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Abstract. For weakly coupled expanding maps on the unit circle, Bricmont and Kupiainen showed
that the Sinai-Ruelle-Bowen (SRB) measure exists as a Gibbs state. Via thermodynamic formalism, we
prove that this SRB measure is indeed the unique equilibrium state for a Hölder continuous potential
function on the infinite dimensional phase space. For a more general class of lattice systems that are
small perturbations of the uncoupled map lattice, we present the variational principle, the entropy
formula, and the formula for the potential function for the SRB measures. For coupled map lattices
with nearest neighbor interactions, we give an explicit formula of the potential function for the SRB
measure and consequently, obtain the entropy in terms of coupling parameters.
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1. Introduction


During the past years, many efforts have been made to extend the concept of the SRB-
measure from finite dimensional smooth dynamical systems to spatially extended infinite
dimensional dynamical systems [4, 6, 7, 8, 14, 17, 20]. In particular, for a general class
of weakly coupled expanding maps on the unit circle, Bricmont and Kupiainen showed that
the SRB measure exists as a Gibbs state on a phase space of a mixed type: lattice spin
systems with both finite spins and infinite spins (a compact metric space). Their proof was
general enough to include the case where the coupling is not spatially translation invariant.
However, using this approach of construction of the SRB measure, it is difficult to verify that
the measure satisfies the variational principle and to obtain the (spatiotemporal) entropy of
coupled map lattices.


In this paper, we first show that indeed, the SRB measure constructed in [7] satisfies the
variational principle by using a more traditional approach: constructing symbolic represen-
tations of weakly coupled map lattices using the Markov partition. This approach was used
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in [20] to establish similar results for weakly coupled hyperbolic systems. The advantage of
using this approach here is that it is much simpler since the local map has only an expansive
direction even though we have to deal with the non-invertibility of the map. The another
advantage is that we can obtain an explicit entropy formula in terms of coupling parameters.
Finally, with only minimal changes to the proof presented in [16], this approach will enable
us to obtain the smooth dependence of the SRB measure on the system when the coupled
map lattice varies and calculate its derivative, i.e., the linear response function.


The lattice systems we consider here are slightly more general than the standard coupled
map lattices. Our model is described by a small perturbation of the uncoupled system F ,
not necessarily in the form of a composition G ◦ F with G a diffeomorphism of the phase
space. We note that even on the unit circle, a perturbation of an expanding map f can not in
general, be expressed in the form G◦f with G a diffeomorphism of the circle. With potential
applications in mind, our last section deals with coupled map lattices only.


The precise description of the lattice system and a summary of main results of the paper
are given in Section 2. After a brief introduction of the SRB-measure for an expanding
circle map, we show the existence of such measure for the model. The strategy is to extend
thermodynamic formalism to lattice dynamical systems and prove desired results for lattice
spin systems of equilibrium statistical mechanics. In order to have symbolic representations
of lattice dynamical systems, we prove a structural stability theorem for our lattice systems
in Section 3. We prove that there is a conjugacy between the uncoupled map lattice and
the slightly perturbed one. The conjugacy helps to construct a Markov partition of lattice
dynamical systems and obtain the corresponding lattice spin systems. Section 4 contains the
extension of thermodynamic formalism to lattice dynamical systems. The results of Sections
3 and 4 are then applied to show that the SRB-measure exists for lattice dynamical systems
and is an equilibrium state satisfying the variational principle. The proof consists mainly of
the construction of the potential function. In the last section, as an application, we provide
further calculation of the potential function in terms of coupling parameters and subsequently,
obtain an explicit formula of entropy.


2. Preliminaries


2.1. Lattice Dynamical Systems. Let Zd be the d-dimensional integer lattice. We
start with the definition of the phase space M.


M = ⊗i∈ZdS1
i


with S1
i = S1, i.e., M is the direct product of identical copies of the unit circle. A Lattice


Dynamical System considered in this paper consists of the phase space M and a map Φ from
M into itself.


In order to study both types of problems: structural stability and invariant measures of
lattice dynamical systems, we need to introduce two types of metrics on the phase space M.


Definition of Metrics. We denote by ρ the supremum metric on M. For any x̄ =
(xi), ȳ = (yi) ∈M,


ρ(x̄, ȳ) = sup
i∈Zd


d(xi, yi),


where d denotes the canonical distance on the unit circle. With the metric ρ, M is a Banach
manifold modelled on the Banach space lZ


d
:


lZ
d


= {x̄ = (xi) : sup
i∈Zd


|xi| <∞, xi ∈ R.}


The Banach space lZ
d


also serves as the universal covering space for M. When we discuss
local properties, such as continuity and differentiability, of maps on M, we identify these
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maps with their lifts in this covering space. The projection function from lZ
d


onto M is
denoted by P and we have for each x̄ = (xi) ∈ lZ


d
,


P(x̄) = (exp i2πxi) ∈M.


The other metric ρq on M is in fact, a family of metrics that are compatible with the
compact topology on M induced by the direct product structure. It corresponds to the weak∗


(coordinatewise convergence) topology in the Banach space lZ
d
. Given a constant 0 < q < 1,


x̄ = (xi), ȳ = (yi) ∈M,


ρq(x̄, ȳ) = sup
i∈Zd


q|i|d(xi, yi),


where
|i| = |i1|+ |i2|+ · · ·+ |id|, i = (i1, i2, · · · , id) ∈ Zd.


Clearly, the lattice dynamical system (M,Φ) just defined is infinite-dimensional. A simple
example of Φ is the direct product of identical maps on S1:


F = ⊗i∈Zdfi


with fi = f being any differentiable (usually, at least C1+α ) expanding map on the circle.
The degree of the map f is denoted by p, which means that every x ∈ S1 has precisely
p preimages. We always assume that |f ′(x)| > 1, x ∈ S1. In this paper, we consider the
dynamics of a special class of maps that are small perturbations of such map F .


We describe the class of perturbations with the help of these two kinds of metrics.
Definition of the Perturbation. (C1) Hölder continuity condition in the metric ρq:


We assume that Φ is Hölder continuous with respect to ρq for some fixed constant 0 < q < 1.
i.e., there exist C1 > 0 and α > 0 such that


ρq(Φ(x̄),Φ(ȳ)) ≤ C1ρ
α
q (x̄, ȳ).


This Hölder continuity in the metric ρq is slightly weaker than the so-called the exponen-
tial decay property of the perturbation


d(Φi(x̄),Φi(ȳ)) ≤ Cθ|i−k|d(xk, yk),


where Φi is the projection of Φ on the lattice site i ∈ Zd and all components of x̄ and ȳ are
the same except at the lattice site k (see [15] Lemma 1). We emphasize that this continuity
condition in the metric ρq must be imposed before we can describe other conditions on the
derivative operator of Φ using its partial derivatives. It is a fact in functional analysis that
some bounded linear functionals on the Banach space lZ


d
can fail to be weak∗ continuous and


thus, can not be expressed as an infinite sequence using its values at the weak∗ basis [25].


Proposition 1. Assume that Φ = (Φi)i∈Zd is continuous with respect to the metric
ρq. Assume that Φ is continuously differentiable (C1) and the sum of partial derivatives∑


j∈Zd


∣∣∣∂Φi
∂xj


∣∣
x̄


∣∣∣ < M for some constant M converges uniformly in both x̄ and i. Then, the


derivative operator DΦ can be represented by the infinite matrix (∂Φi
∂xj


)i,j∈Zd, i.e., for any
vector ȳ in the tangent space of M at x̄


DΦx̄ȳ =
∑
j∈Zd


∂Φi


∂xj


∣∣
x̄
yj .
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Proof. For any given ε > 0, we need to show that


1
δ


∣∣∣Φi(x̄+ δȳ)− Φi(x̄)− δ
∑
j∈Zd


∂Φi


∂xj


∣∣
x̄
yj


∣∣∣ < ε


when |δ| is sufficiently small. For convenience, we introduce a total order in Zd: i < j
whenever |i| < |j|. When |i| = |j|, we use the lexicographic order. For example, when d = 3,
(0, 0, 1) < (0, 1, 0) and (0, 0, 3) < (1, 1, 1) < (3, 0, 0). Let T denote the order preserving one-
to-one map from the set of non-negative integers to Zd. We define a sequence of elements
z̄k ∈ M, k = 0, 1, 2, in the following way: Let z̄k(j) be the component of z̄k at lattice site
j ∈ Zd. Then,


z̄k(j) = δyj ,when j ≤ T (k), z̄k(j) = 0,when j > T (k).


We have limk→∞ x̄+ z̄k = x̄+ δȳ in the metric ρq. Thus,


Φi(x̄+ δȳ)− Φi(x̄) = Φi(x̄+ z̄0)− Φi(x̄) +
∞∑


k=1


[
Φi(x̄+ z̄k)− Φi(x̄+ z̄k−1)


]
.


Note that x̄+ z̄k and x̄+ z̄k−1 differ only at the lattice site T (k). By Mean Value Theorem,
for k = 0, 1, 2, · · · ,


Φi(x̄+ z̄k)− Φi(x̄+ z̄k−1) =
∂Φi


∂xT (k)


∣∣
ξ̄k


(δyT (k))


for some point ξ̄k between x̄+ z̄k and x̄+ z̄k−1 (x̄+ z̄−1 ≡ x̄). Thus,


1
δ


∣∣∣Φi(x̄+ δȳ)− Φi(x̄)− δ
∑
j∈Zd


∂Φi


∂xj


∣∣
x̄
yj


∣∣∣ =
∣∣∣ ∞∑


k=0


[
∂Φi


∂xT (k)


∣∣
ξ̄k
− ∂Φi


∂xT (k)


∣∣
x̄
]yT (k)


∣∣∣.
Note that for each fixed k, we have


lim
δ→0


∂Φi


∂xT (k)


∣∣
ξ̄k
− ∂Φi


∂xT (k)


∣∣
x̄


= 0


since ξ̄k → x̄ in the metric ρ as δ → 0 and the convergence of
∑


j∈Zd |∂Φi
∂xj


∣∣
x̄
| is uniform in x̄.


Therefore,


lim
δ→0


∞∑
k=0


[
∂Φi


∂xT (k)


∣∣
ξ̄k
− ∂Φi


∂xT (k)


∣∣
x̄
]yT (k) = 0.


�


(C2) Differentiability condition: We assume that Φ is at least C1 with respect to the
metric ρ.


(C3) Small perturbation condition: Φ is C1-close to F . In terms of partial derivatives,
we have


sup
i∈Zd,x̄∈M


|Φi(x̄)− f(xi)|+ sup
i∈Zd,x̄∈M


∑
j∈Zd


∣∣∣∂Φi


∂xj


∣∣
x̄
− ∂Fi


∂xj


∣∣
x̄


∣∣∣ < ε,


for a small constant 0 < ε < 1.







SRB MEASURES FOR LATTICE DYNAMICAL SYSTEMS 5


(C4) Decaying coupling condition: For i, j ∈ Zd, i 6= j,∣∣∣∂Φi


∂xj


∣∣∣ < C3εe
−β|i−j|,


where C3 > 0 and β > 0 are constants.


Remark 1. (1) Conditions (C1), (C2), and (C4) are sufficient for Proposition 1 to hold.


(2) One can formulate different types of decay conditions other than using ε and β in
(C4) for the partial derivatives. However, it seems that the exponential decay of the coupling
between remote lattice sites is necessary for the study of SRB measures via thermodynamic
formalism in later sections. This exponential decay condition also allows a simple proof of
the Hölder continuity of the conjugating map in the metric ρq in the next section. This type
of assumptions appeared in previous papers such as [4, 6, 7, 12, 15, 16, 20, 28]. Other
types of decay of coupling are also possible when one uses the transfer operator approach
(see [14, 30]). But it is unclear if the SRB measure in [14, 30] will satisfy the variational
principle. The condition (C4) can also be formulated in terms of the Lipschitz continuity in
weighted metrics [15, 20].


The last condition (C5) concerns the smallness of the derivative of the perturbation.
This condition will not be needed until the proof of the uniqueness of SRB measures as an
equilibrium state. For x̄ =∈M, i, j ∈ Zd, let


aii(x̄) =
∂Φi
∂xi


∣∣
x̄


f ′(xi)
− 1 and aij(x̄) =


∂Φi


∂xj


∣∣
x̄
, i 6= j.


(C5) Hölder condition on the derivative: For all i, j, k ∈ Zd and x̄ = (xl), ȳ = (yl) ∈ M
with xl = yl, l ∈ Zd, l 6= k,


|aij(x̄)− aij(ȳ)| < C4εe
−β|i−k|dα(xk, yk),


for some constant C4 and 0 < α < 1.


This condition is a little weaker than a similar condition used in [7] (expression (4)) for
coupled map lattices and is the same as the one stated in [20] (expression (7)).


Other Definitions. (1) Spatial translation invariance: Let σk
s , k ∈ Zd denote the map


induced by shifts (or translations) on the lattice Zd: (σk
s (x̄))i = xi+k. When d = 1, this


is just the leftward shift. Φ is called shift (or translation) invariant if Φ and σk
s commute:


Φ ◦ σk
s = σk


s ◦ Φ.


(2) Finite volume approximation of Φ: For each finite volume V ⊂ Zd, MV = ⊗i∈V S
1
i .


Fix a point x̄∗ = (x∗i )i∈Zd ∈ M. For convenience, we shall take x̄∗ = (0)i∈Zd ∈ M, i.e., the
origin. The map ΦV denotes the following map from MV to itself:(


ΦV (xV )
)
i
=


(
Φ(xV , x


∗
V̂


)
)
i
, i ∈ V,


where V̂ = Zd\V , the complement of V in Zd. The structural stability theorem [31] tells us
that when the perturbation is sufficiently small, ΦV is an expanding map on MV conjugated
by a continuous map hV :


ΦV ◦ hV = hV ◦ FV .







6 M. JIANG


With a little abuse of notation, we also use ΦV to denote the following extended map on M:


(2.1)
(
ΦV (x̄)


)
i
=


{(
Φ(xV , x


∗
V̂


)
)
i
, i ∈ V


f(xi), i ∈ V̂
i.e., the perturbation is restricted inside the finite volume V . It is easy to see that whenever Φ
satisfies conditions (C1)-(C5), ΦV satisfies the same conditions with the same set of constants.


2.2. The Sinai-Ruelle-Bowen Measure. For expanding maps on the circle S1, The
Sinai-Ruelle-Bowen measure has many equivalent descriptions. We list two of them whose
extensions to the lattice dynamical systems are discussed in this article.


(1) Weak∗ limit of iterates of Lebesgue measure Let A ⊂ S1 be any Borel set, f be a
Cr, r > 1 expanding map, and λ be the normalized Lebesgue measure (or any probability
measure equivalent to λ ) on the circle. Then, the following limit exists:


µf (A) = lim
n→∞


λ(f−n(A)).


The limiting measure µf is invariant under f : µf (A) = µf (f−1(A)).


(2) Variational Principle Let Γ be the set of all invariant probability measures on S1 with
respect to f and hγ(f) be the measure theoretical entropy w.r.t γ ∈ Γ. Then,


sup
γ∈Γ


(
hγ(f) +


∫
S1


− log |f ′(x)|dγ
)


= 0.


There exists a unique measure µf at which the supremum is attained. Any probability mea-
sure satisfies the equality is called an equilibrium state for the potential function − log |f ′(x)|.
Definition of an equilibrium measure for arbitrary continuous function can be found in [29].


The measures obtained from these two procedures are the same and are called the Sinai-
Ruelle-Bowen (SRB) measure for the expanding map f . The SRB measure can also be defined
as the fixed point of the Perron-Frobenius operator. Another way to define the measure is
to construct a Markov partition for the expanding map and obtain the measure as a Gibbs
state through a sequence of conditional probabilities [33].


Measures with similar properties exist for other maps, e.g., transitive Anosov maps. For
general Cr-expanding (r > 1) maps on closed manifolds, the description is almost identical.
For instance, in our context, ΦV is an expanding map on MV . Thus, there exists an SRB-
measure µV on MV which is invariant under ΦV , absolutely continuous with respect to the
Lebesgue measure, and is mixing. This SRB-measure is the unique invariant measure satisfies
the Variational principle:


(2.2) hµV
(ΦV ) =


∫
log JΦV (xV )dµV ,


where hµV
(ΦV ) is the entropy of ΦV with respect to µV and JΦV (xV ) is the Jacobian of ΦV .


For coupled map lattices, it has been shown in [7] using the transfer operator method with
the cluster expansion technique that the (thermodynamic) limit of the measure µV exists as
the volume V goes to Zd. The limiting measure µ is a Gibbs state invariant under Φ and it
is exponentially mixing with respect to both Φ and σs.


In this article, we will show that the measure µ also satisfies the variational principle.
The main results of this paper are the following.
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Theorem 1. Assume that the map Φ satisfies conditions (C1)-(C5) for sufficiently small
ε and is translation invariant.


(1) The thermodynamic limit of SRB-measures µV exists. The limiting measure µ is
invariant and exponentially mixing with respect to both Φ and spatial translations: For any
Hölder continuous functions φ and ψ in the metric ρq on M,


(2.3) lim
n+|k|→∞


∫
M
φ(Φnσk


s x̄)ψ(x)dµ−
∫
M
φ(x̄)dµ


∫
M
ψ(x)dµ = 0.


(2) The measure µ is the unique equilibrium state for a Hölder continuous (in the metric
ρq) potential function ϕ(x̄) close to − log |f ′| under the Zd+1


+ -action τ generated by Φ and
spatial translations. Moreover, the entropy formula holds:


Pτ (ϕ) = hµ(τ) +
∫
ϕdµ = 0.


(3) The (spatiotemporal) entropy of τ with respect to µ is the limit of the average entropy
of ΦV over the volume V :


hµ(τ) = lim
V→Zd


1
|V |


hµV
(ΦV ).


(4) The potential function ϕ(x̄) of the SRB measure µ with respect to the action τ is given
by


(2.4) ϕ(x̄) = − log |f ′(x0)|+
∞∑


n=1


(−1)n


n
a


(n)
00 (x̄),


where a(n)
00 (x̄) is the entry of the infinite matrix An corresponding to the (0, 0) lattice point of


Zd × Zd and the matrix A(x̄) is defined by the relation(∂Φi


∂xj
(x̄)


)
i,j∈Zd = (diag(f ′(xi)))(I +A(x̄)).


We outline the steps of the proofs.
Step 1. Prove that the map Φ and F are conjugate by a continuous map h. Show this


map h has special regularities: it is Hölder continuous in the metric ρq and the conjugating
map hV between ΦV and FV converges to h uniformly in the metric ρq.


Step 2. Pull back the SRB measures µV for the finite dimensional systems (ΦV ,MV ) onto
the symbolic representations induced by the Markov Partition to obtain equilibrium states
νV .


Step 3. Show that the equilibrium states as Gibbs states νV converge to an equilibrium
state ν on a (d+1)-dimensional lattice spin system. The potential function for ν is obtained by
localizing the potential functions of νV . The uniqueness and the exponential mixing property
follow from special Hölder continuity of this potential function in the metric ρq.


Step 4. Push forward the measure ν onto M and show that this measure is the unique
equilibrium state for a corresponding potential function.


Remark 2. (1) The proof of the entropy formula is the same as that for the coupled
hyperbolic attractors and therefore, is omitted.


(2) The construction of the potential function (2.4) first appeared in [7] (expression (14)
on page 719) for coupled expanding map lattices.
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(3) When the local map f is Cr for r > 4 and Φ is restricted to a Cr-neighborhood of
F with its partial derivatives up to order 4 satisfying decay conditions similar to Condition
(C4), one can prove that the conjugating map h depends smoothly on the perturbation Φ.
Consequently, the potential function ϕ(h(x̄)) in (2.4) and the SRB measure µ depend on Φ
smoothly. Proofs are given for coupled hyperbolic systems in [16] and are essentially identical
for our systems here (only simpler) and thus, are omitted.


3. Structural Stability and Regularity of the Conjugating Map


In this section, we prove structural stability for the map F and prove the regularity of
the conjugating map that will play an important role in studying invariant measures for such
systems. The proof of structural stability follows closely the one in the finite dimensional
case ([31]). The Hölder regularity of the conjugating map is proved via finite dimensional
approximation.


Let P be the projection from the covering space lZ
d


of M onto M = ⊗n∈ZdS1. Let F̃
and Φ̃ denote lifts of F and Φ in the covering space lZ


d
, respectively, i.e., both F̃ and Φ̃ are


continuous and satisfy


P ◦ F̃ = F ◦ P; P ◦ Φ̃ = Φ ◦ P.


Note that lifts of F and Φ are not unique. To fix lifts for F and Φ, we assume that
F̃ (0) = 0, and ρ(Φ̃(0), 0) ≤ ε < 1


2 . Under the supremum distances, a map on M and its
lift in lZ


d
are locally identical. For x̄ and ȳ close in lZ


d
, ρ(Φ̃(x̄), Φ̃(ȳ)) = ρ(Φ(Px̄),Φ(P ȳ)).


Therefore, if Φ and F satisfy conditions (C1)-(C5), Φ̃ and F̃ satisfy the same conditions with
only a small modification to (C1): (C1) holds for Φ̃ when ρ(x̄, ȳ) < 1 in lZ


d
. For simplicity,


we shall use same notations for corresponding objects on M and its covering space lZ
d
.


Under the conditions (C1)-(C3), the conjugacy between the lifted maps Φ̃ and F̃ can be
proved by using the fixed point theorem for contracting maps. The conjugacy between Φ and
F follows immediately.


Theorem 2. (Structural Stability) Assume that the map Φ satisfies conditions (C1)-(C3)
for a sufficiently small ε. Then, Φ is topologically conjugate to F : there exists a homeomor-
phism h : M→M such that


Φ ◦ h = h ◦ F.


Proof. We first observe that F̃ and Φ̃ satisfy the following translation conditions.


(3.1) F̃ (x̄+ n̄) = F̃ (x̄) + pn̄, Φ̃(x̄+ n̄) = Φ̃(x̄) + pn̄,


where x̄ ∈ lZ
d
, p is the degree of the map f , and n̄ ∈ Zd. The first equation is obvious. To


see that the second equation holds, let ē0 = (ni)i∈Zd with ni = 0 for all i 6= 0 and n0 = 1. We
consider the straight line connecting two points x̄ and x̄+ ē0 in lZ


d
. Note that the projection


of this line onto M = ⊗i∈ZdS1 is a circle since Px̄ = P(x̄+ ē0). Since P ◦ Φ̃ = Φ ◦P, we have


PΦ̃(x̄+ ē0) = P(Φ̃(x̄)),


which means
Φ̃(x̄+ ē0) = Φ̃(x̄) + (mi)i∈Zd







SRB MEASURES FOR LATTICE DYNAMICAL SYSTEMS 9


for some integer sequence (mi)i∈Zd ,mi ∈ Z. Since Φ̃(x̄+ ē0) is close to F̃ (x̄+ ē0) = F̃ (x̄)+pē0,
we must have


Φ̃(x̄+ ē0) = Φ̃(x̄) + pē0.


Thus, the second equation in (3.1) follows from the coordinate-wise continuity (w*-continuity)
of Φ̃.


By equations in (3.1), it is easy to verify that both F̃ and Φ̃ are invertible, differentiable,
and expanding maps. Now we consider the complete metric space CP (lZ


d
, lZ


d
) (the subscript


P indicates certain periodicity) consisting of all continuous maps g(x̄) from lZ
d


to itself
satisfying the condition g(x̄+ n̄) = g(x̄) + n̄:
(3.2)
CP (lZ


d
, lZ


d
) = {g : lZ


d → lZ
d
, continuous, g(x̄+ n̄) = g(x̄) + n̄, for n̄ ∈ Zd}.


The metric on this space is the supremum metric induced by the metric ρ on lZ
d
:


ρ(g1, g2) = sup
x̄∈lZd


ρ(g1(x̄), g2(x̄)).


Define a map LΦ on CP (lZ
d
, lZ


d
) by


(3.3) LΦg(x̄) = Φ̃−1 ◦ g ◦ F̃ (x̄).


To see that the map LΦ is well-defined we need to observe that LΦg(x̄) is continuous. The
relation


LΦg(x̄+ n̄) = LΦg(x̄) + n̄


follows directly from equations in (3.1).


To obtain the conjugating map, we need to show that the map LΦ has a fixed point near
the identity map of the space lZ


d
: Id ∈ CP (lZ


d
, lZ


d
). For any map g ∈ CP (lZ


d
, lZ


d
) with


ρ(g, Id) < δ (0 < δ < 1).


ρ(Lg(x̄), Id(x̄)) = ρ(Φ̃−1 ◦ g ◦ F̃ (x̄), Φ̃−1 ◦ Id ◦ Φ̃(x̄))


≤ lρ(g, Φ̃ ◦ F̃−1) ≤ l[ρ(g, Id) + ρ(Id, Φ̃ ◦ F̃−1)] ≤ l(δ + ε),


where 0 < l < 1 denotes the Lipschitz constant for Φ̃−1. For any fixed 0 < δ < 1, we
can choose ε in (C3) sufficiently small such that l(δ + ε) < δ. i.e., the map LΦ maps the
δ-neighborhood of the identity map Id in CP (lZ


d
, lZ


d
) into itself. Since l < 1, LΦ is also


contracting. Therefore, there exists a unique fixed point h̃ in this δ-neighborhood of Id. The
map h̃ satisfies the equation Φ̃ ◦ h̃ = h̃ ◦ F̃ . In fact, we have


(3.4) h̃ = lim
n→∞


Ln
Φ(Id).


To show that h̃ is a homeomorphism of the Banach space lZ
d
, we need to apply the same


argument to the map
g → F̃−1 ◦ g ◦ Φ̃


to obtain its fixed point h̃′ close to the identity. We note that h̃′ ◦ h̃ is close to the identity
and is the unique fixed point of the map


g → F̃−1 ◦ g ◦ F̃ .
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Thus, it must be the identity map, i.e.,


h̃′ ◦ h̃ = Id.
Similarly, we have


h̃ ◦ h̃′ = Id.
Thus, h̃ conjugates Φ̃ and F̃ .


The projection of h̃ onto M is the conjugating map h between F and Φ. �


Study of the metric properties (existence, uniqueness of invariant measures) of lattice
dynamical systems requires additional properties of the conjugating map h. Since the phase
space M is not compact under the supremum metric ρ, it is not convenient for us to study
invariant measures. The natural topology under which invariant measures can be rather easily
studied is the product topology on M. The exponential decay condition (C4) guarantees that
the conjugating map h will have the desired regularity in the product topology to transport
invariant measures of the unperturbed system (M, F ) onto the perturbed system (M,Φ).


Theorem 3.
(1) If Φ satisfies conditions (C1), (C2), and (C4), then Φ is Lipschitz continuous with respect
to the metric ρq for any q with e−β < q < 1.
(2) When ε > 0 in (C3)-(C4) is sufficiently small, Φ̃−1 is also Lipschitz continuous and
contracting in the metric ρq for any q with e−β < q < 1.


Proof. (1) Let i ∈ Zd be fixed. Then,


q|i|d(Φi(x̄),Φi(ȳ)) ≤
∑
j∈Zd


q|i|‖∂Φi


∂xj
‖d(xj , yj)


≤ q|i|‖∂Φi


∂xi
‖d(xi, yi) +


∑
j∈Zd,j 6=i


q|i|εC3e
−β|i−j|d(xj , yj)


≤


∑
j 6=i


εC3


(
qeβ)−|i−j| + C


 sup
j∈Zd


q|j|d(xj , yj),


where C is a constant.
(2) To prove the second part of the theorem, we need only to use the following lemma


whose slightly different versions appeared in [15, 26].


Lemma 1. Let Φ̃−1
i denote the coordinate of Φ̃−1 at i ∈ Zd, then for any 0 < β′ < β,


there exists constant C(β′) such that


|
∂Φ̃−1


i


∂xj
| ≤ C(β′)εe−β′|i−j|


for i 6= j, i, j ∈ Zd and


|
∂Φ̃−1


i


∂xi
| ≤ l < 1,


where l is the Lipschitz constant of Φ̃−1 in the metric ρ.
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We repeat the estimation in the proof of (1) for Φ̃−1 to obtain the desired result. Note
that the Lipschitz constant of Φ̃−1 in the ρq metric is less then one when ε > 0 in (C3) and
(C4) is sufficiently small. We will also denote this Lipschitz constant in the metric ρq by l.


�


The Hölder continuity of Φ and Φ̃−1 in the metric ρq can be passed onto the conjugating
map h. The next theorem implies that h is indeed, Hölder continuous in the metric ρq.
Moreover, it is close to a direct product of maps on the unit circle.


Theorem 4. The conjugating map h satisfies the following properties.


(1) There exist constants 0 < δ < 1 and C > 0 such that


(3.5) d(hi(x̄), hi(ȳ)) ≤ Cdδ(xi, yi)


for any x̄ = (xk), ȳ = (yk) ∈M with xk = yk for all k ∈ Zd except k = i.


(2) For any 0 < β′ < β, there exists constant c(ε), depending only on ε and c(ε) → 0 as
ε → 0, such that for any fixed i, j ∈ Zd, i 6= j and any x̄, ȳ ∈ M with xk = yk for all k ∈ Zd


except k = j,


(3.6) d(hi(x̄), hi(ȳ)) ≤ c(ε)e−
β′
2
|i−j|dδ(xj , yj),


The proof of the first property relies on the finite dimensional approximation while the
second part of the theorem, inequality (3.6) is proved by induction. For simplicity, we choose
V = {i ∈ Zd, |i| ≤ n}. The following lemma can be directly verified using the definitions.


Lemma 2. For any volumes V ⊆ V ′ ⊆ Zd,
(1)


ΦV (xV ) = ΦV ′(xV , x
∗
V ′\V ).


(2)
ρq(ΦV ,ΦV ′) ≤ Cqn


In particular, ρq(ΦV ,Φ) ≤ Cqn, where C is a constant.


Proof of (1) of Theorem 4. First, we observe that the Lipschitz continuity in the metric
ρq holds for the lifted map Φ̃ provided that it is considered in a bounded set in the metric ρ.


Next, we consider the extended maps of ΦV defined on the entire M using the formula
(2.1). Similarly, we extend the lifted maps and we will use the same notations for these ex-
tended maps. Since the map ΦV satisfies conditions (C1)-(C4) with the same set of constants,
Theorem 3 holds when Φ is replaced by ΦV .


For n = 1, 2, · · · , we have a sequence of maps LΦV
defined on the same metric space


CP (lZ
d
, lZ


d
):


LΦV
g = Φ̃−1


V ◦ g ◦ F.
Estimating the induced distance between LΦV


and LΦ , we have


ρq(LΦV
g,LΦg) = ρq(Φ̃−1


V gF̃ , Φ̃−1gF̃ )


= ρq(Φ̃−1
V gF̃ , Φ̃−1


V Φ̃V Φ̃−1gF̃ ) ≤ lρq(Φ̃Φ̃−1gF̃ , Φ̃V Φ̃−1gF̃ ) ≤ lCqn.
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Note that all maps LΦV
have the same contracting coefficient l. By the uniform contract-


ing map theorem, the unique fixed points hV satisfy the inequality


ρq(hV , h) ≤ C ′qn,


where the constant C ′ depends only on l and C. We conclude that hV converges to h
exponentially fast in the metric ρq.


To prove the first statement in Theorem 4, we just need to show the inequality holds when
i = 0 because of the translation invariance. This is achieved by applying the convergence of
hV to h to the following lemma.


Lemma 3. There exist constants C > 0, δ > 0 independent of the volume V , such that


ρq(hV (xV ), hV (yV )) ≤ Cρδ
q(xV , yV ),


for all xV = (xk), yV = (yk) ∈MV with xk = yk, k ∈ V, k 6= 0.


Proof of the lemma. We follow the proof of a similar result for hyperbolic systems on
page 599 in [22]. We just need to make sure that the constants involved are independent of
the volume V .


Since h̃ is the lift of h and M is compact in the metric ρq, both maps h̃ and h are
uniformly continuous with respect to the metric ρq. Because the convergence hV → h is
uniform, we have that for any given ε0 > 0, there exists δ0 > 0 independent of the volume V
such that ρq(hV (xV ), hV (yV )) < ε0 whenever ρq(xV , yV ) < δ0. The same is true for the lifted
map h̃V in a bounded (in the metric ρ) set.


Let l < 1 and L > 1 be the Lipschitz constants for Φ̃−1
V and F̃V (or, f) in the metric


ρq. Both constants are independent of V . Choose 0 < δ < 1 such that lLδ < 1. Let
xV , yV ∈ MV with xk = yk, k ∈ V, k 6= 0. Note that ρq(xV , yV ) = d(x0, y0). We may assume
that ρq(xV , yV ) < δ0. Let m ≥ 0 be an integer such that


Lmρq(xV , yV ) < δ0 ≤ Lm+1ρq(xV , yV ).


Since ρq(F̃m
V (xV ), F̃m


V (yV ))) ≤ Lmρq(xV , yV ) < δ0, we have


ρq(hV (xV ), hV (yV )) = ρq(h̃V (xV ), h̃V (yV )) = ρq(Φ̃−m
V h̃V F̃


m
V (xV ), Φ̃−m


V h̃V F̃
m
V (yV ))


≤ lmε0 =
ε0


δδ
0


lmδδ
0 ≤


ε0


δδ
0


lmL(m+1)δρδ
q(xV , yV )


≤ ε0


δδ
0


Lδρδ
q(xV , yV ).


�


We continue to prove the second part of the theorem.


Proof of the smallness in the Hölder coefficients. In the proof of structural stability, we
have shown that h̃, the lift of h can be obtained as a limit: h̃ = limn→∞ Ln


Φ(Id) in the metric
induced by ρ. We now use induction on n. Obviously, the identity Id satisfies the estimation
(3.6). Let us assume that g(x̄) = Ln


Φ(Id) satisfies these inequalities, i.e.,


d(gi(x̄), gi(ȳ)) ≤ c(ε)e−
β′
2
|i−j|dδ(xj , yj).
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We show that LΦg(x̄) = Φ̃−1 ◦ g ◦ F̃ (x̄) satisfies the same estimations when ε is sufficiently
small. We need estimations of the entries of the derivative matrix DΦ̃−1 from Lemma 1:


|
∂Φ̃−1


i


∂xi
| ≤ l < 1 and |


∂Φ̃−1
i


∂xk
| ≤ C(β′)εe−β′|i−k|


for some constant β′ < β. Let L denote the Lipschitz constant of map f . Notice that x̄ and
ȳ differ only at the lattice site j. We have


d(Φ̃−1
i ◦ g ◦ F̃ (x̄), Φ̃−1


i ◦ g ◦ F̃ (ȳ)) ≤
∑
k∈Zd


‖
∂Φ̃−1


i


∂xk
‖d(gk ◦ F̃ (x̄), gk ◦ F̃ (ȳ))


= ‖
∂Φ̃−1


i


∂xj
‖d(gj ◦ F̃ (x̄), gj ◦ F̃ (ȳ)) + ‖


∂Φ̃−1
i


∂xi
‖d(gi ◦ F̃ (x̄), gi ◦ F̃ (ȳ))


+
∑
k 6=i,j


‖
∂Φ̃−1


i


∂xk
‖d(gk ◦ F̃ (x̄), gk ◦ F̃ (ȳ))


≤


C(β′)εCe−β′|i−j| +
(
l +


∑
k 6=i,j


C(β′)εe−β′|i−k|)c(ε)e−β′
2
|i−j|


 dδ(f(xj), f(yj))


≤


C(β′)εCe−β′|i−j|Lδ + (lLδ +
∑
k 6=i,j


C(β′)εe−β′|i−k|Lδ)c(ε)e−
β′
2
|i−j|


 dδ(xj , yj).


We first choose δ such that lLδ < 1 (this is exactly how δ is chosen in Lemma 3 in the first
place). We then need ε > 0 to be sufficiently small so that


C(β′)εCe−
β′
2
|i−j|Lδ + lc(ε)Lδ +


∑
k 6=i,j


C(β′)εe−β′|i−k|c(ε)Lδ ≤ c(ε).


In fact, we can simply let c(ε) =
√
ε. �


As a consequence of Theorem 4, we have the Hölder continuity of h.
Corollary 1. There exist constants 0 < δ < 1 and C > 0 such that


ρq(h(x̄), h(ȳ)) ≤ Cρδ
q(x̄, ȳ)


for all x̄, ȳ ∈M.


4. Thermodynamic Formalism


In this section, we discuss how to obtain equilibrium states for suitable potentials on the
lattice dynamical system (Φ,M) with respect to the Zd+1


+ action using the Gibbs states on its
symbolic representation (a lattice spin system). The exposition is similar to that in [15, 20].
So some details are omitted.
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4.1. Markov Partition and Semi-conjugacy. The symbolic representation of the
lattice system (Φ,M) is induced by the symbolic representation of the local map f through
the conjugating map h.


Since f is an expanding map with degree p, we have a Markov partition and a semi-
conjugacy π between f and the left shift σt on Σp, the (one direction) full shift of p symbols:


f ◦ π = π ◦ σt.


This semi-conjugacy is extended to a semi-conjugacy π̄ = ⊗i∈Zdπ between F and ⊗i∈Zd(σt)i


on ΣZd


p = ⊗i∈Zd(Σp)i, where (Σp)i are copies of Σp. This shift ⊗i∈Zd(σt)i will again be
denoted by σt for simplicity. Elements of ΣZd


p will be denoted by ξ̄ = ξ̄(i, j)i∈Zd,j∈Z+ , or
ξ̄ = ξi(j)i∈Zd,j∈Z+ . For each fixed i ∈ Zd, ξi ∈ Σp. This symbolic space is endowed with the
distance


ρq(ξ̄, η̄) = sup
(i,j)∈Zd+1


+


q|i|+|j|d(ξ̄(i, j), η̄(i, j)),


where Zd+1
+ = {(i, j) : i ∈ Zd, j ∈ Z+} and d is the discrete metric on the set of p symbols.


The corresponding metric on M is the metric ρq. It is easy to verify that the map π̄ is Hölder
continuous under the metrics ρq.


Since we have proved that the conjugating map h is Hölder continuous in the metric ρq,
we have the semi-conjugacy h◦ π̄ between Φ and σt. When Φ is a spatial translation invariant
perturbation, the conjugating map h is also translation invariant, i.e., σs ◦ h = h ◦ σs. Thus,
the map h ◦ π̄ is also a semi-conjugacy between the spatial translation σs on M and the
spatial translation σs on ΣZd


p . Therefore, h ◦ π̄ is a semi-conjugacy between the Zd+1
+ group


actions generated by (Φ, σs) and (σt, σs).


For finite dimensional approximation maps ΦV , we use the same method to construct
symbolic representations through the conjugation map hV .


The semi-conjugacy acts as a bridge between measures on M and ΣZd


p . For a Borel
measures µ on M, it has a corresponding measure ν on ΣZd


p satisfying the equation


(4.1) ν((h ◦ π̄)−1(E)) = µ(E), E ⊆M.


On the other hand, every measure on the symbolic space ΣZd


p can be pushed forward to define
a measure on M.


4.2. Equilibrium States. We first define equilibrium states for lattice dynamical sys-
tems. The description below is adapted from [29].


Let Ω be a compact metric space and τ be a Zd+1
+ -action on Ω induced by d(≥ 0)


commuting homeomorphisms and one continuous map. Let also U = {Ui}i∈I be a cover of
Ω: ∪i∈IUi = Ω. For a finite set Λ ⊂ Zd+1


+ define


UΛ = ∨k∈Λτ
−kU


to be the refined cover of Ω consisting of all sets of the form


B = ∩k∈Λτ
−kUi(k), i(k) ∈ I.


Denote by |Λ| the cardinality of the set Λ.
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An action τ is said to be expansive if there exists ε > 0 such that for any ξ, η ∈ Ω,


d(τkξ, τkη) ≤ ε for all k ∈ Zd+1
+ implies ξ = η.


A Borel measure µ on Ω is said to be τ -invariant if µ is invariant with respect to all d
homeomorphisms and one continuous map. We denote the set of all τ -invariant probability
measures on Ω by Γ(Ω).


Let µ ∈ Γ(Ω) and U = {Ui} be a finite Borel partition of Ω. Define


H(µ,U) = −
∑


i


µ(Ui) logµ(Ui).


and set


hτ (µ,U) = lim
a1,...,ad+1→∞


1
|Λ(a)|


H(µ,UΛ(a)) = inf
a


1
|Λ(a)|


H(µ,UΛ(a)),


where Λ(a) = {(i1 . . . id+1) ∈ Zd+1
+ : a = (a1 . . . ad+1), an > 0, |in| ≤ an, n = 1, . . . , d + 1}.


The measure-theoretic entropy of the action τ with respect to µ is defined to be
(4.2) hµ(τ) = sup


U
hτ (µ,U) = lim


diam U→0
hτ (µ,U),


where diam U = maxi(diamUi).
Let U be a finite open cover of Ω, ϕ a continuous function on Ω, and Λ a finite subset of


Zd+1
+ . Define the partition function over Λ to be


(4.3) ZΛ(ϕ,U) = min
{Bj}


{ ∑
j


exp
[


inf
ξ∈Bj


∑
k∈Λ


ϕ(τkξ)
]}
,


where the minimum is taken over all subcovers {Bj} of UΛ. Set


Pτ (ϕ,U) = lim sup
a1,...,ad+1→∞


1
|Λ(a)|


logZX(a)(ϕ,U).


The quantity
(4.4) Pτ (ϕ) = lim


diam U→0
Pτ (ϕ,U) = sup


U
Pτ (ϕ,U)


is called the topological pressure of ϕ. One can show that the limit in expressions (4.2) and
(4.4) exists. Details of proofs can be found in [29].


Let ϕ(x) be any continuous function on Ω and Pτ (ϕ) be its topological pressure with
respect to τ . Then, we have the variational principle


Pτ (ϕ) = sup
γ∈Γ


(
hγ(τ) +


∫
ϕdγ


)
,


where hγ(τ) is the measure theoretical entropy of the Zd+1
+ -action τ with respect to γ. A


τ -invariant measure µ is called an equilibrium state for ϕ if the supremum is attained at µ.


Equilibrium states exist for continuous functions as long as the Zd+1
+ -action is expansive


[29]. One can easily rarify that the Zd+1
+ -action on M generated by Φ and the translations


is expansive in the metric ρq.
The ergodic properties of an equilibrium states are related to its uniqueness. In fact,


uniqueness implies ergodicity [27]. The stronger ergodic properties, such as mixing and
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exponential decay of correlation functions can be obtained by considering symbolic represen-
tations of dynamical systems and some other techniques such as the transfer operator method
and the zeta-function method.


4.3. Invariant Gibbs States for Symbolic Spaces. From the symbolic representa-
tions of Φ and ΦV , we have the following symbolic spaces (lattice spin systems):


(4.5) ΣZd


p = ⊗i∈Zd(Σp)i, ΣV
p =: ⊗i∈V (Σp)i.


Under the metric ρq, 0 < q < 1, ΣZd


p and ΣV
p are compact metric spaces and the variational


principle holds in these cases. For spaces ΣV
p , we have a Z+-action induced by the left shift


σt of Σp. On ΣZd


p , we have a Zd+1
+ -action induced by the (space) translations σs on Zd and


(the time shift) σt on Σp. Clearly, both actions are expansive in the metric ρq.


On these symbolic spaces, equilibrium states for any Hölder continuous function are
equivalent to invariant Gibbs states (defined below; also see chapter one and three of [29]).
Even though the equivalence theorem there was proved for Zd-actions, the proofs are valid
for Zd+1


+ -actions).


Any element ξ̄ ∈ ΣZd


p will also be called a configuration. For any subset Λ ⊂ Zd+1
+ , set


ΩΛ = {1, 2, . . . , p}Λ.


For convenience, elements of ΩΛ are also denoted by ξΛ, or ξ(Λ). One can say that ΩΛ consists
of restrictions of configurations ξ̄ to Λ.


For each finite subset Λ ⊂ Zd+1
+ , define a function pΛ(ξ̄) on ΣZd


A by


(4.6) pΛ(ξ̄) =
1∑


η̄:η(Λ̂)=ξ(Λ̂)
exp


( ∑
k∈Zd+1


+
ϕ(τkη̄)− ϕ(τkξ̄)


) ,
where τk denotes the action σi


s ◦ σ
j
t , Λ̂ = Zd+1


+ \ Λ and k = (i, j), i ∈ Zd, , j ∈ Z+.


Let ϕ be a Hölder continuous function on ΣZd


p . A probability measure µ on ΣZd


p is called
a Gibbs state for ϕ if for any finite subset Λ ⊂ Zd+1


+ ,


(4.7) µΛ(ξ(Λ)) =
∫


Ω
Λ̂


pΛ(ξ̄)dµ
Λ̂
,


where µΛ and µ
Λ̂


are projections of µ onto ΩΛ and Ω
Λ̂
, respectively. Equation (4.7) is known


as the Dobrushin-Ruelle-Lanford equation.
There are other equivalent ways to define Gibbs states for Hölder continuous functions


on symbolic spaces. Let ϕ be such a function. For each finite volume Λ, we first define a
conditional Gibbs distribution on ΩΛ under a given boundary condition η∗ by
(4.8)


µη∗,Λ(ξ(λ)) =
1∑


η,η(Λ̂)=η∗(Λ̂)
exp


( ∑
k∈Zd+1 ϕ(τkη)− ϕ(τk(ξ(Λ) + η∗(Λ̂))


) ,
where ξ(Λ) + η∗(Λ̂) denotes the configuration on Λ ∪ Λ̂ whose restrictions to Λ and Λ̂ are
ξ(Λ) and η∗(Λ̂) respectively. Then the set of all Gibbs states for ϕ is the convex hull of
thermodynamic limits of the conditional Gibbs distributions [29].
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In order to establish the correspondence between equilibrium states of lattice dynamical
systems and the invariant Gibbs states of lattice spin systems, we will need ergodic properties
of Gibbs states that is related to the uniqueness of Gibbs states. The uniqueness of Gibbs
states for various potential functions have been major research topics in equilibrium statistical
mechanics during last three decades. It is well-known that Gibbs states are always unique for
any Hölder continuous functions on one dimensional lattice spin systems (so called absence of
phase transition). In higher dimensional cases, the uniqueness holds for those Hölder functions
with a small Hölder constant which corresponds to the situation of “high temperature”. For
general Hölder continuous functions, the uniqueness is not true. The Ising model provides a
simple example [20].


The potential function that will appear in our consideration of SRB-measures for lattice
dynamical systems in the next section does not have a small Hölder constant. However,
the potential function is only a small perturbation from a potential function for which the
uniqueness holds. Using a direct cluster expansion technique one can show that the same
properties hold for the slightly perturbed potential functions. We state the theorem below.
The theorem was proved in [19] for the dimension two case (d = 1) for a class of subshifts of
finite type. The proof provides a formula for the Gibbs state in terms of the potential. For
general higher dimensional cases, it was proved in [7] and [8]. The latter shows directly the
uniqueness without obtaining an explicit expression of the Gibbs state (see [7]).


Theorem 5. (Uniqueness and Exponential Mixing property of Gibbs States) Let ϕ
be a Hölder continuous function on ΣZd


p . Assume that ϕ can be written in the form ϕ =
ϕ0 + ϕ1, where ϕ0 is a Hölder continuous function satisfying the condition ϕ0(ξ̄) = ϕ0(η̄)
for all ξ̄, η̄ ∈ ΣZd


p with ξ(0, j) = η(0, j), 0 ∈ Zd, j ∈ Z+ and ϕ1 satisfies the condition
|ϕ1(ξ̄) − ϕ1(η̄)| ≤ cρδ


q(ξ̄, η̄) with the Hölder coefficient c sufficiently small. Then, the Gibbs
state for ϕ = ϕ0 + ϕ1 is unique and exponentially mixing with respect to the Zd+1


+ -action.


4.4. Semi-conjugacy. Now we are ready to construct equilibrium states on lattice dy-
namical systems that correspond to invariant Gibbs states on their symbolic representations.
First we prove the following lemma on the transition of potential functions. Note that invari-
ant Gibbs states and equilibrium states are the same on our symbolic space ΣZd


p ([29], Page
60).


Lemma 4. Let ϕ0 and ϕ1 be Hölder continuous function on M satisfying the condition
ϕ0(x̄) = ϕ0(ȳ) whenever x0 = y0. Then, for every δ > 0 and 0 < q < 1, there exist sufficiently
small c′ > 0 and ε > 0 such that when |ϕ1(x̄) − ϕ1(ȳ)| ≤ c′ρδ


q(x̄, ȳ), the composition of
functions (ϕ0 +ϕ1)(h ◦ π̄) satisfies the condition of Theorem 5 for suitably chosen constants.
Consequently, the invariant Gibbs state (or the equilibrium state) on ΣZd


p for (ϕ0 +ϕ1)(h◦ π̄)
is unique and exponentially mixing with respect to the Zd+1


+ -action.


Proof. We need to show that (ϕ0 + ϕ1)(h ◦ π̄(ξ̄)) satisfies the condition of Theorem 5. It
suffices to show that ϕ0(h ◦ π̄) can be written into the form ϕ0(h ◦ π̄) = ψ0(ξ̄) + ψ1(ξ̄) with
ψ0 and ψ1 satisfying the conditions of Theorem 5.


Pick any fixed configuration ξ̄∗ ∈ ΣZd


p . Denote by (ξ0, ξ̄∗) the configuration whose restric-
tion to the lattice site 0 ∈ Zd is the same as that of ξ̄ and whose values elsewhere are the
same as those of ξ̄∗. Define


ψ0(ξ̄) = ϕ0(h ◦ π̄(ξ0, ξ̄∗));
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and
ψ1(ξ̄) = ϕ0(h ◦ π̄(ξ̄))− ϕ0(h ◦ π̄(ξ0, ξ̄∗)).


Notice that the value of ψ0 depends only on ξ0. Therefore, we need only to verify that ψ1 is
Hölder continuous with some exponent and a coefficient that can be made arbitrary small as
c′ and ε are small.


Let us pick two configurations ξ̄, η̄ ∈ ΣZd


p . It suffices to prove the following inequality


|ψ1(ξ̄)− ψ1(η̄)| ≤ c0(ε)q′
|i|+|j|


for some constant 0 < q′ < 1 and all ξ̄, η̄ with ξk(l) = ηk(l) for every (k, l) ∈ Zd+1
+ except at


the site (i, j).
Let n0 be a large integer. If |i|+ |j| ≤ n0, we have


ψ1(ξ̄)−ψ1(η̄)| ≤ |ϕ0(h◦π̄(ξ̄))−ϕ0(h◦π̄(ξ0, ξ̄∗))|+|ϕ0(h◦π̄(η̄))−ϕ0(h◦π̄(η0, ξ̄
∗))|


≤ L1ρ
α1
q (h ◦ π̄(ξ̄), h ◦ π̄(ξ0, ξ̄∗)) + L1ρ


α1
q (h ◦ π̄(η), h ◦ π̄(η0, ξ̄


∗))
≤ L1c


α1(ε)Lα1α2
2 + L1c


α1(ε)Lα1α2
2


≤ 2L1c
α1(ε)Lα1α2


2


qno
q|i|+|j|,


where L1, α1 are the Hölder coefficient and exponent of ϕ0, L2, α2 are the Hölder coefficient
and exponent of π̄, and c(ε) is the constant from Theorem 4.


If |i|+ |j| > n0, we have


|ψ1(ξ̄)− ψ1(η̄)| ≤ |ϕ0(h ◦ π̄(η̄))− ϕ0(h ◦ π̄(ξ̄))|
+|ϕ0(h ◦ π̄(η0, ξ̄


∗))− ϕ0(h ◦ π̄(ξ0, ξ̄∗))|


≤ 2L1C
α1Lα1α2


2 qα1α2(|i|+|j|) ≤ 2L1C
α1Lα1α2


2 (
qα1α2


q′
)n0q′


|i|+|j|
.


Let


c0(ε) = max{2L1c
α1(ε)Lα1α2


2


qno
, 2L1C


α1Lα1α2
2 (


qα1α2


q′
)n0}.


It can be made arbitrarily small when we choose q′ such that qα1α2 < q′ < 1 and ε small. �


The following theorem summarizes the connections between equilibrium states of lattice
dynamical systems (Φ, σs) on M and the invariant Gibbs states on their symbolic represen-
tations.


Theorem 6. For any Hölder continuous function ϕ0(x̄) on M that depends only on the
coordinate x0, there exist ε0 > 0, c0 > 0 such that when ε ≤ ε0 and ϕ1 is a Hölder continuous
function with a Hölder coefficient smaller than c0, the follow statements hold.
(1) The invariant Gibbs state ν for the function (ϕ0 + ϕ1)(h ◦ π̄) on ΣZd


p is unique and
exponentially mixing with respect to the Zd+1


+ -action (σt, σs).
(2) The measure µ on M defined by µ(E) = ν((hπ)−1(E)) is invariant under the Zd+1


+ -action
generated by (Φ, σs) and is the unique equilibrium state satisfying the variational principle


Pτ (ϕ0 + ϕ1) = hµ(τ) +
∫


(ϕ0 + ϕ1)dµ.


Moreover, the measure µ is exponentially mixing with respect to the Zd+1
+ -action generated by


(Φ, σs).
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Remark 3. The role of ε0 is to control the conjugating map h so that the composition
(ϕ0 + ϕ1)(h ◦ π̄) satisfies the condition of Theorem 5. The proof of the statement (1) follows
directly from the lemma. To prove the statement (2), we need to use the Hölder continuity of
h, the ergodicity of the Gibbs state which is guaranteed by its uniqueness, and the fact that
h is “almost” a homeomorphism. The proof follows the standard technique in [3]. Details
were presented in [15].


5. SRB-measures for Lattice Dynamical Systems


We now focus on the SRB-measure for lattice dynamical systems. The existence, unique-
ness, and exponential mixing property of SRB measures for coupled map lattices were proved
in [7] with the transfer operator technique under essentially the same conditions. Here, we
prove that this measure is an equilibrium state satisfying the variational principle with re-
spect to the Zd+1


+ -action generated by (Φ, σs). Recent progress concerning the uniqueness
and limit theorems of the SRB measure and properties of transfer operators can be found in
[2, 10, 18, 24, 30].


The construction of SRB-measures for lattice systems is based on the finite dimensional
approximation. We will show that the SRB-measures µV on the finite dimensional space
MV = ⊗i∈VMi converges to a measure µ on M in the sense of thermodynamic limit. We
observe that measures µV are not supported on the same space. For V ⊂ V ′ ⊂ Zd, the projec-
tion of µV ′ onto MV is a probability measure. The convergence is understood in the following
sense: for every V ⊂ Zd, the projection of µV ′ on MV weak∗ converges to the projection of
µ onto MV as V ′ → Zd. We will show that this measure µ is a unique equilibrium state
under Zd+1


+ -action for a Hölder continuous function ϕ satisfying the condition of Theorem
6. This Hölder continuous potential function is a small perturbation of − log |f ′(x0)|. Thus,
µ is exponentially mixing with respect to (Φ, σs). The approach of the proof is to consider
corresponding Gibbs states on lattice spin systems.


5.1. Limit of SRB-measures. We consider the thermodynamic limit of the sequence
of SRB measures µV for expanding maps ΦV on MV as V → Zd. We require that the
perturbation Φ satisfies additional condition (C5), which is never used in the previous sections.


We first state the main theorem and the strategy of the proof. Denote νV = (hV π̄)−1µV
the pull back measure on the symbolic space ⊗i∈V Σp. This measure is the unique Gibbs state
for the potential function − log JΦV (hV π̄) with respect to the Z+-action σt.


Theorem 7. Under the conditions (C1)-(C5) for sufficiently small ε > 0 and the as-
sumption that the perturbation is spatial translation invariant,
(1) the measure νV converges to a measure ν on ΣZd


p . The measure ν is invariant under the
Zd+1


+ -action generated by (σt, σs) and it is the unique and exponentially mixing Gibbs state
for some potential function ϕ(hV ◦ π̄) close to − log |f ′(x0)|;
(2) the push-forward measure µ = (h ◦ π̄)∗ν is the unique equilibrium state for the poten-
tial function ϕ(x̄). The measure µ is exponentially mixing with respect to the Zd+1


+ -action τ
generated by (Φ, S). Moreover, the entropy formula holds:


hµ(τ) =
∫
ϕdµ.
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The proof of the theorem consists of a careful decomposition (or localization) of the
potential function − log JΦV (hV π̄). The technique was used in [7] and later presented in full
detail in [20] for coupled hyperbolic maps. Since our local map f is an expanding map on
the circle, the calculation becomes more transparent and a lot of technical difficulties related
to the regularity of stable and unstable manifolds can be avoided. In fact, in certain cases
(nearest-neighbor interaction), the expression of the potential function ϕ can be explicitly
calculated in terms of coupling strength and other parameters.


5.2. The decomposition of − log JΦV and the construction of the potential
function ϕ. We shall arrange the elements of V ⊂ Zd in certain linear order and denote the
total number of elements in V by |V |.


We rewrite the derivative matrix DΦV in the following


DΦV = (
∂Φi


∂xj
)i,j∈V = (diag(f ′(xi))(I +AV (xV )),


where (diag(f ′(xi)) denotes the diagonal matrix with {f ′(xi)} on the main diagonal.
Under conditions (C1)-(C5), the entries of the matrix AV (xV ), aij(xV ), i, j ∈ V have the


following properties.


Lemma 5. (1) |aij(xV ))| ≤ εC3e
−β|i−j|.


(2) |aij(xV )−aij(yV )| ≤ εC4e
−β|i−k|dα(xk, yk) for any xV , yV with xl =


yl, l ∈ V, l 6= k.
(3) For any V ⊂ V ′, i, j ∈ V , aij(xV ) = aij(xV , x


∗
V ′\V ).


(4) |aij(xV )− aij(yV ′)| ≤ εC5e
−β


2
d(i,∂V ),


where C5 is a constant, V ⊂ V ′ ⊂ Zd, xl = yl, l ∈ V , and d(i, ∂V ) denotes the distance
between i and the boundary of V in Zd.


Proof. All these properties are direct consequences of our definition of the perturbation.
(1) comes from condition (C4) and (2) comes from condition (C5). (3) is from the definition
of ΦV while (4) is a consequence of (2) and (3). �


Next, we use the following formula to expand of a determinant of a matrix B
det(exp(B)) = exp(trace(B)).


In our context, exp(B) = I +AV (xV ), or B = ln(I +AV ). Then,


det(I +AV ) = exp(trace(ln(I +AV )) = exp(−
∑
i∈V


wV i),


where


(5.1) wV i(xV ) =
∞∑


n=1


(−1)n


n
a


(n)
ii (xV )


and a(n)
ii (xV ) are entries on the main diagonal of (AV )n. Thus, we have


(5.2) JΦV = exp
(
−


∑
i∈V


(− log |f ′(xi)|+ wV i)
)


Lemma 6. The functions wV i(xV ) satisfy the following properties.
(1) |wV i(xV )| ≤ Cε.
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(2) |wV i(xV )−wV i(yV )| ≤ Cε exp(−β
2 |i− k|)d


δ(xk, yk), for any xV , yV


with xl = yl, l ∈ V, l 6= k.
(3) For V ⊂ V ′, |wV i(xV )− wV ′i(xV , yV ′\V )| ≤ Cε exp(−β


2d(i, ∂V )).
(4) ϕi(x̄) = limV→Zd wV i(xV ) exists and is translation invariant in the


following sense: ϕi(x̄) = ϕ0(σi
sx̄).


Proof. The proof consists of straightforward computations. We first show the following
estimation


(5.3) |a(n)
ij | ≤ (Cε)ne−β̃|i−j|,


where β̃ is any number smaller than β and C = C(β̃) is a constant.
We use induction. For n = 2, we have


|a(2)
ij | = |


∑
l∈V


ailalj | ≤
∑
l∈V


ε2C2
3 exp(−β(|i− l|+ |l − j|))(5.4)


≤
∑
l∈V


ε2C2
3 exp(−β̃(|i− l|+ |l − j|)− (β − β̃)|l − j|)


≤ ε2C2
3e
−β̃|i−j|


∑
l∈V


exp(−(β − β̃)|l − j|) ≤ C3Cε
2e−β̃|i−j|,


≤ C2ε2e−β̃|i−j|,


where C = C(β̃) =
∑


l∈Zd exp(−(β − β̃)|l|)C3.


Let us assume that |a(n−1)
ij | ≤ Cn−1εn−1 exp(−β̃|i− j|). Then


|a(n)
ij | = |


∑
l∈V


a
(n−1)
il alj | ≤


∑
l∈V


Cn−1εnC3 exp(−β̃(|i−l|+|l−j|)−(β−β̃)|l−j|)


(5.5) ≤ Cnεn exp(−β̃|i− j|).
Therefore (1) follows directly from the definition of wV i with another different constant C.


To prove (2), we need only to show the following estimation:


|a(n)
ij (xV )− a


(n)
ij (yV )| ≤ (Cε)ne−


β
2
|i−k|dα(xk, yk),


for any xV , yV with xl = yl, l ∈ V, l 6= k. We again use induction. For n = 2,


|a(2)
ij (xV )− a


(2)
ij (yV )| = |


∑
l∈V


ail(xV )alj(xV )− ail(yV )alj(yV )|


= |
∑
l∈V


ail(xV )[alj(xV )− alj(yV )] + alj(yV )[ail(xV )− ail(yV )]|


≤
∑
l∈V


ε2C3C4[exp(−β(|l− k|+ |i− l|)) + exp(−β(|l− j|+ |i− k|))]dα(xk, yk)


≤ Cε2 exp(−β
2
|i− k|)dα(xk, yk),


where C = 2C3C4
∑


l∈Zd exp(−β
2 |l|).
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For general n, we estimate similarly using the estimations Lemma 5 (1) and (2).


|a(n)
ij (xV )− a


(n)
ij (yV )| = |


∑
l∈V


a
(n−1)
il (xV )alj(xV )− a


(n−1)
il (yV )alj(yV )|


= |
∑
l∈V


a
(n−1)
il (xV )[alj(xV )− alj(yV )] + alj(yV )[a(n−1)


il (xV )− a
(n−1)
il (yV )]|


≤
∑
l∈V


(Cε)n−1εC3C4[exp(−β
2
|i−l|−β|l−k|)+exp(−β|l−j|−β


2
|i−k|)]dα(xk, yk)


≤ (Cε)n exp(−β
2
|i− k|)dα(xk, yk).


Statement (3) is proved similarly by using the corresponding property (4) in Lemma 5
for the matrix AV . Property (4) comes from (3) and our assumption that map Φ is spatial
translation invariant. Note that the convergence is uniform in x̄. �


We set ψ(x̄) = ϕ0(x̄). A straightforward calculation shows that Lemma 6 (2) implies
that ψ(x̄) is a Hölder continuous function with a small Hölder constant. In fact, the Hölder
constant goes to zero as ε goes to zero. Thus, by Theorem 6 the equilibrium state for
ϕ = ψ(x̄) − log |f ′(x0)| with respect to the Zd+1


+ -action generated by (Φ, σs) is unique and
exponentially mixing.


Theorem 8. The Gibbs states νV for potentials ϕV (ξV ) = − log JΦV (hV πV (ξV )) on the
one dimensional lattice spin systems ΣV


p converge to a Gibbs state on the (d+1)-dimensional
lattice spin system ΣZd


p . This Gibbs state is uniquely determined by the Hölder continuous
potential function ϕ(hπ̄(ξ̄)) = ψ(hπ̄(ξ̄))−log |f ′


(
(hπ̄(ξ̄))0


)
| and is exponentially mixing respect


to the Zd+1
+ -action of the lattice.


Theorem 9. The SRB measure µV for ΦV converges to an equilibrium measure on the
space M as V → Zd. This equilibrium measure is uniquely determined by a Hölder continuous
potential function ψ(x̄)− log |f ′(x0)| defined on M and the measure is exponentially mixing
with respect to both spatial translations and Φ. The function ψ(x̄) is given by the formula


ψ(x̄) =
∞∑


n=1


(−1)n


n
a


(n)
00 (x̄),


where a(n)
00 (x̄) is the entry of the infinite matrix An corresponding to the (0, 0) lattice point of


Zd × Zd and the matrix A(x̄) is defined by the relation(∂Φi


∂xj
(x̄)


)
i,j∈Zd = (diag(f ′(xi)))(I +A(x̄)).


Remark 4. We give a sketch of the idea with which the potential function ϕ(hπ̄(ξ̄)) =
ψ(hπ̄(ξ̄))− log f ′


(
(hπ̄(ξ̄))0


)
is obtained. We need to decompose the Hamiltonian of the Gibbs


state νV with respect to the time shift σt∑
j∈Z+


− log JΦV (hV πV (σj
t ξV ))







SRB MEASURES FOR LATTICE DYNAMICAL SYSTEMS 23


to obtain the Hamiltonian for the Gibbs state ν with respect to the Zd
+-action (σi


s◦σ
j
t ). Using


the expression (5.2), we have∑
j∈Z+


− log JΦV (hV πV (σj
t ξV ))


∑
j∈Z+


∑
i∈V


− log |f ′(hV πV (σi
sσ


j
t ξV ))|+ wV i(hV πV (σj


t ξV ))


→
∑


j∈Z+,i∈Zd


[− log |f ′(xi)|+ ϕ0](hπ(σi
sσ


j
t ξ̄)).


The actual proof uses the equivalent description of Gibbs states with conditional Gibbs
distributions (4.8). Details were presented in [20].


Theorem 9 follows from Theorem 8 by using the semi-conjugacy.


Remark 5. The entropy formula in Theorem 7 and the decomposition of the potential
function− log JΦV for the SRB measure of ΦV have an interesting consequence on the relation
between the entropy hµ(τ) of the lattice system and the entropy hµV


(ΦV ). Since µV → µ
weakly and wV i(xV ) converges to ϕi(x̄) uniformly by Lemma 6, we have


hµ(τ) =
∫
M
ϕdµ = lim


V→Zd


1
|V |


∫
M
− log JΦV dµV = lim


V→Zd


1
|V |


hµV
(ΦV ).


6. The potential function and the entropy of coupled map lattice


In this section, we go one step further to determine explicit formulas of potential functions
for coupled expanding maps (CMLs) on the circle. As a consequence, we obtain the formula
of the (spatiotemporal) entropy of the coupled map lattice when the interaction is of nearest
neighbor type.


6.1. The potential function ϕ. To obtain the potential function for the SRB measure
of coupled map lattices, we first calculate the Jacobian matrix of the map Φ = G ◦ F :


DΦ(x̄) = DG(F (x̄))DF (x̄).


Notice that both DG = (∂Gi
∂xj


(F (x̄))) and DF = (f ′(xi)) are infinite matrices indexed by


(i, j), i, j ∈ Zd and translation invariant since we assume that G is translation invariant. We
write DG in the following form:


DG = (
∂Gi


∂xi
(F (x̄))(I +A),


where (∂Gi
∂xi


(F (x̄)) denotes the diagonal matrix with ∂Gi
∂xi


(F (x̄)) on the main diagonal. Thus,
for i 6= j, aij , the entries off diagonal of A are given by the formula


aij =
∂Gi


∂xj
(F (x̄))


/∂Gi


∂xi
(F (x̄))


and aii = 0.
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By the expansion (5.2) and Remark 4, we see that the potential function for the SRB-
measure with respect to the Zd+1


+ -action on M induced by the map Φ and d translations
is


(6.1) ϕ(x̄) = − log |f ′(x0)| − log |∂G0


∂x0
(F (x̄))|+ ψ∗(F (x̄)),


where


(6.2) ψ∗(F (x̄)) =
∞∑


n=1


(−1)n


n
a


(n)
00 (F (x̄))


and a
(n)
00 (F (x̄)) is the entry at the lattice site 0 × 0 ∈ Zd × Zd of the infinite matrix An =


AA · · ·A. The term − log
∂G0


∂x0
(F (x̄)) is isolated out from the term ψ(x̄) in Theorem 9 in


the potential function corresponding to the perturbation. It is for the convenience of later
calculation.


6.2. Potential functions for CMLs with nearest neighbor interactions. The in-
finite size of the matrix A poses a special difficulty for further calculation of the potential
function in terms of the coupled map. In the simple situation of the nearest neighbor in-
teraction, however, the calculation can be directly carried out using a standard technique in
statistical physics.


6.2.1. The lattice Z1 case. We first assume that d = 1 and the perturbation map G has
the following form:


G = (Gi) : Gi(x̄) = g(xi−1, xi, xi+1)


for some differentiable function g(x, y, z).
The infinite matrix A formulated in the previous section can be expressed as a sum of


two matrices: A = L+R, where L = (lij) is an infinite matrix with the property


lij = 0, j 6= i− 1, lii−1 =
∂Gi


∂xi−1


/∂Gi


∂xi
,


i.e., the weighted leftward shift operator,and R = (rij) is an infinite matrix with the property


rij = 0, j 6= i+ 1, rii+1 =
∂Gi


∂xi+1


/∂Gi


∂xi
,


i.e., the weighted rightward shift operator.
For convenience, we denote αi = lii−1 and βi = ri−1i. Note that the product matrix LR


is a diagonal matrix with the entry at (i, i) being αiβi. We denote this diagonal matrix by
T . We will determine the function ψ∗ in terms of αi and βi’s. Let Π denote the collection of
all sequences of two symbols L and R of length n = 2k with equal numbers of L’s and R’s,
i.e.,
Π = {π = (C1C2 · · ·C2k) : Cl = L or R, 0 ≤ l ≤ 2k and the number of L’s is k}.


Proposition 2.


a
(n)
00 =


{
0 if n is odd,∑


π∈Π αm1βm1αm2βm2 · · ·αmk
βmk


if n = 2k ,


where the sequence of integers (m1,m2, · · · ,mk) is determined by each π.
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Proof. We first introduce a linear operator on infinite matrices: the shift along the
diagonal:


If A = (aij) is an infinite matrix, then As denotes the matrix whose entry at (i, j) is
ai+1,j+1. We also denote (As)s = As2


and A = As0
= (As)s−1


. i.e., we have a Z-action on
infinite matrices.


With the help of this Z-action, we can expand An = (L+R)n in terms of ai’s and bi’s.
We observe that
(1) RL = T s.
(2) If B is any diagonal matrix, BR = RBs and BL = LBs−1


.
Let P be a product of n copies of either L or R’s such as LRRRL · · ·R. Each product


corresponds to an element π in the direct product space of two symbols over n places. Assume
that we have k L matrices and n− k R matrices. Then, using the properties (1) and (2), we
have


P =



L2k−nT sm1T sm2 · · ·T smn−k


, if k > n− k;
Rn−2kT sm1T sm2 · · ·T smk , if k < n− k;
T sm1T sm2 · · ·T smk , if k = n− k,


where the sequence of integers (m1, · · · ,mk) is determined by each element π.
For example,


RLRLRLRRR = T sT sT sRRR = RT s2
T s2


T s2
RR = · · · = R3T s4


T s4
T s4


,


and
LLLRLLR = L3T sT.


Since the product T sm1T sm2 · · ·T smk is a diagonal matrix, we have that all entries on the
diagonal of P are zero except in the case of k = n− k. When k = n− k, we have the entry
at (0, 0) equal to


αm1βm1αm2βm2 · · ·αmk
βmk


Therefore, we have a(n)
00 = 0 if n is odd and


a
(n)
00 =


∑
π∈Π


αm1βm1αm2βm2 · · ·αmk
βmk


,


where n = 2k. �
Consequently, we have the formula for ψ:


ψ∗ =
∞∑


k=1


1
2k


∑
π


αm1βm1αm2βm2 · · ·αmk
βmk


.


Note that |αi| < ε and |βi| < ε are small. We can now easily obtain approximate formulas
of ψ∗ and thus, the potential function up to any order we desire. For example, the second
order approximate formula of the potential function is


ϕ(x̄) ≈ − log |f ′(x0)| − log
∂G0


∂x0
(F (x̄)) +


1
2
(α0β0 + α1β1)


= − log |f ′(x0)| − log
∂G0


∂x0
(F (x̄)) +


1
2
(


∂G0
∂x−1


∂G0
∂x0


∂G−1


∂x0


∂G−1


∂x−1


+
∂G1
∂x0


∂G1
∂x1


∂G0
∂x1


∂G0
∂x0


).
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6.2.2. The lattice Zd case. The previous calculation can be extended to the d dimensional
lattice case. We assume nearest neighbor interactions:


G = (Gi(x̄)), i = (i1, i2, · · · , id) ∈ Zd,


where the value of each component Gi(x̄) depends only on variables xj with


|j − i| = |j1 − i1|+ |j2 − i2|+ · · ·+ |jd − id| ≤ 1.


Since the lattice is of dimension d, the matrix A now is decomposed into a sum of 2d
infinite matrices:


A = L1 +R1 + L1 +R1 + · · ·+ Ld +Rd.


For each infinite matrix Lk = (l(k)
ij ), 1 ≤ k ≤ d, its entries are given as follows. Let i =


(i1, i2, · · · , ik−1, ik, ik+1 · · · , id) ∈ Zd.


l
(k)
ij =


{
0 if j 6= (i1, i2, · · · , ik−1, ik − 1, ik+1 · · · , id)
∂Gi
∂xj


/
∂Gi
∂xi


if j = (i1, i2, · · · , ik−1, ik − 1, ik+1 · · · , id).


Similarly, the entries of the matrix Rk = (r(k)
ij ) are given by


r
(k)
ij =


{
0 if j 6= (i1, i2, · · · , ik−1, ik + 1, ik+1 · · · , id)
∂Gi
∂xj


/
∂Gi
∂xi


if j = (i1, i2, · · · , ik−1, ik + 1, ik+1 · · · , id).


To determine the entry a(n)
00 of the product


An = (L1 +R1 + L1 +R1 + · · ·+ Ld +Rd)n,


we expand the right hand side:


An =
∑
π


C1C2 · · ·Cn,


where each Cl, 1 ≤ l ≤ n is either Lk or Rk and the sum is taken over the direct product of
2d symbols over n places.


Note that for either type of matrices Lk or Rk, there is only one non-zero entry on each
row or column. Thus, the (0, 0) entry of the product C1C2 · · ·Cn is not zero only if we
have the same number of Lk and Rk among C1, C2, · · · , and Cn for every k, 1 ≤ k ≤ d. In
particular, the (0, 0) entry is zero if n is odd.


Denote


α
(k)
i = l


(k)
ij , j = (i1, i2, · · · , ik−1, ik − 1, ik+1 · · · , id),


and
β


(k)
i = r


(k)
ji , j = (i1, i2, · · · , ik−1, ik − 1, ik+1 · · · , id).


Let Πd =
{
π = (C1C2 · · ·C2m) : Cl ∈ {L1, · · · , Ld, R1, · · ·Rd}, 0 ≤ l ≤ 2m and


the numbers of Lk’s and Rk’s are equal for each k, 0 ≤ k ≤ d
}
. We have the following for-


mula.
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Proposition 3.


a
(n)
00 =


{
0 if n is odd,∑


π∈Πd
α


(k1)
i1


· · ·α(km)
im


β
(k1)
im+1


· · ·β(km)
i2m


if n = 2m,


where the sequence of integers (i1, i2, · · · , i2m) and (k1, · · · , km), 1 ≤ kl ≤ d are determined
by each π.


For example, if n = 3 and π = (L1, L2, R1, L1, R2, R1), the corresponding term in the
sum (the entry at (0, 0) of the matrix L1L2R1L1R2R1) is


l
(1)
0η1
l(2)
η1η2


r(1)
η2η3


l(1)η3η4
r(2)η4η5


r
(1)
η50


= α
(1)
0 α(2)


η1
β(1)


η3
α(1)


η3
β(2)


η5
β


(1)
0 = α


(1)
0 α(2)


η1
α(1)


η3
β(1)


η3
β(2)


η5
β


(1)
0 ,


where 0 = (0, · · · , 0) ∈ Zd, η1 = (−1, 0, · · · , 0), η2 = (−1,−1, 0, · · · , 0), η3 = (0,−1, 0, · · · , 0), η4 =
η2 = (−1,−1, 0, · · · , 0), and η5 = η1 = (−1, 0, · · · , 0).


Therefore, we have


ψ∗ =
∞∑


n=1


1
2n


∑
π∈Πd


α(k1)
π1


· · ·α(kn)
πn


β(k1)
πn+1


· · ·β(kn)
π2n


.


The second order approximation of ψ∗ can then be easily determined:


ψ∗ ≈ 1
2
( d∑


k=1


α
(k)
0 β


(k)
0 + α


(k)
j β


(k)
j


)
,


where


α
(k)
0 = l


(k)
0i =


∂G0


∂xi
/
∂G0


∂x0
, i = (0, · · · , 0,−1, 0, · · · , 0) ∈ Zd.


β
(k)
0 = r


(k)
i0 =


∂Gi


∂x0
/
∂Gi


∂xi
, i = (0, · · · , 0,−1, 0, · · · , 0) ∈ Zd.


α
(k)
j = l


(k)
j0 =


∂Gj


∂x0
/
∂Gj


∂xj
, j = (0, · · · , 0, 1, 0, · · · , 0) ∈ Zd.


β
(k)
j = r


(k)
0j =


∂G0


∂xj
/
∂G0


∂x0
, j = (0, · · · , 0, 1, 0, · · · , 0) ∈ Zd.


6.3. Spatiotemporal entropy of coupled map lattices. The main application of the
formula of the potential function is to obtain spatiotemporal entropy of coupled map lattices.
It is shown that the entropy formula holds when the local hyperbolic set is an attractor [17].
One can directly extend the formula to coupled expanding map lattices. Let hµ(τ) denote
the measure theoretical entropy of the Zd+1


+ -action τ induced by the map Φ and the spatial
translations σs with respect to the SRB measure µ. We have


hµ(τ) = −
∫
M
ϕdµ.


The second order approximation is given by


hµ(τ) ≈
∫
M


[
log |f ′(x0)|+log |∂G0


∂x0
|(F (x̄))− 1


2


d∑
k=1


(
α


(k)
0 β


(k)
0 +α


(k)
j β


(k)
j


)]
dµ,
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where α(k)
0 , α


(k)
j , β


(k)
0 , β


(k)
j are given in the previous section.


We call this entropy hµ(τ) spatiotemporal entropy since it is the entropy of the Zd+1
+ -


action τ .
Note that an explicit calculation of hµ(τ) in terms of maps G and F involves an calculation


of the SRB measure µ which is still difficult to do. One simple situation is when the local
map f is a linear expanding map. The potential function


ϕ = − log |f ′| − log |∂G0


∂x0
|+ ψ∗ = − log p− log |∂G0


∂x0
|+ ψ∗,


where p is the degree of the map f . Therefore,


hµ(τ) = log p+
∫


log |∂G0


∂x0
|dµ−


∫
ψ∗dµ


≈ log p+
∫


log |∂G0


∂x0
|dµ−


∫
1
2
(α0β0 + α1β1)dµ.


Thus, in this simple case we have the following conclusion.


The first order of the perturbation of the entropy is due to the local perturbation ∂G0
∂x0


.
The contribution from the nearest neighbor coupling is at most of the second order in terms
of the magnitude of the coupling.
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