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Abstract. In this paper, we present a review of our recent results on spectral properties of adiabatic
quasi-periodic Schrödinger equations. We describe new spectral phenomena and explain them in terms
of simple semi-classical heuristics.


Résumé. Cet article présente certains de nos résultats récents sur des propriétés spectrales des
équations de Schrödinger quasi-périodiques. Nous décrivons de nouveaux phénomènes spectraux et
les interprétons grâce à une heuristique semi-classique


0. Introduction


The purpose of this paper is to present recent results on the spectral theory of the following
family of differential equations


(0.1) Hz,εψ = − d2


dx2
ψ(x) + [V (x− z) +W (εx)]ψ(x) = Eψ(x), x ∈ R,


where


(H): • W (z) = α cos(z), α > 0,
• V is a non constant 1-periodic function in L2


loc(R),
• ε is fixed positive number,
• z is a real parameter indexing the equations of the family.


Our study is done in the adiabatic limit i.e. when ε tends to 0. This means that the potential V is
oscillating at speed 1 and the potential W (ε·) is oscillating very slowly at speed ε/2π.


When studying the nature of the spectrum, we pick ε so that 2π/ε be irrational. In this case, the
potential V (· − z) + W (ε·) becomes quasi-periodic. Quasi-periodic equations have been intensively
studied during the last 30 years (see e.g. [17, 20]) and they are suspected (and in some rare cases
known) to have very peculiar spectral characteristics (Cantor spectrum, spectral transitions, etc).


The results we describe were obtained in [13, 12, 10, 7, 11]. The object central to our study is the
monodromy matrix that we describe now.


0.1. The monodromy matrix. Consider a consistent basis (ψ1,2) i.e. a basis of solutions of (0.1)
whose Wronskian is independent of z and that are 1-periodic in z i.e.


(0.2) ψ1,2(x, z + 1) = ψ1,2(x, z), ∀x, z.
The functions ψ1,2(x+ 2π/ε, z + 2π/ε) being solutions of equation (0.1), one can write


(0.3) Ψ (x+ 2π/ε, z + 2π/ε) = M (z) Ψ (x, z),


where


• Ψ is the vector ΨT (x, z) = (ψ1(x, z), ψ2(x, z)), T being the symbol of transposition,
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• M (z) is a 2× 2 matrix with coefficients independent of x.


The matrix M is called the monodromy matrix associated to the consistent basis (ψ1,2). More details
and results on the monodromy matrix can be found in [11, 10].


For any consistent basis, the monodromy matrix satisfies


(0.4) detM (z) ≡ 1, M (z + 1) = M (z), ∀z.


The above definition of the monodromy matrix applies to any 1-d quasi-periodic equation with two
frequencies. It generalizes the definition of the monodromy matrix for one-dimensional periodic dif-
ferential equations. As the potential in (0.1) is real, it is possible to construct a monodromy matrix
of the form


(0.5) M(z, E) =


(
a(z, E) b(z, E)


b(z,E) a(z,E)


)


0.1.1. The monodromy equation. Set h =
2π


ε
mod 1. Let M be a monodromy matrix associated to a


consistent basis (ψ1,2). Consider the monodromy equation


(0.6) Fn+1 = M(z + nh)Fn ∀n ∈ Z.


We identify the vector solutions of (0.6) with functions F : Z→ C2, we denote the values of F by Fn.


There are several deep relations between the monodromy equation and the family of equations (0.1).
We describe only one of them. Let 2π/ε be irrational, and let Θ(E) (resp. θ(E)) be the Lyapunov
exponents for (0.1) (resp. for (0.6)). One proves


Theorem 0.1 ([11]). The Lyapunov exponents Θ(E) and θ(E) satisfy the relation


(0.7) Θ(E) =
ε


2π
θ(E).


The passage to the monodromy equation is close to the monodromization idea developed in [3] for
difference equations with periodic coefficients. For a detailed discussion, we refer to [11].


0.1.2. The monodromy matrix in the adiabatic limit. In the adiabatic limit i.e. when ε is small, using
the complex WKB method developed in [9], one can compute the asymptotics of monodromy matrices.
In all the cases we discuss in this review, we found the monodromy matrices to have the form


(0.8) M(z, E) = M0(E) +M1(z, E) +R


• M0(E) is constant i.e. independent of z,
• M1(z, E) is a first order trigonometric polynomial in z,
• R is a smaller order remainder term.


The matrices M0 and M1 carry information on the location and the nature of the spectrum of (0.1).
The asymptotic behavior of M0 and M1 depends on the spectral parameter. Essentially, there are
four different types of asymptotic behavior for these matrices. So, the monodromy matrix (or the
monodromy equation) gives a local (in energy) model describing the spectral properties of our initial
differential equation (0.1).


0.2. Some analytic objects related to periodic Schrödinger equations. To formulate our
results, we need to recall some information about the periodic Schrödinger operator


(0.9) (H0ψ) (x) = − d2


dx2
ψ (x) + V (x)ψ (x)


acting in L2(R).
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0.2.1. The spectrum of H0. On L2(R), the spectrum of (0.9) is absolutely continuous and consists of
spectral bands i.e. intervals [E1, E2], [E3, E4], . . . , [E2n+1, E2n+2], . . . , of the real axis such that


E1 < E2 ≤ E3 < E4 . . . E2n ≤ E2n+1 < E2n+2 ≤ . . . ,(0.10)


En → +∞, n→ +∞.(0.11)


The open intervals (E2, E3), (E4, E5), . . . , (E2n, E2n+1), . . . , are called the spectral gaps. The ends
of the bands are eigenvalues of the Schrödinger operator (0.9) with either periodic or anti-periodic
boundary conditions at the ends of the interval (0, 1). Some gaps can be closed (empty). In this
case, connected components of the spectrum are unions of spectral bands with common ends. If
E2n < E2n+1, we say that the n-th gap is open. From now on, we assume that


(O): all the gaps of the periodic operator are open.


0.2.2. The Bloch quasi-momentum. Let ψ be a solution of the periodic Schrödinger equation satisfying
the relation ψ (x + 1) = µψ (x), ∀x ∈ R, with µ independent of x. It is a Bloch solution, and µ is
the Floquet multiplier associated to ψ. Write it as µ = exp(ik); then, k is called the Bloch quasi-


momentum. The Bloch solution ψ can be represented in the form ψ(x) = eikxp(x) where x 7→ p(x) is
a 1-periodic function.


The Bloch quasi-momentum is an analytic multi-valued function of E; it has branch points at the
points E1, E2, E3, . . . , En, . . . .


Let D be a simply connected domain containing no branch points of the Bloch quasi-momentum. On
D, fix k0, an analytic single-valued branch of k. All the other single-valued branches that are analytic
in E ∈ D, are described by the formulae


(0.12) k±,l(E) = ±k0(E) + 2πl, l ∈ Z.
Consider C+, the upper half of the complex plane. There exists kp, an analytic branch of the complex
momentum that conformally maps C+ onto the quadrant {Im k > 0, Re k > 0} cut along finite
vertical slits beginning at the points πl, l = 1, 2, 3 . . . The branch kp is continuous on C+ ∪ R. It is
real and monotonically increasing along the spectrum; it maps the spectral band [E2n−1, E2n] onto
the interval [π(n− 1), πn]. On the open gaps, Im kp stays positive and has a single maximum that is
non degenerate.


0.3. The complex momentum. The central analytic object of the complex WKB method is the
complex momentum κ(ζ). It is defined in terms of the Bloch quasi-momentum of (0.9) by the formula


(0.13) κ(ζ) = k(E −W (ζ)).


The complex momentum κ is a multi-valued analytic function. Its branch points are related to the
branch points of the quasi-momentum by the relations


(0.14) El = E −W (ζ), l = 1, 2, 3, . . . ,


where (El)l≥1 are the ends of the spectral gaps of the operator H0. Each of these equations defines a
periodic sequence of branch points.


Let D be a regular domain (i.e. a simply connected domain and containing no branch points of κ).
Then, in D, one can fix κ0, an analytic branch of κ. By (0.12), all the other analytic branches are
described by the formulas


(0.15) κ±m = ±κ0 + 2πm,


where ± and m are indexing the branches.


Consider the half-strip {Im ζ ≥ 0, 0 ≤ Re ζ ≤ π}. On this strip, one defines the main branch of the
complex momentum by


κp(ζ) = kp(E −W (ζ)).
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0.3.1. The iso-energy curve. Let E(κ) be the dispersion relation associated to H0 that is the inverse
of the the Bloch quasi-momentum k. Consider the real and the complex iso-energy curves ΓR and Γ
defined by


ΓR : E(κ) +W (ζ) = E, κ, ζ ∈ R,(0.16)


Γ : E(κ) +W (ζ) = E, κ, ζ ∈ C.(0.17)


The iso-energy curves ΓR and Γ are 2π-periodic so in ζ as in κ. The curve ΓR is symmetric with
respect to the lines κ = πl, l ∈ Z and with respect to the lines ζ = πm, m ∈ Z.


The role of the real iso-energy curve for adiabatic problems is well known, see, for example [2]. Heuris-
tically, the Hamiltonian E(κ)+W (ζ) can be considered as an effective Hamiltonian for equation (0.1).
Indeed, as the potential W (εx) oscillates very slowly, one can replace the periodic Schrödinger opera-
tor H0 by its dispersion relation. This is analogous to the well known Peierls substitution.
Notice also that Γ, the complex iso-energy curve, is just the Riemann surface uniformizing κ.


0.4. A general overview. We begin with a very simple result on the asymptotic locus of the spec-
trum. Let W+ = max


x∈R
W (x) and W− = min


x∈R
W (x). Denote by Σ(ε) the spectrum of (0.1) and by


σ(H0) the spectrum of the periodic operator defined in (0.9). One has


Theorem 0.2 ([11]). Let Σ = σ(H0) +W (R) = σ(H0) + [W−,W+]. Then, one has


• ∀ε ≥ 0, Σ(ε) ⊂ Σ.
• for any K ⊂ Σ compact, there exists ε0 > 0 and C > 0 such that, ∀0 < ε < ε0 and ∀E ∈ K,


one has


Σ(ε) ∩ (E − C√ε, E + C
√
ε) 6= ∅.


We now present our results on the locus and on the nature of the spectrum of (0.1); we also
discuss the transitions between the different spectral types. To do so, we slide the energy E along
the spectral axis and study the various situation that occur. Let us discuss them very briefly. For an
energy E, consider the “window” W(E) = [E −W+, E −W−]. Theorem 0.2 already indicates that
one of the crucial characteristic governing the spectrum at an energy E is the relative position of the
interval E −W (R) with respect to the spectrum of the operator H0. One roughly has to distinguish
between 4 different cases described in Fig. 1. Essentially, each case corresponds to a different topology


��������


(a) “Band middle” model


���	���



(b) “Isolated band” model


�������


(c) “Band edge” model


��������


(d) “Two interacting bands” model


Figure 1: The four different cases


of the iso-energy curve Γ and to a different type of asymptotic behavior for the monodromy matrix.
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1. The “band middle” model


We start with describing the energy regions for the “band middle” model (see Fig. 1(a)). Let
[E2n−1, E2n] be one of the spectral bands of the periodic operator H0. We pick J ⊂ R, a compact
interval, such that


(BMM): W(E) ⊂]E2n−1, E2n[ for all E ∈ J .


Below, for the sake of definiteness, we assume that n is odd. In the case of even n, one gets similar
results.


An interval J satisfying (BMM) exists if 2α, the ”size” of the adiabatic perturbation, is smaller than
the size of the spectral band [E2n−1, E2n].


1.0.1. The real iso-energy curve. For the “band middle” model, the real iso-energy curve is described
in Fig. 2(a). On this figure, the continuous curves are connected components of ΓR.


Under the condition (BMM), the main branch of the complex momentum, κp, maps the interval [0, π]
into (π(n − 1), πn). The graph of κp on this interval is a part of γ, a connected component of ΓR.
Using the symmetry of ΓR with respect to the line ζ = π and the its 2π-periodicity in ζ, we describe
γ in Fig. 2(a). Using (0.15), one describes the other connected components of ΓR.


1.0.2. Complex loops. In Fig. 2(a), we show also dashed loops which are situated on Γ. To describe
them, we turn to Fig. 2(b). This figure shows a few points from the periodic sequences of branch
points of κp in the complex ζ-plane; these belong to the sequences of branch points closest to the real
axis, i.e. defined by El = E −W (ζl) with l = 2n− 1 and l = 2n. Along each of the loops γ̃0 and γ̃π,
κp can be analytically continued to a single valued function. This observation implies that γ̃0 and γ̃π,
are the projections of some loops in Γ; two of them, γ0 and γπ, are shown in Fig. 2(a).


1.0.3. Action integrals and phases. Let us now describe the actions and phases attached to the curves
introduced above. We define the phase integral Φ attached to the curve γ by


Φ(E) =


∫ 2π


0
[κp(ζ)− (n− 1)π]dζ.


Under the condition (BMM), the function Φ is analytic in an neighborhood of J and it is positive for
E ∈ J . Moreover, one checks that the derivative of Φ does not vanish on J . To the loops γ0 and γπ,
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(a) The iso-energy curve
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(b) The action and phase contours in the ζ-
plane


Figure 2: The geometric objects in the “band middle” case


we attach the actions


Sv,0(E) = i


∫


γ̃0


κp(ζ)dζ, Sv,π(E) = i


∫


γ̃π


κp(ζ)dζ.
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On each loop, one can choose the orientation in such a way that the attached action be positive. These
actions define a tunneling coefficient each


(1.1) tv,0(E) = exp


(
−Sv,0(E)


ε


)
and tv,π(E) = exp


(
−Sv,π(E)


ε


)


1.1. The spectral results. Before formulating our precise spectral results, we describe a simple
heuristics explaining them.


1.1.1. The heuristics. Consider the real iso-energy curve (0.16) depicted in Fig. 2(a). It consists of
connected components stretching along the axis of ζ. In our case, the variable ζ plays the role of the
coordinate in position space, while κ is the coordinate in momentum space. Standard semi-classical
“wisdom” would say that the states of our system should live near the the iso-energy curve. At the
view of Fig. 2(a), the states should extend in the position space. In Theorem 1.1, we prove that this
is essentially the case. There are some energy intervals that are not covered by Theorem 1.1: this is
due to possible tunneling in the vertical directions. The strength of this tunneling is measured by the
tunneling coefficients tv,0 and tv,π. This tunneling can lead to the appearance of gaps in the spectrum.


1.1.2. The spectral results. We prove


Theorem 1.1 ([10]). Let J be a nonempty closed interval satisfying the hypothesis (BMM). Fix
0 < σ < 1. Then, there exists D ⊂ (0, 1), a set of Diophantine numbers such that


• one has


(1.2)
mes (D ∩ (0, ε))


ε
= 1 + o (ελσ) ,


where λ is defined by


λ = exp


(
−S
ε


)
, and S = min


E∈J
min{Sv,0(E), Sv,π(E)}.


• for any ε ∈ D sufficiently small, there exists a Borel set B ⊂ J of small measure


mes (B)


mes (J)
= O(λσ/2),


such that J \B belongs to the absolutely continuous spectrum of the equation family (0.1);
• for all E ∈ J \B, there exist two linearly independent Bloch-Floquet solutions ψ±(x,E) of (0.1)


admitting the representations


(1.3) ψ±(x) = e±ip(E)x P±(x− z, εx,E),


where p(E) is a monotonously increasing, Lipschitz continuous function of E, the functions
P±(x, ζ, E) differ by the complex conjugation, P− = P+, the function P+ is 1-periodic in x and
2π-periodic in ζ. This function belongs to H2


loc in x and is analytic in ζ in a neighborhood of
the real line. Moreover, P+ is a Lipschitz continuous function of E.


In Theorem 1.1, the coefficient λ is exponentially small in ε as ε→ 0. One can study the same problem
for any real analytic periodic W (analyticity is essential for our method to work). In [10], we prove
Theorem 1.1 in this greater generality but, in that case, we cannot give the optimal value of λ.


The Bloch-Floquet solutions ψ± described in Theorem 1.1 have the same functional structure as the
Bloch-Floquet solutions constructed in [5, 6] for small almost periodic potentials or high energies.


The regularity of the solutions e±ip(E)x P±(x− z, εx,E) in the “slow” variable εx is determined by the
function W , and, in the “fast” variable x− z by the function V .
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1.2. Asymptotics of a monodromy matrix. To simplify the exposition, we formulate the results
on the monodromy matrix in two Theorems. Assume the interval J satisfy assumption (BMM). We
prove


Theorem 1.2 ([13]). Let E0 ∈ J . There exists Y0 > 0 and V , a constant neighborhood of E0, such
that, for sufficiently small ε, the family of equations (0.1) has a consistent basis of solutions for which


• the corresponding monodromy matrix M is analytic in E in V and in z in the strip SY0 =
{|Im z| ≤ Y0/ε},
• this matrix has the form (0.5).


Now, we turn to the asymptotics of the monodromy matrix described in Theorem 1.2 for ε→ 0. We
prove


Theorem 1.3 ([10]). Fix C1, C2 > 0. Let |E − E0| ≤ C1ε and |Im ζ| ≤ C2. Then, for sufficiently
small ε, the monodromy matrix defined in Theorem 1.2 has the following properties


• if we represent the coefficient a of the monodromy matrix as


a = a0 + ã(z), a0 =


∫ 1


0
a(z)dz;


then, for ε→ 0, one has


(1.4) a0 = exp(−iΦ(E)/ε+ o(1)), and ã = O
(
e−


S
ε


)
;


• the coefficient b of the monodromy matrix admits the estimate


(1.5) b = O
(
e−


S
ε


)
;


• the estimates for a and b are uniform in (E, z).


Theorem 1.3 is proved using the complex WKB method for adiabatic perturbations of periodic
Schrödinger equations developed in [9].


Under our assumptions, one can actually compute the asymptotics of the coefficients ã and b. The
leading term ã is given by a−1e


−2iπz + a1e
2iπz, the sum of the first two terms of the Fourier series of


a. The modulus of the Fourier coefficients are exponentially small in ε and can be expressed in terms
tv,0 and tv,π.


1.3. A very rough sketch of the proof of Theorem 1.1. Let us explain how Theorem 1.3 is used
to derive Theorem 1.1. By Theorem 1.3, the monodromy matrix is of the form


M =


(
U 0
0 U∗


)
+O(λ),


where U is independent of z,


U = e−
i
ε


Φ+o(1), λ = e−
S
ε .


The relation detM ≡ 1 implies that |U | = 1+o(λ) for E ∈ J . So, up to error terms of order O(λ), M is
a constant diagonal matrix with diagonal elements of absolute value 1. Now, consider the monodromy
equation with the monodromy matrix M . If the error terms could be omitted, one would immediately
obtain that, for all E ∈ J , there are bounded solutions of the monodromy equation. To take care
of the exponentially small error terms, we apply standard ideas of the spectral KAM theory: we use
a simple version (prepared in [11]) and construct bounded solutions of the monodromy equation for
E outside of a Borel set B which is the countable union of intervals of small total measure. These
intervals contain KAM resonances that can be roughly characterized by the ”quantization condition”


1


πε
Φ(E) = k · h+ l, k, l ∈ Z.


Having constructed bounded solutions of the monodromy equation outside of the set B, by Theo-
rem 0.1, we conclude that the Lyapunov exponent of the equation family (0.1) is zero on J \ B. By
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the Ishii-Pastur-Kotani Theorem [19], this implies that the essential closure of the set J \ B belongs
to the absolutely continuous spectrum of (0.1).


In Theorem 1.1, we have only described the part of the spectrum outside a small set. As said above,
this set is related to the KAM resonances for the monodromy equation. We believe that, adapting the
techniques developed in [6], one can prove that, in this small set, the spectrum is purely absolutely
continuous.


2. The “isolated band” model


Let us describe the energy region corresponding to the “isolated band” model (see Fig. 1(b)).
Actually, we consider a situation more general than the one depicted in Fig. 1(b): one is in the “isolated
band” case when the spectral window W(E) completely covers at least one band i.e. it may cover
totally or partially more than one band. For the sake of simplicity, we consider J ⊂ R, a compact
interval such that, for all E ∈ J , the window W(E) contains exactly m + 1 isolated bands of the
periodic operator. So, we fix two positive integers n and m and assume that


(IBM1): the bands [E2(n+j)−1, E2(n+j))], j = 0, 1, . . .m, are isolated;
(IBM2): for all E ∈ J , these bands are contained in the interior of W(E);
(IBM3): for all E ∈ J , the rest of the spectrum of the periodic operator is outside of W(E).


Note that energies E satisfying (IBM1) – (IBM3) exist only if W+ −W−, the ”size” of the adiabatic
perturbation, is big enough; e.g., if m = 0, such energies exist if and only if W+ −W− is larger than
the size of the n-th spectral band, but smaller than the distance between the (n− 1)-st and (n+ 1)-st
bands.


2.1. Iso-energy curve. We formulate our results in terms of the complex iso-energy curve (0.17).
So, let us discuss it in detail.


2.1.1. The real iso-energy curve. Let us describe the real iso-energy curve (0.16) in the case of the
IBM model. Consider the part of ΓR in the strip {(ζ, κ); 0 ≤ ζ ≤ π}. The function ζ 7→ E −W (ζ)
maps the interval [0, π] onto W(E). Hence, by our assumptions (IBM1) – (IBM3), there are m + 1
branch points of κp on the interval (0, π); for l = 2n − 1, . . . , 2(n + m), the point ζl is defined by
El = E −W (ζl). These points satisfy


0 < ζ2n−1 < ζ2n < · · · < ζ2(n+m) < π.


The main branch of complex momentum, κp, is real on the intervals zj = [ζ2j−1, ζ2j ], j = n, n +
1, . . . , n + m. It takes complex values with positive imaginary part on the complement of these
intervals in [0, π]. This implies that the part of ΓR above the interval [0, π] is located above the
intervals zj , j = n, n+ 1, . . . , n+m.


Fix j = n, n+1, . . . , n+m. On the interval zj , κp is monotonously increasing from (j−1)π to jπ. This
and (0.15) imply that, above zj , the real iso-energy ΓR consists of an continuous curve, 2π-periodic in
the κ-direction.


To obtain the other connected components of ΓR, one just uses that it is symmetric with respect to
the line ζ = π and 2π-periodic in the ζ-direction.


If m = 0 i.e.if the window W(E) contains only one isolated band, ΓR is shown in Fig. 3(a). Here, we
have drawn γ±1 , two connected components of ΓR, projecting onto the intervals zn and 2π − zn. More
details on its construction are given in [13].


2.1.2. Complex loops. Now, we discuss loops in the iso-energy curve (0.17) connecting connected
components of ΓR.


Define the intervals


g−j = (ζ−2j , ζ
−
2j+1), g+


j = (ζ+
2j+1, ζ


+
2j), j = n, n+ 1, . . . n+m− 1,


gn−1 = (ζ+
2n−1 − 2π, ζ−2n−1), gn+m = (ζ−2(n+m), ζ


+
2(n+m)),


(2.1)


and denote by G the set of these intervals.
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(a) The iso-energy curve
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(b) The action and phase contours (when m = 0)


Figure 3: The geometric objects in the “isolated band” case


Let g ∈ G, and let V (g) ⊂ C be a (complex) neighborhood of the interval g containing only two branch
points of the complex momentum, the ends of g. Let G(g) be a smooth closed curve that goes around
the interval g in V (g) intersecting the real axis twice. In Figure 3(b), we depicted the curves G(g)
when m = 0.
In [13], we prove that, on each curve G(g), one can fix a continuous branch of the complex momentum.


This implies that G(g) is the projection on C of a simple closed curve Ĝ(g) situated on Γ; Ĝ(g) connects
the real branches of Γ situated above the intervals z ∈ Z ∪ {z+


2n−1 − 2π} adjacent to g. For m = 0, in


Fig. 3(a), we have shown loops γ1 and γ2 projecting onto Ĝ(gn) and Ĝ(gn−1) + (2π, 0).


2.1.3. Action integrals and phases. To the real branches of the iso-energy curve, we associate the phase
integrals defined by


(2.2) Φ(z) =


∫ 2π


0
Z(κ, z)dκ, z ∈ Z.


All the phase integrals are real for E ∈ J and analytic in E in a complex neighborhood of J .


To Γ, we associate the tunneling coefficients


(2.3) t(g) = e−
1
2εS(g), g ∈ G,


where S(g) are the actions given by


(2.4) S(g) = i


∮


G(g)
κ(ζ)dζ, g ∈ G.


In each of the integrals, we integrate a branch of the complex momentum continuous on the integration
contour. We can and do choose the branches κ in (2.4) so that all the actions be positive for E ∈ J .
Note that, with this choice, the tunneling coefficients become exponentially small as ε→ 0.


2.2. Spectral results. As in section 1.1, let us first describe the heuristics behind our spectral results.


2.2.1. The heuristics. In the present situation (see Fig. 3(a)), the real iso-energy curve is extended
along the momentum axis. Hence, the quantum states should be extended in momentum and, thus,
localized in the position space. Moreover, their possible extension along the position variable is
governed by the tunneling between the vertical branches of ΓR i.e. by the tunneling coefficients t(g).
So, the Lyapunov exponent of equation (0.1) at energies in the “isolated band” zone should be related
to this tunneling coefficient. This is the content of Theorem 2.1.
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2.2.2. The spectral results. Our main spectral result is


Theorem 2.1 ([13]). Let J be an interval satisfying the assumptions (IBM1)-(IBM3) for some n and
m. Let W and V satisfy the hypothesis (H), and let 2π/ε be irrational. Then, on the interval J , for
sufficiently small ε, the Lyapunov exponent Θ(E) for the family of equations (0.1) is positive and has
the asymptotics


(2.5) Θ(E) =
ε


2π


∑


g∈G
ln


1


t(g)
+ o(1) =


1


4π


∑


g∈G
S(g) + o(1).


If 2π/ε is irrational, then Hz,ε is quasi-periodic. In this case, its spectrum, its absolutely continuous
spectrum and its singular spectrum do not depend on z (see [1, 18]); denote them respectively by Σ,
Σac and Σs. By the Ishii-Pastur-Kotani Theorem, see e.g [4, 19], Theorems 0.1, 0.2 and 2.1 imply


Corollary 2.1 ([13]). In the case of Theorem 2.1, for ε sufficiently small, one has


Σ(ε) ∩ J 6= ∅ and Σac(ε) ∩ J = ∅,


where Σac(ε) is the absolutely continuous spectrum of the family of equations (0.1).


2.3. The asymptotics of the monodromy matrix. As in the “band middle” case, Theorem 1.2
holds in this case too for J , an interval satisfying (IBM1) – (IBM3). Now, we turn to the asymptotics
of the monodromy matrix described in Theorem 1.2 for the “isolated band” case. For the sake of
definiteness, we assume n to be odd; in the case of even n, one obtains similar results. One has


Theorem 2.2. In the case of Theorem 1.2, the coefficients a and b admit the asymptotic representa-
tions


(2.6) a = −iF−mU−m(z)(1 + o(1)), b = F−mU−m(z)(1 + o(1)), 0 < Im z < Y0/ε,


and


(2.7) a = −iFm+1U
m+1(z)(1 + o(1)), b = Fm+1U


m+1(z)(1 + o(1)), −Y0/ε < Im z < 0.


Here, F−m and Fm+1 are independent of z,


(2.8) U(z) = e2πiz, F−m = T−1 exp


(
i


2ε
θ0


)
, Fm+1 = T−1 exp


(
i


2ε
θ1


)
,


and


(2.9)


T = e−r
∏


g∈G t(g), θ0 = (Φ(z+
n )− Φ(z−n )) +


∑
g∈G\{g±n }Φ(g)− 8π2m+ 2εs0,


θ1 = −∑g∈G Φ(g) + 8π2(m+ 1) + 2εs1,


where the functions r, s0 and s1 are independent of ε and real analytic in E in a neighborhood of E0.
The asymptotics for a and b are locally uniform in z and in E.


2.3.1. The case of m = 0. Theorem 2.2 does not describe the asymptotics of the coefficients a and b
along the real axis of z. But, if m = 0, it implies


Theorem 2.3. If, in the case of Theorem 1.2, m = 0, then the coefficients a and b admit the
asymptotic representations
(2.10)
a = −iF0(1+o(1))− iF1U(z)(1+o(1)), b = F0(1+o(1))+F1U(z)(1+o(1)), −Y0/ε < Im z < Y0/ε.


These asymptotics are locally uniform in E ∈ V and in z in the whole strip SY0.
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2.3.2. A rough sketch of the proof of Theorem 2.1. Let us now briefly explain how Theorem 2.1 is
derived from the asymptotics of the monodromy matrix. For sake of simplicity, we assume that n is
odd and m = 0. Up to error terms, the monodromy matrix then coincides with the matrix


M0 =


(
−iµ(1 + u) µ(1 + u)
µ∗(1 + 1/u) iµ∗(1 + 1/u)


)
, u = e2πi(z − ẑ),


ẑ =
1


4πε
(θ0(E)− θ1(E)), µ(E) = T−1(E)e


i
2ε
θ0(E).


(2.11)


For the matrix M0, one can calculate the Lyapunov exponent limn→∞ 1
n ln ‖M0(z + nh) . . .M0(z +


h)M0(z)‖ explicitly. This and Theorem 0.1 lead to the formula (2.5). To justify this formula rigorously,
we estimate the Lyapunov exponent for the cocycle generated by the monodromy matrix from below
and from above. The upper bound follows directly from a simple norm estimate of (2.11). To get
the lower bound, we use the ideas of [21] which generalize Herman’s argument [16]. In result, we find
that, up to a small error, the upper and the lower bounds coincide. Having calculated the Lyapunov
exponent for the cocycle generated by the monodromy matrix, we use Theorem 0.1 and obtain (2.5).


Note that one can transform (in a standard way) the monodromy equation to a second order difference
equation of the form


(2.12) g(n+ 1) + ρ(nh+ z)g(n− 1) = v(nh+ z)g(n), n ∈ Z,
for g taking values in C. If M(z) is analytic in z, then the coefficients ρ(z) and v(z) are meromorphic
functions of z. Their poles are the zeros of the coefficient M12(z) of the monodromy matrix. For
the monodromy matrix described in Theorem 2.3, these poles are situated in an exponentially small
neighborhood of the real line; this is reminiscent of the Maryland model (see [4]).


3. The “band edge” model


The relative position of W(E) and the spectrum of H0 is described in Fig. 1(c). More precisely, we
consider a compact energy interval J ⊂ R such that, for all E ∈ J , the windowW(E) contains exactly
one edge, say E2n+1, of a spectral zone of H0, say [E2n+1, E2n+2] i.e. we assume that there exists
δ > 0 such that, for all E ∈ J , one has


(BEM): [E2n+1 − δ, E2n+1 + δ] ⊂ W(E) ⊂ (E2n, E2n+2).


For the sake of definiteness, we assume n is odd. The case of even n is dealt with in the same way.
One can also consider the right hand side band edges. Mutandi mutandis, we obtain spectral results
identical to those we describe now.


The results that we describe now extend those obtained for n = 0 in [11] i.e. at the bottom of
the spectrum.


3.1. The geometric objects. In the “band edge” case, the situation is more complicated than in
the two previous cases, in the sense that there are more geometric objects (paths on Γ and phases and
actions associated to them) that actually play a role both in the spectral analysis of equation (0.1)
and in the description of the monodromy matrix. So, let us first start with describing these geometric
objects.


3.2. The iso-energy curve. Let us now describe the iso-energy curve Γ.


3.2.1. The real iso-energy curve. Consider the part of ΓR above {(ζ, κ); 0 ≤ ζ ≤ π}. Under the
hypothesis (H) and (BEM), the complex momentum κ has exactly one branch point, say ζ2n+1, in
the half-period [0, π). The application E : ζ 7→ E − W (ζ) maps the interval [ζ2n+1, π] into the
spectral band [E2n+1, E2n+2], and it maps the interval [0, ζ2n+1) into the spectral gap (E2n, E2n+1).
So, κp is real on [ζ2n+1, π] and has positive imaginary part on [0, ζ2n+1). The graph of κp on the
interval [ζ2n+1, π] is a part (actually, one fourth) of γπ, a connected component of ΓR. This connected
component is diffeomorphic to a circle, and symmetric with respect to the lines ζ = π and κ = (n−1)π.
All the other connected components of the real iso-energy curve can be obtained from γπ by the 2π
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Figure 4: The phase space picture


translations in the vertical and horizontal (i.e. κ- and ζ-) directions. In Fig. 4(a), we show an example
of the real iso-energy curve.
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Figure 5: The geometric objects in the “band edge” case


3.2.2. Complex loops. Let us now describe some useful complex loops in Γ. In Fig. 5, we have shown
some branch points of the complex momentum. The points ζ2n−1, ζ2n, . . . , ζ2n+2 are defined as in
section 1.0.2.


First, we note that the complex momentum can be analytically continued along the contours γ̃0, γ̃h,
γ̃v,0 and γ̃v,π (see Fig. 5(a) and 5(b)). Hence, these loops are projection on the ζ-plane of loops, say
γ0, γh, γv,0 and γv,π, in Γ. In Fig. 4(a), we have tried to show these loops. The curve γh connects
the real branches γπ and γπ − (2π, 0). Here, (ζ, κ) + (2π, 0) denotes the 2π-translate of (ζ, κ) in the
ζ-direction. The loop γv,π connects the real branches γπ and γπ + (0, 2π). The loop γv,0 connects the
complex loops γ0 and γ0 + (0, 2π). Moreover, as Fig. 6(a) shows, one can go from γπ to γπ + (0, 2π)
along the loops γh, γ0, γv,0, γ0 + (0, 2π) and γh + (0, 2π). None of the loops γh, γ0, γπ, γv,0 and γv,π
is contractible in Γ.
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Let us now give an idea of the justification for the diagram 4(a). Therefore, consider the curve γ̃h.
Along the segment [0, ζ2n+1] of this curve, one has


Reκp(ζ + i0) = nπ, Imκp(ζ + i0) > 0 for 0 < ζ < ζ2n+1, and κp(ζ2n+1) = πn.


Continuing κp analytically along the upper part of γ̃h, we see that it satisfies


κp(−ζ) = κp(ζ)


as the cosine is even.
The upper half of γ̃h (see Fig. 5(a)) is the projection of the half of the curve γh described by


{(ζ, κ); κ = κp(ζ + i0), ζ ∈ [−ζ2n+1, ζ2n+1]}.
Along the lower half of γ̃h, one has


κp(ζ − i0) = 2πn− κ(ζ + i0),


and the second half of γh is


{(ζ, κ); κ = 2πn− κp(ζ + i0), ζ ∈ [−ζ2n+1, ζ2n+1]}.
Finally, note that, for γ, a given loop in Γ, its 2π-translates in the ζ- or in the κ-directions are also
loops in Γ. Moreover, if γ projects on γ̃ in the ζ-plane, so do its 2π-translates in the κ-direction.


�


�


��


��


�


�


�S�


(a)


� �� �
�A�~�p�S�


� �~�p�h�
���~�
�A�~�z�S�


(b)


Figure 6:


3.2.3. The phases integrals. Pick α ∈ {0, π}. To γ̃α (or equivalently γα), we associate the phase
integral Φα defined by


Φα(E) =
1


2


∮


γα


κ(ζ) dζ =
1


2


∮


γ̃α


κp(ζ) dζ.


The phase integral Φα is real analytic and monotonous in E ∈ J . The direction of the integration is
chosen so that Φα(E) be positive. Then, Φ′α(E) > 0.


3.2.4. The action integrals and the tunneling coefficients. We define the horizontal action integral Sh
by


Sh(E) = − i
2


∮


γh


κ(ζ) dζ.


For E ∈ J , this integral is real analytic. By definition, we choose the direction of integration so that
Sh(E) be positive. The tunneling coefficient in the horizontal direction is the function


th(E) = exp


(
−1


ε
Sh(E)


)
.
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Pick α ∈ {0, π}. To the loop γv,α, we associate the action Sv,α defined by


Sv,α(E) = − i
2


∮


γv,α


κdζ,


and the tunneling coefficient


tv,α(E) = exp


(
−1


ε
Sv,α(E)


)
.


For E ∈ J , the action Sv,α(E) is real analytic. By definition, we chose the direction of integration so
that Sv,α > 0.


As we have seen, in Γ, there are two paths, the loop γv,π and the path shown in Fig. 6(a), that connect
γπ and its 2π-translate in the κ-direction. There are many more such paths. To each such path, one
can associate an action in the same way as above. The smallest possible action obtained in that way
is either Sv,π or Sv,0 i.e. the one attached to γv,π or to the path shown in Fig. 6(a). To guarantee that
these are actually the two paths with smallest actions, we assume that


(P): for k ≤ 2n− 2 and k ≥ 2n+ 3, Im ζk > max(ζ2n−1, ζ2n+2).


This condition can be relaxed quite a lot as the true condition has to be written in term of the actions.


To complete this section, let us note that, when one deals with the case n = 0 (i.e. the lowest band
edge, that is, the bottom of the spectrum), the loops γ0 and γv,0 do not exist. Fig. 4(a) is replaced
with Fig. 4(b). Note also that, in this case, the action Sv,π attached to γv,π is always the smallest one.


3.3. The spectral results. Assume that the assumptions (H), (O), (BEM) and (P) are satisfied.


3.3.1. The heuristics. In the “band edge model” case, the iso-energy curve is more complicated than
in the two previous situation. Now, ΓR is a periodic array of loops (γπ and its 2π-translates in the κ-
and ζ- directions); topologically, each loop is a one-dimensional tori.


Semi-classically, each of these tori carries states given by a Bohr-Sommerfeld like quantization
condition (described by the phase integral Φπ introduced in section 3.2.3). So,the spectrum should be
located near the energies defined by these quantization conditions. This is the content of Theorem 3.1.
The states then interact through tunneling between the various tori. The tunneling is governed by
the coefficients th, tv,0 and tv,π. One can expect that if it is easier to tunnel in the horizontal (resp.
vertical) direction (i.e. if the horizontal (resp. vertical) tunneling coefficient th (resp. tv,0 or t0,π) is
larger), the particle will extend in the horizontal (resp. vertical) direction. So, if tunneling is stronger
in the vertical direction, one expects singular spectrum with a positive Lyapunov exponent, this one
being controlled by the tunneling coefficients; this is the content of Theorem 3.2. At energies where
the tunneling is stronger in the horizontal direction, one expects states to be extended in the position
variable i.e. to give rise to absolutely continuous spectrum; this is the content of Theorem 3.3.


As underlined in section 3.2.4, under the hypothesis (P), tv,0 and t0,π are the smallest of the coefficients
responsible for the tunneling in the vertical direction. It is natural to wonder which one governs the
localization-delocalization phenomenon. One could expect it to be the smallest one. In general, this
is not so. The tunneling coefficient tv,π attached to the loop γv,π connecting the tori of ΓR, i.e. the
tori giving the quantization condition, plays a special role; it is this tunneling coefficient that governs
the nature of the spectrum and the spectral transitions (see section 3.4).


3.3.2. The spectral results. We first state a result on the location of the spectrum in J . Therefore, we
recall that the function Φπ(E) is monotonically increasing on J and that its derivative does not vanish
there. Moreover, Φπ(E) > 0. There is a real analytic function Φ̌π(E) defined in a neighborhood of J
and having the uniform asymptotics


(3.1) Φ̌π(E) = Φπ(E) + o(ε).
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This function is the phase defining the quantization conditions. In J , consider the points E(l), l ∈ N,
defined by


1


ε
Φ̌π(E(l)) =


π


2
+ πl, l ∈ N.


The number of these points is finite; we denote the minimal and the maximal values of l by L1 and
L2. For sufficiently small ε, the distances between these points satisfy the inequalities


c1ε ≤ E(l) − E(l−1) ≤ c2ε, l = L1 + 1, . . . , L2


where c1 and c2 are two positive constants independent of ε. We then prove


Theorem 3.1. For ε > 0 sufficiently small, there exists a collection of intervals (Il)L1≤l≤L2 , Il ⊂ J ,
such that one has


• Σ ∩ J ⊂ ∪L1≤l≤L2Il,


• the interval Il contains E(l),
• the measure of Il is estimated by


|Il| ≤ C
ε(tv,π(E(l)) + th(E(l)))


Φ′π(E(l))
(1 + o(1)).


Moreover, if dNε(E) denotes the density of states measure of Hz,ε at energy E, then, one has


(3.2)


∫


Il


dNε(E) =
1


2π
ε.


Note that the intervals Il are exponentially small and separated by a distance of order O(ε).


Now, let us discuss the nature of the spectrum. Set


λ(E) = tv,π(E)/th(E), ∆S(E) = ε log λ(E) = (Sh(E)− Sv,π(E)).


For δ ≥ 0, define the set


J−δ = {E ∈ J ; ∆S(E) < −δ}
If J−δ 6= ∅, then, for sufficiently small ε, the number of intervals Il lying in J−δ is of order O(1/ε).


Finally, let λ̃(E) = λ(E) + tv,0(E). We prove


Theorem 3.2. Fix C > 0 large. Pick E0 ∈ J and let V0 be the Cε-neighborhood of E0 in J . Pick
σ ∈ (0, 1). Then, there exists D ⊂ (0, 1) a set of Diophantine numbers such that


•
mes (D ∩ (0, ε))


ε
= 1 + o


(
ε2λ̃σ


)
when ε→ 0, λ̃ = λ̃(E0).


• For any ε small enough and ε ∈ D, each of the intervals Il ⊂ V0 contains absolutely continuous
spectrum, and, for these intervals,


mes (Il ∩ Σac)


mes Il
= 1 +O(λ̃σ/2), λ̃ = λ̃(E0).


Here, Σac is the absolutely continuous spectrum of Hz,ε.


Fix δ positive and let


J+
δ = {E ∈ J ; ∆S(E) > δ}.


As before, if J+
δ 6= ∅, then, for sufficiently small ε, the number of intervals Il lying in J+


δ is of order
O(1/ε). We prove


Theorem 3.3. For sufficiently small ε, each of the intervals Il ⊂ J+
δ contains only singular spectrum;


moreover, in the interval Il, one has


Θ(E) =
ε


2π
log λ(E(l)) + o(1) =


1


2π


(
Sh(E(l))− Sv,π(E(l))


)
+ o(1).
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3.4. The asymptotics of the monodromy matrix. Again, Theorem 1.2 holds for J , a compact
energy interval satisfying (BEM). Under the hypothesis (BEM) and (P), the monodromy matrix
admits the representation (0.8). Each of the matrices in this representation is of the form (0.5). The
coefficients of M0 have the asymptotics


(3.3) a0 = a0(E) =
1


th(E)
eiΦπ(E)/ε(1 + o(1)), b0 = b0(E) =


i


th(E)
eiΦπ(E)/ε(1 + o(1)),


and the Fourier coefficients of the matrix M1 are bounded by max
{
tv,0(E)
th(E) ,


tv,π(E)
th(E)


}
.


Our analysis of the monodromy equation (0.6) reveals that, under our assumptions, the two
important characteristics of the monodromy matrix are the trace of the zeroth and first Fourier
coefficients of M ; we denote them by [tr (M)]0,1 and define


F (E) = [tr (M)]0 and λ(E) = |[tr (M)]1|
We call the function F (E) the effective spectral parameter, and λ(E) is the effective coupling constant.
These two objects then characterize the spectrum in the following way:


• energies E satisfying |F (E)| > C(λ(E) + 1) are in the resolvent set of Hz,ε (for some fixed
C > 0); actually, for such energies, one can construct two linearly independent solutions to
equation (0.1) such that one is exponentially decreasing at +∞ and the other is exponentially
decreasing at −∞;
• for the energies E such that |F (E)| ≤ C(λ(E) + 1), the Lyapunov exponent of Hz,ε is given by


Θ(E) =
1


2π
·max(0, ε · log λ(E) + o(1)).


Using the asymptotics of the monodromy matrix, one proves that


(3.4) F (E) = 2eSh(E)/ε


(
cos


(
Φπ


ε


)
+ o(1)


)


and


(3.5) λ(E) =


∣∣∣∣ν e(Sh(E)−Sv,π(E))/ε (1 + o(1)) + e(Sh(E)−Sv,0(E))/ε


(
cos


(
Φπ


ε


)
+ o(1)


)∣∣∣∣


Here, ν = exp(−2iπ2/ε).


One of the crucial points in our analysis is that, under assumption (P), the factors cos


(
Φπ


ε


)
+ o(1)


in the formulas for F (E) and in that for λ(E) are proportional to each other, up to an exponentially
small error. Actually, one proves that, if ReE ∈ J , |ImE| ≤ C1, where C1 is a fixed positive constant,
then


TrM(z) = 2e
Sh(E)


ε
+o(1) cos


(
Φ̌π


ε


)
+O(1)


+ 2


∣∣∣∣e
Sh(E)−Sv,π(E)


ε
+o(1) + ν e


Sh(E)−Sv,0(E)


ε
+o(1) cos


(
Φ̌π


ε


)∣∣∣∣ cos(2π(z − z0(E)))


+O


(
max
α
{tv,α}+ e−C/ε


minα(tv,α)


th
+
tv,0tv,π
th


)
,


(3.6)


where o(1) and O(1) are independent of z, C is a positive constant and z0(E) is a real analytic function.
This explains why the nature of the spectrum is defined by tv,π and not by tv,0.


Remark 3.1. The proof of (3.6) is based on a factorization of the monodromy matrix in a product of two
matrices:


(3.7) M(z) = Q−1(z) · P (z) where P (z) =


(
α β
β∗ α∗


)
and Q(z) =


(
γ δ
δ∗ γ∗


)
.


The matrices P and Q are 1-periodic in z, and, which plays a very important role, their determinants are
independent of z. This factorization comes about very naturally in our method of computation of the monodromy
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matrix: there are two natural consistent bases and each of the factors is a transfer matrix between these
consistent bases.


For j ∈ Z, let αj (resp. βj , γj , δj), denote the j-th Fourier coefficient of α (resp. β, γ, δ). Under the assumptions
(H), (O), and (BEM), one has


(3.8)


α = α0(1 + o(1)) + α1u(1 + o(1)), β = β0(1 + o(1)) + β1u(1 + o(1)),


γ = γ0(1 + o(1)) + γ−1u
−1(1 + o(1)), δ = δ0(1 + o(1)) + δ1u(1 + o(1)),


u = e2iπz.


Actually, in these asymptotics , the terms o(1) are exponentially small in ε.
The Fourier coefficients are given by


α0 =
1√
th
ei


Φπ
2ε +A0+o(1), β0 =


1√
th
e−i


Φπ
2ε +B0+o(1),


γ0 =
1√
th
ei


Φ0
ε −i


Φπ
2ε +C0+o(1), δ0 =


1√
th
ei


Φ0
ε +iΦπ


2ε +D0+o(1),


α1 = α0 · (G0 + o(1)) · tv,0eA1+o(1), β1 = β0 · (G0 + o(1)) · tv,0eB1+o(1),


γ−1 = γ0tv,πe
iΦπ
ε − 2iπ2


ε +C1+o(1), δ1 = δ0tv,πe
−iΦπ


ε + 2iπ2


ε +D1+o(1),


where A0,1, B0,1, C0,1 ,D0,1 are constants, independent of ε and E.


Note also that the determinants of P and Q coincide, and admit the representation


(3.9) DetP = DetQ = C(E) · (G0 + o(1)), where G0(E) = cos


(
Φ0


ε


)
.


Here, the coefficient C is independent of ε and does not vanish, and the factor G0 + o(1) vanishes on a discrete


set of points E ∈ R. The latter, however, does not play a too important role as one knows that M is analytic


in E.


.... ........ .......... .............. ................... ........................... ..................................... .................................................. .................................................................... .............................................................................................
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Figure 7: Analysis of the traces of monodromy matrix in the “band edge” case
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The spectral results described in section 3.3 can then be summed up in a picture similar to the
one obtained when studying the Lyapunov function (i.e. the trace of the monodromy matrix) for
periodic one-dimensional Schrödinger operators. An example of such a picture is shown in Fig. 7.
We represented the energy axis horizontally, and the coupling constant λ, the ratios of the tunneling
coefficients and the effective spectral parameter F vertically. The effective spectral parameter F (E)
oscillates at a high frequency (roughly 1/ε) and with a large amplitude (roughly 1/th). The graph of
λ is oscillating between the graphs of the ratios tv,0/th and tv,π/th. The spectrum is contained in the
intervals defined by |F (E)| ≤ C(λ(E) + 1), and in each of the intervals, the nature of the spectrum
is obtained by comparing the graph of λ and the graph of |y| = 1 (depicted by the dashed curve).
Roughly, when |λ| < 1, the spectrum is absolutely continuous, when |λ| > 1, it is singular.


4. The “two interacting bands” model


In this last section, we assume that the compact energy interval J is chosen so that, there exists
δ > 0 such that, for all E ∈ J , one has


(TIBM): (E2n − δ, E2n+1 + δ) ⊂ W(E) ⊂]E2n−1, E2n+2[, for all E ∈ J .


4.1. The geometric objects. In the “two interacting bands” case, the situation is close to the one
in the “band edge” case. We will use this fact when describing the geometric objects.


4.2. The iso-energy curve. Let us now describe the iso-energy curve Γ.


Consider the part of ΓR above {(ζ, κ); 0 ≤ ζ ≤


�


�
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Figure 8: The phase space picture


π}. Under the hypothesis (H) and (TIBM), the com-
plex momentum κ has exactly two branch points, say
ζ2n and ζ2n+1, in the half-period [0, π). The applica-
tion E : ζ 7→ E −W (ζ) maps the interval [ζ2n+1, π] into
the spectral band [E2n+1, E2n+2], the interval [0, ζ2n] into
the spectral band [E2n−1, E2n], and it maps the interval
(ζ2n, ζ2n+1) onto the spectral gap (E2n, E2n+1). So, κp is
real on [ζ2n+1, π] and [0, ζ2n], and it has positive imaginary
part on [ζ2n, ζ2n+1). On each of the intervals [0, ζ2n] and
[ζ2n+1, π], the graph of κp is a part of a connected compo-
nent of ΓR. These two connected components are disjoint
and diffeomorphic to circles. Moreover, the one corre-
sponding to [ζ2n+1, π], say γπ, is symmetric with respect
to the line ζ = π and, the one corresponding to [0, ζ2n],
say γ0, is symmetric with respect to the line ζ = 0. Both
are symmetric with respect to the line κ = (n− 1)π. All
the other connected components of the real iso-energy curve can be obtained from γ0 and γπ by the 2π
translations in the vertical and horizontal (i.e. κ- and ζ-) directions. In Fig. 8, we show an example
of the real iso-energy curve.


So, we see that, now, each periodicity cell contains two distinct connected components of ΓR. Compare
it with ΓR from the “band edge” case. The connected components γ0 and γπ in the “two interacting
bands” case are obtained from their homonyms in the “band edge” case by homotopy (the parameter
being the spectral parameter E); the loop γ0 that was complex now becomes real (compare Fig. 4(a)
with Fig. 8).


4.2.2. Complex loops. Now, the configuration of the branch points of the complex momentum is given
in Fig. 9. The points ζ2n−1, ζ2n, . . . , ζ2n+2 are defined as before.


The complex momentum can be analytically continued along the contours γ̃0, γ̃h,0, γ̃h,π, γ̃v,0 and
γ̃v,π (see Fig. 9(a) and 9(b)). Hence, these loops are projection on the ζ-plane of loops, say γ0, γh,0,
γh,π, γv,0 and γv,π, in Γ. In Fig. 8, we have tried to show these loops. The loop γh,π connects the real
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branches γπ and γ0; the loop γh,0 connects the real branches γ0 and γπ−(2π, 0). The loop γv,π connects
the real branches γπ and γπ + (0, 2π); the loop γv,0 connects the real branches γ0 and γ0 + (0, 2π).


Note that the loop γh found in the “band edge” case has, in the “two interacting bands” case, split
into two loops γh,0 and γh,π.


4.2.3. The phase integrals, the action integrals and the tunneling coefficients. Pick α ∈ {0, π}. To γ̃α
(or equivalently γα), we associate the phase integrals Φα defined as in section 3.2.3; to the loops γv,α,
we associate the actions Sv,α defined as in section 3.2.4. The main properties of these phase integrals
and actions remain the same as in the “band edge” case.


Let us notice here that the phases Φ0 and Φπ and the action Sv,π are obtained by analytic
continuation in E from their homonyms in the “band edge” case. The situation for Sv,0 and Sh is
more complicated.
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(a) The action contours
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(b) The phase contours


Figure 9: The geometric objects in the “two interacting bands” case


For α as above, we define the horizontal action integrals Sh,α by


Sh,α(E) = − i
2


∮


γh,α


κ(ζ) dζ.


For E ∈ J , these integrals are real. By definition, we choose the direction of integration so that
Sh,α(E) be positive. The tunneling coefficients in the horizontal direction are the functions


th,α(E) = exp


(
−1


ε
Sh,α(E)


)
.


We note that we now have two horizontal tunneling coefficients th,0 and th,π. The parity of the cosine
implies that


Sh,0(E) = Sh,π(E) and th,0(E) = th,π(E).


Remark 4.1. In the present review, we have restricted ourselves to W (x) = α cos(x). For general W ,
i.e. when W is not even, the actions Sh,π and Sh,0, and the tunneling coefficients th,π and th,0 need
not to be equal.


We define


(4.1) Sh(E) = Sh,0(E) + Sh,π(E) and th(E) = th,0(E) · th,π(E).


4.3. The spectral results. As in the previous cases, we start with a short description of the heuristics
guiding our spectral results.
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4.3.1. The heuristics. In Fig. 8, we draw γ0 and γπ, the connected components of ΓR in one of
the periodicity cells. According to the standard semi-classical heuristics, one expects each of these
tori to give rise to a sequence of eigenvalues; these sequences are defined by Bohr-Sommerfeld like
quantization conditions written in terms of the phases Φ0 and Φπ. The spectrum should be located
near these quantized eigenvalues. The states interact through tunneling, and, as we now have two tori
in a periodicity cell, they may resonate i.e. there may exist energies E satisfying both quantization
conditions, that for γ0 and that for γπ. The tunneling at these resonant energies is quite different
from the one at non resonant energies.


Let us first consider the case of a non resonant energy E. For the sake of definiteness, assume that
E satisfies the quantization condition defined by Φ0. Then, one expects that near E, one will find
spectrum of Hz,ε in an interval close to E; the width of this interval is given by the tunneling coefficients
tv,0 and th. At this energy, the states do not “see” the other array of tori, γπ and its translates; nor do
they “feel” the tunneling coefficient tv,π. Essentially, one is in the situation of the “band edge” case
with the “single” torus γ0. In this case, one expects the nature of the spectrum to be determined by
the ratio tv,0/th. Of course, the situation is the same for an energy satisfying only the quantization
condition given by Φπ. So, the global picture for non resonant energies is that one has two sequences
of (exponentially small) intervals, defined by Φ0 and Φπ. As the tunneling coefficients tv,0 and tv,π
are “independent” of each other, the nature of the spectrum on each of the sequences can be totally
different. For instance, the spectrum can be absolutely continuous on one sequence of intervals and
singular on the other one. In this case, one gets a sequence of mobility edges.


If the energy E is resonant for the two tori γ0 and γπ, then one may expect the tunneling in the hori-
zontal direction to be stronger. We do not describe the tunneling regime in the present paper (see [8]);
nevertheless, we get results for energies exponentially close to resonant energies. For such energies, we
see that the parameter governing the nature of the spectrum is roughly max(tv,0 ·dπ(E), tv,π ·d0(E))/th
where d0 (resp. dπ) is the distance separating the energy one is considering from the nearest energy
satisfying the quantization condition for γ0 (resp. γπ). So, the vertical tunneling becomes anomalously
small; this can lead to a delocalization of the states associated to those energies.


4.3.2. The spectral results. We now assume that assumptions (H), (P) and (TIBM) hold.


Each of the functions Φ0(E) and Φπ(E) is positive, monotonically increasing on J , and its deriv-
ative does not vanish there. There are two real analytic functions Φ̌0(E) and Φ̌π(E) defined in a
neighborhood of J and having the uniform asymptotics


(4.2) Φ̌0(E) = Φ0(E) + o(ε), Φ̌0(E) = Φ0(E) + o(ε).


These functions are the phases defining the quantization conditions. In J , consider the two sequences


of points E
(l)
0 and E


(l)
π , l ∈ N, defined by


(4.3)
1


ε
Φ̌0(E


(l)
0 ) =


π


2
+ πl, and


1


ε
Φ̌π(E(l)


π ) =
π


2
+ πl, l ∈ N.


The number of these points is finite; we denote the minimal and the maximal values of l by L−0,π and


L+
0,π. For sufficiently small ε, the points defined in (4.3) satisfy the inequalities


1


C
ε ≤ E(l)


0 − E
(l−1)
0 ≤ Cε, l = L−0 + 1, . . . , L+


0


1


C
ε ≤ E(l)


π − E(l−1)
π ≤ Cε, l = L−π + 1, . . . , L+


π


where C is a positive constant independent of ε.


Fix δ > 0 small. Define L0(δ) to be the set of l from
{
L−0 , . . . , L


+
0


}
satisfying the inequalities


(4.4) |E(l)
π − E(l′)


0 | ≥ eδ/ε
[
th(E


(l′)
0 ) + tv,0(E


(l′)
0 )
]


∀L−0 ≤ l′ ≤ L+
0 .
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The set Lπ(δ) is defined in an analogous way. The sets {E(l)
0 }l 6∈L0(δ) and {E(l)


π }l 6∈Lπ(δ) form the set of
resonant energies that one has to avoid. We also define


(4.5) K(δ) =






⋃


L−0 ≤l≤L+
0


l 6∈L0(δ)


(
E


(l)
0 + eδ/ε


{
th(E


(l)
0 ) + tv,0(E


(l)
0 )
}
· [−1, 1]


)


⋃






⋃


L−π≤l≤L+
π


l 6∈Lπ(δ)


(
E(l)
π + eδ/ε


{
th(E(l)


π ) + tv,π(E(l)
π )
}
· [−1, 1]


)

 .


The set K(δ) is just a neighborhood of the resonant energies.


Remark 4.2. As J is compact, the continuity and the non-vanishing of the functions Sh, Sv,0 and
Sv,π guarantee that, for some δ0 > 0, for all E ∈ J , one has


th(E) + tv,0(E) + tv,π(E) ≤ e−δ0/ε.
Hence, for 0 < δ < δ0, the set K(δ) consists of a union of O(1/ε) exponentially small intervals.


For generic V , the set L0(δ) (resp. Lπ(δ)) contains most of the indices from the set {L−0 , . . . , L+
0 }


(resp. {L−π , . . . , L+
π }). But, if V is even, then all E


(l)
0 and E


(l)
π coincide and L0(δ) = Lπ(δ) = ∅!


We prove


Theorem 4.1. Fix δ > 0 sufficiently small. Then, for ε > 0 sufficiently small, there exists two
collection of subintervals of J , say (I l0)l∈L0 and (I lπ)l∈Lπ , such that,


Σ ∩ J \ K(δ) ⊂



⋃


l∈L0


I l0



⋃



 ⋃


l∈Lπ
I lπ



 .


For all α ∈ {0, π} and all l ∈ Lα, one has


• the interval I lα contains E
(l)
α ;


• the length of I lα is exponentially small in ε (i.e. bounded by e−C/ε with some positive constant
independent of I lα and ε);
• if dNε(E) denotes the density of states measure of Hz,ε, then


∫


Ilα


dNε(E) =
1


2π
ε, ∀I lα ⊂ J \ K(δ).


Let us characterize the intervals I lα more precisely. For sake of definiteness, consider the case of
α = π. Then, the complement to the intervals I lπ in J \ K(δ) is described by the condition


(4.6)


∣∣∣∣cos
Φ̌π(E)


ε


∣∣∣∣ ≥ C
(
tv,π(E) +


th(E)


sin Φ̌0(E)
ε


)
.


Fix C > 0 and a positive integer N . Inequality (4.6) implies, in particular, that, if El
π is situated


outside CεN -neighborhood of the points {Em
0 }, then the measure of I lπ admits the estimate


|I lπ| ≤
Cε


Φ′π(E
(l)
π )



tv,π(E(l)


π ) +
th(E


(l)
π )


cos Φ̌0(E
(l)
π )


ε



 ,


where C is a positive constant independent of I lπ and ε. Note that, here, | cos Φ̌0(E
(l)
α )


ε | ≥ Const εN .


The results on the location of the spectrum are quite similar to Theorem 3.1 except that in the present
case one obtains two sequences of intervals containing spectrum. Each of these sequence is given by a
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quantization condition defined by one of γ0 and γπ, the compact connected components of the real iso-
energy surface (see Fig. 8). To get our result, we have to avoid the intervals in K(δ); these correspond
to the case when the quantization conditions for the two connected components of the real iso-energy
surface give rise to the same energy. The source of the resonance effects is similar to one for the well
known problem of resonant double wells (see e.g. [15] and references therein). We study these effects
in [8].


Now, let us discuss the nature of the spectrum. Set


λ0(E) = 2


∣∣∣∣
tv,π(E)


th(E)
· ν · cos


(
Φ̌0


ε


)
+
tv,0(E)


th(E)
· cos


(
Φ̌π


ε


)∣∣∣∣


where ν is defined after equation (3.5). Pick α ∈ {0, π}. Notice that, on the intervals I lα ⊂ J \ K(δ),


(4.7) λ0(E) = 2
tv,α(E)


th(E)


∣∣∣∣cos
Φ̌β


ε
(E)


∣∣∣∣ (1 + o(1)) + o(1),


where β is the index complementary to α in {0, π}, and o(1) denotes terms exponentially small in ε.


For c ≥ 0, define the set
J−c = {E ∈ J ; ε · log λ0(E) < −c}


We prove


Theorem 4.2. Fix c > 0. Pick σ ∈ (0, 1). Then there exists D ⊂ (0, 1) a set of Diophantine numbers
such that


•
mes (D ∩ (0, ε))


ε
= 1 + o


(
ε2e−cσ/ε


)
when ε→ 0.


• For any ε small enough and ε ∈ D, each of the intervals Il,α ⊂ J−c \K(δ) contains absolutely
continuous spectrum, and, for these intervals,


mes (Il,α ∩ Σac)


mes Il,α
= 1 +O(e−cσ/(2ε)).


Here, Σac is the absolutely continuous spectrum of Hz,ε.


Again fix c positive and let


J+
c = {E ∈ J ; ε · log λ0(E) > c}.


We prove


Theorem 4.3. For sufficiently small ε, each of the intervals I lα ⊂ J+
c \K(δ) contains only singular


spectrum; moreover, in the interval I lα, one has


Θ(E) =
ε


2π
log λ0(E(l)


α ) + o(ε).


Let us now comment on these results.


First, fix C > 0 and a positive integer N . Assume that, in some energy ¹�º9»c¼c½�¾ ¹À¿EÁ
ÂSÃ Ä9ÃÆÅfÇÉÈSÊ ÂSÃ Ä�ÃËÅ`ÇÉÈSÊregion J0 in J , the distances between the points {E l


0} and {El
π} are larger


than CεN . Then, on I lα ⊂ J0, one has
∣∣∣cos


Φ̌β
ε


∣∣∣ ≥ Const εN , where β


is complementary to α. This and formula (4.7) imply that, on I lα, the
nature of the spectrum is determined the ratio tv,α(Elα)/th(Elα). This simple
observation leads to an unexpected effect. Assume, for example, that, on J0, one also has


(4.8) Sv,π(E)− Sh(E) > c and Sv,0(E)− Sh(E) < −c
for some fixed positive c. Then, inside J0, the sequences of intervals corresponding to the quantization
conditions for Φ̌π and for Φ̌0 are of “opposite” spectral type, i.e. the spectrum on the intervals I l0
is singular, and it is essentially absolutely continuous on the intervals I lπ. So, we get intertwined
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sequences of exponentially small intervals of “opposite” spectral types. Notice also that, in this case,
one gets O(1/ε) spectral transitions.


Another new phenomenon occurs when one is close to the resonant case i.e. if the two quantization
conditions give rise to roughly the same energy. Indeed, assume that on some energy interval J0 ⊂ J ,
one has


(4.9) Sh(E)− Sv,0(E), Sh(E)− Sv,π(E) ≥ c and Sh(E)− 2 min
α
{Sv,α(E)} ≤ −c


with some positive fixed c. Fix δ positive, sufficiently small. Assume, moreover, that, on J0, there


exist two intervals I
(l)
0 and I


(k)
π which are still non resonant (i.e. not in K(δ)), but are situated “near


the boundary” of K(δ):


(4.10) dist (I
(l)
0 , I(k)


π ) ∼ eδ/ε(th(E(k)
π ) + tv,0(E(k)


π ) + tv,π(E(k)
π )).


Then, formula (4.7) imply that, in I l0 and Ikπ , the spectrum will be absolutely Ì�Í9ÎcÏcÐ~ÑÌÀÒEÓ
Ô`Õ ÖR× ØSÙ Ú9ÙpØSÙ Ú9Ù Ô`ÕÉÖS×


Û
continuous, though, on the neighboring intervals I lα 6⊂ K(δ), it will be
singular. So, there are intervals where the spectral type changes due to
resonance with the other quantization condition. This is a new type of
spectral transition.


Remark 4.3. That the condition (4.10) will be satisfied for some energies is clear as one can vary
both the energy and the adiabatic parameter ε.


4.4. The asymptotics of the monodromy matrix. Theorem 1.2 holds for J , a compact energy
interval satisfying (TIBM). Under the hypothesis (TIBM) and (P), the monodromy matrix admits
the representation (0.8). As in section 3.4, one introduces F (E), the effective spectral parameter, and
λ(E), the effective coupling constant. These two objects play the same role as in the “band edge”
case.


Fix C1 positive. Now, one proves that, if ReE ∈ J , |ImE| ≤ C1, then


F (E) = 4e
Sh(E)


ε
+o(1) cos


(
Φ̌π


ε


)
cos


(
Φ̌0


ε


)
+O(1) +RF ,


λ(E) = 2


∣∣∣∣
tv,π(E)


th(E)
· ν · cos


Φ̌0


ε
(1 + o(1)) +


tv,0(E)


th(E)
· cos


Φ̌π


ε
(1 + o(1))


∣∣∣∣+O(max
α
{tv,α}) +Rλ,


(4.11)


where RF and Rλ, the reminder terms, are of the form


(4.12) O


(
e−C/ε


minα(tv,α)


th


[ ∣∣∣∣cos
Φ̌0


ε


∣∣∣∣+


∣∣∣∣cos
Φ̌π


ε


∣∣∣∣
]


+
tv,0tv,π
th


)
.


The analysis of the traces of the monodromy matrix is summed up in Fig. 10.


Remark 4.4. As in the “band edge” case, the proof the asymptotics for F (E) and λ(E) is based on a
factorization of the monodromy matrix in a product of two matrices 1-periodic in z and having determinants
independent of z. The factorization again is described by (3.7) and, again, detP = detQ. But, now, the
determinants are bounded away from zero by a constant independent of ε. The representations (3.8) still hold
true. Under the assumptions (H), (O) and (TIBM), one obtains


α0 =
1√
th
ei


Φ0
2ε +iΦπ


2ε +A0+o(1), β0 =
1√
th
ei


Φ0
2ε −i


Φπ
2ε +B0+o(1),


γ0 =
1√
th
e−i


Φπ
2ε −i


Φ0
2ε +C0+o(1), δ0 =


1√
th
ei


Φπ
2ε +i


Φ0
2ε +D0+o(1),


α1 = α0 · tv,π · e−i
Φ0
ε +A1+o(1), β1 = β0 · tv,0 · e−i


Φ0
ε +B1+o(1),


γ−1 = γ0 · tv,π · ei
Φπ
ε − 2iπ2


ε +C1+o(1), δ1 = δ0tv,πe
−iΦπ


ε + 2iπ2


ε +D1+o(1)


with the phases and actions defined in section 4.1; A0,1, B0,1, C0,1, D0,1 are constants.
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Figure 10: Analysis of the traces of monodromy matrix in the “two interacting band” case
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