
that in presence of gravitational potential they also rotate at speed of light


viu
i
∗ = c


2. (6.27)
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Noteworthy, considering virtual mass-bearing particles is senseless, because all particles in zero-
space by definition possess zero rest-mass and therefore are not mass-bearing particles. Therefore only
virtual photons and their varieties are virtual particles.
Now we are going to define virtual particles in the state of collapse, i. e. when w=c2. We will refer


to them as virtual collapsers. For them the degeneration conditions (1.69, 1.70) become


viu
i = 0 , gikdx


idxk = 0 , (6.28)


i. e. zero-collapsers either rest in respect to the space of reference or for an observer in zero-space
the world around him compacts into a point (all dxi=0), or three-dimensional metric is degenerated
g̃=det ||gik||=0.
Metric of zero-space along trajectories of virtual collapsers is


dμ2 = gikdx
idxk = 0 . (6.29)


Therefore two kinds of virtual particles can exist in zero-space, which is four-dimensional degen-
erated space-time:


1. virtual photons with forward motion and rotation at light speed;


2. virtual collapsers that rest in respect to the space.


We can assume that all interactions between regular mass-bearing and massless particles in four-
dimensional pseudo-Riemannian space, i. e. in the basic space-time of General Relativity, are effected
through an exchange buffer, in which capacity zero-space acts. Material carriers of interactions within
such buffer are virtual particles of the two aforementioned kinds.
In our previous studies [15, 16] from considering motion of particles in the frames of particle-


wave concept we obtained that eikonal equation (wave phase equation) for particles in zero-space
is standing wave equation (1.77). Hence virtual particles are actually standing waves and hence
interaction between regular particles in our space-time is transmitted through a system of standing
light-like waves (a standing-light hologram), that fills the exchange buffer (zero-space).


6.3 Building mathematical concept of annihilation. Parapositronium and
orthopositronium


In this Section we are going to focus on process of annihilation using the same methods which are
employed in General Relativity to study motion of particles.
From geometric viewpoint positronium is a system of two charged particles with spin, linked to-


gether with electromagnetic force. The only difference between parapositronium and orthopositronium
is that the summary spin of TPs is one, while that of SPs is zero.
As we showed in Chapter 4, charged particle with spin is characterized by four-dimensional sum-


mary impulse vector


Qα = Pα + Sα +
e


c2
Aα, Pα = m0


dxα


ds
. (6.30)


If spin-impulse of particle is directed along its four-dimensional trajectory, i. e. is co-directed with
its impulse vector Pα, then four-dimensional spin-impulse of particle is


Sα =
1


c2
η0
dxα


ds
, η0 = nh̄


μνAμν , (6.31)


and hence the summary impulse vector is


Qα =
(
m0 +


η0


c2


)
Uα +


e


c2
Aα. (6.32)


As a matter of fact this summary vector characterizes charged elementary particle with spin that
bears rest-mass


μ0 = m0 +
η0


c2
, (6.33)
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where m0 is rest-mass of particle. The second term stands for additional “spin-mass” which spin
particle gains from interaction with external field of non-holonomity of space. In other words, TPs is
different from SPs by bearing additional “spin-mass”.
Now we will estimate how strong may be effect of “spin-mass” on motion of electron and positron


in orthopositronium. Value η0 can be calculated as


η0 = nh̄
μνAμν = 2nh̄Ω , (6.34)


where Ω is angular velocity of space rotation, which for positronium can be obtained from the 2nd
Bohr postulate mΩr2=kh̄.
Substituting the values of electron-positron rest-mass me=9.1∙10−28 g and of orthopositronium


radius r=10.6∙10−9 cm, which equals to double radius of Bohr orbit (we re considering the first level
k=1), we obtain


η0


c2
= 10−32 g , (6.35)


i. e. “spin-mass” is 10−5me for electron and positron. At higher orbital levels in orthopositronium
“spin-mass” will be k times greater.
Evidently, before the moment of annihilation the relative distance between electron and positron


ξ =
√
gαβξαξβ , ξα =


∂xα


∂v
dv , (6.36)


is real. Here ξα is an infinitesimal vector that connects points of two neighbor trajectories, v is a
parameter, constant along each of two trajectories, but different for a neighbor one by dv.
In chronometrically invariant form this distance looks like


ξ =
√
χ2 − r2 , r2 = hikr


irk, (6.37)


where values
χ =


ξ0
√
g00


, ri = ξi, (6.38)


are physical observable projections of vector ξα.
At the moment of annihilation electron and positron (as space-time objects) merge into the same


event, i. e. four-dimensional interval ξ between them becomes zero. Evidently, in this case three-
dimensional observable distance r between them also becomes zero. And from (6.37) we have χ=0. In
other words, at the moment of annihilation physical observable time interval χ and spatial distance r
between electron and positron are zeroes. This actually implies that the process of annihilation takes
place in zero-space.
Hence we will consider annihilation of electron and positron as a process of exchange with virtual


photons in zero-space. We can assume that positron emits virtual photons while electron absorbs
them (or vice versa). From mathematical viewpoint such description is quite correct provided that
generalized four-dimensional space-time, which metric can be fully degenerated g=det ||gαβ ||≤0, is
considered the basic space-time. Such generalized space-time can be represented as a combination of
four-dimensional pseudo-Riemannian space (basic space-time of General Relativity) and zero-space,
which metric is degenerated.
For a regular observer the distance between electron and positron in zero-space is nil. But this


does not imply they coincide in zero-space itself, because the “externally” observed equation


r2 = hikr
irk = 0 (6.39)


for an “internal” observer is


gikr
irk =


(
1−


w


c2


)
c2t2, (6.40)


i. e. three-dimensional coordinate interval between electron and positron in zero-space turn into zero
only provided that w=c2 (collapse).







CHAPTER 6. ANNIHILATION OF PARTICLES 167


In electromagnetic interactions, to which annihilation belongs, Newtonian gravitation is infinites-
imal. But non-Newtonian gravitational forces may exist as well.
For instance, a space without rotation or deformation, filled with field of gravitation of a spheric


island of mass, is characterized by Schwartzshild metric (5.69). In this case vector of gravitational-
inertial force F i takes the form of (5.72) and characterizes Newtonian gravitational force, which is
usually proportional to the square of distance from the field source (the mass of the island). In other
words, Schwartzshild’s metric space is filled with Newtonian gravitational field.
An example of space without rotation or deformation, but filled with spherical symmetric distri-


bution of vacuum without islands of mass, is a space with de Sitter metric (5.73). As was shown in
Chapter 5, vector F i in such space takes the form of (5.74) and characterizes non-Newtonian gravita-
tional force, which is proportional to distance and is conditioned by presence of “cosmological” λ-term
in equations of field. If λ<0, this is an attraction force, otherwise this is repelling force.
For us that suggests that three-dimensional interval between electron and positron in zero-space


(6.39) becomes zero only when collapse is effected by action of non-Newtonian gravitational forces
(λ-forces produced by vacuum).
So at the moment of annihilation electron and positron exchange with virtual photons in zero-


space. In the previous Section we showed that virtual photons, aside for forward motion at the speed
of light, feature rotation at the same speed as well. Hence they plot light-like spirals on a cylinder
(cylinder of annihilation events), that connects electron and positron through zero-space.
Now using our geometric method we can formulate the difference between decay of parapositronium


and that of orthopositronium.
TPs and SPs themselves differ only by orientation of spins of electron and positron. Spin-impulse of


each particle results from interaction of its internal field of non-holonomity with external field of non-
holonomity (rotation), which for positron is field of orbital rotation of electron (and vice versa). By
definition zero-space is non-holonomic, i. e. is a space of rotation. Hence at the moment of annihilation
when physical observable distance r between electron and positron becomes zero (6.39), the summary
spin of orthopositronium TPs interacts with field of non-holonomity of zero-space in the cylinder of
annihilation events.
Without going into details of mechanism of exchange interactions of virtual particles in zero-space,


we can still maintain that additional spin-mass (energy) of orthopositronium after its annihilation
creates third virtual photon in zero-space, which in turn creates third annihilation γ-quantum in
our world.
Evidently, this third virtual photon is absent in decay of parapositronium, because spins of elec-


tron and positron are oppositely directed and hence parapositronium does not possess inner field of
non-holonomity, which could interact with field of non-holonomity of zero-space in the cylinder of
annihilation events.


6.4 Annihilation of orthopositronium: 2+1 split of 3-photon annihilation


Now we are going to consider decay of orthopositronium in details using geometric methods.
In Section 6.2 we showed that two kinds of virtual particles, which carry interactions between


regular particles, including interactions during annihilation, can exist:


1. virtual photons that combine forward and rotation motion at the speed of light;


2. virtual collapsers that rest in respect to the space.


In the previous Chapter we showed that zero-particles, which inhabit the surface of collapsed
objects in zero-space, i. e. virtual collapsers, may perform exchange interactions between our Universe
and the mirror Universe (where time flows backward in respect to ours). Hence if aside for regular
virtual photons virtual collapsers are involved into exchange interaction of particles, then part of the
summary energy they carry is emitted into the mirror Universe. In our world this could be perceived
as observable break of law of conservation of energy-impulse, though in reality full energy and impulse
are conserved with the mirror Universe taken into account.
We are going to find out whether virtual collapsers may be involved into exchange interactions


between electron and positron in decay of parapositronium or orthopositronium. This, for instance,
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can be found out by applying the relationship of physical conditions in zero-space to parapositronium
and orthopositronium.
The relationship of physical conditions in zero-space in absence of gravitational potential (regular


virtual photons) is viu
i=c2. Because we are looking at events from viewpoint of an observer in a


regular space-time, we can multiply both parts of this relationship by generalized mass of particle


μ0 = m0 +
η0


c2
, (6.41)


which accounts for additional energy that particle gains from spin interaction. As a result


μ0viu
i = E , (6.42)


where the left part has energy of virtual particles of this interaction, formulated with properties of
interacting material particles. The right part has energy of decay products E=μ0c


2.
For parapositronium, which spin is zero, this relationships becomes


m0viu
i = m0c


2 m0 = me− +me+ , (6.43)


which left part (summary energy of virtual particles that carry action)


m0viu
i = m0vu cos ̂(vi;ui) (6.44)


is not zero, because the summary energy of annihilation γ-quanta E2γ (the right part) is not zero.
For virtual collapsers, which carry interactions between our world and the mirror Universe, the


collapse condition w=c2 is true. In this case the conditions in zero-space w+viu
i=c2 become viu


i=0.
Multiplying both parts by rest mass m0 of parapositronium, we obtain


m0viu
i = 0 , (6.45)


which would be true if annihilation of orthopositronium was effected not through exchange of regular
virtual photons, but rather through exchange of virtual collapsers.
This formula (6.45) does not match (6.43) which is actually true for parapositronium. Hence


interactions between electron and positron in virtual cylinder of events during annihilation are effected
by regular virtual photons, not by virtual collapsers. This, in its turn, implies that annihilation of
parapositronium does not involve the mirror Universe, because there is only one channel of decay:
both photons are emitted into our Universe.
Now we look at decay of orthopositronium. Spin-energy of orthopositronium is not zero, hence


(6.42) becomes


vip
i +


η0


c2
viu
i = E , (6.46)


i. e. to energy of two “basic” virtual photons, that carry interactions between electron and positron
during annihilation, energy of spinino is either added of subtracted; a virtual particle produced by
transformation of spin-energy (the second term in the equation) in zero-space. Spinino may be either
regular virtual photon or virtual collapser (if spin-energy transforms into virtual particle in a collapsed
area of zero-space).
As a result, two space-time relationships may be true for annihilation of orthopositronium


1. vip
i +


η0


c2
viu
i 6= 0 , 2. vip


i +
η0


c2
viu
i = 0 . (6.47)


In other words, contrary to decay of parapositronium, that of orthopositronium has two possible
channels of exchange with virtual particles in zero space.
As was already mentioned, the conditions in zero-space w+viu


i=c2 in case of collapse (w=c2)
become viu


i=0. Multiplying both parts by generalized mass of orthopositronium (6.41), we obtain
the relationship for energies of virtual collapsers


vip
i +


η0


c2
viu
i = 0 , (6.48)
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which would be true, if they carried interactions in virtual cylinder of events (in zero-space) in anni-
hilation of orthopositronium. Comparing it with formula for second possible channel of annihilation
(6.47) shows they are the same.
That means virtual collapsers, which link our world with the mirror Universe, can be involved into


exchange interactions between electron and positron in annihilation of orthopositronium.
As a matter of fact, the relationship (6.48), obtained for orthopositronium, is an equation


E2γ + Eγs = 0 , (6.49)


that suggests: if decay of electron and positron in orthopositronium is effected by exchanging not
regular virtual photons but rather virtual collapsers, then energy of two “basic” annihilation photons
E2γ is negative to energy of third photon Eγs, produced by virtual spinino. Because virtual collapsers
link our world and the mirror Universe, this has two consequences. First, both “basic” virtual photons
being in the state of collapse, like any other virtual collapsers in interactions of material particles
in our world, cause emission of particles (here two “basic” annihilation photons) into the mirror
Universe. Second, third annihilation photon, produced by virtual spinino in the state of collapse,
which energy is negative, is emitted into our world. In this case law of conservation of energy-impulse
is observed.
We will refer to this phenomenon as 2+1 split of 3-photon annihilation of orthopositronium.
Hence in decay of orthopositronium by means of virtual collapsers our-world observer instead of


regular 3-photon mode will observe 1-photon mode in which two “basic” photons are emitted into
the mirror Universe, while third “additional” photon produced by virtual spinino, is emitted into our
world thus becoming observable.
Comparing these theoretical statements with experimental data, we can conclude the following.
Because most observable effects of orthopositronium are explained by its 3-photon decay, when all


3 photons are emitted into our world, we can assume that decay of majority (over 99.8%) of atoms of
orthopositronium is effected by regular virtual photons.
On the other hand, observed λT-anomaly and isotope anomaly suggest that for a very small number


(less than 0.2%) of atoms of orthopositronium interaction in cylinder of events is carried by virtual
collapsers. It is because of exchange with virtual collapsers “anomalous” 1-photon mode becomes
possible, with 1 photon emitted into our world and 2 photons are emitted into the mirror Universe,
i. e. 2+1 split of 3-photon mode occurs.


6.5 Isotope anomaly of orthopositronium


Phenomenology of isotope anomaly and λT-anomaly, set forth by Levin [48, 71], relies upon view
of positron β-decay as topological quantum transition. As a result of this process at the final stage
of β+-decay that occurs in 22Ne, some space-like resonance structure of limited volume is formed,
against which background non-perturbating processes of orthopositronium annihilation occur. “This
space-like structure carries long-range action for barion charge, which is concentrated in its nodes,
where 22Ne nuclea are initiated in resonance conditions” [71].
But experiments have not answered the question of what is “the building material” of such space-


like structure, which is also a material “agent” to carry long-range action for barion charge.
Terminology of General Relativity is built around space-time views of objects and phenomena and


is dramatically different from terminology used in phenomenology of orthopositronium annihilation.
Therefore to study annihilation of orthopositronium with geometric methods of General Relativity we
can not employ terms like “collective nuclear resonance state” or “topological quantum transition”.
On the other hand, possible existence of space-like structure, which properties are similar to those of


fundamental space-like structure that reveal itself in the terminal stage of β+-decay, was theoretically
justified in our study of motion of test particles in General Relativity (Chapter 1). Two conclusions
lay in the cornerstone of this theoretical justification. First, because eikonal equation for zero-particles
is standing-wave equation, all zero-space is filled with a system of standing waves (hologram). Second,
because for a regular observer the observable three-dimensional interval and the interval of observable
time in zero-space are zeroes, we percept motion of zero-particles as instant displacement in space.
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In other words, zero-particles are carriers of long range-action, i. e. should be perceived by a regular
observer as space-like structures.
As was shown in Sections 6.2 and 6.3, virtual particles, which are material carriers of interaction


between regular particles of our world, can be unambiguously represented as zero-particles, that
travel along their degenerated trajectories in zero-space. This helped us to study annihilation of
orthopositronium and to show that its 2+1 split is possible, in which exchange with virtual collapsers
rather than regular photons results in 1 photon being emitted into our world and 2 photons being
emitted into the mirror Universe.
The latter means that virtual collapsers, which carry interaction between electron and positron in


annihilation, from viewpoint of a regular observer must be a space-like hologram, linked to existence
of orthopositronium and being a material agent to carry interaction between our world and the mirror
Universe.
As was shown in Section 1.3 (1.77) for particles in zero-space, i. e. for virtual photons, eikonal


equation is standing wave equation


hik
∗∂ψ


∂xi


∗∂ψ


∂xk
= 0 , (6.50)


This implies that for virtual photons
∗∂ψ


∂t
= 0 . (6.51)


Because chronometrically invariant derivatives of wave phase to spatial three-dimensional coordi-
nates and to time are


∗∂ψ


∂xi
=
∂ψ


∂xi
+
1


c2
vi
∗∂ψ


∂t
,


∗∂ψ


∂t
=


1


1−
w


c2


∂ψ


∂t
(6.52)


then eikonal equation for particles in zero-space can be presented as


hik
∂ψ


∂xi
∂ψ


∂xk
= −gik


∂ψ


∂xi
∂ψ


∂xk
= 0 . (6.53)


Theoretically it should be true for any type of zero-particles: both for regular virtual photons or
virtual photons in collapse (virtual collapsers). But for virtual collapsers, due to collapse condition
w=c2, chronometrically invariant derivative of wave phase to time is not zero, as is the case for virtual
photons in general (6.51), but instead is 0/0 indefiniteness. This puts certain obstacles on the way of
particular calculations of characteristics of space-like hologram, which appears in 2+1 split of 3-photon
annihilation, because it results from action of virtual collapsers only. Evidently, such calculations rely
upon advancement of method of chronometric invariants. In particular, theory of observable values
should be developed for hypothetical observers in the mirror world (mirror observer) and in zero-space
(virtual observer). This should be the subject of future studies.


6.6 Conclusions


Finally we can build the whole picture of positronium annihilation in its para and ortho states, thanks
to the results we have obtained using geometric methods of General Relativity.
Annihilation of electron and positron in parapositronium is effected by means of exchange of regular


virtual photons, not subjected to collapse. All products of annihilation (two annihilation γ-quanta)
can be emitted into our Universe only.
Annihilation of orthopositronium permits exchange of virtual photons in zero-space through two


channels. In first channel electron and positron exchange virtual photons through regular (not col-
lapsed) zero-space. In this case regular 3-photon annihilation occurs, i. e. all three γ-quanta are
emitted into our Universe. Second channel is implemented through collapsed areas of zero-space,
which are “gateways” to the mirror Universe: annihilation of orthopositronium is effected by means of
exchange of virtual collapsers, two of which cause emission of two γ-quanta into the mirror Universe.
Third virtual collapser produced by transformation of spin-energy of orthopositronium in zero-space,
bears energy of opposite sign and causes emission of one γ-quantum into our Universe. Therefore in
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3-photon annihilation through the second channel 2+1 split occurs: 2 photons emitted into the mirror
Universe are unavailable for observation, while 1 photon is observable.
Noteworthy, in Section 6.4 we mentioned that in electromagnetic interaction of particles, to which


annihilation belongs, Newtonian gravitational forces are negligible. That means virtual collapsers
responsible for 2+1 split of 3-photon mode of annihilation, inhabit surfaces of zero-space objects,
collapsed under action of non-Newtonian gravitational forces. For instance, in a space with de Sitter
metric (5.73) gravitational force are non-Newtonian (5.74). Therefore if we consider zero-space as
a case of full degeneration of de Sitter space, collapse in such zero-space will occur under action of
non-Newtonian gravitational force only.
This is in parallel with a statement from phenomenology of anomalous annihilation of orthopositro-


nium, according to which space-like resonance structure, that brings 22Ne nuclea in gas into collective
excitation, seems to result from combination of de Sitter spaces with positive and negative curvature.







Appendix A


Notation


Theory of chronometric invariants


bα four-dimensional monad vector
hik three-dimensional chronometrically invariant metric tensor
τ physical observable time
dσ spatial physical observable interval
vi three-dimensional chronometrically invariant velocity
Aik three-dimensional antisymmetric chronometrically invariant tensor of space’s rotation


(non-holonomity tensor)
vi three-dimensional linear velocity of space’s rotation
F i three-dimensional chronometrically invariant vector of gravitational inertial force
w gravitational potential
ci three-dimensional chronometrically invariant light velocity
Dik three-dimensional chronometrically invariant tensor of velocities of space’s deformation
4ijk chronometrically invariant Christoffel symbols of 2nd rank


Motion of particles


uα four-dimensional velocity
ui three-dimensional coordinate velocity
Pα four-dimensional vector of impulse
pi three-dimensional vector of impulse
Kα four-dimensional wave vector
ki three-dimensional wave vector
ψ wave phase (eikonal)
S action
L Lagrange function (Lagrangian)


h̄αβ four-dimensional antisymmetric Planck tensor


h̄∗αβ dual four-dimensional Planck pseudotensor


Electromagnetic field


Aα four-dimensional potential of electromagnetic field
ϕ chronometrically invariant temporal component of Aα (physical observable scalar


potential of electromagnetic field)
Ai chronometrically invariant spatial components of Aα (physical observable


vector-potential of electromagnetic field)
Fαβ four-dimensional Maxwell tensor of electromagnetic field
Ei,E


∗ik three-dimensional chronometrically invariant strength of electric field
Hik,H


∗i three-dimensional chronometrically invariant strength of magnetic field
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Riemannian space


xα four-dimensional coordinates
xi three-dimensional coordinates
t coordinate time
ds space-time interval
gαβ four-dimensional fundamental metric tensor
δαβ unit four-dimensional tensor


J determinant of Jacobi matrix (Jacobian)
eαβμν four-dimensional completely antisymmetric unit tensor
eikm three-dimensional completely antisymmetric unit tensor
Eαβμν four-dimensional completely antisymmetric tensor
εikm physical observable completely antisymmetric tensor
Γαμν , Γμν,ρ Christoffel symbols of 2nd and 1st rank
Rαβμν Riemann-Christoffel four-dimensional tensor of curvature
Tαβ energy-impulse tensor
J i vector of physical observable density of impulse
U ik tensor of observable density of impulse stream (tension tensor)
Rαβ Ricci tensor
K four-dimensional curvature
C three-dimensional physical observable curvature
λ cosmological term (λ-term)







Appendix B


Special expressions


dAα=
∂Aα


∂xσ
dxσ ordinary differential of vector


DAα=dAα+ΓαμνA
μdxν absolute differential of vector


∇αAβ=
∂Aβ


∂xα
+ΓβασA


σ absolute derivative of contravariant vector


∇αAβ=
∂Aβ


∂xα
−ΓσβαAσ absolute derivative of covariant vector


∇αAα=
∂Aα


∂xα
+ΓαασA


σ absolute divergence of vector


∗∇iqi=
∗∂qi


∂xi
+qi


∗∂ ln
√
h


∂xi
chronometrically invariant divergence of the vector qi


∗∇̃iqi= ∗∇iqi−
1


c2
Fiq


i chronometrically invariant physical divergence of
the vector qi


2=gαβ∇α∇β general covariant d’Alembert operator


4=gik∇i∇k ordinary three-dimensional Laplace operator


∗4=hik ∗∇i ∗∇k chronometrically invariant Laplace operator


∗∂


∂t
=
1
√
g00


∂


∂t


chronometrically invariant derivative with respect
to temporal coordinate t


∗∂


∂xi
=


∂


∂xi
+
1


c2
vi


∗∂


∂t
chronometrically invariant derivative with respect to xi


v2=viv
i=hikv


ik square of physical observable velocity


vi=−cg0i
√
g00, vi=hikv


k components of the velocity of space’s rotation


v2=hikv
ivk


square of vi (because gασg
σβ=gβα, then with α=β=0


we obtain g0σg
σ0=δ00=1, hence v


2=c2(1− g00g00)


√
−g=


√
h
√
g00


relation between determinants of physical observable
metric tensor and fundamental metric tensor


d


dτ
=
∗∂


∂t
+vk


∗∂


∂xk
derivative with respect to physical observable time τ
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d


ds
=


1


c


√
1−v2/c2


d


dτ
1st derivative with respect to space-time interval


d2


ds2
=
1


c2−v2
d2


dτ2
+


1


(c2−v2)
2×


×


(


Dikv
ivk+vi


dvi


dτ
+
1


2


∗∂hik


∂xm
vivkvm


)
d


dτ


2nd derivative with respect to space-time interval


hik=−gik+
1


c2
vivk, hik=−gik hki=δ


k
i components of physical observable metric tensor


∗∂Aik


∂t
+
1


2


(∗∂Fk
∂xi
−
∗∂Fi


∂xk


)


=0 Zelmanov’s identity


∗∂Akm


∂xi
+
∗∂Ami


∂xk
+
∗∂Aik


∂xm
+


+
1


2
(FiAkm+FkAmi+FmAik)=0


Zelmanov’s identity


giαgkβΓmαβ=h
iqhks4mqs ,


Dik+A
∙i
k∙=


c
√
g00


(


Γi0k−
g0kΓ


i
00


g00


)


,


F k=−
c2Γk00
g00


Zelmanov’s relations between regular Christoffel symbols
and chronometrically invariant characteristics
of observer’s space of reference


d


dτ
v2=


d


dτ


(
hikv


ivk
)
=2Dikv


ivk+


+
∗∂hik


∂xm
vivkvm+2vk


dvk


dτ


derivative from v2 with respect to observable time


εikm=
√
g00E


0ikm=
e0ikm
√
h


,


εikm=
E0ikm√
g00
=e0ikm


√
h


physical observable completely antisymmetric tensor
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