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Abstract. In this paper we show that a result of Gross and Kuelbs, used


to study Gaussian measures on Banach spaces, makes it possible to construct


an adjoint for operators on separable Banach spaces. This result is used to


extend well known theorems of von Neumann and Lax. We also partially solve


an open problem on the existence of a Markushevich basis with unit norm and


prove that all closed densely defined linear operators on a separable Banach


space can be approximated by bounded operators. This last result extends a


theorem of Kaufman for Hilbert spaces and allows us to define a new metric for


closed densely defined linear operators on Banach spaces. As an application, we


obtain a generalization of the Yosida approximator for semigroups of operators.


Introduction


One of the greatest impediments to the development of a theory of operators on


Banach spaces that parallels the corresponding theory on Hilbert spaces is the lack


of a suitable notion of an adjoint operator for these spaces. It is an interesting fact


of history that the tools needed were being developed in probability theory during


the time of greatest need.


It was in 1965, when Gross [G] first proved that every real separable Banach


space contains a separable Hilbert space as a dense embedding, and this (Banach)


space is the support of a Gaussian measure. Gross’ theorem was a far reaching


1991 Mathematics Subject Classification. Primary (45) Secondary(46) .


Key words and phrases. Adjoints, Banach space embeddings, Hilbert spaces.


1







2 GILL, BASU, ZACHARY, AND STEADMAN


generalization of Wiener’s theory, which was based on the use of the (densely em-


bedded Hilbert) Sobolev space H1[0, 1] ⊆ C[0, 1]. Later, Kuelbs [K] generalized


Gross’ theorem to include the fact that H1[0, 1] ⊆ C[0, 1] ⊆ L2[0, 1]. This Gross-


Kuelbs theorem can be stated for our purposes as:


Theorem 1. (Gross-Kuelbs) Suppose B is a separable Banach space. Then there


exist separable Hilbert spaces H1,H2 and a positive trace class operator T12 defined


on H2 such that H1 ⊆ B ⊆ H2 (all as continuous dense embeddings), and T12


determines H1 when B and H2 are given.


Purpose


The purpose of this paper is to show that the Gross-Kuelbs theorem makes it


possible to give an essentially unique definition of the adjoint for operators on sepa-


rable Banach spaces. This definition has all the expected properties. In particular,


we show that, for each bounded linear operator A, there exists A∗, with A∗A


maximal accretive, self adjoint (A∗A)∗ = A∗A, and I + A∗A is invertible.


Although our main interest is in the construction of a generalized Yosida ap-


proximator for semigroups of operators that will be used elswhere, this adjoint has


a number of important implications for other aspects of operator theory. As a sam-


pling, we provide generalizations of theorems due to von Neumann [VN], Lax [L],


and Kaufman [Ka] to Banach spaces. We also partially solve an open problem on


the existence of a Markushevich basis with unit norm.


Background


In what follows, we let L[B], L[H] denote the bounded linear operators on B,


H respectively. By a duality map, φx, defined on B, we mean any linear functional
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φx ∈ {f ∈ B
′ | < x, f >= ‖x‖2


B, x ∈ B}, where < . > is the natural pairing between


a Banach space and its dual. Let J : H −→ H′ be the standard conjugate isomor-


phism between a Hilbert space and its dual, so that < x,J(x) >= (x, x)H = ‖x‖2
H.


We define the special duality map of B associated with H by:


φs
x =


‖x‖2
B


‖x‖2
H


J(x).


It is easy to check that φs
x is a duality map for B. A closed densely defined


operator A is called maximal accretive if < Ax, φx >≥ 0 for all x ∈ D(A) and A


has no proper extension. The following results due to von Neumann [VN] and Lax


[L] are listed for reference.


Theorem 2. (von Neumann) For any closed densely defined linear operator A on


a Hilbert space H, the operators A∗A and I + A∗A are selfadjoint, and I + A∗A


has a bounded inverse.


Theorem 3. (Lax) Let H2 be given so that B ⊆ H2 densely. If A is a bounded lin-


ear operator on B such that A is selfadjoint (i.e., (Ax, y)H2 = (x,Ay)H2 ∀x, y,∈


B ), then A is bounded on H2 and ‖A‖H2 ≤ ‖A‖B.


Main Results


Let us fix H1,H2 such that H1 ⊆ B ⊆ H2 as continuous dense embeddings,


and, without loss of generality, assume that for x ∈ H1, ‖x‖2 ≤ ‖x‖B ≤ ‖x‖1.


The first result is not new and is, in fact, well known. We present it because the


proof is new and uses specific information about the relationship between B and


H2.
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Theorem 4. Every closed densely defined linear operator on B extends to a closed


densely defined linear operator on H2.


Proof. Let J2 : H2 −→ H′
2 denote the standard conjuate isomorphism. Then,


as B is strongly dense in H2, J2[B] ⊂ H′
2 ⊂ B′ is (strongly) dense in H′


2. If A


is any closed densely defined linear operator on B with domain D(A), then A′


(the B adjoint of A) is closed on B′. In addition, A
′ |H′


2
is closed and, for each


x ∈ D(A), J2(x) ∈ H′
2 and < Ay,J2(x) > is well defined ∀y ∈ D(A). Hence


J2(x) ∈ D(A′) for all x ∈ D(A). Since J2(B) is strongly dense in H′
2, this implies


that J2(D(A′)) ⊂ D(A′) is strongly dense in H′
2 so that D(A′)


∣∣
H′


2
is strongly


dense in H′
2. Thus, as H2 is reflexive,


[
A′ ∣∣


H′
2


]′ is a closed densely defined operator


on H2.


In the next theorem, we prove that every bounded linear operator A on B has


a well defined adjoint. The result is actually true for any closed densely defined


linear operator on B but, in this case, for each A we must have H1 ⊆ D(A) so, in


general, a different H1 is required for each operator. It should also be noted that,


although H1 and H2 are required to obtain our adjoint, it is not hard to show that


any two adjoint operators for A will differ by a similarity transformation of unitary


operators (see Theorem 11).


Theorem 5. Let B be a separable Banach space with A ∈ L[B]. Then there exists


A∗ ∈ L[B] such that:


1. A∗A is maximal accretive.


2. (A∗A)∗ = A∗A, and


3. I + A∗A has a bounded inverse.
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Proof. If we let Ji : Hi → H′
i, (i = 1, 2), then A1 = A|H1 : H1 −→ H2, and


A′
1 : H′


2 −→ H′
1.


It follows that A′
1J2 : H2 −→ H′


1 and J−1
1 A′


1J2 : H2 → H1 ⊂ B so that, if


we define A∗ = [J−1
1 A′


1J2]B, then A∗ : B → B (i.e., A∗ ∈ L[B]).


To prove 1, J′
i = Ji and, if x ∈ B, then 〈A∗Ax,J2(x)〉 = 〈Ax, (A∗)′J2(x)〉.


Using the above definition of A∗, we get that (A∗)′J2(x) = {[J−1
1 A′


1J2]B}
′
J2(x) =


[J2A1J−1
1 ]J2(x) = J2(A1x). Since, for x ∈ H1, A1x = Ax and


〈A∗Ax, φs
x〉 =


‖x‖2
B


‖x‖2
2


〈Ax,J2(A1x)〉 =
‖x‖2


B


‖x‖2
2


‖Ax‖2
2 ≥ 0,


we have that A∗A is accretive on a dense set. Thus, A∗A is accretive on B. It is


maximal accretive because it has no proper extension.


To prove 2, we have that for x ∈ H1,


(A∗A)∗x = ({J−1
1 [{[J−1


1 A′
1J2]|BA}1]′J2}|B)x


= ({J−1
1 [{A′


1[J2A1J−1
1 ]|B}]J2}|B)x


= A∗Ax.


It follows that the same result holds on B.


Finally, the proof that I + A∗A is invertible follows the same lines as in von


Neumann’s theorem.


Theorem 6. Every bounded linear operator on B extends to a bounded linear op-


erator on H2 and ‖A‖2
H2


≤ C‖A‖2
B for some constant C.


Proof. : For any bounded linear operator A defined on B, let T = A∗A. By


Theorem 1, T extends to a closed linear operator T on H2. As T is selfadjoint on
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B , by Lax’s theorem, T is bounded on H2 and ‖A∗A‖H2 = ‖A‖2
H2


≤ ‖A∗A‖B ≤


C‖A‖2
B, where C = inf{M | ‖A∗A‖B ≤ M‖A‖2


B}.


It should be noted that, in general, ‖A∗A‖B �= ‖A‖2
B and (AB)∗x �= B∗A∗x.


Thus, as expected, there are some important differences compared to the corre-


sponding operator results in Hilbert spaces. On the other hand, we can give a


natural definition of orthogonality for subspaces of a Banach space.


Definition 7. Let U and V be subspaces of B. We say that U is orthogonal to V


if, ∀x ∈ U, 〈y, ϕs
x〉 = 0 ∀y ∈ V.


The above definition is transparent if we note that 〈y, φs
x〉 = 0 ∀y ∈ V ⇔


〈y, J2(x)〉 = 0 ∀y ∈ V.


The next result is easy to prove.


Lemma 8. If U is orthogonal to V, then V is orthogonal to U.


Definition 9. A biorthogonal system {xn, x∗
n|n ≥ 1} is called a Markushevich basis


for B if the span of the xn is dense in B and the span of the x∗
n is weak* dense in


B′.


Pelczynski [P] has shown that, for every separable Banach space B and each


ε > 0, B has a Markushevich basis such that ‖xn‖‖x∗
n‖ ≤ 1 + ε. Diestel ([D], pg.


56) notes that the question of whether it is possible to require that ‖xn‖ = 1 = ‖x∗
n‖


is open. In the next theorem, we show that, if B has a basis for a dense subspace,


it has a Markushevich basis with unit norm.
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Theorem 10. Let B be a separable Banach space with a basis for a dense subspace.


If this basis is normalized and monotone with respect to the B norm, then B has a


Markushevich basis {xn, x∗
n|n ≥ 1} such that ‖xn‖B = 1 = ‖x∗


n‖B′ .


Proof. (A basis is monotone if y =
∑


aixi, then
∥∥∥∥


m∑
i=1


aixi


∥∥∥∥
B


≤
∥∥∥∥


m+n∑
i=1


aixi


∥∥∥∥
B


for


m, n ≥ 1.)


Let {xn|n ≥ 1} be a complete orthogonal basis for H1 with ‖xn‖B = 1. If we


now define x∗
n = ϕs


n = J2(xn)
‖xn‖2


H2


, then it is easy to check that 〈xi, x
∗
j 〉 = δij . By


definition, the span of the family {xn|n ≥ 1} is dense in B and it is also easy to see


that the span of the family {x∗
n, n ≥ 1} is weak* dense in B


′
.


To show that ‖x∗
n‖


′


B = 1, let y =
N∑


i=1


aixi, ‖y‖B ≤ 1, with N ≥ 1. Then


|〈y, ϕs
n〉| ≤ |an| ≤ ‖y‖B ≤ 1, so that ‖ϕs


n‖B = sup
‖y‖B≤1


|〈y, ϕs
n〉| ≤ 1. We are done


since 〈xn, ϕs
n〉 = 1 .


It is clear that much of the operator theory on Hilbert spaces can be extended


to separable Banach spaces in a straightforward way. To get a flavor, we give a few


of the more interesting results. Since the proofs are easy, we omit them. In what


follows, all definitions are the same as in the case of a Hilbert space.


Theorem 11. Let A ∈ L[B].


1. The set N(B) of all bounded normal operators on B is a closed subset of L[B].


2. If A is unitary on B, then there exists a selfadjoint operator W, and A =


exp(iW).


APPLICATION: THE YOSIDA APPROXIMATOR


If A is the generator of a strongly continuous semigroup T (t) = exp(tA) on


B, then the Yosida approximator for A is defined by Aλ = λAR(λ,A), where
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R(λ,A) = (λI −A)−1 is the resolvent of A. In general, A is closed and densely de-


fined but unbounded. The Yosida approximator Aλ is bounded, converges strongly


to A, and Tλ(t) = exp(tAλ) converges strongly to T (t) = exp(tA). If A generates


a contraction semigroup, then so does Aλ (see Pazy [Pz]). This result is very useful


for applications. Unfortunately, for general semigroups, A may not have a bounded


resolvent. Furthermore, it is very convenient to have a contractive approximator.


As an application of the theory in the previous section, we will show that the Yosida


approach can be generalized in such a way as to give a contractive approximator


for all strongly continuous semigroups of operators on B.


For any closed densely defined linear operator A on B, let T = −[A∗A]1/2, T̄ =


−[AA∗]1/2. Since −T(−T̄) is maximal accretive, T(T̄) generates a contraction


semigroup. We can now write A as A = UT, where U is a partial isometry


(since the extension is valid on H2, the restriction is true on B). Define Aλ by


Aλ = λAR(λ,T). Note that Aλ = λUTR(λ,T) = λ2UR(λ,T)−λU and, although


A does not commute with R(λ,T), we have λAR(λ,T) = λR(λ, T̄)A.


Theorem 12. For every closed densely defined linear operator A on B, we have


that


1. Aλ is a bounded linear operator and limλ→∞ Aλx = Ax,∀x ∈ D(A),


2. exp[tAλ] is a bounded contraction for t > 0, and


3. if A generates a strongly continuous semigroup T (t) = exp[tA] on D for


t > 0, D(A) ⊆ D, then limλ→∞ ‖exp[tAλ]x − exp[tA]x‖B = 0 ∀x ∈ D.


Proof. : To prove 1, let x ∈ D(A). Now use the fact that limλ→∞ λR(λ, T̄)x =


x and Aλx = λR(λ, T̄)Ax. To prove 2, use Aλ = λ2UR(λ,T) − λU ,
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‖λR(λ,T)‖B = 1, and ‖U‖B = 1 to get that ‖exp[tλ2UR(λ,T) − tλU ]‖B ≤


exp[−tλ‖U‖B] exp[tλ‖U‖B‖λR(λ,T)‖B] ≤ 1.


To prove 3, let t > 0 and x ∈ D(A). Then


‖ exp [tA]x − exp [tAλ]x‖B = ‖
∫ t


0


d


ds
[e(t−s)AλesA]xds‖B


≤
∫ t


0


‖[e(t−s)Aλ(A − Aλ)esAx]‖B


≤
∫ t


0


‖[(A − Aλ)esAx]‖Bds.


Now use ‖[AλesAx]‖B = ‖[λR(λ, T̄)esAAx]‖B ≤ ‖[esAAx]‖B to get


‖[(A − Aλ)esAx]‖B ≤ 2‖[esAAx]‖B. Now, since ‖[esAAx]‖B is continuous, by


the bounded convergence theorem we have limλ→∞ ‖exp[tA]x − exp[tAλ]x‖B ≤
∫ t


0
limλ→∞ ‖[(A − Aλ)esAx]‖Bds = 0.


CONCLUSION


The first part of Theorem 12 is a generalization of a result of Kaufman [Ka].


This allows us to provide a new metric for closed densely defined linear operators


on Banach spaces. If A, B are closed and densely defined, we can define our metric


by d (A, B) = ‖A0 − B0‖ , A0 = A (1 + A∗A)−
1
2 , B0 = B (1 + B∗B)−


1
2 .


The Hille-Yosida Theorem for contraction semigroups gives necessary and suffi-


cient conditions for a closed densely defined linear operator to be a generator. The


general strongly continuous case may be reduced to the contraction case by shifting


the spectrum and using an equivalent norm. The second part of Theorem 12 may


be viewed as an improvement in the sense that, by using the approximator, this


procedure is no longer required.
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