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UNIFORM CANTOR SINGULAR CONTINUOUS SPECTRUM
FOR NONPRIMITIVE SCHRÖDINGER OPERATORS


MARCUS V. LIMA AND CÉSAR R. DE OLIVEIRA


Abstract. It is shown that some Schrödinger operators, with nonprimitive
substitution potentials, have pure singular continuous Cantor spectrum with
null Lebesgue measure for all elements in the respective hulls.


1. Introduction


It is interesting that zero (Lebesgue) measure Cantor and pure singular con-
tinuous spectrum have been the rules for finite valued almost periodic (discrete)
Schrödinger operators in one dimension [1, 2, 3, 4, 9, 16, 20, 21, 23, 24]. Virtu-
ally all rigorous results have pointed to that direction, including important cases of
primitive substitutions and Sturmian potentials (see the review [4] and references
therein). A latent exception for singular continuous spectrum is the Rudin-Shapiro
substitution for which numerical simulations indicate the occurrence of a point com-
ponent in the spectrum [12, 13], although it is still an open mathematical problem.


Such potentials give rise to strictly ergodic (i.e., uniquely ergodic and minimal)
dynamical systems (Ω, T ), where Ω is the hull of the given potential in Z constructed
from the left shift operator T (see ahead for more details). In terms of the elements
in the hull, there are in the literature three kinds of the mentioned spectral results
which, with increasing degree of generality, can be stated as generic (valid in a
dense Gδ set), full measure (valid in a set of total invariant measure) and uniform
(valid for all elements in the hull). It is worth bringing up that due to minimality
the spectrum, as a set, does not depend on the element in the hull, so that if the
zero Lebesgue measure is verified for some potential, it then holds for all of them.
Notice that the zero Lebesgue measure property has lately gotten an attractive
discussion in [20].


Clearly the uniform results are the most rare and, in the aperiodic setting, have
been gotten just for Sturmian [7], quasi-Sturmian [6] and the Period Doubling
substitution [5] potentials. The general strategy is to analyze the possibility for
Gordon-type arguments [8, 24] for all elements in the hull (taking into account the
almost periodicity, via partitions), excluding the point spectrum (see ahead).


Recently, we have studied a rather broad class of nonprimitive substitutions [11]
(we call it “ζ-class”) and have gotten cases of aperiodic sequences with pure singular
continuous spectrum for the corresponding Schrödinger operators, for potentials
in generic and/or full measure sets in the hull. In spite of lacking of Perron-
Frobenius theorem, also for the nonprimitive cases studied it was possible to prove
strictly ergodicity, a very important ingredient in such considerations. Nevertheless,
nothing was said about the Lebesgue measure of the spectrum and uniform results.
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It is the aim of this work to fill in this gap, with examples of uniform results,
including the original nonprimitive substitution we have studied in [10].


This work is organized as follows. In the second section we give basic definitions,
present the subclasses of the ζ-class for which we have obtained uniform results and
enunciate the main outcomes of this work (Theorems 1 and 2); in Section 3 we dis-
cuss some general facts about the ζ-class substitutions and, as a simple application
of results in [20], present the proof of Theorem 1; in Section 4, following the strategy
of partitions of [5, 7], and a link to the Period Doubling substitution, we proceed
to the proof of our uniform spectral results (Theorem 2).


2. Main Results


Our discussion will be restricted to substitution potentials assuming just two
values, so we consider an alphabet A = {a, b}. As usual, A∗ denotes the set of all
words of finite length and AN the set of all right infinite words with letters in A.
A substitution is a map ξ : A → A∗. ξ can be extended homomorphically to A∗


and AN by concatenation, for instance, ξ(abaa) = ξ(a)ξ(b)ξ(a)ξ(a) and ξ(aba . . . ) =
ξ(a)ξ(b)ξ(a) . . . . A substitution sequence is a fixed point ū of ξ in AN, i.e., ξ(ū) = ū.
The existence of a such fixed point is ensured by the following conditions (see [22],
Proposition V.1): there is a letter a in A such that ξ(a) begins with a and the length
of ξk(a) goes to infinity as k �→ ∞ (ξk denotes the k-th iterate of ξ; it is supposed
that ξ0(a) = a). Given P and Q in A∗, #P Q denotes the number of occurrences
of P in Q and |P | the length of P. A substitution rule ξ is called primitive if there
is j ∈ N such that #cξ


j(d) ≥ 1, for every c, d ∈ A.
We recall the “ζ-class” of nonprimitive substitutions (introduced in [10, 11]):


ζ(a) = a...a︸︷︷︸
A1


b...b︸︷︷︸
B1


a...a︸︷︷︸
A2


. . . b...b︸︷︷︸
BN


a...a︸︷︷︸
AN+1


, ζ(b) = b,(1)


with Aj , Bj ≥ 1, j = 1, . . . , N and AN+1 ≥ 1, being the number of letters in each
block. ζ is clearly nonprimitive since #aζj(b) = 0,∀j.


Consider on AN (AZ) the point convergence topology generated by the metric


d(u, v) =
∑


n


|un − vn|
2|n|


, u = (un), v = (vn),


with n ∈ N (n ∈ Z). Given η̄ a substitution sequence associated to ζ in (1), consider
the periodic sequences in AZ


ηn = . . . ζn(a)ζn(a) · ζn(a)ζn(a) . . . ,(2)


with the dot indicating the position of the zero index term. Since ζ(a) begins and
ends with a, (ηn) is a Cauchy sequence and one gets a well-defined limit


η = lim
n→∞


ηn


in AZ, called the bilateral substitution sequence generated by ζ (if Aj = 1 for all j,
some adaptation is needed in order to guarantee the almost periodicity of η; see
Subsection 4.3 for a particular occurrence).


Let T : AZ �→ AZ be the left shift (Tx)n = xn+1; the hull of x in AZ is defined
as


Ω = Ω(x) = Closure of {Tnx : n ∈ Z} in AZ.
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We notice that for a recurrent sequence x its hull Ω is a compact and T -invariant
subset of AZ with TΩ(x) = Ω(x) ([22], Chapter V), so that the dynamical sys-
tem (Ω(x), T ) is well defined.


From now on we always denote by η = ηζ the bilateral substitution sequence
generated by ζ and Ωζ = Ω(η) its hull.


Given an injective real function f : A �→ R, we associate a sequence in l∞(Z) to
each ω = (ωn)n∈Z ∈ Ω by (f(ωn))n∈Z, which we again denote by ω and call it a
substitution potential. Therefore, every point ω ∈ Ω defines a bounded self-adjoint
operator Hω on l2(Z) by


(Hωu)n = un+1 + un−1 + ωnun.


As usual, we shall indicate the spectrum of a self-adjoint operator H by σ(H) and
by σac(H) its absolutely continuous spectrum.


Now we state the main results of this paper, and postpone their proofs to later
sections:


Theorem 1. Given an aperiodic substitution in the ζ-class (1), the spectrum of the
associated Schrödinger operator Hω is a Cantor set with null Lebesgue measure, for
every ω ∈ Ωζ .


Consider the following particular substitutions in the ζ-class:


ζ1(a) = a b . . . b︸ ︷︷ ︸
B1


aa b . . . b︸ ︷︷ ︸
B1


a


ζ2(a) = aa b . . . b︸ ︷︷ ︸
B1


aa


ζ3(a) = a b . . . b︸ ︷︷ ︸
B1


a b . . . b︸ ︷︷ ︸
B2


a b . . . b︸ ︷︷ ︸
B1


a, B1 = B2.


(3)


Theorem 2. For each substitution in (3) the corresponding Schrödinger opera-
tors Hω have pure Cantor singular continuous spectrum with null Lebesgue measure
for all ω in the respective hulls.


3. Null Lebesgue Measure


Before proceeding to the proof of Theorems 1 and 2 we gather and amend some
general properties of the ζ-class substitution. The suitable properties of ergodicity
and aperiodicity that we mentioned in the Introduction are sufficient to exclude
absolutely continuous spectrum for all elements in the hull. This is gotten by
combining the results of Kotani [17]: for aperiodic ergodic potentials taking only a
finite number of values, the set of potentials with no absolutely continuous spectrum
has full ergodic measure; and Last-Simon [18]: for minimal subshift potentials the
absolutely continuous spectrum is ω-independent in the hull. Thus to exclude
absolutely continuous spectrum we have to give conditions for a substitution in the
ζ-class to be aperiodic (in this case we shall also say that ζ is aperiodic) and its
associated hull be minimal and ergodic. These conditions are written out in the
following propositions, which complement a condition in [11].


Proposition 1. If either Aj ≥ 2 for some 1 ≤ j ≤ (N + 1) or the B′
js are not all


equal (or both), then the resulting substitution sequence η is not ultimately periodic.
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Proof. For the case Aj ≥ 2 see Lemma 1 in [11]. In the other case ζ takes the form
(with N ≥ 2)


ζ(a) = a b . . . b︸ ︷︷ ︸
B1


a b . . . b︸ ︷︷ ︸
B2


. . . a b . . . b︸ ︷︷ ︸
BN


a.


Due to the definition of η, we restrict the proof to strictly positive index of η, i.e.,
to η̄. We consider first the case of periodic η̄ and then reduce the case of ultimately
periodic sequence to an argument of the periodic one.


Suppose that η̄ is periodic and denote the first minimal period block of η̄, by P
(|P | ≥ 2). By the very definition of ζ the minimal period block ends in the last b
of a block Bj , i.e., η|P | = b and η|P |+1 = a. Let nc be the unique integer such that


|ζnc−1(a)| ≤ |P | < |ζnc(a)|.
The first entries of η̄ are


η̄ =


ζnc (a)︷ ︸︸ ︷
ζnc−1(a) b . . . b︸ ︷︷ ︸


B1


. . . ζnc−1(a) b . . . b︸ ︷︷ ︸
Bj︸ ︷︷ ︸


P


. . . b . . . b︸ ︷︷ ︸
BN


ζnc−1(a) b . . . b︸ ︷︷ ︸
B1


ζnc(a) b . . . b︸ ︷︷ ︸
B2


ζnc(a) . . .


The choice of nc entails that a period block P starts at position (|ζnc(a)|+ B1).
Similarly, it can be seen that η̄ is periodic with period |ζnc(a)| + Bj , for all j =
1, . . . , N . As all periods must be integer multiples of |P |, this implies that all Bj


must be equal (here, we use that |P | > Bj). Therefore η̄ (and consequently η) is
not periodic.


Suppose now that η̄ is ultimately periodic, so that there is an integer k ≥ 1
such that η̄ is periodic, with period τ , after its kth position (k ≥ 2). Choose an
integer m such that |ζm(a)| > k and |ζm(a)| > τ . The first entries of η̄ are


ζm+1(a) b . . . b︸ ︷︷ ︸
B1


[ζm+1(a)] b . . . b︸ ︷︷ ︸
B2


. . .


and writing out the above second block ζm+1(a) one gets, for the beginning of η̄,


ζm+1(a) b . . . b︸ ︷︷ ︸
B1


[ζm(a) b . . . b︸ ︷︷ ︸
B1


. . . ζm(a) b . . . b︸ ︷︷ ︸
BN


ζm(a)] b . . . b︸ ︷︷ ︸
B2


. . . .


The choice of m implies that a period block starts at position (|ζm+1(a)| + B1)
and from it, to each (|ζm(a)| + Bj)−block. As stated before this implies that Bj


are the same for all 1 ≤ j ≤ N. This contradiction shows that η̄ and η are not
ultimately periodic.


Proposition 2. The subshift dynamical system (Ωζ , T ) associated with a substitu-
tion in the ζ-class (1) is strictly ergodic.


Proof. The periodic case is well known; for the aperiodic one see Proposition 1
in [11].


In the primitive substitution case this fact is a consequence of the important
Perron-Frobenius Theorem (for details see [22], Sections V.3–V.5), which does not
apply to our case and a specific proof of strictly ergodicity was necessary (see also
the remark at the end of this section for another proof than the one referred to
above).
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The above propositions are important to conclude


Proposition 3. If ζ is aperiodic (e.g., as in Proposition 1), then σac(Hω) = ∅, for
all ω ∈ Ωζ .


Proof. See Proposition 2 in [11].


Due to results of [20], in order to establish Cantor spectrum with null Lebesgue
measure for the one-dimensional Hamiltonian with aperiodic ζ-class potentials, it
is sufficient to verify that these substitutions are linearly repetitive, i.e., for each of
them there exists a C > 0 such that for every n ∈ N, every finite word (also called
factor) of η of length n is a word of every factor of length Cn.


Proposition 4. Every substitution in the ζ-class is linearly repetitive.


Proof. Given ζ as in (1), set f =
∑N+1


i=1 Ai, h =
∑N


i=1 Bi and Rj = (f j−1)/(f−1),
so that [11]


|ζj(a)| = f j + hRj .


Therefore, there exist positive numbers s, r such that


sf j ≤ |ζj(a)| ≤ rf j , ∀j ∈ N.


By almost periodicity (which follows from minimality) there exists J > 0 for which
every factor


ηk+1ηk+2 · · · ηk+J


of η of length J contains ζ2(a). Now, given a positive integer n, take jn such that


|ζjn−1(a)| < n ≤ |ζjn(a)|.


In this way, any factor of the form


w = ζjn(ηk+1)ζjn(ηk+2) · · · ζjn(ηk+J)


contains ζjn+2(a) and hence all words of length n of η. Since


|w| ≤ |ζjn(a)| × J ≤ r


s
sf jn−1fJ ≤ r


s
|ζjn−1(a)|fJ <


r


s
nfJ


and every factor of length J |ζjn(a)| contains a word of the form w (as above), the
result is proven with C = rfJ/s.


Proof of Theorem 1: It follows readily from Proposition 4 above and Theorems 1
and 2 in [20].


Remark: As stated in [20], for such class of subshifts satisfying the linearly
repetitive condition the associated hull is strictly ergodic (see [19] for a proof). It
then follows by this result and Proposition 4 an alternative proof of Proposition 2.
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4. Uniform Results


Notice that by Proposition 1 the substitutions in (3) are aperiodic and so, by
Theorem 1, the spectra of Hω are Cantor sets of null Lebesgue measure for all ω
in the respective hulls (recall that due to strict ergodicity the spectrum, as a set,
is the same for all potentials in the hull). By Proposition 3, to conclude the proof
of Theorem 2, it remains to exclude eigenvalues of Hω, for all ω ∈ Ωζ with ζ as
in (3). This analysis is performed for each case and based on the properties of the
particular potential considered. The main tools to exclude eigenvalues uniformly
are Gordon type arguments combined with the concept of partitions.


In order to get uniform results, for the three subclasses ζ1, ζ2, ζ3, it will be
important to establish some links (i.e., morphic images; see ahead) to the Period
Doubling substitution considered in [5]. On initial considerations such links should
suffice to get uniform results, but we decide to present a detailed analysis for two
reasons: first, such links involve a uniform bound for traces maps that in principle
does not extend trivially to morphic images (here it clearly takes advantage of
the particular form of the Period Doubling trace map); second, these links were
explicitly needed only in a special instance of the partition construction, for which
we were not able to apply Proposition 5(b), and such instance have also been the
only obstacle we have gotten while trying to get uniform results for still other cases
of the ζ-substitution, and we want to make this occurrence clear for the interested
reader (hopefully, someone could use it to obtain uniform results for all substitutions
in the ζ-class).


We recall that given ω ∈ Ω (in an arbitrary “hull”) and E ∈ R, we can construct
a solution of the formal difference equation


(Hωψ)n = ψn+1 + ψn−1 + ωnψn = Eψn(4)


by using the transfer matrix formalism(
ψn+1


ψn


)
=


(
E − ωn −1
1 0


) (
ψn


ψn−1


)


and hence(
ψn+1


ψn


)
=


(
E − ωn −1
1 0


)
. . .


(
E − ω1 −1
1 0


)
︸ ︷︷ ︸


ME(ω,n)


(
ψ1


ψ0


)
,


where ME(ω, n) is the transfer matrix from zero to n.
In the next proposition we state the two Gordon type arguments cited above


(for proofs see [8, 24]):


Proposition 5. For fixed ω ∈ Ω and E ∈ R, let ψ = 0 be a solution of (4).
(a) If there exists a sequence kn → ∞ such that ωj = ωj+kn


, for all 1 ≤ j ≤ kn,
and 0 < CE < ∞ satisfying |trME(ω, kn)| ≤ CE (trME denotes the trace of
the matrix ME), ∀kn, then ψ /∈ l2(Z), and E is not an eigenvalue of Hω.


(b) If there exists a sequence nk → ∞ such that


ωj−nk
= ωj = ωj+nk


,


for all 1 ≤ j ≤ nk, then ψ /∈ l2(Z), and E is not an eigenvalue of Hω.


An n−partition of an element ω in the hull of a bilateral ζ substitution sequence η
is a decomposition of ω in substitution blocks of the form sn = ζn(a) and b = ζn(b).
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For earlier use of partitions in related contexts see [14, 15]; more recent applications
can be found in [5, 6, 7]. We use the symbols ŝn or b̂ to denote the block of the
n−partition that contains the zero index term of ω, and we call it the zero-block.
A Bj−block in an n−partition will be called isolated for the (n + 1)−partition if
it remains a partition block for the (n + 1)−partition. For example, the b below is
isolated for the 1−partition associated to ζ2 in (3) (here B1 = b)


. . . a a b a a︸ ︷︷ ︸
s1


a a b a a︸ ︷︷ ︸
s1


b a a b a a︸ ︷︷ ︸
s1


a a b a a︸ ︷︷ ︸
s1


. . .


Proposition 6. Given a substitution ζ as in (3), for each ω ∈ Ωζ there is a unique
n−partition for all integer n ≥ 0.


Proof. First we discuss existence, and afterwards the uniqueness. Since a bilat-
eral substitution sequence generated by a substitution rule in the ζ-class satisfies
ζn(η) = η (because they begins and ends with a), it is clear the existence of an
n−partition for η, the same occurring for all translations T jη of η. Due to the
metric d defined in AZ, for ω = limj→∞ Tnj η, for each N ∈ N there exists nk such
that for all nj ≥ nk we have ωl = ηnj+l, |l| ≤ N, i.e., ω and Tnj η coincide in the
interval {−N, . . . , N} ⊂ Z; thus, existence of the n−partition for Tnj η for all j
implies existence of n−partition for all ω ∈ Ωζ .


The uniqueness for the 0−partition is clear for each ω ∈ Ωζ (the proper ω).
Close inspection shows that for each substitution in (3) the positions of the sn in
the n−partition uniquely determine the positions of the sn+1 blocks in the (n +
1)−partition of ω, and uniqueness follows by induction.


Just for sake of clarity, for ζ1, ζ2 and ζ3 in (3), we restrict the details of the proof
of Theorem 2 to the specific cases


ζ1(a) = abaaba, ζ2(a) = aabaa, ζ3(a) = ababbaba,


respectively. In each case we fix ω ∈ Ωζ , E ∈ R and let ψ be a nonzero solution of
equation (4). Then for an n−partition we discuss all possibilities for the zero-block
position and analyze the local symmetries of the potential around it. If at least
one of the possible cases of block repetitions in Proposition 5, i.e., two-blocks with
uniform bound traces in (a) and three-blocks repetitions in (b), occurs for infinitely
many partitions, we conclude that such a solution is not square-summable. Below
we will indicate, for each possibility, if either (a) or (b) in Proposition 5 is applicable.


4.1. The ζ1 substitution: We begin with some simple and important properties
of the elements in Ωζ1 (extended to the blocks sn and b of the partitions):


• the “a-blocks” are either a or aa;
• in the factor bab, one of the b’s is isolated for the 1−partition.
Case 1: The zero-block for the n−partition is a b.
Case 1.1: The b−block is isolated for the (n+1)−partition. Expanding the blocks


around it, as indicated below, one sees the presence of a three-block repetitions.
If this occurs for infinitely many partitions then Proposition 5(b) (reflected at the
origin) can be applied


. . .


sn+1︷ ︸︸ ︷
sn b sn sn b︸︷︷︸ sn b̂︸︷︷︸ · sn b︸︷︷︸


sn+1︷ ︸︸ ︷
sn sn b sn . . .
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Case 1.2: The b−block is not isolated. In this case it may occur:
Case 1.2.1: sn bsn b̂ sn sn b sn. Again by using Proposition 5(b) (reflected at the


origin):


. . .


sn+1︷ ︸︸ ︷
sn b sn sn b sn︸︷︷︸b sn︸︷︷︸ b̂·sn︸︷︷︸


ŝn+1︷ ︸︸ ︷
sn b sn . . .


Analogously for sn b sn sn b̂ sn b sn.
Case 1.2.2: sn sn b̂ sn sn. As indicated, we can use Proposition 5(b)


. . .


ŝn+1︷ ︸︸ ︷
sn b sn sn︸ ︷︷ ︸ b̂·sn sn︸ ︷︷ ︸ b sn sn︸ ︷︷ ︸


sn+1︷ ︸︸ ︷
b sn . . .


Similarly for sn b sn sn b sn sn b̂ · sn snb sn.


Case 2: The zero-block is a sn. By the structure of η we have the following
possibilities:


Case 2.1: b ŝn b. In this case the left or the right b is isolated for the (n + 1) -
partition. Suppose that is the left b. Thus,


. . .


sn+1︷ ︸︸ ︷
sn b sn sn b︸︷︷︸sn b︸︷︷︸ŝn b︸︷︷︸


ŝn+1︷ ︸︸ ︷
sn sn b sn . . .


and we can apply Proposition 5(b).
Case 2.2: b ŝn sn b (analogously for b sn ŝn b). We subdivide this case in the


following subcases (depending on the potential structure around ŝn):
Case 2.2.1: b ŝn+1 b, that is the case 2.1 above.
Case 2.2.2: ŝn+1 sn+1 and ŝn is a final block of sn+1,


. . .


ŝn+1︷ ︸︸ ︷
sn b sn sn b︸ ︷︷ ︸̂sn sn b︸ ︷︷ ︸


sn+1︷ ︸︸ ︷
sn sn b︸ ︷︷ ︸sn . . .


and we apply Proposition 5(b) as indicated.
Case 2.2.3: ŝn+1 sn+1 and ŝn is not a final block for sn+1 (similarly for sn+1 ŝn+1),


. . .


sn+1︷ ︸︸ ︷
sn b sn sn b sn b︸︷︷︸


ŝn+1︷ ︸︸ ︷
sn b︸︷︷︸ŝn sn b︸ ︷︷ ︸sn sn b︸ ︷︷ ︸


sn+1︷ ︸︸ ︷
sn sn b sn . . .


In this case, due to the lack of symmetry around ŝn, we cannot apply Proposi-
tion 5(b). An alternative is to find explicitly bounds for the trace map, but this
was not possible in this case. The way that we found to get round this diffi-
culty was an identification between ζ1 and the Period Doubling ξpd substitution
(α �→ αβ; β �→ αα):


Lemma 1. Defining J (α) = abaabab, J (β) = abaaba, extended in the natural way
to {α, β}∗ and {α, β}Z, then the following relations hold


J (ξ2n−1
pd (α)) = ζn


1 (a)bζn
1 (a) and J (ξ2n−1


pd (β)) = ζn
1 (a)bζn


1 (a)b;


J (ξ2(n−1)
pd (α)) = ζn


1 (a)b and J (ξ2(n−1)
pd (β)) = ζn


1 (a).


Proof. An induction argument.
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By using Lemma 1, we can decompose η (and hence all ω ∈ Ωζ1) in suitable
Period Doubling substitution blocks:


. . . abaabab︸ ︷︷ ︸
α


abaaba︸ ︷︷ ︸
β


abaabab︸ ︷︷ ︸
α


abaaba︸ ︷︷ ︸
β


· abaabab︸ ︷︷ ︸
α


abaaba︸ ︷︷ ︸
β


abaabab︸ ︷︷ ︸
α


abaabab︸ ︷︷ ︸
α


abaabab︸ ︷︷ ︸
α


. . .


I.e., it is a way of “walking” over η, which will provide the necessary uniform trace
bounds to apply Proposition 5(a). Define


xn(E) = tr(ME(J (ξn
pd(α))), yn(E) = tr(ME(J (ξn


pd(β))).


Here, the transfer matrix ME(v) of a finite word v is defined in the usual way. For
n ∈ N, let the periodic ηn be given by


ηn = . . .J (ξn
pd(α)) · J (ξn


pd(α)) . . . .(5)


By Lemma 1 and a direct calculation, each ηn contains a square ζs(a)ζs(a) with
s ≥ n/2 − 1. Thus, there exists a sequence (k(n)) in N such that the operators
Hn = HT k(n)ηn


converge in the strong sense to Hη. By standard arguments this
implies


σ(Hη) ⊂
⋃
k≥n


σk


for every n ∈ N, where the bar denotes the closure in R and σk is the spectrum
of Hk. As Hk is periodic, σk = {E : |xk(E)| ≤ 2}, and thus


σ(Hη)c ⊃ int



 ⋂


k≥n


{E : |xk(E)| > 2}






for every n ∈ N, where int S denotes the interior of S ⊂ R and the Sc denotes the
complement of S. By definition of J and xk, yk, the recursion relations (1.9) of [2]
hold for xn, yn.


These relations and the proof of Lemma 1 in [2] show that |xk(E)| > 2 for all
k ≥ n whenever |xn(E)| > 2 and |xn+1(E)| > 2. Thus, the set⋂


k≥n


{E : |xk(E)| > 2} = {E : |xn(E)| > 2} ∩ {E : |xn+1(E)| > 2}


is open (as E �→ xk(E) is continuous). Putting this together, we arrive at


σ(Hη)c ⊃ {E : |xn(E)| > 2} ∩ {E : |xn+1(E)| > 2}
for every n ∈ N. This shows that


|xn(E)| ≤ 2 or |xn+1(E)| ≤ 2


holds for every E ∈ σ(Hη) and n ∈ N.
Now, in case 2.2.3, adjacent to zero to the right, there appears a square vv with


v being a cyclic permutation of snbsn = J (ξ2n−1
pd (α)). Adjacent to zero to the left,


there appears a square ww of a cyclic permutation w of snb = J (ξ2(n−1)
pd (α)) (see


the sketched partitions at the beginning of the discussion on case 2.2.3). By the
above reasoning at least one of the corresponding traces x2(n−1)(E) and x2n−1(E)
is bounded in modulus by 2 and we are in the situation of Proposition 5(a) (either
to the left or to the right).
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4.2. The ζ2 substitution: The elements of Ωζ2 satisfies the properties (that can
be extended to the blocks sn and b):


• a always appears in the form aa or aaaa;
• in the factor baab, one of the b’s is isolated for the 1−partition.
Case 1: The zero-block for the n−partition is a b-block.
We subdivide this case in the following two:
Case 1.1: b is isolated for the (n + 1)−partition, i.e., the zero-block of the


(n + 1)−partition is a b-block. In this case, passing to the (n + 1)−partition


. . .


sn+1︷ ︸︸ ︷
sn sn b︸ ︷︷ ︸ sn sn b̂︸ ︷︷ ︸ ·


sn+1︷ ︸︸ ︷
sn sn b︸ ︷︷ ︸sn sn . . . .


and we can apply Proposition 5(b) (reflected at the origin).
Case 1.2: b is not isolated for the (n + 1)−partition, i.e., the zero-block of the


(n + 1)−partition is a sn+1-block. Now we have the following subcases:
Case 1.2.1: sn+1 ŝn+1 b (or b ŝn+1 sn+1) and we apply Proposition 5(b) as


indicated


. . .


sn+1︷ ︸︸ ︷
sn sn b sn sn


ŝn+1︷ ︸︸ ︷
sn sn b̂︸ ︷︷ ︸ ·sn sn b︸ ︷︷ ︸


sn+1︷ ︸︸ ︷
sn sn b︸ ︷︷ ︸sn sn. . . .


Case 1.2.2: sn+1 ŝn+1 sn+1 sn+1 (or sn+1 sn+1 ŝn+1 sn+1) and we apply Propo-
sition 5(b) as indicated


. . .


sn+1︷ ︸︸ ︷
sn sn b sn sn sn sn︸ ︷︷ ︸


ŝn+1︷ ︸︸ ︷
b̂ · sn sn sn sn︸ ︷︷ ︸


sn+1︷ ︸︸ ︷
b sn sn sn sn︸ ︷︷ ︸


sn+1︷ ︸︸ ︷
b sn sn . . .


Case 2: The zero-block to the n−partition is sn.
We divide this case in the following:
Case 2.1: sn ŝn sn. Analogous to the case 1.2.2.
Case 2.2: bŝnsnb. One of the b’s is isolated for the (n + 1)−partition. Suppose


that is the left b. Passing to the (n + 1)−partition


. . .


sn+1︷ ︸︸ ︷
sn sn b︸ ︷︷ ︸snsn b︸ ︷︷ ︸


ŝn+1︷ ︸︸ ︷
ŝn sn b︸ ︷︷ ︸sn sn . . .


and we are in the conditions of Proposition 5(b) (reflected at the origin). The
argument is symmetric to the isolated b position. The case bsnŝnb is similar.


Case 2.3: b ŝn sn sn sn b. Passing to the (n + 1)−partition we obtain ŝn+1sn+1


and have the following cases to analyze:
Case 2.3.1: sn+1 ŝn+1 sn+1, that is the case 2.1 above.
Case 2.3.2: b ŝn+1 sn+1 b, that is the case 2.2.
Case 2.3.3: b ŝn+1 sn+1 sn+1 sn+1 b, that is again the case 2.3 that we are


dealing with. We shall use the following decomposition:


. . .


sn+1︷ ︸︸ ︷
sn sn b snsn b︸ ︷︷ ︸


ŝn+1︷ ︸︸ ︷
sn sn b︸ ︷︷ ︸̂sn︸︷︷︸sn︸︷︷︸


sn+1︷ ︸︸ ︷
sn sn b sn sn . . .


If it happens for all n−partition starting from a n0, we cannot use Proposi-
tion 5(b). To conclude this case we identify ζ2 with the Period Doubling ξpd as in
the following lemma:
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Lemma 2. Defining J (α) = aab, J (β) = aa, extended in the natural way to {α, β}∗
and {α, β}Z, then the following relations hold


J (ξ2n−1
pd (α)) = ζn


2 (a) and J (ξ2n−1
pd (β)) = ζn


2 (a)b;


J (ξ2n
pd (α)) = ζn


2 (a)ζn
2 (a)b and J (ξ2n


pd (β)) = ζn
2 (a)ζn


2 (a).


By Lemma 2 and a direct calculation, each periodic approximation of η (as in (5))
contains a square ζs(a)ζs(a) with s ≥ n/2 − 1. We conclude the proof as in the
case 2.2.3 for ζ1, with a square adjacent to the right of zero of a cyclic permutation
of sn = J (ξ2n−1


pd (α)) and to the left of zero a square of a cyclic permutation of
snsnb = J (ξ2n


pd (α)).


4.3. The ζ3 substitution: For the substitution ζ3, ηn must be defined by (see,
for instance, equation (2))


ηn = . . . ζn
3 (a)b · ζn


3 (a)b . . . .


The elements of Ωζ3 satisfy (as well as all sn and b blocks for the correspondent
partition):


• in the factor ababa one of b′s is isolated for the 1−partition;
• in the factor bbab just bb can be isolated for the 1−partition.
Case 1: The zero-block to the n−partition is sn.
We divide this case in the following:
Case 1.1: sn b ŝn b sn. If the right b is isolated for the (n + 1)−partition, then


. . .


ŝn+1︷ ︸︸ ︷
sn b sn b b sn b︸︷︷︸̂sn b︸︷︷︸sn b︸︷︷︸sn


sn+1︷ ︸︸ ︷
b b sn b sn . . .


and we can apply Proposition 5(b) as indicated (analogous if the left b is isolated).
Case 1.2: b b ŝn b, with b b isolated for the (n + 1)−partition. In this case


. . .


sn+1︷ ︸︸ ︷
snb sn b b︸ ︷︷ ︸sn b sn bb︸ ︷︷ ︸


ŝn+1︷ ︸︸ ︷
ŝn b sn b b︸ ︷︷ ︸sn b sn . . .


and we use Proposition 5(b) as indicated. The case b sn b b with b b isolated for the
(n + 1)−partition is analogous.


Case 1.3: b b ŝn b, with b b not isolated for the (n + 1)−partition. In this case,
passing to the (n + 1)−partition it may occur:


Case 1.3.1: sn+1 b ŝn+1 b sn+1 that is the case 1.1.
Case 1.3.2: b ŝn+1 b b and we can use Proposition 5(b) as indicated


. . .


sn+1︷ ︸︸ ︷
snb sn b b︸ ︷︷ ︸̂sn b sn bb︸ ︷︷ ︸


ŝn+1︷ ︸︸ ︷
sn b sn b b︸ ︷︷ ︸sn b sn . . .


Case 1.3.3: b b ŝn+1 b that is the proper case 1.3. We shall use the following
decomposition:


. . . snb sn b bsn b sn bb︸ ︷︷ ︸
ŝn+1︷ ︸︸ ︷


sn b sn b b︸ ︷︷ ︸̂sn b︸︷︷︸sn b︸︷︷︸sn b sn


sn+1︷ ︸︸ ︷
b b sn b sn . . .


If it occurs for all n−partition from some n0, we cannot use Proposition 5(b).
In this case we decompose ζ3 in Period Doubling potential blocks as follows:
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Lemma 3. Defining J (α) = ababb, J (β) = abab, extended in the natural way
to {α, β}∗ and {α, β}Z, then the following relations hold


J (ξ2n−1
pd (α)) = ζn


3 (a)b and J (ξ2n−1
pd (β)) = ζn


3 (a)bb;


J (ξ2n
pd (α)) = ζn


3 (a)bζn
3 (a)bb and J (ξ2n


pd (β)) = ζn
3 (a)bζn


3 (a)b.


By Lemma 3 and a direct calculation, each periodic approximation of η (as in (5))
contains a square ζs(a)bζs(a)b with s ≥ n/2 − 1. We conclude the proof as in the
case 2.2.3 for ζ1, with a square adjacent to the right of zero of a cyclic permutation
of snb = J (ξ2n−1


pd (α)), and to the left of zero a square of a cyclic permutation of
snbsnbb = J (ξ2n


pd (α)).
Case 2: The zero-block is a b−block.
Case 2.1: sn b̂ sn where b is isolated. We can use Proposition 5(b) as indicated


. . . sn b sn b b sn b sn b̂︸︷︷︸ ·
sn+1︷ ︸︸ ︷


sn b︸︷︷︸ sn b︸︷︷︸ b sn b sn . . .


Case 2.2: sn b̂ b sn where b b is isolated (analogous for sn b b̂ sn). Proposition 5(b)
can be applied as follows


. . . sn b sn b b sn b sn b̂︸ ︷︷ ︸ ·b sn b sn b︸ ︷︷ ︸ b sn b sn b︸ ︷︷ ︸ . . .


Case 2.3: sn b̂ sn where b is not isolated or the cases sn b b̂ sn and sn b̂ b sn with
b b not isolated, reverts to case 1.


This concludes the analysis for the ζ3 substitution and the proof of Theorem 2.
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